(,’g\y- §312.09--1

LA-UR--83-1500

DEB3 012778

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

MASTER

TITLE: CRAY-1 INSTRUCTION ANALYSIS: A COMPARISON OF TWO METHODS

AUTHOR(S): Joanne L. Martin
Tony Enock

SUBMITTED TO: The Computer Measurement Group XIV Conference,
Washington, DC, December 6-9, 1983

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employoes, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, complotencss, or usefulness of uny information, apparatus, product, or
process discloseq, or represents that its use would not infringe privately owned rights. Refer-
ence herein 10 any specific commercial product, process, or service by trade name, trademark,
maaufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mondation, or favoring by the United States Government or eny agency thereof. The views
and opinions of authors oxpressed herein do not necessarily atate or reflect those of the
United States Government or any agency thereof.

By sccaptance of this ariicia, (he publisher recognizes that the U.8. Government re1sins & NONexciusive, royalty.iree license to publish or reproduce
the published form of this contribution, 0. 0 aliow others to do so. for U.8. Government purpodes

The Lot Algmos National Laboratory requests that the publisher identily this artics as work performaed under the guspices of *he U 8 Departmaent of Energy

Los Alamos National Laborator
L@S Aﬂ@ m©S Los Alamos,New Mexico 8754
PORI NO 830 A mulﬂMnmmm

syt ™

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

CRAY-1 INSTRUCTION ANALYSIS:
A COMPARISON OF TWO METHODS

Joanne L. Martin
Computer Research and Ap l|:hcatiom Group
Los Alamos Natlonsl aboratory

Tony Wunock
Cray Research, Inc.

ABSTRACT

In an eflort to obtein data for workioad characterisation and performance evaluation studies, statis-
tice were gathered on tiie frequencics of individusl instructions in codes ~zecuting on the Cray-1.
Two methods were used for the collection of data: (1) direct dynamic counting of ezecuting snstruc-
fions and (2) sampling of instructions &t regular intervals during ezecution of the code. This paper
deacribes the implementation of both methods and comparee the resuite obtained. We conclude that
because the Crey-1 e & veclor processor, the sampling technigue produces skewed reewits (Aat
misrepresent the workload being examined. Therefore, although it is camer to implement, sampling
oroduces inaccurate results and is an invelid spprosch to performance eveluaiion studics on & vec-
tz; :nmputer. TAhe counting of instructions provides o veluslie profile of instruction frequencier
snd 13 a »'able besis on which to build performence estimations.

1. INTRODUCTION

Perfornance evaluation studies on computer systems must be conducted in
an sppropriate context. In particular, characterizing the workload that is to exe-
cute on the system being examined is a critical step .n the evaluation process. In
an effort to obtain data for such workload characterization and performance
evaluation studies, statistics were gathered on the frequencies of individual
instructions in codes executing on the Cray-1. This paper describes the imple-
mentation of two methods used for the accumulation of these statistics and com-

pares the results of the two techniques.

There are 128 Cray-1 instructions to be considered. By measuring the fre-
quencies with which individual instructions are issued we are able to develop, at a
very low level, a profile of the code that is being executed. Analysis of the infor- -
mation provided allows for the assessment of the relative importance of such
machine instructions as floating-point operations, memory accesses, and jumps.
Also available is information concerning the manrer in which the compiler maps

Fortran code to the available architecture.

. CRAY-1 CONSIDERATIONS

The Cray-1 is a pipelined vector processor, theoretically capable of perform-
ing in excess of 100 MFLOPS (millions of floating-point operations per second).
This high rate of execution is possible as a result of the combined influence of
several architectural features. There are 12 tightly-coupled functionz] units that
potentially czn be activated concurrertly. These units are able to receive input
at every clock period and permit ‘‘chaining’ of results from functional unit to

functional unit.

The clock period of the Cray-1 is an extremely short 12.5 nanoseconds. Vec-
tor and scalar instructions inay be executed in parallel. All units are driven from
s master clock. Thus, the hardware knows exactly when an operation will com-
plete. There are no variable time instructions on the Cray-1; all vesults are pro-
dviced in a constant number of clock periods regardless of the data invoived. A

veetor instruction operates on arrays of up to 84 elements, which are held in

vector registers. Thus, a vector instruction may require as much as 64 times as
long as the corresponding scalar instruction tc execute. For these reasons, in the
sequercing of instructions, it is beneficial to fit sialar operations into the time

spent waiting for a vector instruction to complete.

