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A Simplified Spherical Harmonic Method
for Coupled Electron-Photon Transport Calculations

John A. Josef

Abstract

In this thesis we have developed a simplified spherical harmonic method (.S Py method)
and associated efﬁéient solution techniques for 2-D multigroup electron-photon trans-
port calculations. The SPx method has never before been applied to charged-particle
transport. We have performed a first time Fourier analysis of the source iteration
scheme and the P, diffusion synthetic acceleration (DSA) scheme applied to the 2-D
S Py equations. Our theoretical analyses indicate that the source iteration and P;
DSA schemes are as effective for the 2-D S Py equations as for the 1-D Sy equations.
Previous analyses have indicated that the P; DSA scheme is unstable (with suffi-
ciently forward-peaked scattering and sufficiently small absorption) for the 2-D Sy
equations, yet is very effective for the 1-D Sy equations. In addition, we have applied
an angular multigrid acceleration scheme, and computationally demonstrated that it
performs as well for the 2-D S Py equations as for the 1-D Sy equations. It has pre-
viously been shown for 1-D Sy calculations that this scheme is much more effective
than the DSA scheme when scattering is highly forward-peaked. We have investi-
gated the applicability of the SPy approximation to two different physical classes of
problems: satellite electronics shielding from geomagnetically trapped electrons, and
‘electron beam problems. In the space shielding study, the SPy method produced
solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and
often orders of magnitude faster than Monte Carlo. We have successfully modeled
quasi-void problems and have obtained excellent agreement with Monte Carlo. We

have observed that the S Py method appears to be too diffusive an approximation for

beam problems. This result, however, is in agreement with theoretical expectations.




Chapter 1

Introduction

Over the past five decades, considerable research effort has been expended upon
the development of numerical methods for solving radiation transport problems.
There are two primary approaches to modeling transport processes: deterministic
and stochastic. In deterministic methods, one directly solves a discrete approxima-
tion to the Boltzmann equation. It is the complexity of this equation which necessi-
tates the use of approximate solution techniques. In stochastic methods, i.e. Monte
Carlo, physical processes are directly modeled by statistical methods. Monte Carlo
often proves to be more efficient at ca.lculéting global quantities, while deterministic
methods are often more efficient at calculating local quantities. For large problems in
mulfidimensional (2-D, 3-D) geometries, Monte Carlo often requires enormous com-
putational time. Deterministic methods for neutron transport have been the subject
of extensive investigation for decades; however, in the area of multidimensional de-
terministic charged particle transport, little work has been done to date. In this
thesis, we shall focus upon the development of deterministic computational methods
for coupled electron-photon transport.

The standard Py equations have been a classic approximation to the transport
equation for over fifty years. The basis of this approximation is to assume that the
angular dependence of the angular flux can be represented in a truncated spherical
harmonic expansion. Here, the index N is an indicator of the number of terms re-

tained in the expansion, and as N increases without bound, the solution of the Py




equations converges to the solution of the transport equation. In multidimensional
problems, these Py equations are quite complex and difficult to deal with numerically.
Furthermore, the number of unkniowns in multidimensional Py calculations is of order
(N + 1)2. Since electron scattering is highly anisotropic, high order flux and cross
section expansions (P; — Py5) are required, and the Py method can be prohibitively
expensive in terms of both memory and CPU time.

In view of this, Gelbard developed a heuristic simplification of the Py equations,
which he called the simplified Py method. The method was originally applied to neu-
tron transport problems. The SPy method abandons the requirement that the exact
transport solution is obtained as N approaches infinity. Instead, one obtains approx-
imate transport solutions which are signicantly more accurate than diffusion theory,
but significantly less expensive than discrete ordinates (Sy), or full Py methods. The
initial derivation of the S Py equations was not rigorous. This lack of a theoretical

_foundation has undoﬁbtedly acted as an obstruction to the widespread use of these
equations. However, a recent paper [1] in the literature shows that the SPy equa-
tions represent a formal asymptotic solution to the Boltzmann transport equation.
That is, the SP, equation, or diffusion equation, is the leading order approximation
to the transport equation, and higher order SPy equations represent higher order
corrections to diffusion theory. Furthermore, in multidimensional SPy the number
of unknowns is reduced to order (N + 1), thus, offering tremendous computational
savings over full Py when N is large. The condition that N is large will always be
met in charged particle transport.

The focus of this thesis is multifold: Our first major objective is to develop a
simplified spherical harmonic method for multidimensional coupled electron-photon

transport; this is the first time that the SPy method has been applied to charged




particle transport. The second major objective is the development and analysis of
efficient solution techniques for the multidimensional S Py equations.

We present an overview of the thesis:

1. In Chapter 2, we introduce the continuous transport equation, along with some
physical definitions which will be used extensively throughout the thesis. We
introduce the Boltzmann - Continuous Slowing Down (CSD) Equations, the
fundamental model for coupled electron-photon transport. We then briefly dis-
cuss particle interactions of interest, and cross section production. We conclude
with a reformulation of the Boltzmann - CSD equations into the Boltzmann
equations for coupled electron-photon transport, necessary to facilitate the use

of our code with the cross section generation code CEPXS.

2. In Chapter 3, we examine numerical methods for discretization of the angular
variable in the Boltzmann equation. We begin by introducing the discrete
ordinates or Sy method, in which the particle is allowed to travel in a discrete set
of directions. We then formulate an alternate approach, the spherical harmonics
or Py method, based upon function expansion techniques. We conclude with
a discussion of the equivalence between Sy and Py methods. It is important
to note that both Sy and Py methods will be used in our development of the

S Py method.

3. In Chapter 4, we derive the simplified spherical harmonic (S Py) equations using
the original technique of Gelbard, and examine the characteristics of the SPy
method in a comparison with the Py and Sy methods. We briefly discuss a
recently developed asymptotic derivation which lends mathematical rigor to the

S Py approximation. We conclude with a derivation of the canonical form of




the S Py equation, which permits the application of efficient numerical solution

and acceleration techniques.

4. In Chapter 5, we discretize the remaining energy and spatial variables in the
integrodifferential canonical equations to obtain a set of algebraic equations
amenable to computational solution. We difference the energy variable using
the conventional multigroup method. Spatial discretization is performed using

the finite element method. In this thesis we consider one dimensional planar,

two dimensional X - Y, and two dimensional R - Z geometries.

5. In Chapter 6, we address the topic of solution and acceleration of the discretized
S Py equations using iterative methods. We present and analyze the standard
source iteration (SI) scheme. It is shown, through Fourier analysis, that the SI
method is unconditionally stable, but can be very slow to converge in optically
thick systems which are dominated by scattering. Next, we analyze and develop
two new methods, P; diffusion synthetic acceleration and mﬁltigrid in angle
acceleration, which have been devised to further accelerate the convergence. We
note, these acceleration methods represent multidimensional generalizations of
existing one dimensional Sy methods. We conclude with a discussion of particle

production/loss rates, particle conservation and energy deposition rates.

6. In Chapter 7, we formulate one and two dimensional test problems to investi-
gate and validate the theoretical method developed in the previous chapters.
Specifically, we investigate the applicability of the SPy method in two physical
regimes: Satellite electronics shielding for geomagnetically trapped electrons,
where we have uniform isotropic boundary sources; and electron beam prob-

lems. We present numerical comparisons with Monte Carlo, an examination of




accuracy and computational efficiency, and a brief discussion of our results.

. In Chapter 8, we review and summarize the findings of this thesis. Specifi-
cally, we interpret the test problem results of the previous chapter, contrast the

S Py method to other deterministic transport methods, and conclude with some

possibilities for future work.







Chapter 2

Continuous Transport Problems

2.1 Introduction

In this chapter we introduce the continuous transport equation, along with some
definitions which we will use extensively throughout this thesis. We begin by defining
the Boltzmann - Continous Slowing Down Equations (Boltzmann - CSD equations)
with associated boundary conditions for an arbitrary geometry, section 2.2. This set
of equations represents our fundamental physical model for coupled charged particle
- photon transport. We do not derive the Boltzmann transport equation here; the
derivation is presented in most transport theory textbooks [2-4], and the Boltzmann
- CSD equation, an extension desirable for the treatment of charged particles, is given
in [5]. We conclude, section 2.3, by reformulating the Boltzmann - CSD equations
into a new more symmetric form, the Boltzmann equations for coupled electron-photon
transport, necessary for the use of our SPy code with the cross section generation

code CEPXS.

2.2 The Boltzmann - CSD Equations

The ultimate goal of transport theory is to determine the distribution in phase
space of particles in a medium, taking into account the motion of the particles and
their interaction with the host medium. The fundamental model of particle transport
for a coupled system of electrons and photons is given by the Boltzmann - CSD ap-

proximation. This system is coupled due to the physical fact that electrons generate




photons in their interaction with the host medium, and photons in turn generate
electrons in their interaction with the host medium. Within the context of this ap-
proximation the electron distribution is described by the Boltzmann - CSD equation,
and the photon distribution is described by the Boltzmann equation. For brevity, we
shall refer to these twc equations as the Boltzmann - CSD equations.

First, let us begin by making some fundamental physical definitions. Consider
an arbitrary differential volume d3r, about F, as shown in Figure 2.1. We define the

particle density distribution as

n(r, E, Q,t)dsrdEdQ = the expected number of particles in a volume d°r
about T traveling in the solid angle d{} about {} with energies between E

and F + dFE at time ¢

For most purposes it 1s more convenient to formulate the transport equation in terms
of the angular fluz
¥(F, E,Q,t) = v(E)n(F, E,Q,t) (2.1)

where v(E) is the particle speed.

Let us now consider an arbitrary volume, with spatial domain D, bounded by
a surface I', as shown in Figure 2.2, within which we wish to describe the distribu-
tion of particles. For a coupled system of electrons and photons in ¢qui1jbrium the

distribution is described by the steady state Boltzmann - CSD equations [5]

Q- Vi (£, E, Q) + 04 (F, B (T, E, )
— / dE"’ / dVo: (7 E' — E, - Q). (F, E', &)
0 4
+ / Tar [ dVo,,. (& B — B, - Q) (F B, Q)
0 4n
0

+ B—E[R,,(E’,Eﬁpe(ﬁE,m]+QE(F,E,Q) - feD (2.2)




Figure 2.1: Cartesian Space-Angle Coordinate System

= 34

Figure 2.2: Spatial Domain D Bound by Surface I'
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Q- VT, E, Q) + 0p(F, E)tp(F, E, Q)
_ /0 *dE C Vo, (5, B - B, Q)y(F, B, )
+ fo T 4B /4 Yo, (7 B - B, Q) (F, B, )

+ Q.(%E,Q) £eD (2.3)

where

¥(F, E, ) = angular flux (particles cm=2s~1keV 1)
Q= particle direction
o«(F, E) = total cross section (em™')

o', (F, E' = E,Q - Q) = electron to electron differential scattering and
production cross section, where the particle scatters from initial energy E’
and initial direction €', to final energy E and final direction {2. Does not

include soft inelastic interactions, which are treated by the CSD operator

(em=lkeV~1str—1)

Opse(T, E' — E, QY- Q) = photon to electron differential scattering cross

section (cm~tkel/~1str1)

Opap(T, E' = E QY- Q) = photon to photon differential scattering cross

section (cm~1keV/ " !str1)

Oesp(F, E' — E, QY - Q) = electron to photon differential scattering cross

section (cm ™ lke'V " 'str~)

R.(r, E') = electron restricted stopping power. Includes only contributions

from soft inelastic interactions. (cm"lkeV)

Q(¥, E) = distributed angular source (particles cm™3s~1keV 1)
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and where subscripts e and p denote electron and photons, respectively. We will use
this notation throughout this thesis.

Note the asymmetry which appears in a comparison of the right hand side of the
electron equation, Equatioﬁ (2.2), and the photon equation, Equation (2.3). The
electron inelastic interactions (both collisional and radiative) are divided into two
classes: “catastrophic” interactions that result in large energy losses, treated by the
Boltzmann operator, and “soft” interactions that result in small energy losses, treated
by the CSD operator. . The cumulative effect of many soft interactions may be ap-
proximated by the continuous energy loss of an electron without angular deflection.
This is the restricted slowing down or continuous slowing déwn approximation, and
is represented in the electron equation, Equation (2.2), by the term containing the
restricted stopping power.

The transport equations, Equations (2.2) and (2.3), physically express the fact
that the rate at which particles, in the differential phase space volume associated
with position T, direction Q, and energy E, leave the volume due to leakage and
collisions is equal to the rate at which they enter the volume by scattering or by a
prescribed distributed source. These linear equations are valid in a physical regime in
which there are no external electric or magnetic fields and the density of transporting
particles is much less than the density of target atoms. It is this later restriction, the
neglect of particle - particle interaction, which leads to linearity.

In addition to Equations (2.2) and (2.3), the angular flux entering the volume D,
through the surface I'; must be specified. We consider three types of boundary con-

ditions: prescribed incoming source, vacuum, and reflective. The prescribed incoming
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source boundary condilion is given by the equation

(&, E,Q) = ¥*F, E, Q) Q-2 <0,FeT (2.4)

where 7 is the unit outward normal vector to the surface I', and d}b(F,E,Q) is a
specified function. The case in which ¥*(F, E, Q) 1s zero is referred to as the vacuum

boundary condition

A

O(E E,Q) =0 Q-7 <0,FeT (2.5)

If there exists a plane of symmetry in the problem, the reflective boundary condition
may be used to exploit this symmetry. At a reflecting boundary the incoming flux,
along direction ), is set equal to the outgoing flux, along direction ', where Q is the
mirror reflection of . Specifically, let us consider a plane of symmetry IV, then the

reflecting boundary condition at this plane is given by the equation

(T, B, Q) = ¢(F, E, Q) A<, Fel” (2.6)

where
A-Q=—n-Q (2.7)
QxQ)-2=0 (2.8)

We now define the scalar fluz

8(F, E) = — [ d0y(s E,0) (2.9)

4r Jan




13

and the current

- 1 o A A
i E)=— [ @ E,Q) (2.10)

A7 Jan

In this thesis we will consider two geometries to describe our space - angle coor-
dinate system, Cartesian and cylindrical.
In Cartesian coordinates ¥ = (uq,us,u3) = (z,y, 2), Figure 2.1, the streaming

operator may be written as

A

- o s} s} s,
Q-Vy(r,E,Q) = u— —_— — 2.
Y(r, E,Q) uam¢+nay¢+£az¢ (2.11)
where the direction cosines are defined as
p=0-é,7=0-6, E=Q-2; ' (2.12)

For the cylindrical coordinate system ¥ = (uy,us,us) = (7,0, z), Figure 2.3, the

streaming operator [6] is given by
N . i} n 0 0
Q-VY(L,E,Q) =p—¢+ —= — 2.1
’l/}(r’ ? ) ”ar¢+ 760¢+£62¢ ( 3)
with the direction cosines defined in Equation (2.12).

