

CONF-850610--4

RESOLUTION OF THERMAL STRIPING ISSUE DOWNSTREAM OF A
HORIZONTAL PIPE ELBOW IN STRATIFIED PIPE FLOW

by

CONF-850610--4

Tuncer M. Kuzay and Kenneth E. Kasza

DE85 006195

Components Technology Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE

It has been reproduced from the
available copy to permit the broadest
possible availability.

Work fully sponsored by U.S. Department of Energy,
Division of Breeder Research and Technology

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. W-31-109-ENG-38. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

7/18

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance [1]. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls.

The instrumentation was concentrated around the exit plane of the 90-degree sweep elbow, since prior tests [2] had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

The largest thermal fluctuations were observed to be located in the 9:00-12:00 hour clock positions at about one pipe diameter downstream from the elbow-exit [2]. At these locations as indicated by the surface thermocouples, the wall is subjected to thermal fluctuation as large as 30 to 40 percent of the total temperature change imposed by the thermal ramp at the pipe inlet.

The propensity for thermal striping under severe thermal oscillations near the wall region can be resolved only through a frequency-amplitude content analysis (power spectral density analysis). However, the conventional power spectral density (PSD) analysis is well developed only

for the stationary signals. Therefore, a special and unique technique had to be developed to reduce the unstationary signals from the test section thermocouples to quasi-stationary signals for meaningful statistical information. The typical thermal signal consisted of 15 to 18K data points for each thermocouple. Typically 30-40 thermocouples had to be treated per test for such an analysis. A two stage trend removal which is believed to be unique was developed. In the first stage a sliding window (usually 128, 256, and 512 data points long) removed the DC part from the data rendering it a "trendless AC" signal. However, the resulting signal is still unstationary due to the fact that the transient portion of the signal, which contains the useful data for our purposes is flanked by two integral stationary segments i.e, pre- and post-transient. In the second stage of the data reduction program these two non-transient portions were separated numerically and a statistically averaged PSD analysis was applied.

It should be noted that the window length does not have much of an impact on the results. Figure 1 shows a case where the outlined methodology has been applied with three different window lengths of 128, 256, and 512 data points. The resulting PSDs are very similar in all cases. The only difference observed is the increased bandwidth resolution of PSD with increasing window width. Statistically this finer resolution is not of significance since it is a direct result of the fewer subsets going into the averaging process in obtaining the PSD per spectral bandwidth. Therefore, a compromising choice was made to use only the 256 data point long window in the proposed PSD analysis of the data.

In Fig. 2 a typical statistical sample corresponding to the data of thermocouple #66 in Fig. 3 of Ref. [2] is presented. The power spectral density is plotted against the frequency content of the signal. It is seen

that most of the energy in the signal is confined to the low frequencies below 1 Hz. Power decay is nearly exponential with frequency.

The experimental results and theoretical considerations also show that the ratio of peak-to-peak to RMS of the temperature fluctuations is about 6. Furthermore, due to the transient nature of the main event giving rise to the stratification and hence the thermal oscillations, large fluctuations are observed to occur only during 25 percent of the transient duration.

Based on the above observations and the short duration of the statistically important oscillations any deleterious effects from thermal striping downstream of a horizontal elbow will depend on characteristics of the transients, number of occurrences of the event, build up of stratification in the horizontal piping upstream of the elbow and on piping material.

REFERENCES

1. Kasza, K. E., Kuzay, T. M., and Oras, J. J., "Overview of Thermal-buoyancy-induced Phenomena in Reactor Plant Components," Proceedings of the Third International Conference on Liquid Metal Engineering and Technology, Oxford, England, Vol. I, pp. 187-194, April 1984.
2. Kuzay, T. M. and Kasza, K. E., "Thermal Oscillations Downstream of an Elbow in Stratified Pipe Flow," Trans. Am. Nucl. Soc., 46, 794 (1984).

