
LA-UR--83-15OO

DE133 n12778

MM”
TITLE: CRAY-1 INSTRLICTIONANALYSIS: A

AUTHOFt(S): Joanne L. Martin
Tony Warnock

COMPARISON

SUBM17TE0 TO: The Computer Measurement Group XIV
Washington, DC, December 6-9, 1983

DISCLAIMER

OF TWO METHODS

Conference,

Thbroprtwupmpard Ummaountofwork npnmdbym~gwnoy ofthoUnltdSuta
Gvemrnont. Ndttmr ttm Urdtwd Stmta timmum rmr●y w tbord, nor uIy of hum
om~ mmka my wmrmty, asp w Impll.d, w acgumm my I@ llabUhy or ra+mrul-
Mllty for IIMsccumcy, canplotm or udulna of hny lnfwmtbn, •ppwrst~ pdw or

9 dx, Or _nu thI III w would mx Minm pdvmtely ownd rigbm Rofu.
oaa Imrdn 10 my sdfk oommordd pfoduct, ~ ov mlw by lmda namq lrdurrmrk
rnmufwurwr, or dbmrim ~ not ~rily oondlute m Imply h endm4mMt, ~.
monddmr, or favoring by tho United Shta Qcwommoru or mrv qoncy hard, ‘ho VIOWI

●l @nknm of mhom eapmd homlndo d ~rtly Mateof mfbct tb of ha
Unld StMa (hvwmmart or my UCncy herd,

Los
.

Wlinlos Los Alamos National Laborator
kAlamos,New Mexico 8754 it

RmullaffIm$MmMwm
‘L.l\

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

GRAY-1 INSTRUCTION ANALYSIS:
A COMPARISON OF TWO MIH’HODS

Joanne L. Martin
Computer Rmearch and Ap licationa Group

[Los Alamoe Na&dnal aboratory

Tony Warnock
Cray Fkma.rch, Inc.

ABsmcr

In an effort to obtein data for workfoad ehwetetialion md performance evaluation otudies, #fatu-
fictwere@hereJ on the /rtquentie8 of inditidud in.druetion.s incodm -recdinj on the Cray-1.
Two method$ were wed for the collection of ida (1) direct dmmic countinf of executing indruc-
fions and (f) mmpling oj instructionsd rephr intervalsduringezecutionoffhecode.?’hwpaper

detedes the implementation of both metAod#wad compsrettAerewfh obtained We conclude fhaf
beeau8e fhe Crcy-f u ● vector pl’oce880r, the eampling techni~e prodrnce$ekewed regultg lhat

murepretcnt ihe workfoad Ja’nf ezamined. TAerejore, dlhou@ it u euicrto impfemenf,ecmplin~
?roduee# inaccurate renlts and u an inudid approach10perjormnce eudwfion #tudie#on a uec-
ICT:~mpufer. The countinfofiwtructioncprotides ● wafmath profle o! in.drrnction/raquena’et
findu a ifablr hti on which to build }crform~nee ettimdiow,

1. INTRODUCTION

Performance evaluation studies on computer syaterm must be conducted in

m appropriate context. In particular, characterizing the workload that b to exe-

cute on the system being examined ia a critical step h the evaluation process. In

an effort to obtain data for such workload characterization and performance

evaluation studies, statistics were gathered on the frequencies of individual

instruction in coden executing on the Cray-1. This paper deecribm the imple

mentation of two methodo used for the accumulation of these etatiatics and com-

parea the results of the two techniques.

.

.
*

s

There are 128 Cray-1 instructions to be considered. By measuring the fre-

quencies with which individual instructions are issued we are able to develop, at a

very low level, a profile of the code that is being executed. Analysis of the infer- “

mation provided allows for the assessment of the relative importance of such

machine instructions as floating-point operations, memory accesses, and j umps.

Also available is information concerning the mmmer in which the compiler maps

Fortran code to the available architecture.