2.3 The Boltzmann Transport Equations

Cross sections for the S Py method developed in this thesis will be generated by
the code CEPXS [7]. Particle interactions included in CEPXS are listed in Table 2.1.

Here we do not consider the actual models, but instead refer the interested reader to

the literature [7].




Table 2.1:. CEPXS Interactions

collisional scattering, bremsstrahlung,
Auger production following impact ionization

bremsstrahlung,
relaxation radiation following impact ionization

Compton scattering,
relaxation radiation following photoionization

photoelectric effect, Compton scattering, pair production,
Auger production following photoionization

v — et

pair production

et = et

collisional scattering, bremsstrahlung

et = 4

bremsstrahlung, pair annihilation,
relaxation radiation following impact ionization

et s e”

impact 1onization,
Auger production following impact ionization
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CEPXS produces a special “pseudo” cross section for electron to electron scat-
tering, which effectively lumps the continuous slowing down operator [8] in Equation
(2.2), together with the previously defined electron to electron differential scattering
cross section, o,_,,, which did not include the soft inelastic interactions. To facilitate
the use of these cross sections, the Boltzmann - CSD equations, Equations (2.2) and
(2.3), must be placed in a symmetric form, the Boltzmann transport equations, where
the Boltzmann operator in the electron equation now effectively includes the CSD

operator. The Boltzmann transport equations are given by

~

Q- Vo (7, E, Q) + 0w (T, EV.(F, E, Q)
- f TdE' [ dVous(F E' = B, Q- )y (F, E', ()

0 47
+ f TAE [ dVo,.(F, B — B, - Oy, (E, B, )

0 4

+ Q.(F, E,Q) feD (2.14)

- Vb (£, E, Q) + 04(F, E)t,(T, E, )
_ /0 ~ dE' [ dVo, (7 B - B, Q) (5, B, )
+ fo " dE' [ dYoep(d B - B, Q- Qy.(F, B, Q)

+ Q.(F E,Q) FeD (2.15)

Physical quantities are defined as before, with th¢ exception of the electron to electron
differential scattering cross section, which now includes an approximation to the soft
inelastic interaction [7].

The electron equation, Equation (2.14), is now of the same form as the photon

equation, Equation (2.15). That is, an invariance exists between the equations under
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the transformation (e -- p, p — €). This symmetry will allow us to use one discrete
equation to represent all particle species, provided the cross sections are structured

in an appropriate manner. We will return to this point in Chapter 5 when we derive

the multigroup equaticns.

We note CEPXS also has the capability to generate cross sections for positrons,
as well as electrons and photons, for the final cross section set. The consideration
of positrons would involve including a third Boltzmann - CSD equation in the set,
Equations (2.2) and (2.3), to represent the positrons and an update of the scattering
operators to include positron to electron‘and positron to photon interactions. In
our applications, the energy range is such that the production of positrons, via pair
production (E, > 1.02MeV), is a rare event. Hence, we will not consider positrons in
this thesis. To summarize, the solution of the Boltzmann equations, Equations (2.14)
and (2.15), with CEPXS generated cross sections effectively represents the solution
of the Boltzmann - CSI) equation for electrons and the the solution of the Boltzmann

equation for photons.
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Figure 2.3: Cylindrical Space-Angle Coordinate System
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Chapter 3

Numerical Methods of Solution for the Transport Equation

3.1 Introduction

In Chapter 2 we defined the continuous Boltzmann transport equation. One of
our objectives is to develop accurate numerical methods for solving the Simplified
Spherical Harmonic approzimation (S Py method) to the tra.nsporf equation. How-
ever, before we formulate the S Py method, we must first examine the discretization
of the angular variable for the continous Boltzmann equation. We begin in section
3.2 by introducing the Discrete Ordinates or Sy method. We then formulate, section
3.3, an alternate approach, the Spherical Harmonics or Py method. We conclude,
section 3.4, with a discussion of the equivalence between Sy and Py methods Whi(;h
exists only for the special case of one dimensional slab geometry. Both the Sy and

Py equations will be used in the derivation of the SPy equations given in Chapter 4.

3.2 The Discrete Ordinates Method

Let us consider a general transport equation, where for simplicity in notation we

have omitted the reference to particle type

Q- Vy(T, E, Q) + ou(f, E)y(F, E, Q) =
1 fo  f " \ .

d 1] g ! I. = ] ! =

4—7rf0 dE' [ d'o,(F,E'— E,Q'-QW(F, B, Q) + Q(F, E,9)

,FT€D (3.1)
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A

In the Discrete Ordinates or Sy method [2], we represent the angular variable, §2,
by a discrete set of directions or ordinates Q,,, where n = 1,2,..., N. We represent

functions of { by their values at each of the ordinates
() = fa ,nm=12...,N (3.2)
and we approximate irtegrals over () as a summation over n

1 AL N N
o L f(@)a = nzzjl F(€2)wn (3.3)

where the w, are the quadrature weights, and the set of variables {{),|w,} is termed
the guadrature set.

Frequently one encounters a one dimensional problem, in which case the angular
variable reduces to the single directional cosine p,, n = 1, 2,..., N. We impose the

following requirements on the quadrature set
1. N is an even integer

N
2. wy>0and » wy=1

n=1

3. The ordinates are symmetric about g =0

fn >0
HENt1-n = —Hn n = 1,2,,N/2 (3.4)

WN4+1-n = Wy

Property one assigns equal importance to right and left particle flows and avoids

ambiguities in the boundary condition that arises at ¢ = 0 when N is odd. Even with
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the restrictions imposed by Equations (3.4), substantial freedom remains in choosing
a quadrature set. For our purposes we choose the Gauss - Legendre quadrature set

defined and discussed in section 3.3. The scalar flux is then given as

N
=Y Yu(F, E)wn (3.5)
n=1
and the current as
r E) = Z Qton(F, E)w, (3.6)

Introducing Equations (3.2) and (3.3) into Equation (3.1), we obtain the discrete
ordinates or Sy approximation to the continuous transport equation. The discrete

ordinates approximation is given by the following coupled set of N equations

Qn - Vu(F, E) + 0u(F, E)gn(F, B) =

N
3w / dE'0,(F, E' = E, Qi - O )w(F, E') + Qn(F, E)
n’=1
FfeDn=12,. .. N (3.7)
with vacuum boundary conditions represented as
Yul(F, E) = 0 -4 <0,FeT (3.8)

and reflective boundary conditions as

A

Pu(F, E) = ¥ul(f, E) <0 el (3.9)




Q= - QO (3.10)

(Qn X Q) -2 =0 (3.11)

where [ is the surface at which the reflective boundary condition exists, 7 is a normal
to the surface, and {2, is the direction corresponding to spectral reflection of Q. at
|

The discrete ordinates method is a widely used method of analysis. It however,
suffers from non-physical anomalies, called ray effects [2,9], which arise in the scalar
flux when there is little scattering and localized sources. These ray effects arise from
the fact that particles effectively travel in a finite set of discrete directions rather
than in a continuum of airections. In most cases ray effects may be reduced by
increasing the order N of the Sy calculation. This, however, may be costly in terms
of computational effort required. While a higher order Sy calculation will redu(;,e ray
effects, this will not eliminate them altogether. This can only be accomplished [9)] if
one applies a method that has rotational invariance, such as the Spherical Harmoﬁz’cs

or Py method.

3.3 The Spherical Harmonics Method

The Spherical Harmonics or Py method [2,3] is based upon the expansion of
the angular dependence of the angular flux in a finite series of spherical harmonic

functions. These spherical harmonics [10], Y;m (), form a complete set of orthogonal
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functions on the unit sphere and are defined as

(2 = 8mo)(l — m)!
(1 +m)!

Ylm(Q) =Yim(9,¢) = \J Pim () exp(imd) (3.12)

where g = cos§, [ is a non-negative integer [ = 0,1,...,—l < m < I, and Pp,()

are the associated Legendre functions defined for non-negative integer values m =

0,1,...,1 by
m 2ym/2 d"
Pin(i) = (=1™(1 = )2 2 Pl NERE)
and the negative integer values m = —1,-2,..., -l by
_ m({ —m)!
Pon() = (=1 3 Pen(4) (314

and the functions P,(p) are the Legendre polynomials. To avoid the use of complex

functions, we introduce the modified spherical harmonic functions defined as the linear

combinations
- 1 Yim +Y] ,m>0
Vim = 2_[ im Y] (3.15)
(-1)™i[Y, — Y] ,m <0
or
~ clmH‘m cos m¢ M Z 0
7 - (1) cos(me) (3.16)
ctm Pijmy (1) sin(jm|¢) ,m <0
where

2— Jm,o l—im ‘
c,,,,z\f( (H)[fmm' ) (3.17)

Since the spherical harmonics form a complete set, we may express the angular flux

as
) i

A

Y(EEQ) =3 3 (2 + Dim(F, B)im($2) (3.18)

=0 m=-1
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In the'PN approximation, this infinite series is replaced with a finite series with

1=0,1,...,N. Now using the orthogonality relation

1 [ AT A\ L Ay Jl’l‘sm’m
5r [ T @Fin(@) = 0

(3.19)

1 m=n

Omn = (3.20)
0 otherwise

We define the expansion coefficients or flux moments, ¢, (T, £), as

bim(E, E) = Zl;; [ doTim( @0 (E E, ) (3.21)

For computational purposes it is customary to expand the differential scattering cross

section, in Equation (2.1), in Legendre polynomials

0,(F, B' = E,po) = Y (2l + 1)ou(F, E' — E)Pi(po) (3.22)
=0

where po = Q- is the cosine of the scattering angle in the laboratory system. Using

the orthogonality of the Legendre polynomials

5711 n

%/_ 11 AP () Pr(pt) = 5 (3.23)

we define the scattering moments
ou(f, E' - E) / dpoo,(¥, E' = E, po) Pi(po) (3.24)

It is useful at this point to review some properties of the Legendre polynomials [6,
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10]. The first few Legendre polynomials are given as

Po(p) = 1 (3.25)
Pi(w) = m (3.26)
Pop) = 5(3 1) (3.27)

Legendre polynomials satisfy the recursion relation

+1
+1

n n
piPn(ps) = mpn—l(ﬂ)‘f' — Prn(p) (3.28)

2

and the spherical harmonic addition theorem

PP (W) PP (W) coslm(é — #)]  (3.29)

P($- ) = P(p)Pi(p) + 2 2 8 . :;:

We may now express the integral scattering operator in Equation (3.1) in terms
of the Legendre flux and cross section moments using Equations (3.21), (3.22), and
(3.29). For one dimensional slab geometry, the resultant form of the scattering oper-

ator is given by the equation

oo

(2, B, p) = 3 (2L + 1) Py() /D ¥ dE'ou(z, E' = E)di(z, E") (3.30)

=0
where

bz, B) =3 [ dnP()b(e, Bm) (331)

To find the general form of the Py equations, we substitute Equations (3.18), with the
series terminated at I = N, and the scattering operator expansion into the continuous

transport equation (3.1). We then multiply by a spherical harmonic of different order,
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?pm:(fl), integrate over fl, and utilize orthogonality. Boundary conditions are derived
from the continuous transport equation in a similar manner. It is this coupled set of
equations for the expansion coefficients that is referred to as the Py equations. Since
these equations are quite complicated for general geometries, we refer the interested
reader to the literature [11] for the general form. For our purposes we need only
consider the one dimensional Py equations.

In one dimensional slab geometry an expansion in spherical harmonics reduces
to an expansion in Legendre polynomials. In this case the 1 - D slab geometry Py
equations are given as

%gz o= ‘b"“(z £)
+ o2, B)nl(,B) = [ dE’a,,, ' = E)gu(z, E') + Qu(z, E)

1+1( 7 J) +

,n=01,..,N (3.32)

where

dns1 =0 (3.33)

Since the Py approximation consists of N + 1 first order differential equations, N +1
boundary conditions are required. Odd order N is used, to permit (N+1)/2 conditions
at each of the left and right boundaries. Reflective boundary conditions, at the

boundary z = z,, are represented by

Y(@o, ) = Y(20, —p) (3.34)

which translates to

¢1(£Cu.) = 0 ,l

1,3,...,N (3.35)
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Vacuum boundary conditions, for example at the right boundary of the slab, are given
by
Y(zo, ) =0 ,—1<p<0 (3.36)

This condition cannot be satisfied exactly by a finite order Legendre expansion. Two
sets of boundary conditions have been devised to satisfy this condition approximately.

Mark boundary conditions are given by
Y(zo, pn) =0 nm=12...,(N+1)/2 (3.37)
where the values y,, are given as
Pryi(pn) =0 ‘ (3.38)

Equation (3.38) is satisfied by the Gauss - Legendre quadrature cosines, defined in

section 3.3. Marshak boundary conditions are given by

[ duPib(zo,) = 0 =13, N (3.39)

This condition has the advantage of setting the incoming current of particles at the
boundary equal to zero.

We conclude this discussion with some important properties of the Py approxima-
tion. The Py method is convergent as N approaches infinity, that is, we obtain the
exact transport solution as N approaches infinity. For an order N calculation there
are order (N + 1)? unknowns in two dimensional and three dimensional géometries,
and order (N + 1) unknowns in one dimension. The fact that electron scattering is

highly anisotropic requires a high order expansion (P;— P;s5) in calculations of interest
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to us. Finally, the Py equations are rotationally invariant, and hence do not produce

ray effects.

3.4 The Equivalence between Discrete Ordinates and the Legendre Equa-

tions

Let us examine the relationship between the discrete ordinates Sy approximation
and the spherical harmonic Py_; approximation. We will show an equivalence exists
only in one dimensional slab geometry, provided we restrict our choice of quadrature
sets. For brevity, we limit our discussion to a monoenergetic problem. The one
dimensional slab geometry Sy equations with Py_; cross section expansion are given

by

“ﬂéa;"/)n(w) + O't(m)¢ﬂ(a;) — 2__:1(21 + 1)0,1($)¢1($)P{(y,n) 4+ Qn(z)

n=12.. N (3.40)

di(z Z¢n(m )Pi{ ptn )

we write the Py_; approximation to the angular flux as

N-—
@20+ () P(pm) ,n=1,2,...,N (3.42)

=0

It may be shown [2, 3] that by taking Legendre moments of Equation (3.40), that is,
operating by YN . w, Py (u,), we obtain the Py_, equations, provided that we place

the following restrictions upon the quadrature set:
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1. For an order N Sy or Py_; calculation, the ordinates u, are the zeros of the

the Nth order Legendre polynomial

Py (pn) = mnm=12..., N (3.43)

2. The quadrature integrates the polynomials Py through Poy_; exactly

N
> waPi(pn) = 610 JA=01,...,2N -1 (3.44)
n=1
Equations (3.43) and (3.44) specify the Gauss - Legendre quadrature set. The equiv-
alence between the Gauss-Sy approximation and the Legendre Py_; approximation

in one dimensional slab geometry will be used in the derivation of the cannonical form

of the SPy equations in Chapter 4.
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Chapter 4

The Simplified Spherical Harmonics Approximation

4.1 Introduction

The Simplified Py (SPn) method is an approximation method used to treat the
angular variable. As mentioned in Chapter 1, the SPy equations were originally
proposed by Gelbard [12-14] for application to neutron transport problems. This
method has been shown to produce approximate transport solutions which are sig-
nificantly more accurate than diffusion theory, but significantly less expensive than
discrete ordinates (Sy) or full Py methods. The SPy method has never before been
applied to charged particle transport problems.