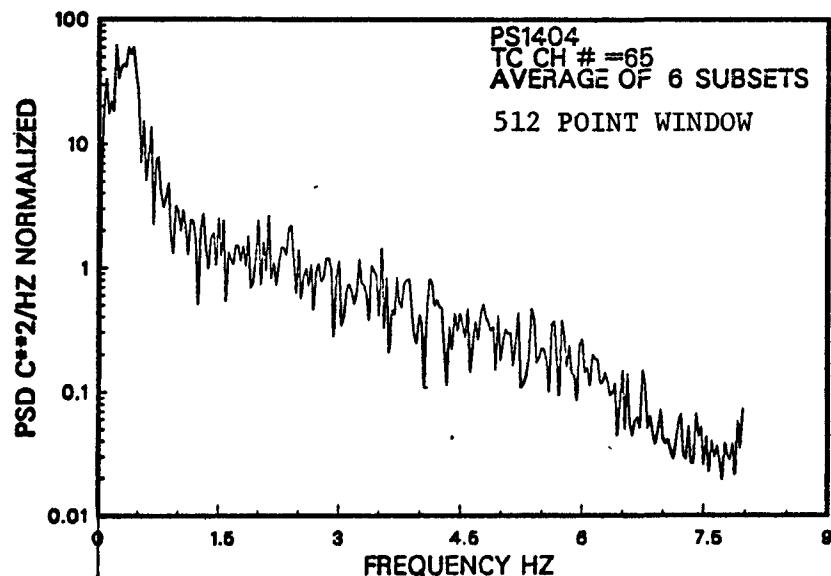
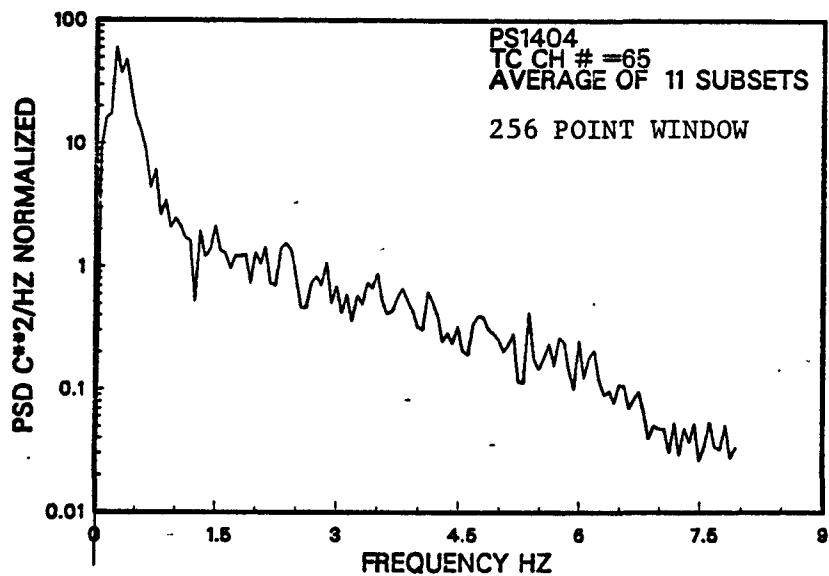
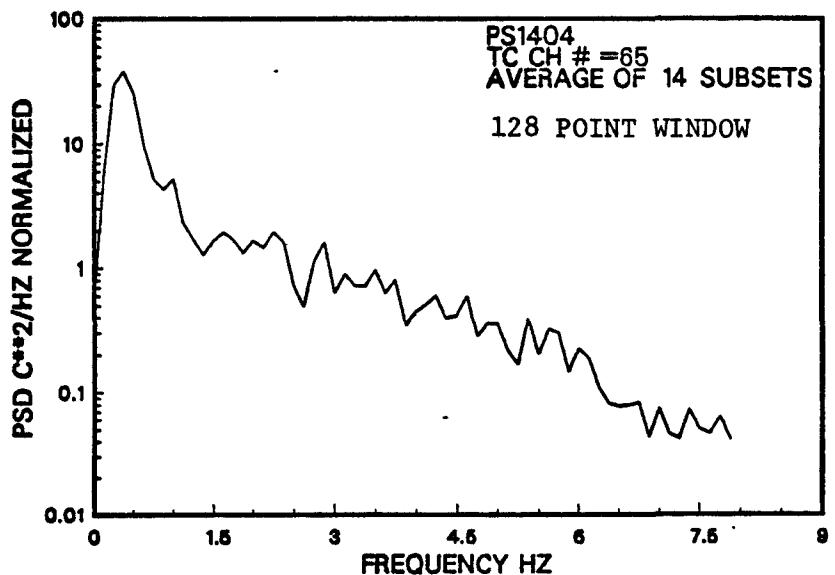




