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Deeper Sparsely Nets Are Size-Optimal *

i 4

Valeriu Bein' Hanna E. Makaruk?
Space & Atmospheric Div. NIS-1, MS D466 Theoretical Div. T-13 MS B213
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Abstract

The starting points of this paper are two size-optimal solutions: (i) one
for implementing arbitrary Boolean functions (Horne, 1994); and (i) an-
other one for implementing certain sub-classes of Boolean functions
(Red’kin, 1970). Because VLSI implementations do not cope well with
highly interconnected nets—ihe area of a chip grows with the cube of
the fan-in (Hammerstrom, 1988)—this paper will analyse the influence
of limited fan-in on the size optimality for the two solutions mentioned.
First, we will extend a result from Horne & Hush (1994) valid for fan-in
A =2 to arbitrary fan-in. Second, we will prove that size-optimal solu-
tions are obtained for small constant fan-in for both constructions, while
relative minimum size solutions can be obtained for fan-ins strictly lower
that linear. These results are in agreement with similar ones proving that
for small constant fun-ins (A = 6...9) there exist VLSI-optimal (i.e., min-
imising AT 2) solutions (Beiu, 1997a), while there are similar small con-
stants relating to our capacity of processing information (Miller 1956).

1 INTRODUCTION

In this paper we shall consider feedforward neural networks (NNs) made of linear threshold
gates (TGs), or perceptrons. A TG is computing a Boolean function (BF) f: {0, 1}* -
{0, 1}, where an input vector is Z, = (2, ..., Z,,) and f(Z,) =sgn( Z;2; w; 5, + ), with
the synaptic weights w; € R, 6 e Rknown as the threshold, and sgn the sign function. The
cost functions commonly associated are depth (i.e., number of edges on the longest input
to output path, or number of layers) and size (i.e., number of neurons). However, the area
of the connections counts, and the area of one neuron can be related to its associated
weights, thus “comparing the number of nodes is inadequate for comparing the complexity
of NNs as the nodes themselves could implement quite complex functions” (Williamson,
1990). That is why several authors (Abu-Mostafa, 1988; Hammerstrom, 1988; Phatak,
1994) have taken into account the total number-of-connections, others (Bruck, 1988) the
total number-of-bits needed to represent the weights and the thresholds, or the sum of all
the weights and the thresholds (Beiu, 1994). This measure (also applied for defining the
minimum-integer TG realisation of a BF) has been recently used—under the name of “fotal
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weight magnitude”—in the context of computational learning theory for improving on sev-
eral standard VC-theory bounds (Bartlett, 1996). A quite similar definition of ‘complexity’
> w,-2 has also been advocated (Zhang, 1993). Such approximations can easily be related
to assumptions on how the area of a chip scales with the weights and the thresholds (Beiu,.
1996b, 1997a).
¢ for digital implementation the area scales with the cumulative size of the weights and
thresholds (as the bits for representing those weights and thresholds have to be stored);
e for analog implementations (e.g., using resistors or capacitors) the same type of scaling
is valid (although it is possible to come up with implementations having binary en-
coding of the parameters—for which the area would scale with the cumulative log-
scale size of the parameters);
e=some types of implementations (e.g., transconductance ones) even offer a constant size
per element, thus in principle scaling only with the number of parameters (i.e., with
the total number-of-connections).
It is worth emphasising that it is anyhow desirable to limit the range of parameter values
(Wray, 1995) for VLSI implementations because: (i) the maximum value of the fan-in
(Walker, 1989); and (ii) the maximal ratio between the largest and the smallest weight
cannot grow over a certain (technological) limit. The paper will discuss the influence of
limiting the fan-in on the size optimality of two different size-optimal solutions, and is
structured as follows: in Section 2 we present pervious results, while in Section 3 we shall
prove our main claims. Conclusions and open problems for research are ending the paper.

2 PREVIOUS RESULTS

One starting point is a classic construction for synthesising one BF with fan-in 2 AND-OR
gates. It was extended to the multioutput case and modified to apply to NNs.

Proposition 1 (Theorem 3 from Horne 1994) Arbitrary Boolean functions of the form
£:{0,1}* = {0, 1}® can be implemented in a NN of perceptrons restricted to fan-in 2
with a node complexity of © {m 2"/ (n+logm)} and requiring O (n) layers.