There are conditicns that must be satisfied before individual instructions
may be issued. If the issue conditions are satisfied, each instruction completes in
s fixed amount of time. Included in these issue conditions are the requirements
that the functional unit needed for the operation must be frce, the result register
must be free, and the operand registers must be {ree. In the case of vector
instructions, the last requirement can be satisfied if the issuance of the second

"

vector instruction cccurs at ‘‘chain slot ti.. .

The chaining of vector instructions is a process thro:igh which one vector
operation, which uses the result of a previous vector operation, may not be
required to wait for the first operation to complete before beginning to execute.
Claining is performed by having the second vector instruction attempt to issue
as soon as the firsc functional unit yields a result. In this process of chaining
instructions, two operations may complete in only slightly more than the time
required for the first operation. For chaining to necur, the second vector opera-
tion muit be ready to issue at what is called the chain slot time. This time is

two clock periods greater than the time for the first functional unit.

In a particular chaining situation, there i exactly one chain slot time. The
failure of chaining at that time implies that the common register in use is

‘“reserved’’ by the first functional unit for the duration of the entire operation.

Success of the chaining implies that the result register of the first operation is

reserved for the time required to perform the succession of the two operations:

$ = (t(1st unit) + t(2nd unit) - 1) + n,

where n represents the vector length [1]. Chained operations thus have a burst
processing rate of more than onc¢ operation per clock period, depending on the

units in the chain.

Instruction issue may imply the reservation of functional units or registers.
Scalar instructions are able to reserve only the result register, and this reserva-
tion is for a time equal to the execution time of the given instruction. In con-
trast, vector instructions place reservations on functional units and registers for
the duration of instruction execution. Reservation of a functional unit by a vec-

tor instruction may delay issuance of scalay instructions.

Finally, the Cray-1 has segmented units for all operations. That is, process-
ing in each unit is partitioned into segments such that the work performed by
one segment is completed before information proceeds to the uext segment. For
example, a floating-point add takes six clock periods (CP) because the floating-
point adder has six segments. This segmentation of the functional units implies
that operations can be initiated at every clock period. Thus, vector instructions

are capable of producing one result per clock period, once the pipe has been flled.

To demonstrate the differences in the execution times for various imstruc-

tions, selected instruction execution times are presented in Teble I [2].

[N

TABLE 1. SELECTED INSTRUCTION EXECUTION TIMES

FUNCTIONAL UNIT SCALAR TIME (CP) VECTOR TIME (CP)
Logical 1 2
Shift 2 4
Integer Add 3 3
Floating Add 6+ 6
Floating Multiply 7% 7
Reciprocal Approximation 14 14

*Issue may be delayed because of a functional unit reservation by a vector
instruction.

1. MEASUREMENT TECHNIQUES

Two methods were used for the collection of data: (1) direct dynamic count-
ing of executing instructions and ‘2) sampling of instructions at regular intervals
during exccution of the code. The counting is accomplished through a preproces-
sor that modifies the sassembly language code to incorporate counters, and the
sampling is performed thrcugh a system utility that is called frcm the executing

program.

Both methods were implemented on each of five test programs. Brief descrip-
tions of these programs are provided in Appendix A. Also, the tests were con-
ducted both in scalar and vector modes. Statistical tests were used to determine

the degree of difference in the results obtained by the counting versus the sam-

pling.

The preprocessor, which sets up the counting mechanism, uses as input the
CAL (Cray Assembly Language) code that is generated by the compiler. For
each line containing a machine instruction, the op code is analyzed and used as a-
pointer to a table of the 128 possible instructions. A macro is then inserted
immediately before the instruction to be counted. The macro incremernts a
counter and, in the case of a vector instruction, records the appropriate vector
length. After the counting macro has teen inserted for each instruction, the code

is reassembled and executed.

Output fromn this program consists of a table of the 128 machine instruc-
tions, the number cf times each instruction was issued, the total number of
instructions issued, and the perccentage of the total for each individual iustruc-
tion. The MIPS (millions of instructions per second) rate is easily obtainable
from this information when combined with the time for execution of the code
without the counting mechanisms. We note that the runtime of the code is

increased onlv by a factor of approximately 5 when the counting is instrumented.