In this chapter we first derive the S Py equations, section 4.2.1, using the original
technique of Gelbard, and examine the characteristics of these equations in contrast
with the Sy and Py methods. We then briefly discuss, section 4.2.2, a recently devel-
oped asymptotic derivation that lends mathematical rigor to the S Py approximation.
We conclude, section 4.3, with a derivation of the canonical form of the SPy equa-

tions, an alternate formulation which permits the application of efficient numerical

solution and acceleration techniques.
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4.2 The Standard SPN Equations

4.2.1 Conventional Derivation

Let us consider the one dimensional slab geometry Py equations

n+1 n

1 ¢n+1 %% + 182 ¢n—1 + 0u(z, E)¢n(2, E)
= /0 dE'0,;(z, E' > E)¢u(z, E') + Qu(z, E)

n=0,1,..., N (4.1)

where ¢,, is the nth Legendre moment of the angular flux, and @, is the nth Legendre

moment of the distributed source

bu(z, E) / dpPa(p)d(z, E, 1) (4.2)

Qulz,B) = 5 [ duP(0Q B, (43)

Note that ¢n,1, which appears in Equation (4.1) when n = N is defined to be zero.
This produces a system of N 4+ 1 equations with N + 1 unknowns.

Comparing the one dimensional P; equations, given by Equations (4.1) with N=1,
with the three dimensional P, equations we may define a procedure {15] that produces

the three dimensional P, equations from the one dimensional P; equations:

1. Consider the zeroth order flux moment ¢y, and zeroth order source moment Qo,

as scalars.

2. Consider the first order flux moment ¢, and first order source moment @), as

vectors.
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3. Replace the operator ~ in the one dimensional n = 0 equation with the diver-

gence operator V-

4. Replace the operator % in the one dimensional n = 1 equation with the gradient

operator v.

The derivation of the SPy equations is motivated by this observation. Specifically,
we generalize the procedure to obtain the three dimensional SPy equations from the

one dimensional Py equations:

1. Consider the even order flux moments ¢;, and even order source moments @,

as scalars.

2. Consider the odd order flux moments ¢;, and odd order source moments @, as

vectors.

3. Replace the operator % in the one dimensional even n equations with the di-

= .
vergence operator V-.

4. Replace the operator % in the one dimensional odd n equations with the gra-

dient operator V.

Carrying out this procedure, we obtain

n+1 =2

V ¢n+1(r ) 2 1(F7 E)
+ o(F, E)du(F, E) = / dE'Gon(F, E' — E)én(f, E') + Qu(F, E)

n=0,2,..., N—1 (44)

2n +
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n+1 - . n - -
T 5 1 n-— :E
o1 St (6 E) + 5m g Ve (F, B)

+ o4(F, E)pu(F, E) = [0 T 4B 0 (f, B' = E)dn(F, E) + Qu(F, E)

n=1,3,.,N (4.5)

where ¢n11, which appears in Equation (4.5) when n = N, is defined to be zero.
This closes the system of equations yielding (N + 1)/2 scalar equations and scalar
unknowns, and (N + 1)/2 vector equations and vector unknowns. Equations (4.4)
and (4.5) are known as the simplified Py equations.

Since this procedure is exact for the P, equations, it follows that the P, and SP,
equations are identical in all geometries. However, an equivalence does not exist for
N > 1; that is, the SPy equations differ from the Py equations for N > 1 in two
dimensional and three dimensional geometries. In one dimensional slab geometry
S Py and Py are identical.

It is noted that for two dimensional or three dimensional geometries, the SPy
equations have order (V+1) unknowns, in contrast to the Py equations, which contain
order (N + 1)?, thereby offering tremendous computational savings when N is large.
The condition of N large will always be met in electron transport, since an accurate
representation of highly anisotropic electron scattering requires high order flux and
cross section expansions. The §Py equations maintain the rotational invariance of
the Py approximation. and hence ray effects do not appear in the solution. However,
due to the asymptotic nature of the S Py method the exact transport solution is not

necessarily obtained as N approaches infinity.
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4.2.2 The Diffusion Limit and an Asymptotic Derivation

There is actually no intrinsic mathematical justification for the traditional deriva-
tion of the SPy equations. However, it has recently been shown [1] that the SPy
equations can be derived via a rigorous asymptotic expansion of the transport equa-
tion. In this section we will only briefly outline the procedure; the interested reader
is referred to the above references.

Let us begin by considering a system which is optically thick, and where scattering

dominates; that is, one where there is little absorption. This can be represented by

the scaling
B(f) = G‘EF) (4.6)
L) = Zentd) e

Q) = eq(f) (4.8)

where ¢ << 1. Equations (4.6)-(4.8) characterize a class of problems known as dif-
fusive. The scaling is introduced into the the continuous transport equation and the

equation is operated upon by P and (i - f’) where the operator P is defined as
A 1 Ao
PY(, B, Q) = — [ dw(F E,0) (4.9)

and [ is the identity operator. After much operator algebra, the authors arrive at a
sixth order partial differential equation for the scalar flux, asymptotically equivalent
to the transport equation with O(€”) error. If terms of O(€®) are ignored, the SP,

equations are obtained. If terms of O(€®) are ignored, the SP, equations are ob-

tained. Similarly, if terms of O(€”) are ignored, the S Ps equations are obtained. The
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expansion may be carried out even further, and higher order S Py equations may be
obtained. Thus, one sees that that the SPy equations are shown to be an asymptotic
approximation to the transport equation in a class of physical problems known as
diffusive. That is, the SP; equations, or diffusion equation, are the leading order
approximation to the transport equation and higher S Py equations represent higher

order corrections to diffusion theory.

4.3 The Canonical Formulation of the SPy Equations

The SPxy equations can be put in a canonical form [15] that has several advan-
tages relative to the conventional form. Recall, the standard derivation of the SPy
equations, section 4.2.1, began with the one dimensional slab geometry Py equa-
tions. However, it has been demonstrated, section 3.3, that the one dimensional slab
geometry Py equations are equivalent to the one dimensional Sy, equations with
Gauss - Legendre quadrature and Py cross section expansions. We begin with the

one dimensional slab geometry Sy, equations
3}
tim 5 m(2, B) + 00(2, EVm(2, B) = Qu(2,B)  ,m=1,2...,N+1 (410)

Z (21 + 1) P (ftrm) / dE'G (2, B' — E)u(z, E') + gm(z, E)  (4.11)

n=0,1
N+1
w(2, E) = Y Pl )om () wems Jfor all n (4.12)
mi=1
where m is the angular index, N + 1 is an even integer, g, is the é,ngular distributed
source, ¢, is the anguiar flux moment, and all other quantities are as previously

defined. The quadrature weights sum to unity over the interval [—1,1]. Let us now

express equation (4.10) in terms of the even and odd parity components of the angular
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flux. The even - parity angular flux is defined as
. 1
¥ (1) = 5 66(1m) + 9t
and the odd - parity angular flux as
_ 1
() (l‘m) = 5[¢(/‘m) - "L’(_I‘m)]
Note from Equations (4.13) and (4.14) that
() = ¥ (pim)

P (—tm) = =P (pm)

(4.13)

(4.14)

(4.15)

(4.16)

In the interest of simplifying the notation, we have suppressed the spatial and energy

variables. Manipulating Equations (4.10) through (4.14), we obtain the following

equivalent equations [16]:

0
Hm 5= ¥m + 0t = O ,m=1,2,...,(N+1)/2
0 ., o
tm gV + o = Qn, ym=12 .. (N+1)/2
where
N-1 0
Qm= > (2n+ 1) Pu(pm) /0 dE'oq(z, B — E)¢n(2, E') + qh(2, E)
n=0,2

N oo
Q.= Y (@n+ 1)Pn(um)/o dE'on(z, E' — E)n(z, B') + (2, E)

n=13

(4.17)

(4.18)

(4.19)

(4.20)
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(N41)/2
=2 ) P,,(um)zp:lwm for n even (4.21)

m=1
(N+1)/2 ‘
=2 3 Pu(tim)¥mwm for n odd (4.22)
m=1
and where ¢} and ¢, are the even - parity and odd - parity angular distributed

sources, respectively. These sources are defined in analogy with the even and odd

parity angular fluxes, Zquations (4.13) and (4.14), and are given by

T (pm) = la(im) + a(~ )] (423

0 (1m) = 3lalpim) — a(~pom) (4.24)

Note that one need only solve for half of the even - parity and odd - parity fluxes
since defining them on either half of the interval [—1, 1] also defines them on the whole
interval.

Following the procedure outlined in section 4.2.1, we now obtain a set of SPy
equivalent equations by replacing the operator 2 in Equation (4.17) with the di-

vergence operator, and replacing 58; in Equ;ation (4.18) with the gradient operator.

These equations are given as
I‘mﬁ"‘/_";;"i'a't"p:;:Q; M = 1’2"")(N+1)/2 (425)

b VY + o = QL m=12...,(N+1)/2 (4.26)
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where

N-1 00
Q= n+ DPln) [ dB'an(e, B > E)gu(e, B) +ah(e,B)  (427)

n=0,2

N o —
Qr= 3 20+ D)Pulim) [ dB'ou(e, B' = E)gul(e, B) + (s, B)  (4.28)
n=1,3 .
(N+1)/2
n=2 Y Pu(tim)dfwm Jfor n even (4.29)
m=1
Y, )
=2 Y Pa(tm)mm Jfor n odd (4.30)
m=1

To obtain a second order form, we then solve Equation (4.26) for the odd parity flux

—

Y
- I,Lm hmd + 1 =2 _
Y= ——Vio +—Q_, ,m=1,(N + 1)/2 (4.31)
O O

- and substitute Equation(4.31) into Equation (4.25) to eliminate 1;,; and yield

—y

i VL o = Qh Y (OR)  m=L(N 412 (432)
t t

Equations (4.31) and (4.32), are referred to as the canonical form of the SPy equa-
tions.

Boundary conditions for the canonical form are obtained by generalizing the stan-
dard one dimensional Sy.; boundary conditions. For example, considering only

fm > 0, the one dimensional incoming source boundary condition at the left face

requires

Y(m) = ¥ (fm) + 7 (m) = F(tim) s m > 0 (4.33)
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an incoming source on the right face requires

P(—pm) = ¥ (Bm) — ¥ (4m) = f(pm)  fim > 0 (4.34)

In the three dimensional case we generalize the incoming source boundary condition

for any any point on the boundary as

-t

P (pm) — ¥ (m) - 0 = f(pim) s bm > 0 (4.35)

where 7 is the unit outward normal to the surface. Reflective boundary conditions

at a surface z = z¢

Y(bm) = Y(—pm) (4.36)

are satisfied in the even odd partity formulation by inverting Equations (4.13) and

(4.14) and substituting into Equation (4.36) to obtain

Y (pm) =0 (4.37)

which translates to the three dimensional boundary condition

B () -2 = 0 (4.38)

The main advantages of the canonical form of the SPy equations are

1. They require a matrix solution only for the even parity flux moments, thereby
reducing the number of unknowns by a factor of four (considering the vector

nature of the odd parity moments).
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2. They represent a self adjoint system of equations which can be spatially dis-
cretized to produce a symmetric positive definite coefficient matrix. Efficient,

robust numerical techniques exist for solving such matrix equations [17].

3. The fluxes do not become coupled at the boundaries, in contrast to the full

coupling that occurs between flux moments for the standard form.

4. Since the left hand side consists of independent diffusion equations, both diffu-
sion discretization and diffusion solution techniques can be directly applied to

these equations in conjunction with a source iteration technique.

5. Standard convergence acceleration techniques for the one dimensional even par-

ity Sny+1 equations [16] can be generalized for application to the canonical form.

For these reasons, we will consider only the canonical form of the SPy equations

throughout the remainder of this thesis.
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Chapter 5

i

Numerical Differencing Schemes for the SPy Equations

5.1 Introduction

In Chapter 4 we derived the canonical form of the § Py equations. Recall, the
SPy equations represent an angular approximation to the continuous Boltzmann
equation. In this chapter we turn to the discretization of the independent variables,
energy and si)ace, in the integrodifferential canonical SPy equations. We begin,
section 5.2, by using the multigroup approximation method to discretize the energy
variable and produce the canonical multigroup SPy equations. We then discuss the
multigroup-Legendre format for cross sections, and cross section generation for our
method using the program CEPXS. A general method of solution is then developed for
the multigroup equations. We conclude, section 5.3, with a finite element treatment
of the spatial variables in the multigroup equations, and a derivation of appropriate

boundary and source conditions.

