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Augmented Lagrangian Methods for Constrained
Optimization: The Role of the Penalty Constant

R. A, Tapiaz

1In'recgnt years there has been considgrable research activity in the
area of penalty function and augmented Lagrangian'methods for éonstrained
optiﬁization, In this paper we review tﬁe role that the penalty con-
stant plays with reSpec; to locgi convergence and rate of convergence. Ve
see that as the emphasis has changed from the penalty function methods to
the mulﬁiplier methods, and lately to the quasi-Newtoﬁ methods, fherelhas
been a corresponding decreasé in.the importancé of the penalty cénsfant.
Specifically, in the penalty function method one oStains local coﬁvergence
if and only if the penalty constént becomes infinite. It is possible to
obtain local convergence in the multiplier method for a fixed penalty con¥.
stant,.provided that this cbnstant is sufficienflyhlargé. However, one
obtains superlinear convergence if aqd.only if the pgnalty constant bécomes
infinite. Finally, the quasi-Newton methods are locally superlinearly
convergent for fixed values of‘the penalty constant and actually the hbst
natural formulation gives én algorithm which is independent of the penalty -

constant,
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under Contract EY-76-S-05-5046.

2. Department of Mathematical Sciences,-Rice University, ‘Houston,
Texas 77001.



I. Intxoduction and Preliminaries.

Much of the background material on_multiblier methods and quasi-Newton

methods for cpnstfained optimization is taken from Tapia (1977) and Tapia

(1978). 1In describing an iterative procedure we oftenwill not use sub-
scripts or superséripts. Instead,we place a bar over quantities which

correspond to the successive iterate, e.g., if x denotes the present

e - . . ’ LoD, m S aqq
iterate, then X denotes the next iterate. If F:R —R, then Fi will

" denote the 1i-th ..component function, 'Ff(xj will denote,the»Jacobian
matrix of ,F‘ at x :an& VF(x) .denotes F'(x)T (transposei.' in the‘éase
that m==1, we.See that Vf(x) wili be‘thékgradieﬁt of F at x and
Vzp(x) (=V(VF(x))) wﬁil be the Hessian matrix of F at .x'.< We wiil

also have occasion to consider F as a function of two vector variables,

say F(x,)). We use the subscript x or A to denote the partial deriva-

tive with respect to x or A . No subscripts, e.g., VF(x,A) of course,
denotes differentiation with respect to the total variable (x,2).
By a quasi-Newton method for approximating a stationary point x~ of

t;Rn..R (i.e.,wVf(x*)==0) we mean the iterative procedure'
R -1

(1.1) X=%-B "VE(x)

(1.2) " B=8(x,%,B).

The matrix B8(x,%,B) is interpreted as an approximation to sz(x*). The

three most popular quasi-Newton methods are

Newton's Method:

(1.3) B(x;%,B) = £ .



Discrete Newton's Method:

[af(}?+hej) i Bf(i'c)“
'bxi o -6xi

|

(1.8) B(x,%,B) =(

where eys--.5e,  are the natural basis vectors for R, h is a small
positive scalar (ideally somewhere near the square root of the machine
't.ol'erance of the Aparticular computer system being used) and (aij) de-

notes the matrix whose i,j-th component is aij "

S'ec'anﬁ Methods:

S (1.5) B(x,%,B) =B (s,y,B)
where s=%X-%, y=Vi(x)-VE(x) and Bs satisfies the secant equation -

(1.6) - 038 (s,y,B)s=y .
At the present time theA most popular secanj: update is the BFGS giveg by
(1-.7) | B=B+ ny/yTs - BssTB/sTﬁs
: aﬁd in inverse form by
(1.8) . k . ‘ H=H- [syTH+ (Hy - s)s?f'j/sTy+ ss'J"(y"l'Irlly)/(SATy')2 :
iwlAlere H=B-1 and ﬁ=§_1 . For more d;tail; seevDenni;s' and More'- (1977). .