The sampling technique uses calls to utility subroutines, in the system
library, that are used for generating statistical information within executing
codes. In particular, these routines enable an interrupt to stop the program every
4 ms, record from the exchange package the op code orthe instruction waiting to

issue and the associated vector length, and resume execution.

Output from this technique consists of the number of times each of the 128
instructions was sampled, the total number of samples taken, and the percentages

of the total for the individual instructions.

To obtain enough sample points for meaningful statistics, sample files were

constructed in two ways. First, 10 sampling runs were made for each of the five

programs being tested, in scalar and vector modes. The results of the 10 runs:

were then compiled into one file that contained the total number of samples for
each instruction across the 10 runs. As an alternative metho& for obtaining a
sufficien¢ number of samples, a loop was inserted inside the calls to the sampling
routines to increase the number of iterations for the program being tested.

Again, runs were made in scalar and vector modes.

IV. STATISTICAL METHODS

The x2 - test of goodness of fit was used to examine the closeness of the
results obtained on the instruction frequencies by the two measurement te~h-
niques. When used on a large sample of a multinomial pepulation of r categories,
this statistic conforms approximately to the y2 - distril_)ution with r-1 degrees of

freedom if the hypothesis being tested is correct (3].

A set of observations that can be described by a finite number of discrete
categcries is a multinomial population. Suppose that the number of categories is
r. The population may be defined by the relative frequencies, 71,x2,...,#t, of the
observations in the r classes. Also,

Eri=1l i=1,.."r
The number of degrees of freedom is defined as the number of independe;xt obser-

vations in the sample minus the number of population parameters that must be

estimated from sample observations.

The 128 instructious of the Cray-1 comprise the r discrete categories of a
multinomial population. The hypothetical frequency, Hi, for each category is-
defined as the product of the percentage of instructions measured by the counting
technique for that category and the total number of samples, N, taken for the
given population. That is,

Hi=Nmi, i=1,.,r.
The observed frequency, Oi, is defined as the aumber of instructions

obtained for each category through the sampling technique. Note that

£Oi = N = INmi, i = I,..r.

Thus, the test of goodness of fit examines the hypothesis that the r relative
frequencies, m, of a multinomial population are equal t: specified values. The x2
- statistic is defined as

x2 =X (Oi- Nmi)**2 / Nmi, i=1,..r.
Observe thet if x2 is equal to 0, then the hypothetical and observed frequen-

cies agree exactly; if it is greater than O, they do not. Iu fact, the further this

statistic is from U, the greater the disparity between the values being tested.

For the comparison of the counting and sampling techniques for measuring
Cray-1 instruction frequencies, the number of degrees of freedop. was determined
by the following definition.

(r-1) - (# of 0 - cases).

Initially, the number of degrees of freedom was 127, r-1. Because there were legi-

timately cases for which the number of instructions in a particuler category was

0, these cases were eliminated from the x2 sum.

V. RESULTS

Table I lists summary inforination obtained by each of the measurement
techniques for the five programs under examination. Table III presents the
results of the test of zoodness of fit for the long sample runs, and Table IV
displays the statistics obtair:d by making a series of“lo short sample runs and
summing the results. Finally, Table V presents the acceptable values for a x2 -
distribution.

Clearly, the long sample runs provide inore meaningful statistics tban do the
summation: of the short sample tests. This is because, in the case of the short
samples, the interrupts occur at approximately the same time during the succes-
sive executions of the code. Thus, if the samples are inaccurate one time, they
will be equally inaccurate in the succe~ding executions. This permits a cascading

of the initial problem, which results in the sum of 10 short sample runs being an

order of magnitude worse than the original run.

Although the long sample tests are better than the sums of the short tests,
the x2 results are still considerably outside an ac:eptable range for the given
number of degrees of freedom. The sampling technique is clearly ‘‘'seeing”

different instruction frequencies than is the counting technique.

10

VI. CONCLUSIONS

The description of elegant lock-step operation that is presented in Section II
of this paper can be marred somewhat by the presesce of external interrupts..
These occur at random, relative to the instruction sequence, and may destroy the
possibility of chaining. This change in the chaining of the instruction sequence

then has an effect on the time required to complste a particular operation.

The nonpredictability of interrupts may give misleading results if a samplicg
routine is used to measure instruction frequencies dynamically. In sampling, an
interrupt is generated at constant intervals and the pending instruction is tallied.
This should yield a sampling, in time, of the instructicns being issued. There are

at least two possible distortions introduced by sampling.