5.2 Energy Discretization

5.2.1 The Multigroup Equations

The multigroup method is common to virtually all deterministic computational
methods and is described in various references [2,18]. Let us begin with the energy

dependent, one dimensional Sy, equations, Equations (4.10) through (4.12)

ﬂm%¢m(m, E) + ay(z, E){m(z, E) = Qm(z, E) ,m=12_.. N+1 (51)




Ee-1 Eg-1

Figure 5.1: Division of the Energy Range into G Energy Groups

where

N o0
Qm= 3 (20 +1)Pa(tin) /0 dE'0on(2, E' = E)du(z, E') + gm(z, E)

N+1
n(@, B) = Y Pu(pomt)¥mi(2, E)wm: Jfor all »

m!=1

and the notation is as defined in Chapter 3

(5.2)

(5.3)

To derive the multigroup equations we first divide the energy range into G intervals

as shown in Figure 5.1, where Eqg = 0 and Ej is sufficiently large that the number of

particles at energies greater than Ey is negligible. Our objective is to discretize the

Sn+1 equations in terras of the group angular flux

bmg(@) = /y dEYm(z, E)

where for brevity, we introduce the notation

fng = f:' dE

(5.5)

We proceed by dividing the energy integral in Equation (5.2) into contributions from
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each energy group
o G
dE' = ! .
/ g}jzl /g dE (5.6)

and integrating the Sy;: equations over the domain £, < E < E,_;, we obtain

um% /g dEpm(z, E) + /,, dEoy(z, E)pm(c, E) = /g dEQn(z, E)

ym=1,...,N+1 (5.7)
where

/g dE Qu(z, E) =
N
3 (2 + 1) Py () fg dE /g dE'0un(z, B' = E)¢ula, B')

n=0,1

+ / dE g (c, E) (5.8)

We now assume that within each energy group, the angular flux can be separated

or expressed as the product of a known function of energy f(E), and the group flux

Ymg(2)
Ym(2, E) = f(E)Ymg(z) ,E,<E < Eg, (5.9)

similarly, we express the flux moments as
bm(z, E) = f(B)pmg(z) By <E< Ey, (5.10)

where the spectral weighting function f(E), is normalized by the definition of the
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group angular flux, Equation (5.4), to

/dEf(E) ~1 (5.11)

Next, we define the multigroup cross sections
oi(z) = deat(w,E)f(E) (6.12)
g

gt ra@) = f dE / dE's,(z, E' - E)f(E') (5.13)
g g
and the group distributed source
Gmg(T) :/dEQm(“’,E) (5.14)
g

Introducing Equations (5.9) and (5.10) into Equations (5.7) and (5.8), and utilizing
Equations (5.11) through (5.14) we arrive at the one dimensional multigroup Sy 1

equations, given as

1o}
Pm’a—m¢mg(m) + o'tn(“’)"'b'nﬂ(m) = ng(m) ym=1,N+1,9=1,G (5'15)
where
e n
Qmg(2) =3~ > (20 + 1) Pa(im)Tnjsgbni + Img (5.16)
j=1n=0
N1 )
E_J n(Bomt Y migWons Jor all n (5.17)

where g is the group index, G is the total number of groups, and o,;4 is the nth

Legendre moment of the scattering cross section for scattering from group j to group

g.
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To produce the canonical multigroup SPy equations from the multigroup Sy,
equations, one proceeds with exactly the same steps, section 4.3, that were used
to i)roduce the continuous energy form of the canonical SPy equations from the
continuous Sy,; equations. We arrive at the canonical multigroup S Py equaiions

L1 . (G
_"tfnv : _V"/):tg + o'tg"/)rtg = :-;g - /-‘mv : (___g_)
COig a'tg

ym=1,(N+1)/2,g=1,G (5.18)

T Hm = 1 =
— V.¢,+ }
mg — Oig mg tg ng

where
¢ N-1
Qhe =3 3 (20 + 1)Pu(tm)oningdni + Ty (5.20)
i=1n=002,
— ) N N
Qnp =2 2 (20 + 1) Palim)0n,josgni + Gimg (5.21)
j=1n=13,
(N+1)/2 -
bng =2 Y, Polpm)¥)w ,n even (5.22)
m=1
L (v 3
bng=2 D, Palpm)dmgwm ;n odd (5.23)
m=1

5.2.2 Multigroup Cross Section Generation

As we have shown in sections 3.3 and 5.2.1, the energy and angular variations
of the cross sections can be represénted by multigroup-Legendre expansions. The
coefficients of these expansions are called multigroup-Legendre cross sections. As

discussed in Chapter 2, cross sections for our multigroup S Py code will be generated
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by the code CEPXS. CEPXS produces coupled electron-photon cross sections in a
multigroup-Legendre format over the energy range 1 keV to 100 MeV for materials
of arbitrary composition. We note, electron cross sections are not generally available
below 1 keV for materials of arbitrary composition.

In CEPXS the energy domain is the same for all species of particles. For example,
in coupled electron-photon transport, the lower energy bound Eg, and the upper
energy bound E,, will be the same for both the electrons and photons. If we consider
a electron source problem with G total groups, and n electron groups, CEPXS assigns
group indices g = 1,2, ..., n to the electrons, and group indices g = n+1,n+2,...,G
to the photons. Electron to photon scattering then looks like downscattering, and
photon to electron scattering looks like upscattering. This format [19] allows one to
use only one set of multigroup equations; where, the subscript g now refers to both

particle type and energy.

5.2.3 Numerical Solution of the Multigroup Equations

Let us develop a general solution algorithm for solving the multigroup equations.

We begin with these equations

(2-V + 0y (F)) ,(F, ) =
G
S | Ao (F, O - Q) (E, ) + go(T, )

=1 4

5g=1727"',
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We introduce a general operator notation to condense these equations. Define the

group g streaming-collision operator, Hyy,as

Hytbg = (- V + 04g(F)) 1 (F, ) (5.25)
and the group g’ to g scattering operator, H ;g,, as
HE gy = [; AV 0y, O - Q)i ) (5.26)
we may then express Equation (5.24) as
G
2(5 H, - H)by=q ,9=12...,G (5.27)

and defining the multigroup transport. operator
Hyy = by,H), — H, (5.28)

we may write Equations (5.27) as the coupled set of operator equations

G
3 Hyptpy = gq ,9=12...,G (5.29)
g'=
or " . } ) ;
I:Iu ﬁlz cee }AIIG Py T
Hzl E[zz PN fIzG 11)2 _ qz (530)

Hgy He: ... Hge || %Yo

9¢ |
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For many problems there is no scattering of particles from lower energy to higher

energy, or no upscatter, this implies

H,y =0 g >g (5.31)

matrix H is now lower friangular, and the group fluxes may be obtained systematically

starting with the highest energy group, group 1

~

Y1 = Hij'g

¢2 = f{z_zl (‘h - ﬂ21¢1)

g'<g

Yy = Hg_gl (Qg - Z ﬁ99'¢9’)

¢G - ﬂaé (qG - Z ﬁGg'¢g’) (532)

g'<G

Each one of these G equations represents an equation for the flux in group g, and
a sweep through all groups, g = 1,2,...,G, is referred to as an outer iteration. We
defer the development of a solution method for the group equations until section 5.3,
and Chapter 6. For the general case where upscatter is included an iterative method

must be employed. We write equation (5.29) as

Hygbg + Z Hygripg + Z ﬁ99’¢9’ = qg
g'<g g'>g

y9=12,...,G (5.33)
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The first term on the left physically represents all interactions within the gth group
which result in a loss of particles from the gth group. The second term, known as the
downscatter source, represents the transfer of particles from higher energy groups to
the gth group. The third term, the upscatter source, represents transfer of particles

from lower energy groups to the gth group. We now specify the iteration scheme

o - 1 - -1
¥ = H (qg -2 Has"l’g(a') - Hyg”p!g' ))
g'<g 9'>g

g=12..G (5.34)

where [ is the outer iteration index.

The iteration process begins (l-—;l) with some initial guess of the group fluxes
1/;}10), where g = 1,2,...,G. We first solve the group 1 equation for the group 1 flux.
We then use this value to construct the downscatter source for group 2, and solve
the group 2 equation for the group 2 flux. Next, we use the group 1 and 2 fluxes
for the construction of the downscatter source for group 3, and solve the group 3
equation. This process is continued until the first outer iteration is complete. We
may now update the initial flux guess with the new group fluxes, which we have
just calculated, and then proceed with the next outer iteration (I=2). After 2 outer
iterations a convergence test is performed. The error is calculated for each group
using the L? norm of the scalar flux, and the L? norm of the residual of the scalar

flux, and is given by

l -
e(l) — Zk l¢§cy) - ¢£g 1)|2

,9=1,2,...,G (5.35)

s T l2
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where k is the spatial index. If the error criterion
ma.):leg)l <e€ - ,for all g=12,...,G (5.36)

is not satisfied, where ¢ is typically 1073, a global flux update is made, and another
outer iteration is performed. When the error criterion is satisfied, the calculation is
terminated.

As we have seen in the case of no upscatter, we have the complete solution after
one outer iteration, at which point we may terminate the calculation. We turn now

to the topic of spatial discretization of the group equations.

5.3 Spatial Differencing - Bilinear Continuous Finite Element Methods

5.3.1 Two Dimensional R - Z Geometry

The canonical multigroup eqﬁations represent a self adjoint system of equations.
Upon discretization, self adjoint systems yield matrix equations with symmetric pos-
itive definite coefficient matrices. Efficient, robust numerical methods exist for the
solution of such matrix equations. In this section the group g equation will be spatially
discretized using bilinear continuous finite element methods (BLCFEM) to produce
a discrete set of equations. Let us begin with the group g canonical SPy equations,
Equations (5.18) and (5.19), given by

—pi V- ;1261/;;; — o = Q7 — pmV - (95*-) ,m=1,(N+1)/2  (5.37)

Ot

- m = 1 - . -
Vo=-2Vp 4+ =G4, m=1,(N+1)2 (5.38)
|3 t
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where for brevity, we have omitted the group index g, and the source terms, Q;, _‘m,
which appear on the right hand side of each equation are known functions. In the
interest of simplifying the calculation, we choose to proceed with a first order form
of the SPy equations obtained by solving Equation (5.38) for ﬁ'zﬁ; and substituting

into Equation (5.37)
PV Y+ obt = QF  m=1,(N+1)/2 (5.39)

Here we consider two dimensional R - Z geometry, which is characteristic of cylindrical
geometry with azimuthal symmetry. We proceed by dividing the problem domain into
an R - Z mesh of (I X J) rectangular cells as shown in Figure 5.2; where the mesh

deltas are defined as

A'I‘,’ =PTiy1 — T (5.40)
AZJ' = 2541 — 25 (541)

Within each cell we require the material properties to be constant, allowing for dis-
continuities, if any, to exist only at cell edges. Thus the total cross section within the

(1,j)th cell is defined as
o(F) = oe(r,2) = ovi;  ,ri <7 < 7Tig1, 25 < 2 < Zj4 (5.42)

Next, we assume that the even parity angular flux is represented as a bilinear function

of r and z within each cell. That is, for the (i,j)th cell the even parity flux is given by
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+ — g [T T 1‘) Zjy1— 2 + (T;+1 - 'r) z2—2z;
'¢m(7'7 Z) "lbtg ( A\T,' ( AZJ ) + ¢1,J+1 A'f'i AZJ

_ r—7; z— z; + .(r—'r,-) Zjp1 — 2
+ ¢'+1"7+1 ( Ar; ) (‘Azj )+¢t+1"7 Ar; ( AZJ' )

i S <rign, 2z <2< zjyy (5.43)

where the even parity flux is continuous across cell edges. We define the node based

unknowns, where we have supressed the subscript m, as

¢+(ri’zj) = i-i-j
PH(ri,250) = i

bt o . — ot
Y (7'1+1,zz+1) = Vit1,j41

¢+(7'i+1, zj) = 51,1' (5.44)

and approximate the even parity source in an analogous manner

+ = Qi ;"""'1_7') Zi+1— 2 + (”'i+1—’r‘) z—z;
T ( L )+Q,,,+1 1) (2

. fr—r,-) z— zj + .(7‘—7‘,‘) 2j41 — 2
+ Q1+1.J+1 (\ A'f’i ( AZJ ) + Q‘H']-,J A’I‘; AZ]
i Sr <y, 25 < 2 < 2jn (5.45)

Continuing, we must next consider the odd parity angular flux. The odd parity
angular flux is also represented bilinearly within each (i,j) cell. It however, is defined
not in terms of node based unknowns, but in terms of corner based unknowns, as

shown in Figure 5.3. For the (i,j)th cell, the odd parity angular flux is given as
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e ar_>lear, —)-t

b
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@10 | D

=g
N

N
jc—-

(i-t,j-1) ¢ (i-1)
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N

<

i+l N 41

Figure 5.2: Two Dimensional R-Z Geometry Spatial Mesh

%42 3
(i.§)
4
Zj L
ri ri+“l

Figure 5.3: Corner Numbering System for Cell (i,j)
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L _ Tiy1 — r) 241 — 2 7-(2) (7','+1 — 'l') 2z — 2
¢m(r’z) N "b"'” ( A’I’,‘ ( Az,- ) +¢"J AT,‘ Azj

7(3) (T — 'r,-) zZ—2z; 7—(4) (r - r,-) Zjp1 — 2
+ ¢1,;r < Ar; ( Az ) + "/’:.J Ar; Az;

i <P < 1ip1,2 < 2 <z (5.46)

and the odd parity source as

= _ "'.—(1) Tigl — 7‘) 241 — 2 -'._(2) (7’,‘.}.1 — 7') zZ—z;
Qm(’l‘, z) Q"’ ( AA'I',' ( Azj ) + Qz"’ A’!',' AZj

3-(3) (T r,-) zZ—z; 3-(4) (r—r,-) Zjy1 — 2
+ Qt" ( Ar; ( Azj ) t qm Ar; Azj

P <P < riy1,2 < 2 < zZi4g (5.47)

We define a set of basis functions 7§§)

(7, 2), which represent the behavior of the flux

within each (i,j) cell

D=l ) (GH72) < <1y, 2 < 2 < 25
1)(r,z) = J (& )( s ) SohE e s (5.48)
0 otherwise
DT ) (2 < <1y, 25 < 2 < 24
1 (r,z) = 3 (=) (&) T ah (5.49)
‘ 0 otherwise
rori) (222 < <Pig1,2; <z<z;
g = 1 E)E) 4152 41 (5.50)
0 otherwise
Tor ) (L2} < < Piyy, 25 < 2 < 25
1r2) = (52) (45) ’ g (5.51)
\ 0 otherwise

Here the superscript k, where £ = 1,2,...,4, corresponds to the kth corner of the
(i,j)th cell, as shown in Figure 5.3. An important property of these basis functions

derives from the fact that the functions vanish except in a small region within the
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(i,j)th cell. This property, called compact support, guarantees that the coefficient
matrices resulting from the finite element approximation are sparse. Numerical so-
lution of matrix equations with sparse coefficient matrices requires fewer arithmetic
operations and less memory than would otherwise be the case. For two dimensional

R - Z geometry the differential volume element is
dV = 2rrdrdz (5.52)

Let us operate on Equation (5.39) by 2x [[1+! rdr [77+! dz w(r, z) , where w(r, 2) is

an arbitrary function defined throughout the domain of the problem. For brevity, we

TI+1 Zy41
/ dv = 27r/ rdr/ dz (5.53)
v ry 2z

to signify the integration over the total problem volume. We obtain

introduce the notation

Yo fv dVwV ¢, + /V dVwonht = /V dVwQ? (5.54)

The first term of Equation (5.54) may be simplified through the use of the vector
identity
V.(pA)=V¢.-A+¢V-A (5.55)

and Gauss’ divergence theorem to

/V V¥ -Jo = /V VS wi — /; dVVw -4 (5.56)
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If we now substitute the basis function 7( )(r, z) for w(r, z), where (i,j) is an interior

node, the surface integral term vanishes. This can be seen from the fact that 'y( )(r, z)
is zero on the surface. The integration over the total volume then collapses to an

integration over the volume of the (i,j)th cell.