In this paper we are interested in algorithms for solving the constrained

op‘timization problem .
(1.9) : ninimize f(x)
subject to g(x) ¥0

where f£:R"4R and g:Rn-—-Rm with m < n . In conjunction with problem {1.9)



we consider the

Lagrangian Function

(1.10) 80,0 =£(x)+ 0 g(x) x€R, x€R® .

Let x*, be a local solution of problem (1.9) . It is classical that under -
the very mild regularity assumptions that‘ f and g are cohtinuously
differentiable at x#~ and Vgl(x*),...,ng(x*)‘ are linearly independent

there exists a unique Lagrange multiplier A* such that (x*,l*) is a

solution of the nonlinear system
(1.11) . VA(x,\) =0 .

Obsérve that

| ,Vxﬂ(x,l) - [VE(x) 4+ Vg(x)A
(1.12) . VEA(x,)\) = = A

| v2en] | s
and | |
(1.13) A VL(X,\) = .

Vg (x) T 0

By the gktended probleﬁ corrésponding to problem (1.9) we mean probléﬁ
(1;11). In other wordé, by the extended problem we mean the problem of
‘finding a stationary poiﬁt<of the Lagrangian functiohal. -Mbrebver,'it is
also classical that (x*,k*) corresponds to a saddle point of the extended
.préﬂlem. “Indeed, ﬁnder the assumptioﬁ of regularity wé have that 1Vg(x*);EO
and it isjnot difficult to demonstrate that tﬁiS'implies that sz(x*,k*)
is necessarily indefinité’énd the‘saddle point behavior follows. fhe moti-
vation for our use of the'termin010gy'extended'should'be cléar-from fhe fact
that the dimengion of problem_(l.ll) (i.e., number of independent variables)

is n+m .



The extended problem will play a fundamental role in our development
and actually has been in the background of the derivation of manj algorithﬁs
whether the researcher was aware of it or not. Our'basic assumptions for
the analysis given in this paper will be the stand;rd Newton's‘method

assumptions for the extended problem. Specifically, we assume

(1.14) (1) £ and g have three continuous derivatives at x*
‘and
_ A T T . '
(1.15) (ii) V4(x",)\") 1is invertible.-

The latter assumption (ii) is often referred to as nonsingularity of the -

solution x° and clearly implies the regularity of x* .

Before we leave this introductory section wevﬁould like:to make some -
observations concerning the historical déveIOpment of algorithms for con- -
strained minimization problems.  There has been an'excessive'amdhnt of effort
spent on éttackiné the coﬁstrained minimization problem by solving a éequence
of unconstrained minimization problems. These approa;heé are usually ration-
.élized by arguing that in this way one is éﬁle to utilize the excellent néw
quasi-Newton algorithms for unconstrained minimization. Specifically, we
.first witnessed considerable aétivipy in penalty functién.ﬁethodé and then'-
subsfantial activity in multiplier methods. This philosophy is wrong and
has retarded the progress of cbpstrained 0ptimizatioh theory. Fortupately,
we have finally arrived at the point where workers inlfhe‘areakof constrained
optimization are no 1ongér wearing the sfraightjacket of sequential uncon-
strained minimization formulations.

" The entire course of events, including the recent activity in the area
of qﬁasi-Neﬁrnn métﬁods for constrained minimization, can be explained best

in terms of the extended problem. To begin with, quasi-Newton methods are,

in their purest form, algorithms for solving systems of nonlinear equations.



This means that with respect to nonlinear functionals they are, algorithms

for approximating stationary boiﬁts and not;necessarinAjust minimizers or
maximizers. Indeed, this is the way théy were présented earlierlin this
section. 'However,Amany researchers seem to be secure only when they are
applying thése algorithms to a hinimization (or_maximizationi brobiem.
-Some 6f this sécurity is undefstandable_since in this lattef‘case-one can"

obtain step length control from a line search routine.A_NémeI)g (1.1) is
replaced with
. 2

(1.16) _ X=x~oB "VE(x)
where « is'an approximation to the solution of the one-dimensional problem
g o e -1 :
(1.17) . minimize f(x-oB VE(x)) .