First, it is not clear that the sampling rate will be high enough to eliminate
the ‘“‘noise’” caused by the various hold-issue conditions on instructions and by
the distorting effect of the interrupts themselves. It is possible that the sampling
results would be more comparable to the counted results if more frequent inter-
rupts could be issued. This increased frequency of interrupts was not possible

through the sampling method used for this study.

Second, because interrupts that tally a vector operation always break chain-
ing between the instruction being tallied and the preceding one, more time ..ill be
spent in vector operations than would be the case without sampling. This fact
was demonstrated and discussed by D. Wiedemann (4] from which we quote the

following example:

11

“Suppose that a vector multiply is followed :nmediately by a chainable vector addi-
ticr. Then, many scalar operations are performed, and this pattern is repeated
many times with the vector multiply and add always using vector registere distinct
from the ones just previously used. This is illustrated by the instruction sequence
of Figure L.

vOvisv2

v2v04 v2

{N Clock periods of scalar instructions}
v4vosvd

vbva+ v7

{N Clock periods of scalar instructions}
vOvisvl

v2v0+ v3

Fig. 1. Example of Cray-1 program with overlapping vectors and scalars.”

The intent of this example is to show that the vector operations would chain and
the scalar instructions would finish while waiting for the vector multiply func-
tional unit to become free. Assuming no interrupts, the program would continue

in this optimized fashion.

The issuance of an interrupt just after the issuance of the vector multiply
will imply that the next vector addition will not chain, but will begin when the
program resumes execution. This resumption will occur long after the multiply
has completed. Subsequent scalar cperations will overlap with the addition, and
because the vector multiply unit is no longer busy, the next vector multiply will
issue immediately afterwards. However, because the previous addition is still
finishing, the issue of the next vector addition will be delayed. Having missed
the opportunity to chain, the vector addition must wait for the vector multiply

to complete.

12

The beginning of the addition returns the instruction sequence to a point
similar to the return from interrupt. The execution pattern will repeat and no
vector chaining will occur. This situation will persist uctil the next interrupt,-
which causes a return to the original mode. The prosence of a small amount of
interference causes the program to execute much slower than might have been

estimated.

We conclude tha! because the Cray-1 is a vector processor, the sampling
technique produces skewed results that misrepresent the workload being exam-
ined. Therefore, although it somewhat easier to implement, sampling produces
inaccurate results and is an invalid approach to performance evaluaticn studies
on a vector computer. The counting of instuctions provides a valuable profile of
instruction frequencies and is a stable basis on which to build performance esti-

mations.

REFERENCES

(1) Jean-Loup Baer, Computer Systems Architecture, (Computer Science Press,
1980).

[2] CAL Assembler Version 1, Reference Manual (Cray Research, Inc., 1981).

[3] Jerome C. R. Li, Statistical Inference I, (Edwards Brothers, Inc., 1964).

(4] Douglas Wiedemann, “Stability of Computer Timing,"” Digital Processes, A

(1980) 207-303.

TABLF 11
(PROGRAM 1)
INSTRUCT ION COUNTS AND FREQUENCIES (SUMMARY INFORMATION)

Frequencies Frequencies
Counts (L.ong Sample Runs) (Sum of 10 Short Sample R.ns)

Vecter Scalar Vector Scalar Vezctor Scalar
Total Jump Count 3,196,217 12,604,721 4,685 4,727 341 701
Address Computation 39,094,089 71,760,628 44,851 22,686 4,080 4,067
Integer Scalar Arithmetic 17,894,075 27,379,889 18,618 13,101 1,878 2,054
Register Fetches 5,146,267 5,146,265 6,976 4,781 565 752
Register Stores 1,740,837 1,740,837 2,307 1,395 203 241
Scalar Fetches 2,974,725 41,603,637 4,930 19,182 535 3,012
Scalar Stores 8,761,299 36,461,011 6,868 1,944 796 1,891
Scalar Flops 4,629,317 75,081,022 3,044 22,441 213 3,576
Iuteger Vector Ariihmetic 25,609 0 302 0 33 0
Vector Flops 9,545,809 0 16,987 0 1,998 0
Register Traasfers 27,140,321 177,726,236 43,242 72,783 3,515 10,049
Vector Fetches 5,504,017 0 5,028 0 517 0
Vector Stores 3,968,017 0 5,518 0 565 0