Fig. 1. The Effect of Window Length on the Resulting Power Spectral Density

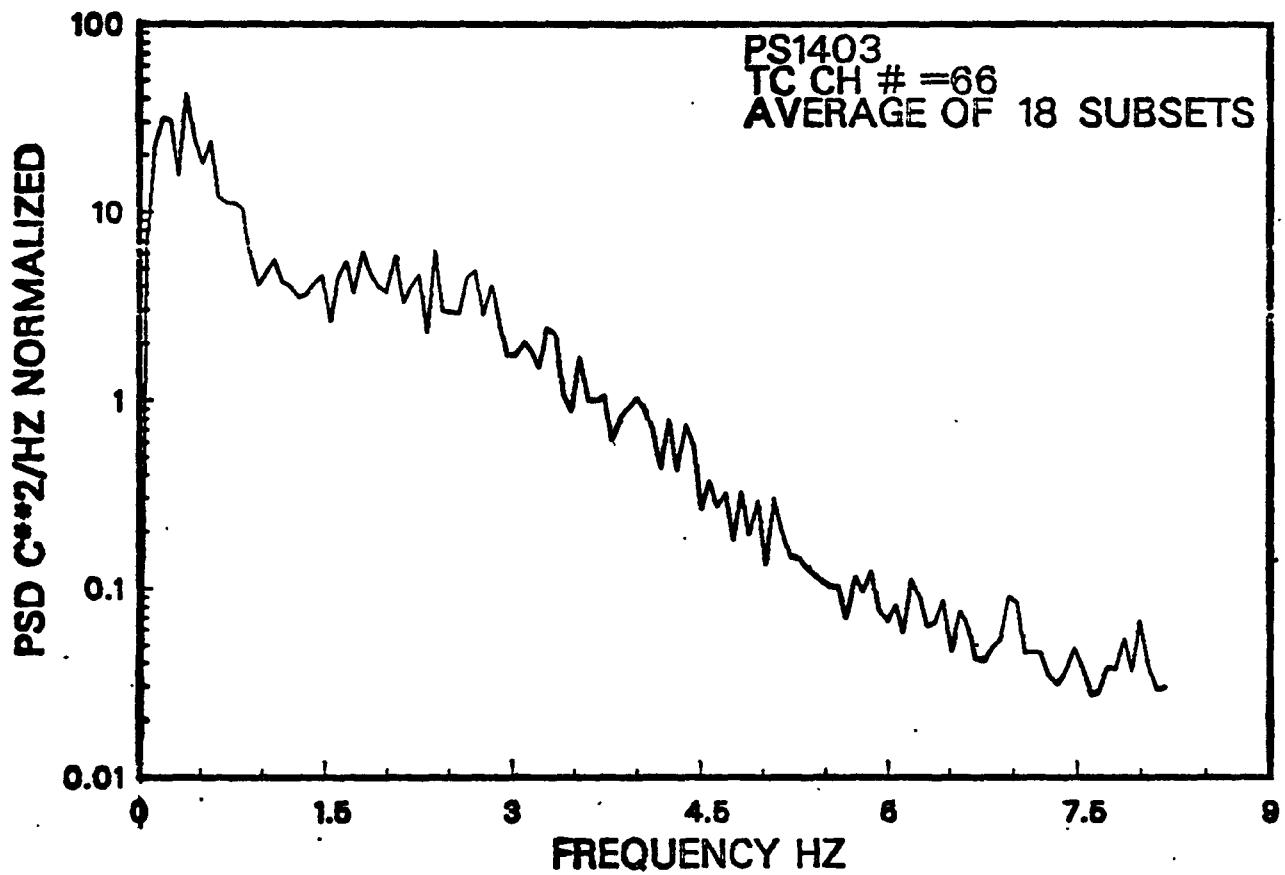


Fig. 2. Power Spectral Density for Thermocouple 66, Ref. [2]

SUMMARY COVER SHEET

CONTRIBUTED/STIMULATED PAPER INVITED PAPER

→ ORIGINAL AND THREE COPIES REQUIRED ←

TITLE: Resolution of Thermal Striping Issue Downstream of a Horizontal Pipe Elbow on Stratified Pipe Flow

1st Author: Tuncer M. Kuzay **ANS Member:** Yes No

Company: Components Technology Division, 308 Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 **Phone:** (312) 972-3084

2nd Author: Kenneth E. Kasza **ANS Member:** Yes No

Company: Argonne National Laboratory **Phone:** (312) 972-5920

Address: 9700 S. Cass Ave., Bldg. 308, Argonne, IL 60439

3rd Author: _____ **ANS Member:** Yes No

Company: _____ **Phone:** _____

Address: _____

Complete the top portion of page 3.

BILLING INFORMATION

(Check one)

PO attached to original summary.

PO Number _____

Send page charge bill to:

Name CT 308

Company Argonne National Laboratory

Address Argonne, IL 60439

DESCRIPTION OF PAPER

(Must be at least 450 words, but not more than 900.)

450

Text (must be at least 450)

2

figures

× 150 =

300

tables × 150 =

lines of equations × 10 =

750

TOTAL (Must not be more than 900):

CONTRIBUTED SUMMARY

Subject category number for your summary (from page 4) 18.4

Alternative subject category number 10.2

INVITED SUMMARY

ANS Division or Technical Group that invited you _____

Subject category number (from page 4) _____

PUBLICATION INFORMATION

Has the substance of this summary been presented or published previously?