~ /Tiﬂ rdr /zj)rl =V g + /M1 r T/ 47
_ /-TH-:L rd’r/ i+ dz7(l)Q+ (558)

Substituting Equations (5.48), and (5.43) through (5.46) into Equation (5.58), and
proceding with the integration, we then obtain the contribution from the (i,j)th cell

Hm Az.i

1 _
6 [(2’!’; =+ 7',;+1)( "/)ﬂgl) + Tpngz)) + (7'1' + 2ri+1)(g¢ri§3) + ¢r2(4))]

HKm A"'i
24

[(37'2' +- ri+1)(¢zz§1) 21,52)) + (7', + Tf-+l)(¢zz§3) + ¢zt§4))]

A‘I‘,’AZ' . 1
36 ]o'tij [('37'1' + "'i+1)( it ¢ ,g+1) + (7 + "‘i+1)(§¢z+1,j+1 + 1/’:-1;)}

Ar;Az;

= =52 G +rani@t;

1

u+1) + (r: + 7'=+1)( Q.+1 g+t Qa+1 :)} |

(5.59)

where ¥.;; and v;; are defined to be the radial and axial components, respectively,

of the odd parity angular flux 1;,;
To complete our derivation of an equation for node (i,j), we must next consider
the contributions from the 3 other cells surrounding node (i,j), that is cells (i,j-1),

(i-1,-1), and (i-1,j). We define an analogous procedure to derive equations for these
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cells using the BLCFEM:

1. cell (i,j-1) - multiply Equation (5.39) by 'y, el ) . (r, z) and integrate over the volume
of the cell

2. cell (i-1,j-1) - multiply Equation (5.39) by 7,( )1 j-1(r,z) and integrate over the

volume of the cell

3. cell (i-1,j) - multiply Equation (5.39) by ~ (r z) and integrate over the volume
of the cell

The resulting 4 equations, from the 4 cells surrounding node (i,j), are then summed,

and the odd parity angular flux, ¢ is eliminated using equation (5.38)
¥ = —EnTyt + —1—(3' (5.60)
m o m ot m

where the radial components of (5.60) are given by

,¢"(1) ': _HBm

atz]

(5.61)

—(1
¢=+1,.7 ,J Qrtg )
Ar;

Ttij J

: -(2
;gz) _ _Em (¢1+1,]+1 ,J+1)+ rij (5.62)

Otij Ar; Otij
(3) M S — Y )
A SC A i Vit ” s 5.63
i Otij Ar; ) + Cij ( )
+ -{4)
—(4) Hm i+1,7 — Y¥ij rij
s _Mm 5.64
i Otij ( Ar; ) + Otij (5:64)

and the axial components of (5.60) are given by

N =(1)
A o= B <¢”’+1 ”)+ 2 (5.65)

Otij Az; Otij

. aht -(2)
1/);52) — _P’m ( i,5+1 ,_7) +sz,7 (566)

Otij Az; Otij
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—-{(3
Fem ¢?:+1,j+1 - ¢;I:+1,j ing')
- +
AZj
-(4
HBm ¢:5rl,j+1 - ‘/’itrl,j ing' :
- +
AZJ‘

Otij Otij

Tiij Otij

Finally, we obtain the equation for the (i,j)th interior node

1 ‘/’:_-1,;'—1 +c2 ¢zﬁ,—j—-1 + €3 '¢’Z|-1,j—1

C4 "/’2;1,j +cs 1!2:, + Ce ¢3:|-1,j

c7 ¢2-1,j+1 +Cs '¢’Zj+1 + ¢ ¢?-1—1,j+1 = Sij
1=2,3,...,1

j=2,8,...,J

where the coefficients ¢ = ck(1,7), k=1,...,9, are defined as

2 2
PmDzj—1 g Ay 1
B - —0i1;-10r_102;_
Ari10-1,5-1  DBzio10i +6‘J 1,j-18Ti-18%;-1
1
'1'5(7‘;—1 +73)

L (rea )+
—(ric1 + 1) + ————
| AT 101,51 Ario; i1

1
-4 =

i-10i-1 6

b 1 Azjoy| L A (s + 3m)
- — + Z0i-1,j-18251| - Ao (i L
AZ;;_la','_l’j_l 6 b J ' 12 ! !

(r + r;+1)} =

1
a'i,j—lAZj—-I:l EA'P;@T; + 7it1)

2 A 2 A 1
I e N _{___ai'j_lAr,-Azjq}

AT,‘O’,‘lj..l Az,-_lo;’,j_l 6

1
ﬁ("‘i + 7ig1)




Cq

Cs

Ce

Cr

Cs
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2 . 2 . 2 .
- “mAzJ—l _ "mAzJ + “mAr"l
Ariy0i-15-1  Ariy0i1; 28z 1055
2
,umA'r,--l 1

1
~0;_1,j-187;_ 1Az + —0i1 jAT_1 Az

2AZjdi_1,j 6 6
1
6("'{—1 +7;)

2 2
I‘LmAzJ' #mAZJ'_l l ] .
[A"'iﬂi,,’ * A"‘io’i,,‘_1] 6("' + rit1)
2 Az;_ 2 Az 1
FmZ2i1 | HEmZ% ] L s )
|Ariy10i15-1  Ari_y0;,5] 6
-, \
ﬂmA’I‘,' “mAri 1
—(3r; ;
_AZ_-,‘O',',_,,' + Azj"la"i,:i—lil 12( T +’f’+1)
2 2
P AT pmAri_I:l 1
+ —=(7i-1 + 37y
| Azj10i15-1  Dzjoi1; (ri-1 )

12

! 1
O'i,jATiAZj + O'g,j_lA’f‘,;AZj_l] 5—6-(37‘; + T,‘+1)

[ 1
0i—1,j—1Ar_1Azj_y + U'i—l,jA"'i—lAzj] %(7‘1'—1 + 3r;)

—p,anzj B p2 Az, p A
Arioy;  Aroij 2Azjoi;
poon AT 1

1
m + gUi,jAT{AZJ‘ + gd‘i,j_lAriAzj_l}

1
6("'1‘ + Tit1)

2 Az; 2Ar 1
[ oum ZJ — ﬂm T 1 + —O'i_l’JArz_lAz]}

Ar,-_la',-_l,j Asz','_l,j 6

1
—1—:?-(’»’.‘_1 +7;)

1 1
(rica +mi) + A—m;.—;(ﬂ' + 7‘£+1)] l—zuf,.Azj

[AT.'—Ni-l,j
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ph 1 1
[—E;; + E):ai'jAZj] EA'I‘{(.?T,‘ + 1‘,'+1)

12 1 1
[————lm + "U'i—l,jAzj} -1—2-A7'i—1(7‘i-1 + 3r;)

Azjg;1; 6

AN 12 A ,' 1
|: F'm % — Hm 2T + —O'i,jAT,'AZj]

AT, T3 ZSZjG’,',j 6
1

12 (7'1. '* "'z-l—l)

and the source term S;; is given by

' 1
Si; = EAT' 1Az (751 +7'1)Q¢_1 -1

[A"'i—l("'i—l -+ 3r;) + Ary(3r; + "'i+1)]
1
EA"':'AZJ'—I i+ "'z'+1)Q:++1 J=1

Az + Az; ]

1
ﬁAzj‘lej—l

36Ar1.— (Tt—l +rz)Q1 1,7

Ar;_1(rio1 -+ 3r5) + Ary(3r; + 7‘i+1)] gé(Azj—l + Az;)QF;

- 1
Azj_l + A:cj] —A"'i('f'i + 7'i+1)Q2-+1,j

1
EAT, 1Az;(rioy + "':)Q;—l J+1

Ari_y(rio1 -+ 3r;) + Ary(3r; + "'i+1)]

i AZJQ £,+1

1
ﬁAr;Az,- (r + 7‘i+1)Qi—+1.j+1

_BmBzi i o) -2) @ Y-
e | Fel el + fald g

72

I‘mAZ'—l —41) ai _(2) i _(3) bi —(4
(Ar’.)2a‘-: i1 I: Q LR B 1 3 rt,j—1 + §Qr,i,j.—1 + 6Qrt(,_1) 1

P Azjg Ci - - d; d; _
! [_._ r,zgi)l,j—l + - Qrt(i) 1,71 + o 3 rfa)lg 1 + —6—Qr,z(i)1,j—lj|

(Ar;_1)?0i-1,5-1 | 6

P‘mAz' (1) —(2 3 4
(A'f’i_l)zo::_:; |:3 iri—-1,5 + —é- ri(—) ,_7 —Qr 1(—) Qrt( )1,]]
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o AT
240’,', i

[(3r: +resa) (@28 + @2 )

bt )@ + Q2

p’mATz _.(1) __(2)
+ 240 ;_; [(37'1 +7'=+1)(Qz Aa-1 T Q. 2/5,j~1
+ (it 7‘1+1)(Qz,1(:1) 1+ @, ,5,43) 1)]
Pm ATy (1) -(2)
+ 240"‘_1,]‘_1 [( Ti-1 + T:)(QZ i-1,7-1 + Qz,i—-l,j—-])
bl 9@+ )]
“mA"'i_l (1) _(2)
- 240{—1 ; [(7‘,_1 + rz)(Qz,: 1,7 + Qz 1-1,j)

+ (r‘l-—l ‘I‘ 37'1)(@2 fi)l J + Qz 5—4-)1,_1)]

(5.71)
where
1 2
a; = EAT‘- (27’,‘ + 7','+1) (572)
1 v
bi = EA‘I'? (’I‘,’ + 27‘,‘+1) (573)
1
C = Qi1 = EAT?_I (27‘,‘_1 + 1",') (5.74)
1
d; = bi_y = =Ar?, (riq +27;) (5.75)

6

This equation is valid for all interior nodes, that is 1 = 2,3,...,1, 7 = 2,3,...,J;
special consideration must be given to nodes which occur at corners and edges. We

address the topic of corner and edge nodes, including boundary and source conditions

in section 5.3.3.
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5.3.2 Two Dimensional X - Y Geometry

To extend the range of application of the SPy method, we have also derived
the finite element equations for two dimensional X - Y geometry. These equations
represent a simple modification of the R - Z equations. Specifically, we proceed by
dividing the problem domain into an X - Y mesh of (I x J) rectangular cells, Figure
5.4, where material properties are again constant within a cell.

Let us examine the differential volume element dV in orthogonal curvilinear co-

ordinates

dV = hlhzhgduldUQdu:; (576)
where h;,7 = 1,2, 3 are the scale factors. Then

R-Z geometry - (u1,u2,u3) = (7,0, z), dV = 2nrdrdz

X-Y geometry - {u1,us, u3) = (2,y,2), dA = dzdy

We may then define a procedure that transforms the R-Z geometry finite element

equations to the XY geometry finite element equations:
1. calculate mesh deltas Ar;, Az;
2. setallr;, =1
3. transform constant C = 2w — 1
4. relabel variables r; — z;,2; — y;

When the X-Y geometry option is choosen by the user, this procedure is performed

internally.
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5.3.3 Boundary Conditions and Sources

In the derivation of the finite element equations, section 5.3.1, we have thus far
considered only the interior nodes: ¢ = 2,3,...,1, 7 = 2,3,...,J, in which case the

surface integral contribution to Equation (5.57)
I, = f 7-(’5)111,, -ndA (5.77)
’ s '

was found to be zero. If we consider the node (i,j) to lie on the boundary, that is any
of the 4 corner nodes: (1,1),(I +1,1),(1,J +1),(I + 1,J + 1), or any of the 4 edge

nodes:

left edge - (1,5), wherej =2,...,J
right edge - (I + 1,7),where 7 =2,...,J
bottom edge - (z,1),wherei =2,...,7

top edge - (i,J +1),wherei =2,...,1

then the basis function 'y,-(,’;-) will be nonzero for at least one k value; and the surface
integral, Equation (5.77), will not necessarily be zero. Furthermore, the finite element
procedure applied to a corner node will involve integration over only one cell, and
the procedure applied to a edge node will involve integration over two cells, this is in

contrast to an interior node which required integration over the four cells surrounding

the node (i,7). The reflective boundary condition, Equation (4.38), is given as

Y on=0 ,m=1,(N+1)/2 (5.78)
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Substitution of Equation (5.78) into the surface integral gives zero, thus the refective
boundary condition recuires no modification of the interior equation. We refer to such
a boundary condition (one which is satisfied automatically) as a natural boundary

condition. The prescribed source boundary conditon, Equation (4.35), is given by
Gt =V~ fo = 1,(N +1)/2 (5.79)
and will produce a nonzero surface integral

k) 7o 4 k
é ’Y.g,j)Tl’m ‘ndA = fi;,%g,j) W’:. - fm]dA
# 0

(5.80)

Recall, the vacuum boundary condition is a special case of the incoming source bound-

ary condition where f,, = 0, and a homogeneous isotropic boundary source is given
as fa = constant = y*PRY,

To illustrate the analyéis of a corner/edge cell, let us consider the node (I+1,1)
in the corner cell (7,1} , Figure 5.5, with reflective boundary conditions on the bot-
tom surface, and incoming source boundary conditions on the right surface of the
problem. The equation for (I+1,1) node will involve only coefficients ¢, cs, c7, cs,

in Equation (5.69). We calculate the surface integral contribution for the incoming

source boundary condition, where the differential area element over the right surface

is given by
dA = 2rrpyqdz (5.81)
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The surface integral then becomes

# d (4) +
HmTI4+1 . 27I+1,1(7'I+1az)1/’m(7'1+1) z)
1

23
- ¢BDRY/ dz7}21,1("'1+1:z)]
2

1 1
gjumrl-!-lAzl (¢Y+1,1 + §¢I++1,2)

1
- §#m7'1+1 Azl'ﬂbBDRY

The coefficients c5, and cg are then modified

1
¢ + ghmTT4 Az

1
cs + gpm’f'[.i.l Az1 (583)

and the boundary source term moved to the right hand side of the equation. The
other corner/edge nodes may be analyzed in an analogous manner.
The boundary source may be specified as monoenergetic, or distributed in energy.

We define the spectral distribution function x,, as

Xg - the fraction of source particles emitted with energy E, in the range

E,<E<E,,

where

(5.84)

¢9BDRY = Xg¢BDRY (585)

This completes the discretization of the multigroup canonical S Py equations, and we

now turn to the topic of their solution.
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Chapter 6

Solution and Acceleration of the SPy Equations

6.1 Introduction

In Chapters 2 through 5, we have derived and discretized the canonical SPy
equations. In this chapter, we address the topic of solution of the SPy equations
via iterative methods. We begin, section 6.2, by presenting the standard iterative
procedure, the Source Iteration (SI) method; we then provide a abbreviated discus-
sion of Fourier analysis, a mathematical technique used to examine the the stability
and convergence rate of iterative schemes, and we perform a Fourier analysis of the
continuous S Py equations solved with the SI scheme. It is shown that in certain
physical probléms, that is optically thick systems with a scattering ratio ¢ = 2 near
unity, the SI method can converge very slowly. We then examine two methods which
have been devised to accelerate the SI method. The first of these, the Diffusion Syn-
thetic Acceleration (DSA) method, is developed in section 6.3, and a Fourier analysis
is performed. The Angular Multigrid method, an extension of the DSA technique
shown to be much more effective than DSA when scattering is highly forward peaked,
is formulated in section 6.4, and applied to the electron groups. A comparison of
the three iterative schemes is provided, and numerical results presented in Chapter 7,
section 7.4. In the development of these acceleration schemes for the S Py equations,
we also discuss their effectiveness for the 1-D and 2-D Sy method. We conclude,

section 6.5, with a discussion of particle conservation, particle production/loss rates,

and energy deposition rates.