Sketch of proof The idea is to decompose each output BF into two subfunctions using
Shannon’s Decomposition f (x, X;...%,1X,) = %, fy (X5---%,iX,) + X, f; (%;...%,.4X,). By doing
this recursively for each subfunction, the output BFs will—in the end—be implemented
by binary trees. Horne & Hush (1994) use a trick for eliminating most of the lower
level nodes by replacing them with a subnetwork that computes all the possible BFs
needed by the higher level nodes. Each subcircuit eliminates one variable and has three
nodes (one OR and two ANDs), thus the upper tree has:

size =3.3"70 28 =302 1~ M

upper
nodes and depth ,,,,, =2 (n — q). The subfunctions now depend on only g variables, and a
lower subnetwork that computes all the possible BFs of g variables is built. It has:
: _ q 2i 27
Slze,ow,, —3'Zi=]2 <4’2
nodes and depth ,,,,, =2 (n~ g) (see Figure 2 in (Horne, 1994)). That g which minimises
$iZ€ pp, = SIZ€ yppe, + SiZE ., 18 determined by solving d (sizegr) /dg =0, and gives:
q = log{n+ logy — 2log(n + logit) }. 3
By substituting (3) in (1) and (2), the minimum size 5, can be determined. Q

)

Proposition 2 (Theorem 1 from Red’kin 1970) The complexity realisation (i.e., number
of threshold elements) of IF, , (the ciass of Boolean functions f (x x,...x,.X,) that have
exactly m groups of ones) is at most 2 (2m) '“+3.

The construction has: a first layer of [(2m)!/%] TGs (COMPARISONS) with fan-in =n and

weights <2 "~ !; a second layer of 2[(m / 2%1/ 2)TGs of fan-in = n +[(2m) *] and weights
<2" one more TG of fan-in=21(m/2) 1/21 and weights € {—1, +1} in the third layer.

NIPS*97 2
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3 LIMITED FAN-IN AND OPTIMAL SOLUTIONS
Proposition 3 (this paper) Arbitrary Boolean functions f: {0, 1}" —{0, 1}"" can be im-
plemented in a NN of perceptrons restricted to fan-in A in O (n/logA) layers.
Proof We use the same approach as Horne & Hush (1994) for the case when the fan-in
is limited to A. Each output BF can be decomposed in 2 A=1 subfunctions (ie.,
24-1 anD gates). The OR gate would have 24- inputs, thus we have to decompose
it in a A-ary tree of fan-in = A OR gates. This decomposition step eliminates A — 1 variables
and generates a depth =1 +[(A—1)/logAl, and size =221 +[22 "1 - 1/(a- D]
A-ary tree. Repeating this procedure recursively & times, we have:

depth .., = k-{1+[(A-1)/logAl} “4)
=24 et L ysAa-nl - i2i@-h
=size- R¥A-D_1y781-1)
=2%@-D41/4)
= Ak (5)
where the subfunctions depend only on g = n — kA variables. We now generate all the pos-
sible subfunctions of g variables with a subnetwork of:

depth,,,,, =l(n-kA)/Al-{1+[(A-1)/logAl} )

n=kA-iA
ey = (287 H@AT D /@A- DY TATE 22
2n—(k+l)A}

SIZ€ ypper

0 A
sz'ze-{22 +2% 4. 42
n~k+1DA
< (size+1)-22 @

o pA g2t ®

. 0 0
The inequality (7) can be proved by induction. Clearly, size - 2 2 < (size+1) - 22 Let
us consider the statement true for o; we prove it for o0+ 1:

0 A ad a+)a (x+ A {a+A
size {22422 ¢ 422"} 4 gize.2? < size-22 427
0 A oA oA
size-{ZZ +2% 4. 422 } < (size+1)-22
(due to hypothesis), thus:
. ZaA 2(a+l)A
(size+1)-2 <2
and computing the logarithm of the left side:
2% 4 log(size+1) =2% + log{22 '+[24 ' = /(A= D)}
< 2% 4 jog(22-1+24-1/A41)
<29 LA
< 2(u+l)A.
From (4) and (6) we can estimate depth 5., and from (5) and (8) size g, as:
depthpe, = (k+l(n—-kAY/Al} - {1 +[(A~ 1) /logAl}
= (n/A)-(A/logA+1) )]
= n/logA = O (n/logA)
n-k+ 1A
sizegr,  =m-size- Q¥ATD 1)y /(A-1) + (size+1)-27
n—kA~A
= m.2kb=k L 5A 52 (10)
concluding the proof. Q
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Proposition 4 (this paper) All the critical points of size gr, (m, n, k, A) are relative mini-
mum and are situated in the (close) vicinity of the parabola kA = n - log(n + logm).