II. CRAY- 1 CONSIDERATIONS

The Cray- 1 is a pipelined vector processor, theoretically capable of perform-

ing in excess of 100 MFLOPS (millions of floating-point operations per second).

This high rate of execution is possible as a result of the combined influence of

several architectural features. There are 12 tightly-coupled functiontil units that

potentially cm be activated concurrently. Tnese units are able to receive input

at every clock period and permit “chaining” of result~ from functional unit to

functional unit.

The clock period of the Cray-1 is an extremely short 12.5 nanoseconds. Vec-

tor and scalar instructions inay be executed in parallel. All units are driven from

s master clock. Thus, tha hardware knows exactly when an operation will com-

plet~. There are DOvariable time instructions on tbe Cray-l; all results are pro-
.

dumd in a constant number of clock periods regardless of tbe data involved. A

vector instruction operates on ●rrays of up to 64 elements, which are held in

. ..—_

a

vector registers. Thus, a vector instruction may require as much as 64 times as

long as the corresponding scalar instruction to execute.

sequencing of instructions, it is beneficial to fit wlar

spent waiting for a vector instruction to complete.

For these reasons, in the

operations into the time

There are conditims that must

may be issued. If the issue conditions

be satisfied before individual instructions

are satisfied, each instruction completm in

a fixed amount of time. Included in these issue conditions are the requirements

that the functional unit needed for the operation must be free, the result register

must be free, and the operand registers must be he.

instructions, the last requirement can be satisfied if the

vector instruct ion occurs at “chain slot tm. .“

In the caae of

issuance of the

vector

second

The chaining of vector instructions is a process throigh which one vector

operation, which uses the result of a previous vector operation, may not be

required to wait for the first operation to complete before beginning to execute.

Chaining is performed by having the second vector instruction attempt to issue

as soon as the first functional unit yields a result. In this process of chaining

instructions, two operations may complete in only slightly more tb an the time

required for the 6rst operation. For chaining to recur, the secoud vector opera-

tion mu~t be ready to issue M what is called the chain slot time. This time is

two clock periods greater than the time for the first functional unit.

In a particular rhainiug situation, there i:; exactly one chain slot time. The

failure of chaining at that time impli= that the common register ih use is

“reserved” by the first functional unit for the duration of the entire operatiori.

4

Success of the chaining implies that the result register of the first operation i.s

r~erved for the time required to perform the succession of the two operations:

‘t= (t(lst unit)+ t(2nd unit) -1)+ n,

where n represents the vector length 11]. Chained operations

processing rate of more than on~ operation per clock period,

units in the chain.

thtlg have a burgt

depending on the

Instruction issue may imply the reservation of functional units or registers,

Scalar instructions are able to reserve only the result register, and this resmva-

tion is for a time equal to the execution time of the given instruction. In con-

trast, vector instructions place reservations on functional units and registers for

the duration of instruction execution. Reservation of a functional unit by a vec-

tor instruction may delay issuance of scala~ instructions,

Finally, the Cray-1 has segmented units for al] operations. ‘I’hat is, process-

ing in each unit is partitioned into segments such that the work performed by

one segment k completed before information proceeds to the Mmt segment. For

example, a floating-point add takes six clock periods (CT) because the floating-

point adder has six segments. This segmentation of the functional units implies

that operations can be initiated at every clock period. Thus, vector instructions

●re capable of producing one result per clock period, once the pipe has been filled,

To demonstrate the differences in the exemtion times for various instruc-

tions, selected instruction execution times are presented in Table I [2]. “

--

t

TABLE I. SELECTED INSTRUCTION EXECUTION TIMES

FUNCTIONAL lJhiiT SCALAR TIME (CP) VECTOR TIME (CP)

Logical 1 2
Shift ~ 4
Integer Add 3 3
Floating Add 6* 6
Floating Multiply 7* 7
Reciprocal Approximation 14* 14

*kue may be delayed because of a functional unit reservation by a vector
instruction.