TARLE II
(PROGRAM 2)
INSTRUCTION COUNTS AND FKEQUENCIES (SUMMARY INFORMATION)

Frequencies Frequencies
Count s (Long Sample Runs) (Sum of 10 Short Sample Runs)

Vector Scalar Jector Scalar Vector Scalar
Total Jump Count 13,866,308 19,222,262 6,331 5,626 993 i,368
Address Computation 12,486,731 15,071,426 12,309 2,458 2,612 1,575
Integer Scalar Arithmetic 28,247,078 119,724,471 16,693 23,820 2,997 5,822
Register Fetches 11,210,267 11,209,517 12,216 7.948 2,141 1,959
Register Stores 782 782 7 154 50 98
Scalar Fetches 79,405,039 121,606,039 48,663 37,031 7,337 8,912
Scalar Stores 33,021,239 64,390,959 17,916 15,995 2,886 3,859
Scaiar Flope €4,667,978 165,145,353 25,352 43,402 3,768 10,473
Integer Vector Arithmetic 655,305 0 2,181 0 347 0
Vector Flops 1,570,375 0 6,453 o 1,301 0
Register Transfers 45,739,275 176,104,107 22,175 36,190 4,212 11,170
Vector Fetches 605,375 0 1,034 0 251 0
Vector Stores 505,535 0 697 0 161 0

TABLE 11
(PROGRAM 3)
INSTRUCTION COUNTS AND FREQUENCIES (SUMMARY INFORMATION)

Frequencies Frequencies
Counts (Long Sample Runs) (Sum of 17 Short Sample Runs)

Vector Scalar Vector Scalar Vector Scalar
Total Jump Count 3,687,058 12,823,012 1,106 3,262 148 817
Address Computation 9,437,356 14,752,551 23,132 5,545 3,060 1,487
Integer Scalar Arithmetic 26,003,828 139,567,596 14,444 32,901 1,962 8,743
Register Fetches 2,572,707 2,571,267 646 330 82 92
Register Stores 782 782 9 168 5 38
Scalar Fetches 52,807,664 110,086,664 28,127 24,553 3,625 6,463
Scalar Stores 7,975,614 73,345,334 10,368 17,121 1,395 4,392
Scalar Flops 57,3¢7,978 165,465,353 3€.025 49,738 4,885 13,273
Integer Vector Arithmetic 896,055 0 4,554 0 602 0
Vector Flops 1,690,375 0 11,250 0 1,545 0
Register Transfers 24,839,025 123,308,482 18,160 38,874 2,399 9,877
Vector Fetches 735,750 0 1,598 0 210 0
Vector Stores 8- 5,930 0 1,987 0 265 0

TABLE 11
({PROGRAM 4)
INSTRUCTION COUNTS AND FREQUENCIES (SUMMARY INFORMATION)

Frequencies Frequencies
Counts (Long Sample Runs) (Sum of 10 Short Sample Runs)

Vector Scalar Vector Scalar Vector Scalar
Total Jump Count 12,860,900 14,473,848 12,238 9,772 1,355 1,614
Address Computation 23,882,113 24,502,288 15,072 12,553 2,004 1,725
Integer Scalar Arithmetic 17,089,871 19,843,306 24,856 22,002 3,495 3,374
Register Fetches 4,061,253 4,061,253 3,033 2,455 339 335
Register Stores 1,343,126 1,343,126 2,776 2,754 381 354
Scalar Fetches 24,087,53 36,970,159 48,892 48,852 6,530 7,352
Scalar Stores 15,452,695 28,335,571 12,887 17,217 1,680 2,639
Scalar Flops 21,686,805 34,286,805 31,241 36,977 4,334 5,316
Integer Vector Arithmetic 120,008 0 26 0 1 0
Vector Flops 360,000 0 1,214 0 162 0
Register Transfers 14,249,592 21,836,314 19,199 20,264 2,585 2,931
Vector Fetches 389,75 0 546 0 16 o
Vector Stores 389,758 0 749 0 132 0

| R

TABLE 11
(PROGRAM 5)
INSTRUCTYON COUNTS AND FREQUENCIES (SUMMARY INFORMAT ION)

Frequencies Frequencies
Counts (Long Sample Runs) (Sum of 10 Short Sample Runs)