< o
and f is the nonlinear functional for which a minimizer is sought.

There is no doubt that some form of step length control is needed for
the effective implementation of qﬁasi—Néwton nethods. However, this in no
way implies that only extremum problems can be handled effectively. This
brings us to our main'point. For some reason the vast‘majority of research

activity in constrained optimization has historically ignored the extended

problem.” Partial motivation for this is ohviously the fact that the desired

solﬁtiqn‘is kn&wn;td be a‘sadd1e poiﬁt. So, instead of solving one problem

we have been led to solving an infinite seQuence of problems. We were ésked

té accebt this taék‘ simpiy because each proﬁlém in this sequence,was a trué

minimization probiem. Mbreerr, this acceptance represents a ten-year

detour in the dévelopment of effective constrained optimization algorithms.
The truly.fascingting aspect of this research area is that (without

being aware of it) researchers have very recently suggested quasi-Newton



methods for cénstrained optimization problems ﬁhicﬁ can be shown to be
equivalent to a quasi-Newton method applied ‘to the extended p;oblem.
These approaches ﬁill be‘discussed in detail in Section 5 . 1In summary,
it is interesting that the circle has been completed and we are noﬁ at

a point in the development of the theory that we would héve been ten yéars

ago, had it not been for the sequential unconstrained minimization detour.



2. AThe Fundamental Role of the Penalty Constant.

:Wé will now show that the fuﬁdamental rqle of the penalty constant is
one of transfo;ming a nonconvex functioﬁal into a.locally convéx funétiénal
so that minimizers exist. 1In the penalty function method and fhe multi-
plierfmethod wé will be concerned with the éequential minimization of thé .

following two functionals.

PenaltyﬁFunctiop.
@1y - P =fe+3sms@)  (€>0)
and , , , .

Augmented ngraﬁgian Function
~ . _ T L1 T ,. ,
(2.2) L(x, 1) = £(x) + \ 8(x) +3Cg(x) "g(x) (C>0)

where £ and g are given in problem (1.9) and Aer™ . The key question
: : / , ) C .
here is whether these functionals have minimizers for a fixed X and a

fixed C . Straightforward>calculations give
e | | 2 2, 2 = |
- (2.3) A A ORS A O et A P (%)

where the Lagrangian T given'by (1.10);

.8 . PR = VA0, Ce(0) + CTEGVEGT
and | | |
@) o VALG,N) =VRAL(r, ke Cg(x)) + CTE) V) T .

Let x~ be'a local soluﬁionAof problem (1.9) and 4x*' its associated
\-mulfipiier.‘ It is knoﬁn~that Viﬂ(x*,)%) may be‘indefinite;‘hence the .
"Lagrangian functional 2(x,2¥) need not have a,minimizér'in x . However,
fhe folld&ing'theorem shows that for‘ C sufficiently 1a;ge, the Héssién.'

of the augmented Lagrangian functional at (x*,X*) is positive definite.
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This means that the penalty functional will have a local minimizer in x

provided Cg(x) is near \*, vhile the augmented Lagrangian will have

' a minimizer iﬁ x provided A+Cg(x)  is near )
Theorem 2.1. ILet x* be a local solution of problem (1.9) and let A%
be its associated multiplier. Suppose conditions (‘1.14) and (1;15) hold.
Then there exists €*>0 such 'that for all czc* the matrix
. . 2 R % - % L3 T
(2.6) C o VAT, ) + Vg (xT) Vg (x™)
is positive definite.
Proof. We give a short proof due to Buys (1972). Let A denote Viﬂ(x"’,}f')'
and G denote Vg(x*). Consider the compact set
(2.7) - s={(ner%lnil=1} .