III. MEASUREMENT TECHNIQUES

Two methods were used for the collection of data (1) direct dynamic count,-

ing of executing instructions and (2) sampling of instructions at regular intervals

during execution of the code. The counting is accomplished through a preproces-

sor that modifies the assembly language code to incorporate counters, tmd the

sampling is performed thrcmgh a system utility that is called from the executing

program.

Both methods were implemented on each of five test programs. Brief descrip-

tions of these programs are provided in Appendix A. Also, the tests wer~ con-

ducted both in scalar and vector modes. Statistical tests were used to determine

the degree of difference in the results obtained by the counting versus the sam-

pli~g.

.... ..

6

The preprocessor, which sets up the counting mechanism, uses as input the

CAL (Cray Assembly Language) code that is generated by the compiler. For

each line containing a machine instruction, the Op code is analyzed and used as a

pointer to a table of the 128 possible instructions. A macro is then inserted

immediately before the instruction to be counted. The macro increments a

count er and, in the case of a vector instruction, records the appropriate vector

length. After the counting macro has been insertwi for each instruction, the code

is reassembled and executed.

Output from this program consists of a table of the 128 machine instruc-

tions, the number of times each instruction was issued, the total number of

instructions issued, and the percentage of the total for each individual instruc-

tion. The MIPS (millions of instructions per second) rate is easily obtainable

from this information when combined with the time for execution of the code

without the counting mechanisms. We note that the runtime of the code is

increased only by a factor of approximately 5 when the counting is instrumented.

The sampling technique uses calls to utility subroutines, iu the system

library, that are used for generating statistical information within executing

codes, In particular, these routinea enable an interrupt to stop the program eyery

4 ma, record from the exchange package the op code of the instruction waiting to

issue and the associated vector length, and resume execution.

Output from this technique consists of the number of times

instructions WM sampled, the total rmmbtv of samples taken, and

of the total for the individual instructiou~.

each of the 128
.

the percentages

7

To obtain enough sample points for meaningful statistics, sample files were

constructed in two ways.

programs being tested, in

First, 10 sampling runs were made for each of the five

scalar and vector modes. The results of the 10 runs”

were then compiled into one file that contained the total number of samples for

each instruction across the 10 runs. As an alternative method for obtaining a

suticient number of samples, a loop was inserted inside the calls to the sampling

routines to increase the number of iterations for the program being tested.

Again, runs were made in scalar and vector modes.

IV. STATISTICAL METHODS

The X2 - test of goodnem of fit was used to examine the closeness of the

results obtained on the

niques. When used on a

instruction frequencies by the two measurement tech-

large sample of a multinominal population of r categories,

this statistic conforms approximately to the ,y2 - distribution with r-l deg~ees of

freedom if the hypothesis being tested is correct [3].

A set of observations

categories is a multinominal

r, The population may be

that can be described by a finite number of discrete

population. Suppose that the number of categories is

defined by the relative frequencies, fil,~,...,m, of the

observatior)s in the r chwses Also,

II ri == 1, i = 1,...,r.

The number of degreca of freedom is defined as the number of independent obser-

vations in the sample minus the number of population parameters that must be

8

estimated from sample observations.

The 128 instructio~s of the Cray-1 comprise the r discrete categories of a

multinominal population. The hypothetical frequency, Hi, for each category is.

defined as the product of the percentage of instructions measured by the counting

technique for that category and the total number of samples, N, taken for the

given population. That is,

Hi =Nti, i=l,...,r.

The observed frequency, Oi, is defined as the number of instructions

obtained for each category through the sampling technique. Note that

~Oi = N= ZNfi, i=l,...,r.

Thus, the test of goodness of fit examines

frequencies, A, of a multinominal population are

. statistic is defined as

the hypothesis that the r

equal to specified values.

relative

The X2

X2 = Z (Oi - N7ri)**2 / Nmi, i = I,.,.tr.

