RECEIVED

NOV 13 1997 ;
OE 1500~ =~ (X0
0STH /it -

Centrally Managed Name Resolution Schemes for EPI

JLAB-ACC-97-31

Ding Jun

Institute of High Energy Physics of the Chinese Academy of Sciences, P.O. Box 918(7), Beijing, 100039
P.R. China
David Bryan and William Watson
Thomas Jefferson National Accelerator Facility, MS12A2, 12000 Jefferson Ave., Newport News, VA 23606
USA

Abstract

The Experimental Physics and Industrial Control System
(EPICS) uses a broadcast method to locate resources and
controls distributed across control servers. There are many
advantages offered by using a centrally managed name
resolution method, in which resources are located using a
repository. The suitability of DCE Directory Service as a
name resolution method is explored, and results from a
study involving DCE are discussed. An alternative
nameserver method developed and in use at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab) is
described and results of integrating this new method with
existing EPICS utilities presented. The various methods
discussed in the paper are compared.

1. Introduction

A key component of a large control system is the ability to
access control points by name, independent of location.
This process of name resolution and control point location
is an important and critical piece of any large scale control
system. EPICS is based on a client/server system, in which
clients locate channels by broadcasting search requests to
all of the Input/Output controllers (I0Cs). This method is
generally associated with LAN environments, and is an
excellent mechanism for locating control points in a LAN
environment. EPICS functions in a WAN environment by
using lists of IP addresses, which can be either individual
hosts or IP subnet masks, to which name resolution
requests are sent. While this system offers the advantages
of distributing the pame resolution process and simplifying
name data management, it is not without drawbacks. {1]

On large control systems or systems with a large number

.of hosts, this broadcast method requires a large number of
broadcasts resulting in increased network load.
Additionally, each IOC must process every request,

- whether or not it is intended for that IOC. The time spent
processing these requests is time that the I0C cannot spend
on its core functionality of device control. By off-loading
these functionalities to a centrally managed nameserver or
servers, significant improvements in the speed of some key
EPICS components may be realized.

This paper explores several approaches to using a
centrally managed system. Results of a study conducted by
Ding Jun and William Watson on the suitability of DCE, or

P AT ATy

Distributed Computing Environment are presented. Results
from the design and use of an alternative nameserver
developed by David Bryan and William Watson are
discussed.

2. Overview of DCE and DCE Test Environment

DCE was originally developed by OSF {Open Software
Foundation) and is currently supported by many vendors,
including Sun, HP, and IBM. DCE consists of several
components which are designed to work closely together:
2]

o DCE Threads: support the creation, management, and
synchronization of multiple threads of control within a
single process.

e DCE Remote Procedure Call (RPC): consists of a
development tool and runtime service. The
development tool includes a compiler for a language
(IDL, Interface Development Tool) for developing
applications following the client/server model. This
code can be used to automatically generate code to
transform procedure calls into network messages.

¢ DCE Directory Service: a service which maintains
information about resources such as users, machines,
and RPC-based applications within the distributed
system. The information consists of the name of a
resource and associated attributes, including the
resource’s location. -

¢ DCE Distributed Time Service (DTS): provides
synchronized time on the computers in a distributed
computing environment.

¢ DCE Security Service: provides secure
communications and controlled access to resources in
the distributed system.

& DCE Distributed File Service (DFS): allows users to
share files anywhere on the network, regardless of the
file’s physical location.

DCE Directory Service is used by the core DCE services
and DCE applications to locate distributed, rapidly
changing resources. This service is composed of three parts
e Cell Directory Service(CDS): stores names and

attributes of resources located within a DCE cell.

e Global Directory Service(GDS) or DNS: used to look
up a name outside of a local cell.

* Global Directory Agent: serves as an intermediary
between a cell's CDS and the rest of the world.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
refiect those of the United States Government or any agency thereof.

DISCLAIMER

Portions af this document may be fllecible
in electronic image products. Images are
produced from the best gvailable original
document.