Proof To determine the critical points we equate the partial derivatives to zero. Starting
from the approximation of size g, We compute 9size 5 /dk = O:

n=kA-A
m-2=kan2y (A-1) + 24.22 (In2)- 2" ~*=4(n2). (-A) = 0
n-kA-A
{mA—-1)/A/(n2)} - 228-k=n — 52
and using the notations kA =+,  =m (A — 1) /(A In2), and taking logarithms of both sides:
logB+2y—k—n =2n-Y-4 an
which has an approximate solution ¥ = n — log(n + logm). The same resuit can be obtained
by computing with finite differences (instead of approximating the partial derivative):
Sizegp (Mo n k+1,A) — sizege, (im,n, k,A) =0
=0

n-kA-A
size-{m-ZkA_k—Zz }
m- 2kA—k - 22
and after taking twice the logarithm of both sides and using the same notations we have:
log{logm + y(1-1/A)} =n-y-A
Y =n—{A+log(1~1/A)} — log{y+A/(A-1)-logm} (12)

= n ~ A - log(y+logm),
which has as approximate solution y = n - log(n + logm).

n—kA-A

Starting again from (10) we compute dsize 5 /dA = O:

m2B~ ik + 28an2)22" "+ 2822 T 2y 27 A qngy g = 0
mk-27* = k(n2)-27"1. 22" T _ g8 2"
mk-27-%. 21" = k)22 L gh grmn 2"
mic .2 2A—k=n = (k(n2)-27+A-m . 22" "
(m/In2) . 22 k=n = {1 = 218 g} 22"
which—by neglecting 2 Y2/ {k (In2) - 2"} —gives:
logB+2y—k—n =2n"Y-A

i.e., the same equation as (11). These show that the critical points are situated in the (close)
vicinity of the parabola kA = n — log(n + logm). The fact that they are relative minimum
has also been proven (Beiu 1997b). a

The exact size has been computed for many different values of n, m, A and k. One example
of those extensive simuiations is plotted in Figure 1. From Figure 1(a) it may seem that
k and A have almost the same influence on size 3, The discrete parabola-like curves (the
one closer to the axes is approximating kA = n — log(n + logm)) can be seen in Figure 1(b).

Proposition 5 (this paper) The absolute minimum size gr, is obtained for fan-in A=2.

Sketch of proof We will analyse only the critical points by using the approximation
kA = n-—logn. Intuitively the claim can be understood if we replace this value in (10):

_ — n=-n+logn-4A
sizegs =~ = m-2"TIOBITk L 98 o2
_ logn
<m-2nTlogn L 94 52
=m-2%n +2%.2%,
which clearly is minimised for A =2. Qa
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\a) (bj s '1% "12”"@ s w

Figure 1: (a) Exact size as a function of the fan-in A and k, for n = 64 and m = 1; (b) contour plot.

The detailed proof relies on computing size g, (n, m, k, A) for k = (n—logn) /A, and then
showing that size pr, (7, m, A+ 1)~ size gy, (n, m, A) > 0, thus the function being mono-
tonically increasing and the minimum is obtained for the smallest fan-in A =2. Because
the proof has been obtained using successive approximations, several simulation resuits
are presented in Table 1. It can be seen that while for reiatively small n the size-optimal
solutions are obtained even for A = 16, starting from n = 64 all the size-optimal solutions
are obtained for A =2. It is to be mentioned that the other relative minimum (on, or in the
vicinity of the parabolakA = n — logn) are slightly larger than the absolute minimum. They
might be of practical interest as leading to networks having fewer layers: n /logA instead
of n. Last, but not least, it is to be remarked that all these relative minimum are obtained
for fan-ins strictly lower that linear (as A < n - logn).

A similar result can be obtained for F, ,, because the first layer is represented by COM-
PARISONS (i.e., JF, |} which can be decomposed f~r sagsfying the limited fan-in condition.