Observe that if X2 is equal to O, then the hypothetical and observed frequen-

cies agree exactly; if it is greater than O, they do not. In fact, the further this

statistic is from 0, the greater the disparity between the values being tested.

For the comparison of the counting and

Cray-1 instruction frequcncms, the number of

by the following definition.

sampling technique for measuring

degrees of freedom. was determined

(r-1) - (#of 0- cases).

Initially, the number of degre- of freedom was 127, r-1. Because there were legi-

9

timately cases for which the number of instructions in a particular category was

O, these cases were eliminated frornthe X2 sum.

V. RESULTS

Table II lists summary information obtained by each of the measurement

techniques for the five programs

re9ults 0) the test 01

displays the statistics

summiiig the results.

distribution.

under

fit for

examination. Table III presents the

the long sample runs, and Table IV

making a series of 10 short sample runs and

Finally, Table V presents the acceptable values for a X2 -

Clearly, the long sample runs provide more meaningful statistics than do the

summation~ of the short sample tests. This is because, in the case of the short

samples, the interrupts occur at approximately the same time during the succes-

sive executions of the code. Thus, if the samples are inaccurate one time, they

will be equally inaccurate in the succwding executions. This permits a cascading

of the initial problem, which results in the sum of 10 short sample runs being an

order of magnitude worse than the original run.

Although the long sample tests are better than the sums of the short tests,

the X2 results are still considerably outside an acceptable range for the given

number of degrees of freedom. The sampling technique is clearly “seeing”

different instruction frequencies than is the counting technique. “

VI. CONCLUSIONS

The description of elegant lock-step operation that is presented in Section II

of this paper can be marred somewhat by the presenfe of external interrupts.

These occur at random, relative to the instruction sequence, and may destroy the

possibility of cb.aining. This change in the chaining of the instruction sequence

then has an effect on the time required to comp!ste a particular operation.

The nonpredictability of interrupts may give misleading results if a sampling

routine is used to measure instruction frequencies dynamically. In sampling, an

interrupt is generated at constant intervals and the pending instruction is talli~d.

This should yield a sampling, in time, of the instructions being issued. There are

at least two possible distortions introduced by sampling.

First, it is not clear that the sampling rate will be high enough to eliminate

the “noise” caused

the distorting effect

by the various hold-issue conditions on instructions and by

of the interrupts themselves. It is possible that the sampling

results would be more comparable to the counted Iesults if more frequent, inter-

rupts could be issued. This increased frequency of interrupts was not possible

through the sampling method used for this study.

Second, because interrupts that tally a vector operation always break chain-

ing between the instruction being tallied and the preceding one, more time .;ill be

spent in vector operations than would be the case without sampling. This fact

was demonstrated and discussed by J.). Wiedemann [4] from which we quote the

following example:

11

‘%uppoae that a vector multiply is followed knrnediatelyby a chainableveetoraddi-
tic~. Then, many acak operations are performed, and thb pattern ia repeated
many times with the vector multiply and add alwaysusing vector registersdistinct
from the ones just previouslyuced. This b illustrated by the instruction sequence
of Figure I.

VOV1*V2
-UV6+ V3
{N Clock periodsof scalarinstructions}
V4V5*V5
v6v4+ V7
{N Clock periods of scalar instructing}
VOVI*V1
V2V6+ V3
.

Fig. 1. Exampleof Cray-1 program with overlapping vectorn and scalars.”

The intent of this example is to show that the vector operations would chain and

the scalar instructions would finish while waiting for the vector multiply func-

tional unit to become free. i%wuming no interrupts, the program wou!d continue

in this optimized fashion.

The issuance of an interrupt just after the issuance of the vector multiply

will imply that the next vector addition will not chain} but will begin when the

program resumes execution. This resumption will occur long after the multiply

has completed. Subsequent scalar operations will overlap with the addition,

because the vector multiply unit is no longer busy

issue immediately afterwards, However, because

the next vector multiply

the previous addition is

finishing, the issue of the next vector addition will be delayed. Having missed

and

will

still

the opportunity to chain, the vector addition must wait for the vector multiply

to complete. .