If the theorem is not true, then there exists a sequence “{T}k}_ in S such

that

»  k=1,2,....

)

(2.8) oA k66, <

But {'nk} has a convergent subsequence converging to T €S . Since
166 >0V 1 it follows that

(2.9) 166 =0 and T AT<O .

The first part of (2.9) implies that GTﬁ=0 . The standard second order

hecessary conditions (see Chapter 2 of Fiacco and McCormick (1968)) imply

that ﬁTAﬁZ 0, which together with the second part of (2.9) implies that

(2.10) A T A7=0 .
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1t follows that the problem -
(2.11) , ‘minimize (3nan:ctn =0}
has a solution at T_] . Hence there exists a multiplier p,€Rm such that

AT+Cu=0, =0,

" This implieé that the columns of Vzl(x*,)\*)b (see (1.13))- are linearly
: ‘indépendent and contradicts assumption (1.15). =
~The main problems with this theorem are that it does not tell us what

. ¢* 1is and it only gives us convexity near the solution.
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3. The Penalty Function Method.

The penalty function method for approxi@afing x*, the solution of

problem (1.9), is essentially the iterative procedure:

3.1 o ~ calculate X = arg min P(ki' ' ,
. - - x -

(3.2)"- ‘ | choose c>c

where, of course, P(xj is the penalty function given by (2;15 The
penalty function methéd has been knowﬁ for years and.aﬁoﬁg the first to
consider it was Courant (19435, The approach wés developed and publicized
_toAa large extent by Fiacco and;McCormick (1968), althpugh numerous other
ﬁuthofs have contributed toAthe subject. |

From (3.1) we mﬁst have
3.3) R =VE@ 4 VE@CE® =0 .

Considéring the first order necessary coﬁditions'(l.ll)'we are led to the
conclusioh that Cg(x) 1is an approximation to.the Lagrange multiplier k*
associated with 'x% . Moreéver, if x—*x*,_ then Cg(x)..x*;. bu; g(x) -0
. 80 neces#arily C—»+» and we have convergence only if the penalty constant
becoﬁes infinité. The following main'cOnvergence theorem fof the pénalty

function method is due to Polyak (1971).

~ Theorem 3.1. There exists a constant € such that for every ‘c:>6 the

penalty function P(x) has a locally uniqde ninimizer, say x(C) . Further- -

more, there exists a constant M>0 such that

(3.4) | lik(c) - x*llsm/c YV e>E
and

(3.5) | lce(x(C)) - Mll<M/c  V ¢>C -

-
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" Proof. For a proof see Polak (1971) or Bertsekas (1976). Bertsekas' proof
is slightly more general and his condifions.are implied by our assumptiohs

(1.14) and (1.15).

Corollary 3.1. Suppose that the initial penalty constant in the penalty
function method is larger than- C in Theorem 3.1.  Then the penalty function

method is convergent if and only if C—n+wv°

Corollary 3.2. As the penalty function method codverges the numerical condi-

tioning (as measured by the condition number'df the Hessian of P(x)) be-

comes arbitrarily bad.
Proof. As C—« any noxin of the matrix in (2.6) will become infinite. u

It is very important to observe that the penélt&'function method is not

" really an iterative procedure. Namely, x does not depeﬁd on # unlesé the
‘choice of C depends on x . The'penalty canstant € acfually'?lays a role
analogous to the role the mesh spacing plays in the solﬁtion of differential
and 1ntegra1_equationsvby finite differenées. Specifically, we can get
arbitrarily good accuracy by choosing the initial peﬁalty constant sufficiently
large. The question that should be asked is:_Why<m;himiée ;P(x),‘for various
values of C ? Obviously, we need oniy minimizev P(x)” for‘the iargest"\
value of C that we are inte;estea in. Of coﬁrse, the numerical conditioning
of the problem enters in (as it does in finite dfﬁferences) and it is not.'.
clear what the optimal value of C should be. Our point here is théf the
nature of the penalty function method is significantly different than that of a
standard iterative procedure and is simiiar,fromha philosophical poinf of

