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1 Motivation

The Department of Energy has launched the Accelerated Strategic Computing Ini-
tiative (ASCI) to address a pressing need for more comprehensive computer simu-
lation capabilities in the area of nuclear weapons safety and reliability. In light of
the decision by the U. S. Government to abandon underground nuclear testing, the
Science-Based Stockpile Stewardship (SBSS) program is focused on using computer
modeling to assure the continued safety and effectiveness of the nuclear stockpile.
Doing this will require major advances in computing speed and the complexity of
computational models. Thus, it is anticipated that more modern software develop-
ment approaches will be needed in order to accelerate prototyping of new computer
applications, facilitate the integration of different physics models, manage the com-
plexity of simulation codes, and port the simulation codes to new computational
platforms.

We believe that the utilization of object-oriented design and programming tech-
niques can help in this regard. Object-oriented programming (OOP) has become a
popular model in the general software community for several reasons. It can help
manage a software application by encouraging code designers to break the applica-
tion down into constituent objects and their interactions. This leads to a natural
decomposition of a software project into manageable pieces. Often, these pieces may
have multiple uses within a given project or may be reused in subsequent projects,
thus shortening the time for application development. Finally, object-oriented pro-
gramming provides for very explicit interfaces between relatively self-contained ob-
jects, which typically makes adding new code or extending an existing application
more straightforward. '

These benefits transfer very well to the realm of high-performance physics mod-
eling and rapid application development required for ASCI. Many people will be
lending their expertise to ASCI application development, and OOP will help them
work together more effectively. The simulation codes produced will need to be flexi-
ble and agile, quickly adapted to the newest high-performance computing platforms
as they become available. Moreover, these codes must be written in a high-level,




easily understood fashion, so that the critical physics knowledge embedded in the
models is not lost as codes are passed along from one researcher to the next. OOP
can help address these important aspects of ASCI code development.

MC++ is a specific ASCl-relevant application project which demonstrates the
effectiveness of the object-oriented approach. It is a Monte Carlo neutron trans-
port code written in C++. It is designed to be simple yet flexible, with the ability
to quickly introduce new numerical algorithms or representations of the physics
into the code. MC++ is easily ported to various types of Unix workstations and
parallel computers such as the three new ASCI platforms, largely because it makes
extensive use of classes from the Parallel Object-Oriented Methods and Applications
(POOMA) C++ class library. The MC++ code has been successfully benchmarked
using some simple physics test problems, has been shown to provide comparable
serial performance and a parallel efficiency superior to that of a well-known Monte
Carlo neutronics package written in Fortran, and was the first ASCI-relevant appli-
cation to run in parallel on all three ASCI computing platforms.

2 Algorithm

MC++ currently computes the k& and « eigenvalues of the neutron transport equa-
tion. These eigenvalues are used to assess criticality of a system containing fissile
material. Such a system is said to be critical if there is a self-sustaining, time-
independent chain reaction in the absence of an external source of neutrons. In a
critical system, the rate of neutron production via fission is just equal to the rate of
loss due to absorption and leakage from the system. If there is no such equilibrium,
then the neutron population will either increase (a supercritical system) or decrease
(a subcritical system) exponentially in time. Each of the aforementioned eigenvalues
treats this criticality problem in a slightly different way, but each provides valuable
information on the criticality of the system in question.

MC++ is currently written to perform its calculations on a three-dimensional
Cartesian mesh. Information on the dimensions of the mesh, the types of materials
contained in the system, and material densities in each mesh cell are obtained from
another simulation code and read in to MC++. It stores this information along with
a database of isotopic information supplied by the user to describe the materials in
the problem. Then, the Monte Carlo calculation is begun by loading neutrons into
cells containing fissile material in a ”round-robin” fashion. The neutrons are tracked
through the system, undergoing collisions with isotopes that compose the materials
in each mesh cell and boundary interactions with the mesh itself. Collisions that
result in a fission event produce new neutrons which are stored as source points for
the next gemeration or cycle. All particles are tracked until they trigger a fission
event, are absorbed, or escape from the problem. Once all particles in the current
generation have completed their tracks, the next generation is begun. During each
cycle, MC++ accumulates tallies of specific events and uses this information to
compute estimates of & or a.

3 Implementation

The MC++ code is largely written in an object-oriented, data-parallel style, and it
makes extensive use of classes from the POOMA framework. POOMA is a C++




class library designed to encapsulate the details of parallel programming and provide
a set of high-level, physics-based data structures and algorithms with which to
build scientific applications. In object-oriented programming, a general structure or
outline for a set of codes intended to address a certain class of problems is known as
a framework. The basic aim of the POOMA class library is to be an object-oriented
framework for scientific computing on parallel architectures. Using this framework,
we have built a simple and efficient Monte Carlo neutronics package.