The beginning of the addition returns the instruction sequence to a point

similar to the return fmm interrupt. The execution pattern will repeat and no

vector chaining will occur. This situation will persist u~til the next interrupt,.

which causes a retwn to the original mode. The pr.wence of a small amount of

interference causes the program to execute much slower than might have been

estimated.

We conclude that because the Cray-1 is a vector procewr, the sampling

technique produces skewed results that misrepresent the workload bdng exam-

ined. Therefore, although it somewhat easier to implement, sampling produces

inaccurate results and is an invalid approach to performance evaluation studies

on a vector computer. The counting of instructions provides a valuable profile of

instruction frequencies and is a stable bsais on which to build performance esti-

mations.

REFERENCES

[1]

[2]

[3]

[4]

Jean-Loup Baer, Wuter Svstachltect
.

ur~ (Computer Science Press,

1980).

CAL Assembler Version 1, Reference Manual (Cray Research, Inc., 1981).

Jerome C. R. Li, ~ ‘ (Edwards Brothers, Inc., 1964).

Douglas Wiedemann, “Stability of Computer Timing,” Digital Processes, 6.

(1980) 297-303.

TABLF II

Total Junp tiunt

Address Computation

Integer Scalar Arithmetic

Register Fetches

Register StoresI

I
Scalar Fetches

I

Scalar Stores

Scalar Flops

Integer Vector

Vector Flops

Ari~hmetic

I
1.

Register Transfers

Vector Fetches

I Vector Stores.

(PROGRAM 1)
INSTRWTION COUNTS AND FREQUENCIES (S’UMMARY INFORMATION)

Counts
Vectcr

3,196,217

39,094,089

17,894,075

5,146,:67

1,740,837

2,974,725

8,761,299

4,629,317

25,609

9,54a,809

27,140,321

5,504,017

3,968,017

Scalar

12,604,721

71,760,628

?7,379,889

5,146,265

1,740,837

41,605,637

36,461,011

75,081,022

0

0

177,726,236

0

0

Frequencies

(Long Sample Runs]
Vector

4,685

44,851

18,618

6,07~

2,307

4,930

6,868

3,444

302

16,987

43,242

5,028

5,518

Scalar

4,727

22,686

13,101

4,781

1,395

19,182

11,944

22,441

0

0

72,783

0

0

Frequencies

(Sum of 10 Short Sample R,ms)
vector

341

4,080

1,878

565

203

535

796

213

33

1,996

3,515

517

565

Scala>

701

4,067

2,054

752

241

3,012

1,891

3,576

0

0

10,049

0

0

To~al .hmp Count

Address Computation

Integer Scalar Arithmetic

ilegisterFetches

Register Stores

Sc.slarFetches

Scalar Stores

Scalar Flops

Integer Vector Arithmetic

Vectar Flops

Register Transfers

Vector Fetches

VectOr S~ores

TABLE II

(PROGRAM 2)
INSTRKI’ION COUNTS AND IWEQUEMXES (SUMMARY INFORMATION)

Counts
Vector

13,866,308

12,486,731

28,247,078

11,210,267

78:

79,405,039

33,021,239

64,667,978

655,305

1,570,375

45,739,275

605,375

5@5,555

Scalar

19,222,262

15,071,426

119,724,471

11,209,517

782

121,606,039

64,390,959

165,145,353

0

0

176,104,107

0

0

Frequencies
(Long Sample Runs)

Frequencies
(Sum of 10 Short Sample Runs)

Vector

6,331

12,309

16,693

12,916

7

48,663

17,916

25,352

2,181

6,453

22,175

:, 034

697

Scalar

5,626

2,458

23,820

7,948

154

37,031

15,995

43,402

0

0

36,;90

o

0

Vector

993

2,612

2,997

2,141

50

7,337

2,886

3,768

347

1,301

4,212

251

161

Scalar

i,368

1,579

5,822

1,939

98

8,912

3,859

10,473

0

0

11,170

0

0

TA8LE 11

Tots 1 Jump bunt

Mdress Coqmtation

Integer Scalar An t%metic

Register Fetches

kgister Stores

Scalar Fetches

Scalar Stores

Scalar Flops

Integer Vector Arithmetic

Vector Flops

Register Transfers

Vector Fetches

Vector Stores
.