view, to the.discretization methods in differential equations. This poiﬁt

seems not to have been appreciated in the literature, .yet“its implications

are incredible as we shall now see.
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To bégih with, the questioﬁ.of local conQefgence‘is meaningless.
Indeed, the iterates are independent ofrthe jnitial iteréte and as long
- as tﬁe initial penalty‘constant is large enough so'that the minimizgtion
,problems'are well defined we will élways obtain convergénce. Is it fair
to éay tﬁat the algorithm is globally cohvefgent? What about convergence
rates? Well, since each iteraté depends only on the penalty constant and
we are free to choose the penalty constants, iF is clear that from.a‘ |
Atheorétical‘point of.vieﬁ we caﬁ obtain a convergence rate of any order..
These statements are_sdrpriéing:but mathematically true. .However, the rub .
“is Coroliary 3.2, i.e., round-off error, and these elaborate'claims.w0u1d .
be impossible to demonstrate on any finife;precision computer._‘In'summary,
we conclude that the penalty constant has an extremely important and.uhiqug

role in the penalty function method.
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4, The Multiplier Method.

The multiplier method was originally proposed by Hestenes (19695'
and independently in different but~equiva1ent forms by Powell.(l969) and:
Haarhoff and Buys (1970). The rationale for the multiplier method is to
give a method which is as effective as the penalty function méthod but does
not suffer from the nﬁmerical ill-conditioning of the.peﬂalty function
method. |

The multiplier method for problem (1.9) as suggested by Hestenes,

-consists of the iterative procedure;‘Given an’iniﬁial'lh ‘and €S>0 o C
4.1) | calculate X=arg min L(x,X),
x
4.2y let X=rtCe@),
(4.3) | : choose c>0,

where the augmented Lagrangian L(x,)) is given by (2.2). Haarhoff and
Buys suggested the same algorithm except that instead of the multiplier

update formula (4.2) they suggested the multiplier update formula

(4.5) 3= -[ve@® ve@ 1 tve VED .

Proposition 4.1;f The multiplier methods withfthe‘multipliéf“updatejformdla
(4.2) and the multiplier method with the multiplier update formula (4.4)

give identical (x,)) iterates.

Prouvl., The proof 1is straightforward.

The multiplier method motivated some very beautiful duality theory for
nonlinear programming problems. This theory‘was developed independently by
Buys (1972), Luenberger (1973) and Rockafellar (1973). We shall present

Buys' approach below. Motivated by his duality theory, Buys .suggested rﬁat .
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the multiplier updaté formula (4.2) be replaced by theimultiplier update

formula

@ T (e 150 e @1 e @ :

Tapia (19775 préposed thé ggneral muitiplier ﬁpdate fo?mgla.

(4.6) IR W [%(ii”nw@#AJ"I_[gd-vg<a'TDvxL<§,x51-

where A and DA are mXnm and nXn matriceé ﬁhich may.depend on x, A
and C ., He shgwed that all previously suggésted multiplier update formulas
wére.Special casés Qf this general formula. For more detail on multiplier_;
update férmulés see Sections 2 and & §f Tapia (1977) . |

| We first aﬁalyée the role of the muitiplier dpdaté formulé (4.2) and
the specific role of the penalfy constant in this formula. -This wi}l be
accomplished Sy looking at Buys‘ponlinear duality tﬁeory. Let x* .be.the
nonsingular solution of-proBlem (1.9) with assééiaféd Lagréhgé multipliér
A* . Assume that C:;C* where C* is given in Theofem,i.l . By the implicit -
function theorem (p. 128 of OrtegaandRheinboldt,(1970)),-tﬁere'exists a '

neighborhood W of »\* and a function .x:Wc:R?Fekq with the following

properties:

G.7) O xOFy =¥,

(4.8) LM, =0,

@9 ) =-vsG VLM, T,
~and '
©(4.10)  h(A) =min L(x,1)

| | | 1

is well defined on W. Problem (1.9) is called the primalgproblem. “The

dual problem is defined below:
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(4.115 max h(livg
. _ o A

In (4.11) we have tacitly assumed that \ is restricted to the open set W. ..