If so, give details _____

Yes No

Has the paper been submitted for publication in a technical journal?

If so, give details _____

Yes No

Has this summary been approved for publication by your institution or company?

If not, give details _____

Yes No

THIS COMPLETED SUMMARY COVER SHEET AND PAGE 3 OF THIS CALL FOR PAPERS MUST BE ATTACHED TO EACH OF THE FOUR SETS OF YOUR SUMMARY.

THIS IS YOUR MAILING LABEL.

Please print or type name and address
of author to whom ANS should send
correspondence.

Dr. Tuncer M. Kuzay
Components Technology Division, 308
Argonne National Laboratory
Argonne, IL 60439

Telephone: Commercial: (312) 972-3084
FTS: 972-3084

Title of Summary Resolution of Thermal Striping Issue Downstream of a Horizontal Pipe
Elbow in Stratified Pipe Flow

This is to acknowledge receipt of your summary. Please use the log number above in future correspondence.

This summary will be considered for inclusion in the program of the American Nuclear Society's 1985 Annual Meeting,
Boston, Massachusetts, June 9-14, 1985.

Your paper has been reviewed and:

- 1. Accepted for presentation. (See Attached Instructions)
- 2. It is suggested that your summary be revised. (See Attachment)
- 3. It is suggested that your summary be combined with the summary referenced as Log # _____ (See Attachment)
- 4. Rejected. (See Attached Comments)

Your paper is being returned without review because:

- 1. It was received too late to be reviewed.
- 2. It does not comply with the 450- to 900-word limit.

In all correspondence regarding your summary, please refer to the Log Number shown above.

Thank you for submitting this summary.