The most heavily used POOMA feature in MC++ is its particle simulation ca-
pabilities. POOMA provides a ParticleBase class with a minimal description of
a particle population. The user (in this case, the MC++ application developer)
then derives a class from ParticleBase and adds members to describe the par-
ticle characteristics, such as velocity or mass, needed for this simulation model.
This method allows for an extremely flexible particle description. Nevertheless, the
ParticleBase class provides the derived class with many powerful features, includ-
ing automatic decomposition of the particle data across processors, the ability to
add or delete particles from the particle population at will, and a convenient array
syntaz for performing data-parallel operations involving particle attributes.

MC++ also makes use of the Field and Mesh types in POOMA. It stores the
mesh description inside a POOMA Cartesian object, which can represent a non-
uniform Cartesian mesh. The Cartesian class provides a translation from ”index
space” to the physical domain of the simulation and simplifies the calculation of the
distance to the nearest mesh cell boundary performed in MC++. POOMA Field
objects are used to hold information on the type and density of each material in
each mesh cell. The data is automatically distributed across processors, so that
only a portion of the data of each Field is owned by each processor. This allows
MC++ to perform simulations on very large meshes with a relatively small number
of processors. POOMA has a data layout option which will maintain data for each
particle on the same processor that owns data for that portion of the field near
the particle’s current location. Maintaining this data locality allows for much more
efficient computations and lookups of field data. Although MC++ mainly uses the
POOMA Field as a storage class, it has many other powerful features, such as
built-in boundary conditions, array syntax for writing expressions involving Fields,
and optimized differential operators like div() and grad() for Fields residing on
a specific type of POOMA Mesh.

A few other general features of POOMA that add value to the MC++ application
are worthy of mention. POOMA manages virtually all of the parallelism and other
"computer science” issues that arise in getting this neutronics code to run efficiently
on various architectures. The only explicit message passing in MC++ is done in
the Tally classes to gather event tallies across all the processors. (The Tally
classes were built specifically for Monte Carlo simulation and were not provided by
POOMA.) Everything else, including the maintenance of particle data locality and
coordination of operations on the distributed particle data, is done transparently
by POOMA. This allows the vast majority of MC++ to be written using high-level
objects in an easily understood syntax that elevates the physics content while hiding
the computer science details. Furthermore, the extensive use of C++ templates and
the expression template technique in POOMA helps the compiler to produce highly
optimized code and provides a high-level application development syntax with little
or no sacrifice in application performance.




4 Code Results

The transport eigenvalue estimates produced by MC++ have been benchmarked for
accuracy against the MCNP code for a set of simple test problems. MCNP is a code
written in Fortran 77 that uses PVM for message passing on parallel computers
and employs an analytic description of materials in the simulated system rather
than a mesh description. MC++ provides eigenvalues within statistical error of
those provided by MCNP for the standard "godiva” problem of a bare uranium
sphere. The code performance of MC++ has also been compared with MCNP on a
variety of computing platforms, including several types of Unix workstations and the
Cray T3D. In order to make the comparison with MCNP fair, mesh cell boundary
crossing events were turned off in MC++ (collisions only) and an ”infinite medium”
test problem was chosen (no material interfaces). Code performance was roughly
comparable on the various serial platforms. MC++ exhibited vastly superior parallel
efficiency on multiple processors of the T3D, the only modern parallel computing
platform on which MCNP was readily available. MC++ has been rapidly ported
to many different types of parallel computers, including the Intel Teraflops machine
(ASCI Red), an SGI Origin 2000 cluster (ASCI Blue Mountain), and the IBM SP2
(ASCI Blue Pacific). It shows relatively good parallel efficiency (within 70-80%
of linear speedup) on all platforms, with no special performance tuning on any
platform.

5 Transport Physics Framework

One area of continuing development in the MC++ project is the generalization of
the MC++ code into a Transport Physics Framework (TPF). Just as the POOMA
framework has been quite useful in accelerating code development and promoting
code reuse across applications, a TPF could aid in the development of new transport
physics codes and facilitate testing of novel techniques. What is needed is a general
outline of the process of transport simulation and a set of tools that could be directly
employed or readily modified for a specific simulation need.

For example, MC++ currently uses a set of cross-section classes to encapsulate
- the type of cross section employed during transport, and to make the reading of
different cross-section libraries, the storage of the data, and the retrieval of required
data during transport simple and general. Another example is the set of various
particle sourcing methods that are currently under development, once again making
extensive use of templates. Once complete, the addition of a new sourcing method
for particle energy, direction, or position will be completely trivial. It is extremely
useful to have these and other such methods readily available in the form of inter-
changeable modules or classes with a common interface. Such a ”plug and play”
capability will greatly simplify the task of evaluating the effectiveness and utility
of the various algorithms. This same sort of generality would be beneficial in other
areas of MC++, such as the modeling of neutron capture events and the representa-
tion of material isotopic information. Reformulating MC++ in terms of a TPF will
provide the ASCI project and other researchers with a much more flexible tool for
the exploration of alternative techniques and models in neutron transport studies.