The Directory Service uses an extended form of the
client/server model. It consists of servers, clerks, and
clients. A CDS server stores and maintains CDS names
and handles requests to create, modify or look up data.
Each host using CDS runs a CDS clerk to act as an
intermediary between the server and client. The Directory
Service also provides a programming interface, which was
extensively used in the test code.

The test environment for DCE was set up at Jefferson
Lab. A two machine cell consisting of one IBM and one HP
workstation was established. The core DCE servers were
placed on the IBM machine, while the HP functioned as a
client. Since these two machines together formed a cell,
only the CDS service was used.

The DCE application used for the test consisted of two
test servers which have different resources but the same
interface, and one test client. When the client sends a
request by resource name, the CDS is consulted to
determine which server has that resource. The correct
server is then contacted and performs the required
operation.

Client programs may search for resources in one of two
ways. They may search by interface, such as when adding a
resource. In such a case, the client doesn't care which
server processes the request, as long as it has the correct
interface. When deleting a resource or executing a
command on a resource, the client will search by resource,
as it must contact the specific server that manages that
resource.

An interface to be shared between the client and the
server was defined using IDL. This can then be used to
generate stub code as an intermediary between the
application code and the RPC runtime library. In client
code, a remote procedure call appears to be a local call,
because the stub code will handle these calls to execute the
binding operation.

At boot time, the server location and other information is
exported by the server initialization code. After the server
is initialized, all remote procedure calls are executed in the
server management code. Three operations
(add/delete/show) can be executed on a resource by the
server.

Once the code is compiled and the server initialized,
another important consideration is access control. DCE has
an important feature called ACL (Access Control List).
These are used to protect resources in the distributed
environment. In order to modify the data in the CDS, the
server needs to have permission on that cell.

.2.1 DCE Experiment and Results

Test code was written to measure the average time for
DCE application clients to look up a resource. To eliminate
network effects, the test client and server ran on the same
machine as the CDS server. The number of resources in the
CDS database scaled from 100 to 10000, and the average
time for the clients to look up a name was calculated as the
database size changed. Two cases were examined:

In the first case, a random name generator produced
resource names to be used to populate the namespace.
These random names consisted of capital letters (A-Z) and
were between 8 and 16 characters long. The nameserver
was populated, and 10% of the names were searched for.
The average time per channel was calculated based on the
searches for this fraction of the total database. This test
was repeated with three different namespace sizes:

Table 1: DCE lookup time for random names

Namespace Size Average Time (s)
100 .085
1000 .069
10000 125

It can be seen from the table that when the namespace
size is increased from 1000 to 10000, the lookup time (in
seconds) approximately doubles. The increase in
performance when moving from a 100 to 1000 name
database is considered to be the result of the CDS cache, in
which the results of searches for names are stored. This
reduces the number of times that a client must go to the
server for the same information.

In the second case, a sequential name gencrator generated
names consisting of a prefix followed by a number between
1 and 5000. Again, multiple namespace sizes were used,
and 100 channels were looked up in order to determine
average lookup time.

Table 2: DCE lookup time for sequential names

Namespace Size Average Time (s)
1000 091
2000 097
3000 101
4000 .118
5000 119

From this, it can be seen that the searching time does not
appreciably change when the namespace size grows.

3. Overview of the CA Nameserver

Jefferson Lab is presently using a new nameserver,
developed on site, to locate resources within the control
system for the main accelerator. The control system
consists of approximately 160,000 channels distributed
across 70 control servers. The new nameserver maintains
information for all these channels.

This nameserver is specifically designed to work with
EPICS. Only information needed to locate EPICS channels
is stored in this nameserver. At present, each channel has a
pointer associated with it that references the data structure
for the server which that channel resides on. Each server's
data structure contains the IP address, port number, and
CA (Channel Access - the network protocol used by
EPICS) version number. [6]

EPICS utilities such as MEDM or BURT interface to the
new nameserver using an adapter layer. This layer can be
linked in at compile time, and intercepts the CA search
commands. When the results are returned from the
nameserver the adapter responds accordingly. If the
nameserver found information about that channel, then the
channel is connected directly, eliminating the broadcast
search step. If the nameserver has no information for the

channel, the existing EPICS broadcast method is employed.