Since .

(4.12) : _ h(x)'=L(x(x5,A)
using (4.8) and (4.9) ve see’that
RE v%(x)'%gm‘(xf‘)',‘

(4.14) | V() = Ve (1) AL 1) o) -

From Theorem 2.1, ViL(x*,x*) is positive definitei S0 Vzh(x%) .is

negative definite. Combining these remérks leadé us to thé'followihg

duality principle.

Théo;em 4.2, ‘(LocAl Duality). If x* solves the primal prﬁblem, then
2

its associated Lagrange.multiplier l* solves the dual problem and .x*

can be obtained from A* as the solution Of‘min'L(x,A%) .
’ X S

Théérem,ﬁ.ﬁ. The multiplier method with multiplief updatenformula 4.2)
is the gradiené method with steplength C: applied to the dua14prbbiem
and the mulgiplier method with multiplier update formula (4;5) isANéwton's
method applied to the dual problem. |

Let us cénsidef'the multiplier method as given by (4.1) - (4;3);. One
function that the penalty constant has is to make step (4.1) wellldefined
as dictated by Thgorem‘Z.l. Another role that it plays,accordiﬁglto “4.2)
.and Theorem 4.3, is that of acting as the sfep lehgth in the gradienf
method applied to the dqal prbbleﬁ, This latter role tells us from gradien;
method theory we will be abievto obtain lécal linear conve:genée for a range

. of penalty'constants._'This range will depend on the eigenvalue structure
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of the Hessian matrix ViL(x*,x*), Moreover, Qe are léd to believe that,
~in contrast to the penal;y function method,'we cannot let the.penalty
constant grow arbitrarily fast. 1In fact, at this point we do not even Enow
if it is possible to let the penalty constanf become infinite and if any-
thing would be gained by such a choice. | |
We now consider local convergence and éonvergenée rétes for the multi-
plie.r‘method° Bertsekas(19765 generalized Polyak's theorem'(Tﬁeorem 3.1) to 
include the multiplier method in the followipg mannexr. As before; ve are
%

assuming conditions (1.14) and (1.15) and x* is aAlocal solution of -

problem (1.9) with associated multiplier 2* .

Theorem 4.4. Let S be a bounded subset of R which contains x* as
an interior point. Then there exists a constant' C such that for c>C
and )A€S the augmented Lagrangian L(x,\) has a locally unique minimizer,

say x(A,C). Furthermore, there exists a constant M>0 such that

(4.15) ll* - x (Ol <g I - 2%

and | o .
(%.16) h* - Xa0N<li- 2%, Ve>E amd Vaes
where - o |
(4.17) R(LE) = At CE(x (WE)) -

Several questions immediately come to mind concerning local coanrgenée
and conﬁergence raresAnf the multiplier method aﬁd we shall éttemét ?o answef
these questions in the remainder of this section. To Begin:with, from (4.16)
of Theorem'4.4, wé expect to be able to.analyze convergéncerf A in terms

.of Q-convergence. However, (4.15) does not lead to the samé conjecture in
ﬁerms of.the convergence of x . 1In fact,Aon the.surface it looks as if one

might have to settle for an analysis in terms of R-convergence. -For ‘definitions -
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of these convergence notions see Section 8 of Tapia‘(1977j and for more
detail see Chapter 9 of Ortega and Rheinboldt (1970). The following
result proved in Secfion 9 of Tapia (19775 gives us.thé s;tisfacﬁion,that |

the convergence in x and A 1is essentially the same..

