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ABSTRACT 

A thermally stratified pipe flow produced by a thermal transient when 

passing through a horizontal elbow as a result of secondary flow gives rise 

to large thermal fluctuations on the inner curvature wall of the downstream 

piping. These fluctuations were measured in a specially instrumented 

horizontal pipe and elbow system on a test set-up using water in the Mixing 

Components Technology Facility (MCTF) at Argonne National Laboratory 

(ANL). This study is part of a larger program which is studying the 

influence of thermal buoyancy on general reactor component performance 

tl]. This paper discusses the influence of pipe flow generated thermal 

oscillations on the thermal stresses induced in the pipe walls. 

The instrumentation was concentrated around the exit plane of the 90-

degree sweep elbow, since prior tests [2] had indicated that the largest 

thermal fluctuations would occur within about one hydraulic diameter down­

stream of the elbow exit. The thermocouples were located along the inner 

curvature of the piping and measured the near surface fluid temperature. 

The test matrix involved thermal downramps under turbulent flow conditions. 

The largest thermal fluctuations were observed to be located in the 

9:00-12:00 hour clock positions at about one pipe diameter downstream from 

the elbow-exit [2]. At these locations as indicated by the surface 

thermocouples, the wall is subjected to thermal fluctuation as large as 30 

to 40 percent of the total temperature change imposed by the thermal ramp at 

the pipe inlet. 

The propensity for thermal striping under severe thermal oscillations 

near the wall region can be resolved only through a frequency-amplitude 

content analysis (power spectral density analysis). However, the 

conventional power spectral density (PSD) analysis is well developed only 



for the stationary signals. Therefore, a special and unique technique had 

to be developed to reduce the unstationary signals from the test section 

thermocouples to quasi-stationary signals for meaningful statistical 

information. The typical thermal signal consisted of 15 to 18K data points 

for each thermocouple. Typically 30-40 thermocouples had to be treated per 

test for such an analysis. A two stage trend removal which is believed to 

be unique was developed. In the first stage a sliding window (usually 128, 

256, and 512 data points long) removed the DC part from the data rendering 

it a "trendless AC" signal. However, the resulting signal is still 

unstationary due to the fact that the transient portion of the signal, which 

contains the useful data for our purposes is flanked by two integral 

stationary segments i.e, pre- and post-transient. In the second stage of 

the data reduction program these two non-transient portions were separated 

numerically and a statistically averaged PSD analysis was applied. 

It should be noted that the window length does not have much of an 

impact on the results. Figure 1 shows a case where the outlined methodology 

has been applied with three different window lengths of 128, 256, and 512 

data points. The resulting PSDs are very similar in all cases. The only 

difference observed is the increased bandwidth resolution of PSD with 

increasing window width. Statistically this finer resolution is not of 

significance since it is a direct result of the fewer subsets going into the 

averaging process in obtaining the PSD per spectral bandwidth. Therefore, a 

compromising choice was made to use only the 256 data point long window in 

the proposed PSD analysis of the data. 

In Fig. 2 a typical statistical sample corresponding to the data of 

thermocouple #66 in Fig. 3 of Ref. [2] is presented. The power spectral 

density is plotted against the frequency content of the signal. It is seen 



that most of the energy in the signal is confined to the low frequencies 

below 1 Hz. Power decay is nearly exponential with frequency. 

The experimental results and theoretical considerations also show that 

the ratio of peak-to-peak to RMS of the temperature fluctuations is about 

6.. Furthermore, due to the transient nature of the main event giving rise 

to the stratification and hence the thermal oscillations, large fluctuations 

are observed to occur only during 25 percent of the transient duration. 

Based on the above observations and the short duration of the 

statistically important oscillations any deleterious effects from thermal 

striping downstream of a horizontal elbow will depend on characteristics of 

the transients, number of occurrences of the event, build up of 

stratification in the horizontal piping upstream of the elbow and on piping 

material. 
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