Vector Scalar Vector Scalar Vector Scalar
Total Jump Count 4,907,673 11,783,405 3,239 5,398 310 570
Address Computation 13,976,612 18,286,797 24,490 8,163 1,614 931
Integer Scalar Arithmetic 6,445,280 34,097,315 8,273 25,665 500 2,705
Register Fetches 4,591,297 4,584,429 10,050 5,960 689 705
Register Stores 219,420 219,420 517 560 24 L9
Scalar Fetcnes 7,223,895 30,211,392 36,291 31,395 1,99 3,493
Scalar Stores 6,458,086 18,075,711 8,014 9,858 486 1,169
Scalar Flops 3,137,602 37,232,715 3,367 35,544 250 4,070
Integer Vector Arithmetic 73,917 0 662 0 49 0
Vector Flops 1,095,255 0 7,047 0 469 0
Register Transfers 15,692,090 72,719,503 20,739 48,437 1,345 5,116
Vector Fetches 1,120,883 0 1,068)] 81 0
Vector §tores 760,844 0 1,450 0 85 0

TABLE 111

CHI-SQUARED VALUES FOR LONG SAMPLE RUNE

Program 2 3 5
Degrees of Freedom (Vector Mode) 51 39 490 55 55
Degrees of Freedom (Scalar Mode) 52 39 38 56 56
Chi-Squared (Vector Mode) 062 4980 7945 184 259
Chi-Squared (Scalsar Mode) 939 947 1249 909 2741

TAB! . IV
CHI-SQUARED VALUES FOR SUMS OF SHORT SAMPLE RUNS

Program 1 2 3 4 5
Degrees of Freedom (Vector Mode) 43 37 32 48 41
Degrees of Freedom (Scalar Mode) 47 38 35 50 46
Chi-Squared (Vector Mode) 5252 91651 109190 10250 1665
Chi-Squared (Scalar Mode) 15945 29128 33230 13867 27573
Degrees of Freedom (Vector Mode) 48 38 33 52 49
Degrees of Freedom (Scalar Mode) 49 40 35 53 48
Chi-Squared (Vector Modas) 10949 187310 216080 20649 3603
Chi-Squared (Scalar Mode) 31429 40017 66588 27668 58192
Degre=s of Freedom (Vector Mode) 48 41 33 53 50
Degrees of Freedom (Scalar Mode) 52 41 36 54 48
Chi-Squared (Vector Mode) 15720 315280 335460 30393 5063
Chi-Squared (Scalar Mode) 47197 54608 100680 41284 35058
Degrees of Freedom (Vector Mode) 49 41 36 33 50
Degrees of Freedom (Scalar Mode) 52 41 37 54 48
Chi-Squared (Vector Made) 21040 429120 4542690 40039 6699

Chi-Squared (Scalar Mode) 62262 68728 132790 54810 110500

TABLE 1V
CHI-SQUARED VALUES FOR SUMS OF SHORT SAMPLE RUNS

?rogram 1 2 3 4 5
Decrees of Freedor (Ve:tor Mode) 49 45 36 53 50
Degrees of Freedom (Scalar Mode) 52 41 37 54 49
Chi-Squared (Vector Mode) 26251 514690 555030 49428 8351
Chi-Sauvared (Scalar Mode) 17499 99174 166270 68936 136920
Degrzes of Freedom (Vector Mode) 50 41 36 53 51
Degrees of Freedox (Scalar Mode) 52 41 37 54 50
Chi-Squared (Vector Mode) 31361 598480 657010 59630 10034
Chi-Squared (Scalar Mode) 92730 127540 128300 82113 168740
Degrees of Freedom (Vector Mode) 50 5 34 53 51
Degrees of Freedom (Scalar Mode) 52 41 37 55 51
Chi-Squared (Vector Mode) 36450 291900 765350 70058 11663
Chi-Squared (Scalar Mode) 107970 157040 232570 95874 191900
?egrees of Freedom (Vector Mode) 51 41 36 53 51
Degrees of Freedom (Scalar Mode) 52 41 37 55 51
Chi-Squared (Vector Mode) 41581 771480 876640 80338 13224
Chi-Squared (Scalar Mode) 122730 127480 32490 109670 223550