John R. Coombe
ANS Technical Program Chairman
1985 Annual Meeting

BOSTON, MASSACHUSETTS — June 9-14, 1985
SUBJECT CATEGORIES FOR CONTRIBUTED AND INVITED SESSIONS

- 1. ALTERNATIVE ENERGY TECHNOLOGIES AND SYSTEMS
 - *1.1 Advances in Alternative Energy Technologies
 - *1.2 Alternative Energy Systems in Utility Supply Planning (PD)
- 2. BIOLOGY AND MEDICINE
 - 2.1 Biological and Medical Implications of Food Irradiation (IRD)
- 3. EDUCATION
 - 3.1 Innovations in Nuclear Engineering Education
 - *3.2 Radiation Effects on Electronics
 - *3.3 Historical Perspective on 25 Years of Nuclear Engineering Education
 - *3.4 Uses of University Reactors
- 4. ENVIRONMENTAL SCIENCES
 - *4.1 DOE Remedial Action Experience (1984) and Implications for 1985
 - *4.2 Remedial Action Measurement Experience, 1984-1985
- 5. FUEL CYCLE AND WASTE MANAGEMENT
 - 5.1 Fuel Cycle Management and Economics
 - 5.2 Spent Fuel Management
 - 5.3 Nuclear Fuel Design and Analysis
 - 5.4 Low-Level Waste Management
 - 5.5 High-Level and Transuranic Waste Management
 - *5.6 Evolution of Utility Nuclear Fuel Requirements
 - *5.7 Enrichment of Nuclear Materials
 - *5.8 National Waste Policy Act of 1982—Economic Considerations [ROD]
 - *5.9 Fuel Cycle for the New-Generation Small Reactors
 - *5.10 Low-Level Waste Policy Act—Regulating and Complying in 1986 [ROD]
 - *5.11 Fusion Energy Waste Management
- 6. FUSION ENERGY
 - *6.1 Impurity and Particle Control Issues for Fusion Reactors
 - *6.2 Commercial and Near-Term Fusion Reactor Studies
 - *6.3 Nuclear Test Requirements for Fusion
 - *6.4 ICF Reactor Drivers
 - *6.5 Fusion Breeders
 - 6.6 Fusion Reactor Neutronics and Shielding
 - 6.7 Plasma Engineering
 - 6.8 Blanket Engineering
 - 6.9 Fusion Energy: General
- 7. HUMAN FACTORS
 - 7.1 Human Factors in the Control Room
 - 7.2 Human Factors in Maintenance
 - 7.3 Modeling and Measuring Human Performance
 - 7.4 Computer Aids to Human Performance
 - 7.5 Experience with MMPI Testing in the Nuclear Industry
- 8. ISOTOPES AND RADIATION
 - *8.1 Nuclear Data Measurement, Theory, and Evaluation
 - *8.2 Progress in Transuranic Waste Technology (FCWMD)
 - 8.3-8.6 Minisymposium on Advances in Nuclear and Atomic Analytical Methods
 - *8.3 Nuclear Archaeometry Applications
 - *8.4 Biomedical Applications (TG/BM)
 - *8.5 Geochemical Applications (ESD)
 - *8.6 Environmental Applications (ESD)
 - *8.7 Progress in Food Irradiation (TG/BM)
 - *8.8 Radioluminescent Light Development (FCWMD)
- 9. MATERIALS SCIENCE AND TECHNOLOGY
not participating
- 10. MATHEMATICS AND COMPUTATION
 - 10.1 Reactor Physics Methods
 - 10.2 Methods in Heat Transfer and Fluid Flow
 - 10.3 Computational Methods in Reactor Safety
 - 10.4 Methods for Neutral- and Charged-Particle Transport
 - 10.5 The Application of Symbolic Manipulation Programs in Numerical Computations
- 11. NUCLEAR CRITICALITY SAFETY
 - 11.1 Data and Analysis for Criticality
 - *11.2 Validation Experiences in Criticality Safety
 - *11.3 Regulatory Aspects of Criticality Safety