Proposition 4.2. Suppose that the multiplie; method‘with an arbitrary

lLagrange multiplier update formula and an arbitrary'boﬁnded'sequence‘of

penalty constants {Ck] such that Ck;:C generates the sequences {xk)
and [Ak] . ‘Then lk—*l* with Q-order q if and only if xk-°x* with
Q-order q .

‘Proof. ‘'lhe proof of this result is -given in Section 9 of Tapia.(19775;

As a direct consequence of Theorem 4.3 and Proposition 4.2. we have

theffoliowing convergence result for . the multiplier‘metﬁod. .

Proposition 4.3. For any given initial estimate of the Lagrange multiplier
- A there exists a penalty constant C>0 such that the multiplier method

with fixed penalty constant C>C is Q-linearly convergent im x and in A.

Observe that in the multiplier method the penalty céonstant cannot‘bé in-

creased arbitrarily fast as it can in the.penalty function method. If it

_grows too fast, then A(A,C) given by (4.17) will become excessively large

(i.e., it will not remain in the set S in Theorem 4.3) and the convergence

will suffer. It is clear that the increase in C. must be‘balanceﬁ'with'the

decrease in g(x). However, from (4.16) we see that Q-superlinear convergence -

would result if it were possible to let the sequenée of penmalty constants
become unbounded. This latter consideration is the subject of the following

proposition.

Propgéition 4.4, It is-possiblé to choose [Ck} so that CkF*m :and the
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multiplier method with penalty constant [Ck} is convergent. in x and X .

Proof. The proof follows directly from Theorem 4.3. Specifically, let
S = [?\:‘"7\,“-)\*“51}, and choose C0>6 so that M/CO <% and choose k(._)

so that % -20l<d . Then

(4.18) ' ¥ - oMl <t ana nF -t

. =,k k

| 2 o 2!
as long as Ckzco and
| Ky k. ‘
(4.19) cllsxHll<z .
| ey s 3 Ky k . Ll

From (4.19)it is clear that we can choose {C'} so that C -« . B

We are conceérned with‘the role of the peﬁalﬁy constant in'thé multipliéf
method. So far we have seen that it allows one to obtain Q%linear conver -
gence and Q-superlinear convergence if it becomes infinite. Recall that in
the penalty function method we obtained convergence if and only if the penalfy
‘constant became infinité. The situation would be matheﬁatically sétisf&ing
 if‘the analogoqs situation for the multiplier method was such thaf wé were
able to‘obtaih superlinear convergence if and only if the.penaltf constant :~“
.becﬁme'iqfinité. The following proposition estabiishés-this fact. for the.

-

»
purpuses of this result we will assume that C=0 .

Proposition 4.5. Suppose that the multiplier method with penalty constants
Ck is convergent. Then the convergence is Q-superlinear in 2\ .if and -only

if Ckﬂ“'.

Proof. The 'if' part follows directly from Theorem 4.3. 'The "only if' part
was first demonstrated in Section 9 of Tapia (1977). The proof is sufficiently
interesting and novel that we will reproduce it here. Assume that _xk

converges Q-superlinearly to A* . We are concerned~with”theﬁiteration
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%.20) - aMasal,dy
~where
(4.215 - _ ' S(X,C) = A+ Cg(x, (L))

and x()\). is as in (4.75 - (4.14) . Now for-a fixed C we see from (4-.,9)“

- that
o - ot e Vo (%) TU2T (o | ey
(4.22) . SA()‘ ,C) =1 - CVg(x*) VXL(X »AT) TVg(xT) .
R S _ o :
Let VA—VXZ(x A*) and G=Vg(x™) so that

T

(4.23) o ViL(x* A%y - At CGG
and from (4.22) s - | ‘ : - ‘ -
(4.28) - | si(x*,c) =1 -CCL(A+ ceahy L6 .

From the Sherman-Morrison-Woodbury formula (page-50 of Ortega and

- Rheinboldt (1970))we obtain

(%.25)  arceeh T eatrea e et ley MeTaT
sq:thaﬁ‘ C ' } - , ' | k
& .2.6) o . 4 Si()\*’C) =[1+ CVg(X*)?Viz(x*,)L*) ‘lvg(x*) ]1"'1 N

Observe that for C>0 the matrix ,si(x*,.c) - is positive definite and:

hence invertible.