(PROGRAM 3)
I?WT’RKTION U)UNTS AND FREQUENCIES (SU?fNAIiYIWOWATION}

Counts
Vector

3,687,038

9,LJ7.356

26,003,828

2,572,707

782

52,807,664

17,975,614

57,3C7,!378

896,055

1,690,375

24,839,025

735,750

8; 5,930

Scalar

12,823,012

14,”752,551

139,567,596

2,571,267

782

110,086,664

73,345,334

165,465,353

0

0

123,308,482

0

0

Frequencies
(Long Sample Runs)
Vector

1,106

23,132

14,444

646

9

28,127

10,368

36,025

4,554

11,250

18,160

1,598

1,987

Scalar

3,262

j,545

32,901

330

168

24,553

17,121

49,738

0

0

38,874

0

0

Frequencies
(Sum Of 1!) Short Sample Runs)

Vector

148

3,060

1,962

82

5

3,625

1,395

4,885

602

1,545

2,399

210

265

Scalar—.

817

1,487

8,743

92

38

6,463

4,392

13,273

0

0

9,877

0

0

Total -p tint

Udress Computation

Integer Scalar Arithmetic

Register Fetches

Register Stores

Scalar Fetches

Scalar Stores

Scalar Flops

Integer Vector Arithmetic

Vector Flops

Register Transfers

Vector Fetches

Vector Stores
.

TABLE 11
(PROGRAM 4)

INSTRUCTION CXNNT’SA?lDFREQUENCIES (SL!kIMRYINFORMATIOti)

Counts
Vector

12,860,900

23,882,113

17,089,871

4,061,253

1,343,126

24,087,534

15,452,695

21,686,805

120,008

360,000

16,249,592

389,750

389,758

Scalar

14,473,848

24,502,288

19,843,306

4,061,253

1,343,126

36,970,159

28,335,571

34,286,805

0

0

21,836,314

0

0

Frequencies
(Long Sample Runs)
Vector - -

12,238

15,072

24,856

3,033

2,776

48,892

12,887

31,241

26

1.214

19,199

546

749

scalar

9,772

12,553

22.002

2,455

2,754

48,852

17,217

36,977

0

0

20,264

0

0

Frequencies
(Sumof 10 Short Sample Runs)

Vector Scalar— .

1,355

2,004

3,495

339

381

6,530

1,680

4,334

1

162

2,585

16

132

1,614

1,725

3,374

335

354

7,352

2,639

5,316

0

0

2,931

0

0

TA8LE II

Total -p Count

Address Coqnstation

Integer Scalar Arithwxic

Register Fetchez

Register Stores

Scalar Fetches

Scalar Stores

Scalar Flops

Integer Vector

Vector Flops

Arithmetic

Register Trdqsfers

Vector Fetches

Vector Stores.

(u~~~ 5)

IIWT’RUCTION COUNTS ANK3FREQUE?ZIES (WHHARY INFORllATION~

Counts

Vector——

4,907,673

13,976,612

6,445,280

4,591,297

219,420

7,2:3,895

6,458,086

3,137,602

73,91?