6.2 The Source Iteration Method

6.2.1 Description

Let us consider the group g canonical SPy equations

D . {O-
2 I o = Qf— ¥ (Q_m)
[2f oy
,m=1,N/2 (6.1)
- Pm = + 1 ~ —
m = ———V‘lpm + —Qm
O O
,ym=1 N/2 (6.2)
where
N-1
Qj-n = Z (2n + 1)Pn(”'7n)°'n¢n + Q; (6'3)
n=0,2
— N -
Q= D (20 + 1)Pu(pim)ongn + Gry (6.4)
n=1,3
N/2
o =2 Pu(ptim)¥}wm for n even (6.5)
m=1
. N/2 .
tn =2 Pultim)¥mwm Jfor n odd (6.6)

m=1
here, we have supressed the group index g, and the fixed source terms g}, 4, include

the distributed sources, and the g’ to g scattering sources, where g’ # g. The sum

terms in QF,, Q,‘n are referred to as the within-group scattering sources. The problem
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can be solved iteratively by the Source Iteration (SI) method, which is described by

gt

2 O ls +(1+1) +(141) +(1) . Q;L(l)
—p’mv : ;V"/Jm + at¢m . = Qm - ,mev :
t

,m=1,N/2 (6.7)

- m 2 1 -
¢;(l+1) — —%—V¢;(l+l) + ‘—‘Q;(l)
t O

ym=1N/2 (6.8)
) =2 1%2 P )= Dy, for n even (6.9)
m=1
Ut = 2 Azr/jz Pa(ppr )9 Dy, Jfor n odd (6.10)
“= |
@ = Y (204 1) Paliim)ondt®™ + g (6.11)
n=0,2
G = 37 (2 + 1) Palim)ond®®) 1 (6.12)
n=1,3

where [ is the inner iteration index. The iteration process begins with some initial
guess for the even and odd parity sources Q%) Q,‘"(o). One then calculates the even-
parity fluxes for all m, by solving Equation (6.7), and then the odd-parity fluxes for all
m, using Equation (6.8). Next, the flux moments are calculated, Equations (6.9) and
(6.10), and new source terms are calculated using Equations (6.11) and (6.12). After
two inner iterations a convergence test is performed. The relative error is calculated

using the L? norm of the scalar flux, and the L? norm of the scalar flux residual

1) — \} Dk |¢g+1) - ¢g)l2 (6.13)

e lgl
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where k is the spatial index. If the error criterion
e < e (1 - ptH1)y (6.14)

is not satisfied, where p®) is the spectral radius defined in Equation (6.15), and
is typically 106, new within—group scattering sources are calculated, and another
iteration is performed. When the error criterion is satisfied, the group g calculation is
terminated. Furthermore, we require €;nner < €outer, Where €nner is the error tolerance

on the inner iterations, and €,y 1s the error tolerance on the outer iterations.

6.2.2 Continuous JFfourier Analysis

The convergence rate of an iterative scheme is determined by the spectral radius

p [2] (see Appendix A), which is defined as

- ¢(l+l)
p = lim

The spectral radius can be interpreted as the smallest possible reduction in the relative
error between successive iterates, that is e ~ p'. We may estimate the number of

iterations required to reach a specified convergence criterion (e < €) using

loge
log p

N~ (6.16)
An iteration scheme is stable if p < 1, and convergent if p < 1. Note from Equation
(6.16) that the smaller the value of p, the fewer number of iterations required to
converge. Fourier analysis is a mathematical technique that allows one to examine

the stability and convergence rate of an iterative scheme by providing an estimate of
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the spectral radius. Let us proceed with a Fourier analysis of the SI scheme for the

continuous S Py equations. To begin, we make the following definitions
1) = gt — gl (6.17)

&) = o — 1) (6.18)

where €}(!) and () represent the error at the Ith iterate. Subtracting Equation (6.7)

from (6.1), and Equation (6.8) from (6.2), we obtain the error equations

S
—pi V. _l_ﬁe;';(”'l) + ot = S+t _ ) (S &l )) (6.19)
O O

=0+) - _Pmo et Lo

€ = —=Ve¥T 4+ —57¢ ! (6.20)
O O
where, for simplicity, we have represented the sources

Qi =S¥yt 4 gf (6.21)
Q.0 =549+4q, (6.22)

in terms of the scattering operators S, 5. We now assume a homogeneous, infinite

medium in X - Y geometry, and substitute the Fourier ansatz
FO(F, Aey Ay) = -0 exp [i( Az + Ayy)] (6.23)

GO (F, Aey ) = &0 exp [i( Aoz + Ayy))] (624)
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where 1 = /=1, —00 < Az < o0, and —oc0 < Ay < oo. We obtain the following

coupled set of equations

) .
O

8 4056wy (6.25)

Ot

e;(,ff'l) + i__)\mpm e;';(‘“) = ie;g? (6.26)
’ o-t at y

~as) 4 uttm e _ 57

€ | T o € . €, om (6.27)

An analysis of the SI scheme has been performed for an S, calculation, after calcu-

lating the scattering operators, we arrive at the matrix form of Equations (6.25) -

(6.27)
L (1) G
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)l e el
4l l? —prl?
o 0
0 0 2 0 <
B= No)
0 0 0 4 0
£ 0
0 0 o 0 2
¥o)
| 0 0 0 2 0
and the matrix elements are given by
2
am = “2(A2 + A;) + 0y
4"
_ 1A
ﬂm = o
_ Ayhm
TYm = .

S’*e,tm = cg)ef(l) + cg) e;(l)
el = dIe 4 e

S’“e;,,(,l,) = cg)e;gl) + cf,f)e;,(zl)

—’ch£4)

—'Yzcg4)

ot

(4}
2

ot

(6.30)

(6.31)

(6.32)

(6.33)
(6.34)
(6.35)

(6.36)

The spectral radius is given as the largest eigenvalue moduli of the iteration matrix [2]

(see Appendix A) M = A™'B.

p = max [w(H)]

(6.37)

Let us now list the results of our analysis: For an infinite medium problem the SI

method is shown to be unconditionally stable, but has arbitrarily poor convergence

as ¢ — 1. For a finite medium problem p < ¢ because of leakage; however, as the
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medium becomes optically thick p — c¢. This is the same behavior exhibited by the

Sy method in all dimensions.

- 6.3 The Diffusion Synthetic Acceleration Method

6.3.1 Description

The Diffusion Synihetic Acceleration Scheme (DSA) has been shown to be an
- effective method of accelerating the convergence rate of the SI method [20] in 1-D Sy
calculations. This two stage iterative procedure is based upon solving a “low order”
Sy (or P;) calculation to produce additive correction terms which are then used to
accelerate the “high order” transport calculation.

Neglecting spatial discretization, the Diffusion Synthetic Acceleration Scheme

(DSA) is given as

O

. . (60
—ufnv';W A L LU (91—)

m=1,N/2 (6.38)

J;(H'%) ﬂmv¢m(l+ )_I_ _}_Qr—n(l)
O

,m=1,N/2 (6.39)

g+ =9 2.4 ¢m(l+ a) for n even (6.40)
141 w !

. 55["5) =2) P (ﬂm)'l/Jm( iy Jfor n odd (6.41)

m=1

R((,H 3) oo ¢(l+ ¢(z) (6.42)
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1 +1
R - (és‘ D _ g0) (6.43)
5 (1+3)
1 — 1 — 1 1 1 - R 2
2V 2V Y = B ( L ) (6.44)
3 Tty Otr
=—(+3) _ 5 0+3)
¢ —35- Ve i) %R (6.45)
1 1
YD = grlta) (4D (6.46)
J’;(l'f"l) — ,{)Z;;(H" ) + 3“ —’(H' ) (647)

where the transport and absorption cross sections are defined as
O = 0y — 01 (6.48)

0. = 07 — 0 (6.49)

Equations (6.38) through (6.41) correspond to the standard unaccelerated source
iteration scheme. One first. solves the S Py equations using sources constructed from
the previous iterate flux moments, and then one calculates new fluxes using the
latest iterate angular fluxes. If there were no acceleration, these two steps would
constitute a complete iteration. Convergence acceleration is achieved by calculating
additive correction terms for the angular fluxes by solving Equations (6.44) and (6.45).
The motivation for Equations (6.44) and (6.45) derives from the fact that the exact

correction for the angular flux at the (I + 1) iterate is given by

+(l+ ) ¢+ ¢+(l+ ) (650)

— = bd —~—r_ l
) _ g i) (6.51)
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where ¥} 1Z,; represent the exact solution, and the corrections satisfy

— ]_ — 1 (141 — - —— —’—(l)
AR —~ erH3) | o etita) (QF — Q) — .V - (9”‘__QL_) (6.52)
t

g

CALE —':—':‘ Vet 4 }l_t (. - 4;9) (6.53)
These equations are exact, but just as difficult to solve as the original problem. In the
DSA procedure we replace Equations (6.52) and (6.53) with a S, (P;) aproximation or
| diffusion approximation, and Equations (6.44) and (6.45) result. Boundary conditions
for the correction equations are the same as the original equations, with the exception
of the incoming source boundary condition which is replaced by a vacuum boundary
condition, so as not to include the source twice. Once ¢y, and ¢; have been obtained,
the angular fluxes are corrected or updated. according to Equations (6.46) and (6.47).

This completes the iteration.

6.3.2 Continuous Fourier Analysis

The analysis of the DSA scheme is made for a S, calculation following the same
procedure outlined in section 6.2.2 for the SI method. In this section we will only

display the results. We substitute the Fourier ansatz

etO(E, Ap, ) = U F(F, AL, \) (6.54)
E(F, Aes Ay) = G0 F(F, Az, Ay) (6.55)
RO(E A Ay) = RV FF AL, A) (6.56)

ROE A, 0,) = ROFE AL Q) (6.57)
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where

F(F, Azy Ay) = exp [i(Aez + Ayy)] (6.58)

and arrive at the final matrix equation

EY) = [AT'B+GD'FC(AT'B-I)|E0

= ME® (6.59)

where M is the iteration matrix, I is the identity matrix, matrices A and B are

previously defined, Equations (6.27), (6.28), and the remaining matrices are given as

oW, OoWs: 0 0 0 0
C=2| 0 0 orPi(p)un 0 o1 Py(p2)ws 0 (6.60)
0 0 0 0'1P1([1,1)’wl 0 0'1P1(ﬂ2)’(1)2

3,+”(A§+/\§) +0, 00

- iX
D A= 10 | (6.61)
idy
\/§7tr 0 1

1 = Ay —iAy
Ttr Tir

F=|gp ¥ 0 (6.62)

Tty

0 0o ¥
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1 0 0
1 0 0
g |0 Vi O (6.63)
0 0 3m
0 v3p2 0
0 0 +3u

L d

In the analysis of the DSA procedure we obtain a spectral radius p =.184 for Vc =1
this is in contrast to the SI procedure which produced a spectral radius p =1 for
¢ = 1. Fourier analysis of the 1-D and 2-D S Py equations produced identical results.
We wish to emphasize that previous analyses indicate the DSA method is stable for

1-D Sy, but unstable for the multidimensional case.

6.4 The Angular Multigrid Acceleration Method

The DSA method becomes ineffective as scattering becomes increasingly forward
peaked. An Angular Multigrid method [21] is developed in this section, which is
effective in acceleration of the electron groups. Let us begin by considering the general

matrix problem

Hf=¢ | (6.64)

which may be solved ileratively by splitting the coefficient matrix
H=A-B (6.65)
and specifying an iteration scheme

FO) = AIBFO 4 A-Yg (6.66)
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By manipulating Equations (6.64), (6.65), and (6.66), it may be shown that the exact

error in f at the (I + 1)th iterate satisfies

HelHY = (41 (6.67)

where the error is defined by
et = f — FU+1) (6.68)

and the residual is defined as
P+ = g - Hy(H) (6.69)

We may then obtain the exact error in f*) by solving Equation (6.67); however,
Equation (6.67) is just as difficult to solve as the original problem ,Equation (6.64).
The main idea of synthetic acceleration is to obtain an estimate of the error in f(+1)
by solving Equation (6.67) with a low-rank approximation to H. The accelerated

scheme then takes the form

f*9 = ATBFO 4 Ay (6.70)
p+3) = g - HFOH) (6.71)
+3) = Hy ' Prl+3) (6.72)

FOH) = p+3) | ml+3) (6.73)

where

H=low-rank operator
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P=projection operator that maps the high-rank residual to the low-rank

space of H

T=interpolation operator that maps the low-rank correction to the high-

rank space of H

Synthetic acceleration is effective if the low-rank operator is easy to invert, and the
low-rank operator attenuates the error modes which are not well attenuated by the
basic iteration scheme. The DSA scheme, presented in section 6.3, may be viewed as
a SPy transport sweep followed by a diffusion solve, where the P; diffusion operator
is the low rank approximation to the transport operator (i.e. a 2 grid method). The
projection and interpolation operators are defined in terms of the Legendre moments.
To illustrate the angular multigrid method, we now specify the angular multigrid
acceleration scheme for the canonical SPy equations for a S calculation.
1. Transport sweep on S;¢ grid

. +( 14l = (Q0
PV = w 5 4 Dyt Qi."’—uﬁi)V-(%W)
t

m=12...,8 (6.74)

o (+8) _ +(+3) _1_ = (1)
"}m - (1) V¢ O't(l) Qm
m=12...,8 (6.75)

1 8 1
g'i':) = 92 Z Pn[ﬂg)]¢;(l+2)wg) , N = O’ 2) - ,6 (676)

m=1

5+3) 2ZP[(1)¢(‘+’ (1) n=1,3,...7 (6.77)

m=1
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2. Transport sweep on Sg grid (first coarse grid) with P; expansion for the Sig
residual

(]

—ul?V - ()Vc‘2’+o‘”) o - Z(2n+1)o£‘)(¢i.+’ &) Palp?)]

o} n=0,2

7
O Z 9 + 1)ol) (@n * — &) Palp®)

om=1,2...4 (6.78)

"
& = <z>V 4 (2) ,.;3 (2n + 1)e@(FFT — @) P
,m=12...,4 (6.79)
4
(B =2Y P [uP]cBw@ ,n=02...,6 (6.80)
m=1
4
B =23 Pu@c@w® n=13,...,7 (6.81)
m=1

3. Transport sweep on S grid (second coarse grid) with P; expansion for the Sg

residual

2
Y - T oD = 3 (20 + 1)ADEDP )

Ut n=0

— p®v. —(—:ﬁ Z(gn +1) AP, (13

m=12 (6.82)

)
”m -
c® = ——;———Vc(s (3) E (2’n+1 )oDED P, 1)

,m=12 (6.83)
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2
(9 =2y Papl]edwl) ,n=0,2
m=1
2
&M =2 P[u@c@ul) ,n=1,3
m=1

(6.84)

(6.85)

4. Solve the diffusion equation with P; expansion for the S, residual as an inho-

mogeneous source

, L
~¥ - DV + oD = o) - T - Tl

o

(3)
. o
89 = —Dvg + g
tr

5. Update angular fluxes

1 8
P04 = i) 1S (2 4 1), Palu)]

n=0,2
Pl = g 1 Y (204 DE P
n=1,3

,ym=12...,8
where

b = &+ +a”
b = & +87+8Y
b = &) +&

& = &+8Y

4 = &

& = &

(6.86)

(6.87)

(6.88)

(6.89)
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& = ¢
& = & | (6.90)

and

pl)=cosine for direction m on grid 1
w{i)=weight for direction m on grid 1

D__l

- 3oty

o'(i)zLegendre moment of degree [ of the cross section for grid i, where

. 1, o
o) = 5("1(V/zl)+"1(v—11))

o = oV _ 5l 1=0,...,N—1 (6.91)

The transport sweep attenuates the errors in the upper half of the Legendre flux mo-
ments, provided the cross sections are “corrected” on each grid, as given by Equation
(6.91). This cross section correction modifies the convergence rate of the transport
sweep, while the equation solution remains invariant. Again, boundary conditions for
the correction equations are the same as the original equations with the exception of
incoming source boundary condition, which is replaced by a vacuum boundary con-
dition. The net effect of a single transport sweep in conjunction with a projection to
lower order space is the attenuation of the errors in the upper three quarters of the
Legendre flux moments. One may then continue this process through multiple levels,
attenuating a larger. fraction of the error modes with an increasing number of grids.