- 12. NUCLEAR REACTOR SAFETY
 - 12.1 LWR Transients and Design-Basis Accidents
 - 12.2 LWR Severe Accident Phenomena and Sequences
 - 12.3 LWR Containment Response and Radiological Source Terms
 - 12.4 LMFBR Transients and Design-Basis Accidents
 - 12.5 LMFBR Severe Accident Phenomena and Sequences
 - 12.6 LMFBR Containment Response and Radiological Source Terms
 - 12.7 Safety-Related Design Features and Man-Machine Interface
 - 12.8 Probabilistic Safety and Reliability Analysis
 - 12.9 Other Safety Considerations
 - *12.10 Lessons Learned Through the Review of Safety-Related Operational Data (ROD)
- 13. POWER
 - 13.1 Reactor and Plant Engineering: Design, Modification, Maintenance, and Advanced Reactor Engineering
 - 13.2 Management and Finance
 - 13.3 Quality Assurance and Quality Control
 - 13.4 Licensing
 - 13.5 Public Acceptance
 - 13.6 Innovative/Small Reactor Designs
 - *13.7 New Plant Financing and Ownership Options
 - *13.8 Integrating Power Plants into the Rate Base: Softening Rate Shock
 - *13.9 Load Forecasts—Shortfall Ahead?
 - *13.10 Plant Life Extension Programs (ROD)
 - *13.11 Regulation of Future Power Plant Projects
 - *13.12 The Utility/NRC Inspection Interface (ROD)
 - *13.13 The Changing Plant Technical Specification Philosophy Influence on Plant Evolutions (ROD)
 - *13.14 Automation in Nuclear Power Plants
 - *13.15 QA During Plant Startup and Outages
- 14. RADIATION PROTECTION AND SHIELDING
not participating
- 15. REACTOR OPERATIONS
 - *15.1 The Living Schedule—A Rational Approach to Implementation of NRC Requirements
 - *15.2 Fault-Tolerant Plant Operations Systems—A Tutorial on Concepts
 - *15.3 Fault-Tolerant Plant Operations Systems—Reports on Experience in Implementation
 - 15.4 High Technologies for Reactor Operations
 - *15.5 The Impact of Valves on Plant Operations and Power Availabilities: General
 - *15.6 The Impact of Valves on Plant Operations and Power Availabilities: Operation Problems
 - 15.7 Performance Improvement Through Training at Operating Plants
 - 15.8 Operational Implications for the New-Generation Small Reactors.
 - *15.9 Emerging Regulatory Issues: Maintenance Programs and Practices
- 16. REACTOR PHYSICS
 - 16.1 Reactor Analysis Methods
 - 16.2 Nuclear Data/Reactor Instrumentation
 - 16.3 Fast Reactors: Design, Validation, and Operating Experience
 - 16.4 Thermal Reactors: Design, Validation, and Operating Experience
 - 16.5 Reactor Physics Input to Transient and Safety Calculations
- 17. REMOTE SYSTEMS TECHNOLOGY
not participating
- 18. THERMAL HYDRAULICS
 - *18.1 Thermal Hydraulics in the Primary System During Severe Accidents
 - *18.2 Thermal Hydraulics in the Containment During Severe Accidents
 - *18.3 Thermal-Hydraulic Computer Models for Severe Accidents
 - *18.4 Buoyancy-Dominated Flows in Reactors
 - 18.5 General Thermal Hydraulics
 - 18.6 LWR Thermal Hydraulics
 - 18.7 LMFBR Thermal Hydraulics
 - 18.8 Thermal Hydraulics Computer Models
 - - Invited Papers
 - - Invited and Contributed Papers
 - [] - Cosponsoring Division
 - - Summary session for invited and contributed papers. Full paper required before presentation, to be published in Division Proceedings.

Oral presentations are normally allotted 20 minutes for presentation and questions.