1,095,255

15,692,090

1,120,883

760,844

Scalar

11,783,405

18,286,797

34,097,313

4,584,429

219,420

30,211,392

18,075,711

37,232,715

0

0

72,719,503

0

0

Frequencies Frequencies
(Long Sample Runs) (Sum of 10 Short Sample Runs)
Vector

3,239

24,490

8,273

10,050

517

30,291

8,014

3,367

662

7,r!41

~u,739

1,068

i,450

Scalar

5,398

8,163

25,665

5,960

560

31,395

9,858

35,544

0

0

48,437

0

0

Vector

310

1,614

500

689

24

1,994

486

250

49

469

1,345

81

85

Scalar

570

931

2,705

705

&9

3,493

1,169

4,070

0

0

5,116

0

0

TABLE III
CNI-SQUARED VALUES FOR ID?lGSAMPLE RUNS

Program 1 2 3 4—- 5

Degrees of Freedom (Vector Mode) 51 39 40 55 55

Degrees of Freedom (Scalar Mode) 52 39 38 56 56

Chi-Squared (Vector Mode) & 2 4980 -1945 784 259

Chi-Squared (Scalar ?lode) 939 947 1249 909 2741

CNI-SQUARED

Program

Degrees of Freedom (Vector Mode)

!kgrees of Freedoa (Scalar Mode)

Chi-Squared (Vector Mode)

Chi-Squared (Scalar Made)

T~~ , Iv

VALUES FOR S’UHSOF SNORT SAMFLE RUNS

1 2 3 4 5

43 31 32 48 41

47 38 35 50 46

5252 91651 1o9190 10250 1665

15945 29128 33230 13867 27573

Degrees of Freedom (Vector Mode) 48 38 33 52 49

Degrees of Freedom (Scalar Mode) &9 40 35 53 48

Chi-Squared (Vector Mode) 10949 187310 216080 20649 3603

Chi-Squared (Scalar Mode) 31429 40017 66588 27668 58192

Degrees of Freedom (Vector Mode) 48 41 33 53 50

Degrees of Freedom (Scalar Mode) 52 41 36 54 48

Chi-Squared (Vector Mode) 15720 315280 335460 30393 5063

Chi-Squared (Scalar Mode) 47197 54608 100680 41284 35058

-—

Degrees of Freedom (Vector Mode) 49 41 36. 53 50

Degrees of Freed- (Scalar Mode) 52 41 37 54 48

Chi-Squared (Vector Made) 21040 429120 454260 40039 6699

Gi-Squared (Scalar Mode) 62262 68728 132790 54810 110500

CHI-SQUARED

?rogYam

Degrees of Freedor (Ve:tor Mode)

Degrees of Freedom (Scalar Mode)

Chi-Squared (Vector Mode)

G i-Squared (Scalar Mode)

TA8LE IV
VALUES FOR SUMS OF SNORT SAMPLE RUNS

1 -L 3 4 5——

49 41 36 53 50

52 41 37 54 49

26251 514690 555030 49428 8351

77499 99174 166270 68936 136920

—. ———

Degrees of Freedom (Vector Mode) so 41 36 53 51

Degrees of Freedor (Scalar Mode) 52 41 37 54 50

Chi-Squared (Vector Mode) 31361 596480 657010 59630 10034

Chi-Squared (Scalar Mode) 9~730 177;40 19830(3 82113 168740

Degrees of Freedom (Vector Mode) 50 31 36 53 51

Degrees of Freedom (Scalar Mode) 52 41 37 55 51

Chi-Squared (Vector Mode) 3645@ J9L900 765350 70058 11563

Chi-Squared (Scalar Mode) 107970 157040 232570 9587% ~91900°

Degrees of Freedom (Vector Mode) 51 41 36 33 51
.