The diffusion solve on the final grid attenuates errors not attenuated by the transport

sweeps on the upper levels.
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It may at first appear as if a large number of coarse grids would require an inor-
dinate amount of computational work. However, it is easily shown that this is not
the case. To illustrate, let us measure computational work in a system where 1 unit
equals the work required to solve the fine grid problem. Let us also assume that
the work required to solve each equation is constant, and that the fine grid problem
involves X equations. Then a 2 grid problem (fine grid plus a single coarse grid)
would involve X plus X/2 equations, and the total work required is 3/2. We may
then continue this summing process through an indefinite number of grids, and we
see that the total work required is bounded by a limiting value of 2. That is, a
problem with an infinite number of grids would require twice the amount of work as
is required to solve the unaccelerated or fine grid problem. Multigrid acceleration
becomes increasingly effective, relative to DSA, as N increases. For 1-D Sy multigrid
acceleration is stable. Since DSA is unstable for multigeometry Sy, and is contained

in the multigrid methcd, then multigrid is also unstable for multigeometry Sy .

6.5 Particle Conservation and the Calculation of Energy Deposition Rates

Particle production (distributed sources, boundary sources) and loss (absorption,

leakage) rates are calculated for each group using:

abs. rate = /;,aa¢dV (6.92)
N/2
dist. source = 22/ G wmdV (6.93)
m=1 |4
N/2
bdry. source = Y f PBPRY o w.dA (6.94)
m=1 5

N/2

' 1
leak. rate = 23 }45 (¥ = 597 YumwmdA (6.95)
m=1
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where V is the total problem volume, S is the problem surface, and

. v
Oag = Oty — Y Ta0,gorg! (6.96)
=1

Rates are then summed over appropriate groups, and tabulated for electrons and

photons. Particle balance is calculated using the equation

(dist. source + bdry. source — abs. rate — leak. rate)

bal =

(dist. source + bdry. source) (6.97)

and checked to be zero to verify particle conservation.
Energy deposition rates are calculated for each group, using the CEPXS energy
deposition cross sections. Three different average rates are calculated volumetric,

axial, and radial, given as

EDR = % /V o ED) pqy (6.98)

f(z) = %—;—%; [2# /OR o(ED)qurdr] (6.99)
1 V4

A(r) = /o o ED) g, (6.100)

and summed over all groups.
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Chapter 7

Numerical Results

7.1 Introduction

In this chapter we consider various computational problems to investigate and
validate the theoretical method developed in the previous chapters. One and two
dimensional test problems have been formulated, and comparison tests have been
performed using a SPy code, written by the author, and the Monte Carlo code
CYLTRAN [22]. CYLTRAN will serve as our benchmark. For each problem we
will investigate the accuracy of the numerical solutions, the éomputational efficiency
of the methods, and provide a brief discussion of results. An extended discussion
and interpretation of results will be presented in the next chapter. CYLTRAN is a
member of the integrated TIGER series (ITS) of coupled electron-photon transport
codes developed by Sandia National Laboratory; cross sections for CYLTRAN are
generated using the ITS code XGEN [22]. All calculations were performed on a
CRAY YMP at Los Alamos National Laboratory.

7.2 ‘Test Problem One

Let us begin by analyzing a simple problem: a one dimensional homogeneous slab
of aluminum with an isotropic boundary source of electrons (1 electron/cm? s). The
problem is of thickness 25 mil (.0635 cm), with the source located at the plane z =
0 cm. The source electrons are distributed in a flat energy spectrum as shown in

Figure 7.1. We have calculated the energy deposition rate (EDR) as a function of




1/.99

dN/dE (electrons/MeV)

90

—

01

>

1.0
E (MeV)

Figure 7.1: Problem One: Electron Differential Spectrum

Table 7.1: Problem One: Results

EDR (MeV/em3s) | CPU time
MC {152 £ 1% 2 hr 22 min
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penetration, and the energy deposition rate in a test region defined as 24 mil < z <
25 mil. For the S Py calculation, we have performed an order P;5 calculation with 80
energy groups (50 e~, 30 ) and 50 spatial cells of uniform mesh spacing (Az = 1.27
x 1072 cm). For the Monte Carlo calculation we ran 10° histories. In a comparison of
S Py and Monte Carlo results, Figure 7.2 and Table 7.1, we note that the EDR curves
are almost identical, the test region energy deposition rates differ less than 2%, and

the S Py method is over 200 times faster than Monte Carlo.

7.3 Test Problem Two

The second problem is a one dimensional, deep penetration, multi-media problem,
shown in Figure 7.3. Deep penetration problems are problems in which we wish to
calculate the dose in a region surrounded by many mean free paths of material. An
isotropic‘geosynchronous trapped electron source [23], Table 7.2, is incident at the
plane z = 0 cm. The source is normalized to 1 particle/cm? s. This source-geometry
configuration is characteristic of space shielding benchmark problems [23], with the
silicon region representing a semiconductor device, and the aluminum and tungsten
regions representing the shield. We have written a FORTRAN code to produce the
S Py and Monte Carlo input spectrum from the tabular electron spectra data. For

‘the SPy calculation have performed an order P;; calculation, with 70 spatial cells of
nonuniform mesh spacing (Ags: = 1.27 x 1073 cm, Aw = 75197 x 107* cm). To
obtain a low standard deviation on the Monte Carlo solution, it was necessary to run
a large number of histories (1 x 107). We display the results of the calculation, the
EDR in the silicon region, in Table 7.3.

We have performed a convergence study of the S Py method, where we investigated

the effects of the order N upon the solution. The results of the convergence study are
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7.2: Problem One: Energy Deposition Rate vs Penetration
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Figure 7.3: Problem Two: Geometry
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Table 7.2: Geosynchronous Electron Spectrum

Energy | Integral Spectrum® | Differential Spectrum
(MeV) (e/em?) (e/em®MeV)
0.1 1.878 (12) 1.227 (13)
0.5 2.789 (11) 1.047 (12)
1.0 5.861 (10) 1.661 (11)
1.5 1.375 (10) 4.082 (10)
2.0 3.224 (09) 8.685 (09)
2.5 8.832 (08) 2.409 (09)
3.0 2.419 (08) 4.678 (08)
3.5 1.313 (08) 1.278 (08)
4.0 7.122 (07) 1.074 (08)
4.5 3.153 (07) 4.899 (07)
5.0 1.396 (07) 2.868 (07)
5.5 3.862 (06) 1.092 (07)
6.0 1.069 (06) 2.194 (06)

%The integral spectrum is given for a period of one day. The integral spectrum
value at energy E; is defined as the integral spectrum between E; and oo.
bvalue read as 1.878 x 102

Table 7.3: Problem Two: Results

EDR (MeV/em?s) | CPU time | HWM memory®
SP {1.67x1073 09 s 499 K
SP; |2.02x1073 20s 837K
SP; |211x1073 45 s 1513 K
SPy | 2.14 x 1073 91s 2884 K
MC 1226x1024+3% |6hr4 min | 715K

¢1 high water mark (HWM) memory unit = 512 words (64 bits/word)
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displayed in Table 7.3. We observed that the largest change in the solution occurs
between SP;, and SP;. After SP; the solution changes relatively little, while the
required CPU time increases proportional to N. We will consider the SP;5 calculation
as the final answer for our comparison with Monte Carlo, although it appears as if
an order SP; calculation would be sufficient. We observed that the SP;5 and Monte
Carlo results differ by 5%, with the Monte Carlo CPU timé exceeding the SP;; CPU
time by over two orders of magnitude.

We have calculated the unshielded or free space dose to the silicon region. This
value was found to be 12.0 MeV/cm3s, indicating 4 orders of magnitude attenuation
by the shield. This calculation verifies that we are in a well shielded regime.

All space shielding calculations, up until now, have been performed without in-
cluding the effects of positrons. Our justification for neglecting positrons, thus far,
lies in the geosynchronous electron spectrum, where 97% of the electrons in the spec-
trum have energy E < 1.0 M eV. Recall, for positron production we require photons
with energies E > 1.02 MeV. To investigate the significance of positrons we have
performed the following two calculations: We have repeated the test problem two cal-
culation with positrons, and we note that the energy deposition rate increases from
the previous value of 2.14 x 1073 MeV/em3s (no positrons) to 2.16 x 1073 MeV/em?s.
To understand this result, we calculated the photon spectrum at the midpoint of the
silicon region, Figure 7.4. From this differential spectrum we found that relatively
few photons have energies E > 1.02 MeV, the threshold energy for positron produc-
tion. Thus, we conclude that positrons do not significantly contribute to the dose in

space shielding problems, and hence we are justified in neglecting their effect in our

calculations.
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7.4 Test Problem Three

The third problem, Figure 7.5, is a difficult two dimensional, R - Z geometry,
four region, deep penesration problem. Each region represents a coaxial cylinder of
uniform composition. A geosynchronous trapped electron source is uniformly incident
along the outer periphery. Again, this geometry-source configuration is characteristic
of satellite shielding benchmark problems. We note that for the calculation of the
dose in a region deep within a multidimensional problem, Monte Carlo requires a
large number of histories and often a corresponding large CPU time. For the 5Py
calculation we have again performed an order P; calculation, with 35 x 35 spatial
cells of nonuniform mesh spacing (A 5; = 2.54 x 107 cm, Aw = 1.504 x 1072 cm).
For the Monte Carlo calculation we ran 2 x 107 histories. We display the results of
the calculation, the EDR in the silicon region, in Table 7.4. |

The unshielded or ree space dose to the silicon region was calculated to be 25.8
MeV/em3s, indicating 3 orders of magnitude attenuation by the shield, and again
verifying that the silicon region is highly shielded.

We have performed a convergence study for the two dimensional SPy method,
where we have investigated the effects of the order N upon the solution, Table 7.4.
We again observed that the largest change in the solution occurs between SP; and
S P;, with a relatively small change between SP; and SP;. For our comparison with
Monte Carlo, we shall consider the SP; result as the final answer. We obsérved that
the SP; result significantly overshoots the Monte Carlo answer; however, there is a
relatively large uncertainty in the Monte Carlo answer. Unfortunately, the current
Monte Carlo calculation required over nine hours. To reduce the uncertainty to 4%

would require an excessive run time of 37 hrs. Furthermore, we wish to indicate that
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solution overshoots have been observed in previous S Py studies [15]. Finally, we note
that the SP; and Monte Carlo results differ by 8%, with the Monte Carlo CPU time
exceeding the SP; CPU time by over two orders of magnitude.

We have investigated the effects of including positrons in this two dimensional test
problem. With positrons the EDR increased from the previous value of 1.97 x 10~2
MeV/em3s (no positrons) to 2.00 x 1072 MeV/em3s, a change of only 1.5%, while,
the CPU time required increased a factor of four. Again, this calculation validates
the assumption that positrons may be neglected in our space shielding calculations.

The computational efficiency of the SPy code with various acceleration schemes
is displayed in Table 7.5. In this particular calculation, the MGA scheme with a
conjugate gradient (CG) solver is shown to be the most efficient. However, we note
that in problems involving a void region, the multigrid (MG) matrix solver [17] can
surpass the conjugate gradient solver in efficiency. In general, if we have a system of
well-conditioned equations, CG is the recommended method of solution. However, if
the equations are ill-conditioned, as those that result in a void calculation, MG can
be more efficient.

We have performed a separate study to further investigate the effectiveness of
the angular multigrid (MGA) method when applied to two dimensional SPy calcu-
lations. In this study we compared the computational spectral radius of the one and
two dimensional SPy methods with the computational spectral radius of the one
dimensional Sy method for one group, highly forward peaked Fokker-Planck scat-
tering [21]. Recall, SPy is equivalent to Sy in one dimension; therefore, we would
expect to see the same spectral radius in one dimensional S Py as one dimensional Sy.

Furthermore, our previous Fourier analysis indicated that the P, diffusion synthetic

acceleration scheme exhibits exactly the same effectiveness on two dimensional SPy
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calculations that it doss on one dimensional SPy calculations. This would suggest
that MGA should have the same effectiveness on two dimensional S Py calculations as
one dimensional SPy calculations. Finally, we wish to remind the readed that both
the DSA and MGA methods are unstable (with sufficiently forward-peaked scattering
and sufficiently small absorption) for two dimensional Sy calculations, yet are both
very effective for one climensional Sy calculations. We display the results of our in-
vestigation in Table 7.6, and we observe the following: The one dimensional results
are identical for Sy and SPy. Furthermore, the one dimensional and two dimensional
S Py results are identical. Therefore, we conclude that the angular multigrid method
exhibits éxa.ctly the same effectiveness on two dimensional S Py calculations that it

does one dimensional 5 Py calculations.