TABLE IV
CHI-SQUARED VALUES FOR SUMS OF SHORT SAMPLE RUNS

Program 1 2 3 4 5
Degrees of Freedom (Vector Mode) 51 41 36 53 51
Degrees of Freedom (Scalar Mode) 52 41 37 55 52
Chi-Squared (Vector Mode) 46775 369910 974270 90811 14634
Chi-Squared (Scalar Mode) 138690 216080 297140 123750 249030
Degrees of Freedom (Vector ode) 51 41 36 53 51
Degre2s of Freedom (Scalar Mode) 52 41 37 55 52
Chi-Squared (Vector Mode) 52434 461550 1082000 100610 15684
Chi~-Squared (Scalar Mode) 154340 245360 330820 137440 274250

PERCENTAGE POINTS OF

TABLE V

THE CHI-SQUARED DISTRIBUTION

drl 995 97.5% 5% 25% 12 0.52%
] !
1392704 10-101 982069 x10-*| 3.84146 | 5.02389 | 663490 | 7.87944
2 00100251 | 00506356 | 599147 | 7.37776 | 9.21034 10.5966
3| 00717212 | 0215765 | 7.81473 | 934840 | 113449 | 128381
4 0206990 0484419 | 948773 | 111433 | 132767 | 14.8602
5/ 0411740 0831211 | 110705 | 128325 | 150863 16.7496
6 0675727 1237347 | 125916 | 14.4494 | 168119 | 185476
7) 0989265 1,68987 140671 | 16C128 | 184753 | 202777
8, 1344419 | 217973 155073 | 17.5346 | 200002 | 21.9550
[| ,
9 173496 | 270039 169190 | 190228 | 21.6660 . 235893
10/ 215585 3.24697 18307C | 204831 | 232093 - 251882
n| 260321 3.81575 106751 | 219200 | 24720 ' 267569
12| 307382 440379 | 210261 | 23.3367 | 262170 | 28.2995
13| 35503 | 5.00874 2% | 27356 | zeess | 2081
4] 407468 5.62872 236848 | 261190 | 293413 ; 813103
15| 4.60094 6.26214 249958 | 274884 | 305779 = 328013
16 514224 6.90766 262062 | 288454 | 319999 | 342672
17) 569724 7.56418 27.5871 | 201910 | 334087 | 357185
18| 626481 | 823075 288693 | 315264 | 348053 | 371564
19/ 684398 | 890655 301435 | 328523 | 361908 | 38.5822
20| 74338 9.59083 314106 | 341696 | 3§7.5662 | 39.468
21 803366 10.28293 326705 | 354789 | 38932 | 41.4010
22| 864272 10.9823 339244 | 367507 | 402894 | 427956
230 9.26(42 11.6885 351725 | 380757 | 41.6384 | 44.1813
4!l 98852 12401 364151 | 393641 | 429798 | 45.5585
25| 108197 13.1197 37.6525 | 406465 | 44.314' | 469278
26| 111603 13.8439 388852 | 419232 | 456417 | 48.28%% |
27| 118076 14.5733 40.1133 | 431944 | 469630 | 49.6449 |
2/ 124613 15.3079 41,3372 | 444607 | 462.32 | 509933
29) 131211 16.0471 425569 | 457222 | 495879 | 52.3356
30, 137867 16.7808 437729 | 469792 | 508922 | 536720
40’ 20.7065 24.4331 857585 | B9.3417 | 636807 | 66.7659
50| 27.9907 32.3574 67.5048 | 714202 | 76.153% | 76.4900
60| 355346 40.4817 790819 | 832076 | 883794 | 21.9517
| 412752 48.7576 90.5312 | 950281 | 100425 | 104.215
80| 511720 57.1532 101.879 | 106620 | 112329 | 116.321
90 501963 656466 | 113145 | 118136 | 124.116 | 128299 !
100} 67,3276 74.2219 lm.m 129.561 | 135.807 | 140.169 J

This table is reproduced with the permission of Professor E S. Pearson
from Biomcirika, vol. 32, pp. 188-189.

CHARACTERISTICS OF TEST CODES

APPENDIX A

Floating=Point Operations (in Millions), Percentage Vectorization,

Program
Program
Program
Program

Program

and Average Vector Length

MFLOP

Count

68.88
147.54
148.82

40.04

41.08

Percentage
Vectorization

99.9
56.2
61.5
31.5

92.6

Average °

Vector Length
7

64
64
35

31