Degrees of Freedom (Scalar Mode) 52 41 37 55 51

Ch i-Squared (Vector Mode) 41581 77149? 876640 80338 13224

G i-Squared (Scalar Mode) ~L2730 1?7480 ;~qo 109570 223350

-2-

CHI-SQUARED

Prozram

Degrees of Freedom (Vector

Degrees of Freedom (Scalar

Chi-Squared (Vector Mode)

Chi-Squared (Scalar Mode)

uode)

Mode)

TABLE IV
VALUES FOR SUMS OF SHORT SAMFLE RUNS

1 2 3 4 5

q 41 36 53 51

52 41 37 55 52

46775 S6991O 974270 90811 14634

138690 216080 297140 123750 249030

Degrees of Freedom (Vector !fode) 51 41 36 53 5L

Degrees of Freedom (Scalar Mode) 52 41 37 55 52

Chi-Squared (Vector Mode) 52434 961550 1082000 10(?610 15684

Chi-Squared (Scalar Mode) 154340 24>!360 330820 137440 274250

—. — —— .

.

-3-

TABLE V
PERCENTAGE POINTS OF THE CHI-SQUARED DISTRIBUTION

—

E
0.411740
0.675727
0.869265
1.344419

1.7349M
21s6a6
260321
3.07382

3s6503
4.07468
460094
5,142X

5.69?24
6.26481
&64396
7.43366

&03366
8,642?2
9.2W42
9,W23

10s187
11.1603
11.6076
124613

13.1211
13.7067
20s7065
27.9W

35s346
43.2752
51.1720
59.1963
673276

97.5%

)82059 ~ 10-~
0.0506356
0.215’/9s
0.484419

0.831211
;.237:7

217973

2.70039
3.24697
3.81575
4.40379

5.00874
5,62872
6.26214
6.90766

7.56418
8.23075
8.90655
9.59083

10.2E293
10.9823
11.6865
12.4(N1

13.1167
13s439
14.5733
16.3079

16.0$71
1607W6
U.4331
32.3574

40.4817
$.;57;

66:6466
74.2219 ,

5%

3.84146
5.99147
7.81473
9.4a773

11.0705
::g;;

15:6073

16.9190
18.307C
19.6751
21.0261

223621
23.6848
24.9%8
26.2962

27..s671
28.8693
30.1435
31.4104

3267(B

;yg

37.6525
38.8852
@,l,l*
41.3372

42.6569
4?.7728
66.7585
67,5043

79.0819
90.6312

10L879
113.146
12W42

25%

s.oalm
7.37776
9.34840
11.1433

12.6325
24,4424
16,Gl~
17.6346

19.wa
20.4831
21.92W

24.7356
ti.llm
27.4884
28.64s4

30.1910
31+5264
328523
34.1626

35.4782
36.7607
S6.0757
39.3641

40,6465
41.9222
43.1244
4484W7

45.7=
46.9792
59.3417
71.4m

832076
95,ml
106628
ilal.%
129561

150663 16.7496
16.8119 ; 18S476
16,4753 20.2777
20.0902 I 21.8350

21.6660 : 23.5893
XL2093 ~ 25.1882
?A.7X0 ; 26.7669
26.2~70 28.2995

I
27.6883 ! 29.8194
29.1413 i 31.3193
30.5779 32.8013
31.9692 34,2672

:,=7

36:1906
S7.56d2

36.93r.
40.2a94
41.6384
42.9796

44.314!
45.6417
46s630
4W#-a2

$%9

63:6807
76.1538

I%&
112.329
124.116
135.W7

.—

35.7186
37.1.s64
38.5R22
39.9%6

41.4010
427956
44.1813
45ss85

46,9278
48,2894
49.6W3
60.9933

52.3356
63.6720
66,7659
79.4900

al s517
194.215
116.321
128299
140.169

Thistableisreproduced with the permission of Profeuor !L S Pesreon

from EMnmclrike, vol. 32, pp. 186-189.

.

APPENDIX A
CHARACTERISTICS OF TEST CODES

Floating~Point Operations (in Millions), Percentage Vectorization,
and Average Vector Length

Program 1

Program 2

Program 3

Program 4

Program 5

MFLOP Percentage Average “
Count Vectorization Vector Length

68.88 99*9 7

147.54 56.2 64

148.82 61.5 64

40.04 31.5 35

41.08 92.6 31