Table 7.4: Problem Three: Results

EDR (MeV/em®s) | CPU time | HWM memory

SP, | 1.60 x 10-2 63 s 2782 K
SP; | 1.93 x 102 138 s 6755 K
SP; | 1.97 x 1072 286 s 14753 K

MC |182x1024+8% |9hr22min | 715 K

7.5 Test Problem Four

To decrease the uncertainty in the Monte Carlo results of problem three without
increasing the CPU tiine, we have formulated a two dimensional space shielding prob-

lem with reduced shield thickness. This problem is identical to test problem three
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Table 7.5: Problem Three: SPx Acceleration Scheme Performance

acceleration scheme matrix solver | CPU time (s)
none CG 891
DSA all gps CG 414
MGA e~ gps, DSA v gps CG 286
MGA e~ gps, DSA v gps MG 310
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Table 7.6: Performance of Angular Multigrid and Diffusion Synthetic Methods

1-D Sy 1-D SPy 2-D SPy
acceleration | order | Spectral Radius | Spectral Radius | Spectral Radius
MGA 4 0.36 0.35 0.35
DSA 4 0.36 0.35 0.35
MGA 8 0.47 0.47 0.47
DSA 8 0.81 0.81 0.82
MGA 16 0.54 0.54 0.54
DSA 16 0.95 0.95 0.95

with the outer aluminum and tungsten regions each reduced to 5 mil thickness. For
the SPy calculation we have performed order P;, Ps, and P; calculations, with 35
x 35 spatial cells of ncnuniform mesh spacing (Aipperarsi = 2.54 x 1072 cm, Ay =
6.684 x 107 cm, Aputerar = 1.27 x 1072 cm). For the Monte Carlo calculation we ran
5 x 10° histories. We display the results in Table 7.7, and note that the uncertainty in
the Monte Carlo solution is reduced from + 8% (test problem three) to + 2% in this
problem. Recall, the unshielded or free space dose to the silicon region was calculated
to be 25.8 MeV/cm?s, indicating two orders of magnitude attenuation by the shield,

and again verifying that the silicon region is well shielded.

7.6 Test Problem Five

The fifth problem, Figure 7.6, is a difficult two dimensional, R - Z geometry, three
region void problem. Again, this geometry-source configuration is characteristic of
satellite shielding benchmark problems. Deterministic transport problems with a

void region are often times very slow to converge when using a code with a conjugate
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Table 7.7: Problem Four: Results

EDR (MeV/cm®s) | CPU time | HWM memory
SP, |2.49x 107! 066 s 2782 K
SP; | 2.62x 107! 145 s 6755 K
SP; | 2.67 x 10-! 305 s 14753 K
MC |248x107t £ 2% |2hr 23 min | 715 K
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Figure 7.6: Problem Five: Geometry
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gradient solver. We have employed a multigrid matrix solver [17] within our SPy
code to handle the ill-conditioned equations that result from the modeling of the void.
Each region represents a coaxial cylinder of uniform composition. A geosynchronous
trapped electron source is again incident along the outer periphery. For the SPy
calculation we have performed an order P; calculation with 35 x 35 spatial cells of
nonuniform mesh spacing (Aasi = 2.67 x 1073em, Aw = 4.0 x 107 cm). Low
density nitrogen gas (107"g/cm?®) is used to simulate the void region in the SPy
calculation, while Monte Carlo allows the explicit modeling of a void. For the Monte
Carlo calculation we ran 2 x 10° histories. We display the results of the calculation,

the EDR in the inner aluminum region, in Table 7.8.

Table 7.8: Problem Five: Results

EDR (MeV/em3s) | CPU time | HWM memory

SP; | 2.24 478 s 14739 K
MC 225 +1% 53 min 135 | 715 K

7.7 Test Problem Six

We conclude with a monodirectional electron beam problem. A cylindrical beam
is incident along the z axis of an aluminum cylinder, where the beam radius is 1/20
th of the radius of the cylinder. The cylinder is of dimension radius = height = 10
mil (2.54 x 10”2 cm). Electrons are distributed in a flat energy spectrum as shown

in Figure 7.1. For the S Py calculation we have performed an order P,s calculation.
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. For the Monte Carlo calculation we ran 105 histories. Axial energy deposition rate
as a function of penetration is displayed in Figure 7.7. We have observed that the
S Py method appears to be a poor approximation in this case, with an average error
of approximately 30%. Specifically, the SPy method appears to be too diffusive

an approximation for beam problems. This result, however, is in agreement with

theoretical expectations.
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Chapter 8

Summary and Discussion

8.1 Conclusions

There is a strong need for accurate and efficient numerical methods for solving
lthe Boltzmann - CSD transport equations. The purpose of this thesis was multifold:
Our first major objective was to develop a simplified spherical harmonic method (S Py
method) for multidimensional coupled electron-photon transport; this is the first time
that the SPy method has been applied to charged particle transport. The second
major objective was the development and analysis of efficient solution techniques for
the multidimensional S Py equations. We have met these objectives. In this chapter
we review and summarize some important properties of the § Py method in contrast
to other transport methods, examine and interpret the test problem results of Chapter
7, and conclude with some possibilities for future work.

The S Py equations were proposed in the early 1960’s by Gelbard for application
to neutron transport problems. As has been stated earlier, the SPy method is an
approximation used to treat the angular variable. This method has been shown to
produce approximate transport solutions which are significantly more accurate than
diffusion theory, but significantly less expensive than discrete-ordinates (Sy), or full
Py methods. The initial derivation of the SPy equations was not rigorous. This lack
of theoretical foundation has undoubtedly acted as an obstruction to the widespread

use of these equations. However, a recent paper [1] in the literature shows that the

S Py equations represent a formal asymptotic solution to the Boltzmann transport




equation in the diffusion limit.

The SPy equations are an approximation in the sense that one does not obtain
the exact transport solution as N approaches infinity. Such a method is said to be
nonconvergent. This is in contrast to the Sy and Py methods which are convergent.
The number of unknowns in multidimensional S Py is of order (N 4 1), while in mul-
tidimensional Py the number of unknowns is of order (N + 1)?. Electron scattering
is highy anisotropic; hence, an accurate representation of the electron flux requires
high order (P; — P;5) flux and cross section expansions. Thus, SPy offers tremendous
computational savings over Py when N is large, as is always the case in electron-
photon transport problems. S Py retains the rotational invariance of the Py method;
hence, ray effects do not appear in the solution. The S Py equations can be put in a

canonical form which allows the application of standard diffusion discretization tech-

niques and a source iteration solution strategy. In addition, convergence acceleration

techniques can be applied to the canonical form.

We have developed codes for the multigroup SPy equations in one dimensional
slab, two dimensional X-Y, and two dimensional R-Z geometries. We have performed
a Fourier analysis of the standard source iteration (SI) solution scheme, and have
shown the method to be unconditionally stable. The SI method, however, can be
very slow to converge in optically thick systems where the scattering ratio, ¢ = 2, is
near one. This behavicr is also exhibited by the Sy method in all dimensions. We have
analyzed and generalized two acceleration schemes, P; diffusion synthetic acceleration
and multigrid in angle acceleration, which significantly reduce the spectral radius and
accelerate the convergence. We have performed a Fourier analysis of the P; diffusion
synthetic acceleration scheme (P, DSA) for multidimensional SPy, and have shown

the method to be stable and effective. Fourier analysis of the one dimensional and two
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dimensional S Py equations produced identical results. The stability of P; DSA for
two dimensional case is indeed a suprising result. Previous analyses [24] have shown
that P; DSA is stable for one dimensional Sy, but unstable for two dimensional
Sy. We have generalized the one dimensional P; DSA method to two dimensions
and have implemeﬁted this ‘method in our code. We have developed a multigrid in
angle (MGA) convergence acceleration routine, and have demonstrated that MGA is
more effective than P, DSA when scattering is highly forward peaked. That is, MGA
becomes increasingly effective, relative to DSA, as N increases. We note for the one
dimensional Sy equations multigrid acceleration is stable. However, since P; DSA
is unstable for multigeometry Sy and P, DSA is contained in the multigrid method,
theﬁ multigrid is also unstable for multigeometry Sy.

To investigate the accuracy and computational efficiency of the SPy method, we
have performed numerical comparisons with Monte Carlo, in the form of six test
problems. We have investigated the applicability of the SPy approximation to two
different physical classes of problems: satellite electronics shielding from geomagnet-
ically trapped electrons, and electron beam problems. In the space shielding study,
the S Py method produced solutions that are accurate within 10% of the benchmark
Monte Carlo code solutions. We observed that we obtain better agreement with
Monte Carlo for one dimensional than two dimensional problems. This is intuitively
satisfying, since SPy and Py are identical in one dimensional geometry, and Py is
convergent. In two and three dimensions, this equivalence between SPy and Py
does not exist for N > 1. In an examination of computational efficiency, we have
demonstrated in space shielding applications that the SPy method is often orders
of magnitude faster than Monte Carlo, with the difference in CPU time particularly

pronounced in deep penetration problems. For reasonable statistics on the dose in
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deeply shielded regions, Monte Carlo often requires a large number of histories and
a corresponding long run time. We observed that S Py often requires more memory
than Monte Carlo. Hcowever, SPy is capable of producing detailed scalar flux and
current profiles whereas CYLTRAN is not.

In deterministic transport calculations, void problems often lead to excessive so-
lution times when a simple conjugate gradient (CG) matrix solver is used. We have
successfully modeled quasi-void problems, by implementing a spatial multigrid (MG)
matrix solver within our code, and have obtained excellent agreement with Monte
Carlo. In general, if we have a system of well-conditioned equations, CG is the rec-
ommended method of solution. However, if the equations are ill-conditioned, as in the
case of strong material discontinuities across an interface, MG can be more efficient.

We have investigated the effects of positrons in one dimensional and two dimen-
sional space shielding applications. Specifically, we have performed calculations of the
.energy deposition rates with and without positrons and compared solutions. In the
comparison study we observed less than 1.5% change in calculated energy deposition
rates when we included positrons, while the required CPU time increased up to a
factor of four. To understand this result, we calculated the photon spectrum at the
midpoint of the silicon region. We found that relatively few photons are present at
energies greater than the threshold for positron production, which is consistent with
our results.

We have calculated the unshielded or free space dose to the silicon region in the
one and two dimensional space shielding problems. We have observed from two to
four orders of magnitude attenuation in the scalar flux. Thus we conclude that we
are in a highly shielded regime.

We have performec| a convergence study of the SPy method for space shielding
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applications. We observed that the largest change in the solution occurs between SP,
and SP;. The SPy solution changes relatively little for N > 3, while the required
CPU time increases proportional to N. We conclude that the optimal approximation
varies from SP; to SP; for space shiélding applications. Increasing the order does not
necessarily increase the accuracy of the solution in multidimensional calculations.
We have further investigated the effectiveness of the angular multigrid (AMG)
method when applied to two dimensional SPy calculations. By performing certain
benchmark calculations appearing in the literature [21], we have computationally
demonstrated that the AMG method exhibits exactly the same effectiveness on two
dimensional S Py calculations that it does on one dimensional S Py calculations. This
was suggested by the Fourier analysis we originally performed indicating that the
diffusion-synthetic acceleration (DSA) scheme exhibits exactly the same effectiveness
~ on two dimensional 5Py calculations that it does on one dimensional S Py calcula-
tions. Remember that both the DSA and AMG methods are unstable (with suffi-
ciently forward-peaked scattering and sufficiently small absorption) for two dimen-
sional Sy calculations, yet are both very effective for one dimensional Sy calculations.
We have inveétigated the applicability of the S Py method to beam problems. We
have observed that the SPy method appears to be too diffusive an approximation for

beam problems. This result, however, is in agreement with theoretical expectations.

8.2 Future Goals
Some possible future goals include:

1. Investigate the biasing of coupled electron-photon Monte Carlo using 5Py ad-

joint solutions.
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. Replacement of diamond-difference in energy scheme [25], which can lead to
numerical oscillations in transport solutions when the boundary source is mo-
noenergetic and spatial cells are optically thin. This will require a considerably

more complex solution strategy.
. Extend the method to three dimensional geometry for orthogonal mesh.

. Extend the method to three dimensional geometry for unstructured mesh.

. Develop optimal v cycle strategy for the use of spatial multigrid in angular

multigrid scheme.
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Appendix A
Iterative Solution of Matrix Equations
In this appendix we demonstrate that the stability and convergence of a specified

iteration scheme is determined by the properties of the iteration matrix. Consider

the inhomogeneous matrix equation

Az =9 (A.1)
we may split the coefficient matrix
A=M-N (A.2)
and write Equation (A.1) as
MzZ=NzZ+yg (A.3)

To solve the equation iteratively we guess the value of £ on the right hand side
of Equation (A.3), defined to be &, and calculate successive iterates &%), %), . ..

according to

Mz = Ng-Y 4 7 (A.4)

or

#9 = Bzt-Y 4§ (A.5)
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where B = M!N is called the iteration matrix. We may obtain a recursion relation

for the error, €!) = 3/ — 7, by subtracting Equation (A.3) from (A.4)

¢ = gelt-v) (A.6)

e = Bte©® | (A.7)

For the sequence of vectors 9 to converge to , we then require

lim &0 =0 (A.8)

{900

Next, assume the iteration matrix has a complete, linearly independent set of eigen-
vectors 7; and associated eigenvalues JA;; this is always true for the symmetric positive
definite matrices that result in our work. Then, expand the error (%) in terms of these

eigenvectors

B7: = A\iff; (A.9)
J

&0 =3 ouij; (A.10)
=1

Then, substituting Equation (A.10) into (A.7) and using (A.9), we obtain
eV =" (A.11)
For the error to approach zero as I — oo we then require

Nl <1 i=1,2,...,J (A.12)
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This is the stability condition for iteration methods. If we order the eigenvalue moduli

as

IAalt > N[ As]] > As]l > ... (A-13)

then || A, ]| is referred to as the spectral radius, and the stability of the iterative scheme

is determined by the spectral radius

< 1 stable, convergent
Al § =1 stable, nonconvergent (A.14)

> 1 unstable

In Fourier analysis, we first derive a matrix equation for the error, expand the error

in a Fourier series, and then determine the spectral radius of the iteration matrix of

the resultant equation.
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Appendix B

CEPXS Cross Section Format

The SPy code utilizes multigroup-Legendre cross sections generated by the pro-
gram CEPXS. CEPXS produces cross sections data in a format where each material
and each Legendre order (1 = 0, 1,..., NLEG) is described by a block of data of
IHM rows by IGM columns. The parameter IHM is determined internally, and the
parameter IGM is equal to the number of energy groups specified by the user. Non
scattering cross sections are stored in the 1 = 0 data block. The row position of
cross sections is specified relative to the total cross section, o (row IHT), and the
within group scattering cross section, 0,44 (row IHS). The row order for group g is

as follows

cross section row

oy IHT

TpgiNog  ITHT+1

Tugt2rg IHS — 2 (B.1)
0"’9+1_)g IHS - 1
Os,9~+g THS

0',,9_1_)9 IHS + 1

Teg-M—g  THS+M
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M is the number of downscatter groups, and N is the number of upscatter groups.

The scattering matrix reed not be square. Cross sections are stored in a final three

dimensional array of size IHM x IGM x NSETS, where

NSETS = NMAT(NLEG+1) (B.2)

NMAT is the number of materials, and NLEG is the maximum Legendre order.