Proposition 6 (Lemma 1 & Corollary 1 from Bm® ¢994) The COMPARISON of two n-bit
numbers can be 2camputed by a A-ary tree NN Paving integer weights and thresholds
bounded by 2 A/ for any 3<A<n

The size complexity of the NN implementing one fF, ,, function is (Baiw #594):

sizep = 2nm-{—~1——+ +——1——}
F - see depih, 4
A/2 (A’2) L

where depth - =[logn / (logA — 1)1, but a substantial enhancement is obtained if the fan-in
is limited. The maximum number of different BFs which can be computed in each layer
is:

(13)

MZA(Alz) 2n/A _2A(A/2)de""""“ (14)

3 ene ,—Wi‘
A/2 a2

For large m (needed for achieving a certain precision), and/or large n, the first terms of the
sum (13) will be larger than the equivalent ones from (14). This is equivalent to the trick
from (Horne, 1994), as the lower levels will compute all the possible functions realisable
using only limited fan-in COMPARISONs. The optimum size becomes:

(2n/A) 28,

Table 1.
Minimum size 5, for different values of n and m=1.

n 18=23l16=2%] 32=25] e4=2° 128=27 | 256=2% | s12=27 | 1024=2" | 2048=2"

size | 110 | 1470 [ 349.530 | 1611 x 10°] 6.917x 108 | 5.104 x 108 | 2.171 x 1071 1.005 x 10*%* | 1.685 x 10°7
A A5epi 8 o | A6 2 2 2 2 2 2 ;
XA 4 8 | 16 58 122 48 504 1014 ;2038
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(b) s (] ] F F)

@)
Figure 2: (a) Size of NNs for F, ,, whenm =2 0.99r (almost completely specified); (b) contour plot.

o, koo a@aryt! e
sizep = 2n- 2——-—1 + 2 —
i=1A(A/2)l_ i=k+1 472y

Following similar steps to the ones used in Proposition 3, it is possible to show that the
minimum size is obtained for A = 3. To get a better understanding we have done simulations

by considering that m =2 *”. Some results can be seen in Figure 2 (for € = 0.99).

We mention here that similar results (A =6...9), based on closer estimates of area and
delay have been proven for VLSI-efficient implementations of JF,, ,, functions (Beiu 1996b,
1997a). Different compiexity estimates for COMPARISON can be seen in Table 2. All of
these support the claim that smail constant fan-in NNs can be size- and VLSI-optimal.

4.CONCLUSIONS AND OPEN PROBLEMS

In this paper we have extended a result from Horne & Hush (1994) valid for fan-in

A =2 to arbitrary fan-ins, and have shown that the minimum size is obtained for smalil
Table 2 (from Beiu 1996b).

Different estimates of AT? for SRK (Siu, 1991), B_4 and B_log (Beiu, 1994,
1996b), ros (Roychowdhury, 1994) and ves (Vassiliadis, 1996).

Delay Depth Fan-in Length
| Area
Size ATS. = Ologm)
B A T |
ATE o = 0{&110@@65?{{@@: P2 = QG108
I = owisgisn e
Twfaneins  |ATges = O() - AT}, = Onlog'n)
Aré_,,,,: 0{n~lbg?h/log’(19gz:i)'}z-..§,=’, Aié T O frlog’n 7 logogm))
ATE] = Ofilogh)- k= 0ah AT, = 58°
ATE:. = OGH loghn) ATE, = O /logn) AT = O Tloghn) -
AThy = 0(n®) ATE = 0y ATk = 0%
T (s o |ATZ, = O(nlog’n) = O (nlog'n) AT, = 0@
AT 4oy = O[nitlogn/logilogm) | AT g = O imimilog’n/log’(logn)} | ATE 1oq= O (n Vi /logn)
AT%g. = O (n*/logn) AT = O(n*/iog'n) AT20s = O (n*/10gn)
Yari, =0(? AT e = 0 ATZ = 0™
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(constant) fan-ins. We have also shown that, using their construction, it is possible to obtain
‘good’ (i.e., relative minimum) solutions for fan-ins strictly lower than linear. The same
resuits have been obtained for the size-optimal solution of Red’kin (1970). The main con-
clusions are that: (i) there are interesting fan-in dependent depth-size (and area-delay)
tradeoffs; and (ii) there are optimal solutions having small constant fan-in values. Future
work is concentrating on linking these results with the entropy of the data-set, and with
principles like the “Occam’s razor” (Zhang, 1993) and the “minimum description length”,
as well as trying to find closer estimates for mixed analogue/digital implementations.
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