This method has the advantage of allowing any EPICS
application using CA to be easily compiled to use the
nameserver. The adapter locates the nameserver using an
environment variable which defaults to a preset value. This
allows test applications or small groups to work with
servers other than the main nameserver.

The nameserver and the adapter communicate using the
CLIP protocol as implemented by CDEV [7]. This protocol
has been used for many applications at Jefferson Lab and
has proven to be highly reliable. A lightweight interface
was used to minimize the size of both the adapter and the
nameserver. As channels are requested by the CA client,
the channels are bundled in groups of 40 (or less if the
application requires less) and sent to the nameserver. The
nameserver searches its database and sends a
corresponding number of replies. The reply is either the
information needed for a connection (IP address, port, CA
version number), or an explicit "Don‘t Know" reply. This
allows the application to quickly revert to the original
broadcast method if the nameserver has no information on
that particular channel. Additionally, error handling
routines ensure that the application will revert to the
broadcast method if the server is unavailable.

The nameserver is implemented using a sparsely
populated hash table. If the occupancy factor of the table
exceeds 50%, the table is automatically resized to increase
performance. A custom memory mapping algorithm is
used, allowing the server to be much smaller that it would
be using conventional C++ allocation (the new command).
The executing nameserver, with 160,000 channels, uses
approximately 8MB of space, including space for network
buffers.

The nameserver can be populated either by loading a file
or using CLIP packets sent by a registration program to the
nameserver. At Jefferson Lab, each I0C writes a list of its
channels at boot time. These channels are then uploaded to
the nameserver by the regisfration program.

3.1 CA Nameserver Experiment and Results

" To test the speed of the nameserver, a CA test program
was created. This program would connect to between 1 and
23000 channels to test the speed of the nameserver. It was
discovered that as the number of channels increased, the
speed per channel increased, indicating that much of the
time is in overhead related to connection management etc,
Several trials were completed, and the average time per
channel was calculated (all these trials used the operational
database, with 160,000+ channels loaded)

Table 3: CA Nameserver random name lookup time

Channels requested Average time/chan (s)
1 22

100 004

1000 .001

23000 8x10*

As can be seen, this nameserver is able to resolve
channels very rapidly, even with a very large namespace.

In use, the programs modified to use the nameserver
appear to run identically to those that do not use the
nameserver, If however, IOC load is monitored while
running the old and new versions, requests by the new
version do not generally affect I0OC load. When requesting
channels, the old method routinely causes the available
processing power (CPU power not being used for other
tasks) to drop by 10-15%, and for large request groups on
heavily loaded I0Cs, can cause 50% drops.

4. Conclusion

The three methods discussed here all have advantages and
disadvantages. The original EPICS method of using
broadcasts eliminates the need to maintain a centrally
managed repository and does not require a separate
executable to be run. On the other hand, the two centrally
managed methods eliminate the load imposed on IOCs by
search requests.

It is clear from the numbers presented that the CA
Nameserver is able to locate channels more rapidly than
DCE CDS. On average, DCE CDS is approximately 100
times slower than the CA Nameserver, and would most
likely be more difficult to integrate with CA. On the other
hand, DCE offers the advantage of having distributed,
redundant servers, which could increase reliability.

References

[1]. D. Gurd (LANL), S. Lewis (LBL), B. McDowell
(ANL), W. Watson (JLAB) “Distributed
Enhancements to EPICS”

[2]. “Introduction fo OSF DCE” Open Software
Foundation

[31. “DCE FAQ” (www.osf.org/dceffag-mauuney html)

{4]. J. Shirley, W. Hu, 1. Magid “Guide to writing DCE
Applications” (O’Reilly & Associates, Inc., 1994)

[5]. W. Rosenberry, D. Kenney, G. Fisher “Understanding
DCE” (O'Reilly & Associates, Inc., 1992)

[6]. 1. Hill, “EPICS R3.12 Channel Access Reference
Manual” (Online publication, 1995)

{71. W. Watson, J. Chen, D. Wu, W. Akers “CDEV
Reference Guide”, Jefferson Lab,

(www jlab.org/cdev/doc_1.5/cdevReference himl)