" From McLeod's mean-value theorem (see Tapia (1971)) we h&ve
@2n AMoarosoldh SaF - Z £, 8, %+, - 15,9 -
: . i=1 -
where

m .
0<8, <1, t, >0, -Zt =1,
i=1

- Suppose that a subsequence of {Ck} (also denoted by [Ck]) converges to

K<+ , .Let



21
. ' ' . -
%.28) s = (- -t L

By compactness, {sk) has a subsequence (wﬁich we also denote by [sk}j- S
o % : : ; s %,

. which converges to s” #0 . Dividing both sidgs of (4.20) by ”lg-l i,

7recalling theAdefinifion of Q-superlinear convergence, and letting k- o,

we obtain

%.29) 8RR =0 L

However, this is a contradiction, since Si(i*,K) is invertible. It

follows that C = and this proves the proposition. L

Our'ahalySis of the role of the penalty function in the multiplier |

method is now complete.
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5. The Quasi-Newton Methods for Constrained Optimization.

Let us summarize our present;tion up to this point. We have observed
that in the penalty function method the price one pays fof convergenée is
a deterioration in numerical conditioning, since the penalty constant ﬁust
go to infinity. In the multiplier method, the price one'pays for super-
linear convergencé is alsé a deterioration in numericalngquitioning,LSiﬁce.
again the penalty functipn must go to infinity. Clearly tﬁe stage is sef for
' au algorithm which will give superlinear convergence without a éorrespondiﬁg'.
deteriorapion in numerical conditioming. Such algorithns exist anci' will now  °
"be presented. | |

There are essentially thfee philosophies for.exténding quasi-Newton
methods from unconstrained'optimization to constréined optimizatioﬁ. These
philosophies consist of the multiplier extension quasi-Newton methdds,hthe
mulfiplier update quasi-Newton methods and the quadratic programmihg quasi-
Newton methods. In Tapia (1978) these'threé approaches are shoyn to be
equivalent for problem (1.9). Our presentatioﬁ Qill follow Tapia (1978)
closely. |

For the purpc;ses of this section,by the extehded pr'nh‘lem we vili mo'aﬁ
the problem of finding a stationary point'of the aggmented.Lég:angian

>giVen by (2.2), i.e., the problem of finding  (x,)) such'that
(5.1) "VL(x,A) =0 .

As in previous sections we denote a local solution of problem (1.9) by

x* and its associated lagrange multiplier by

Multiplier Extension Quasi-Newton Methods

By a multiplier extension quasi-Newton method for}problem‘(l.Q),we'mean

the iterative procedure
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sy - (E)= (x) -5 ey

Y A
) . ﬁ% | Ve (®)
(5.3) . B ={ A
- o N
Vg (X) 0

where E; is an'approkimation to ViL(x*;l*).

-The multiplier secant methods result by choosing

(5.4) : ) ' BX=BS(S’Y’BX)

whére s =§;x; y=VxL(§,D - VxL(x,X), Bx A ?‘.s the current épproximation to
'ViL(x*,h*) anﬂ' @S ié one of the popular secant ubdﬁtes, e.g.? BFGS'T The.
multiplier extension secant method played aﬁ important'role in the tﬁeﬁry'
devgloped in Tépia (1977) and (at present) we hayé no.referénces'to earlier
usagé.v |
Observe'fhat a str;igﬁtforward quasi>Newt6n ﬁéthod would éonsis;IOf
approximating the entire Hessian matrix |
- vZL(x,1)  Vg(x)
, : , X : :
(5.5) O L) = L
. S Vg(x)T ‘ 0
Our multiplier extension quasi-Newton is not that nﬁive.i Specifically, we
have taken advanfage of a ceftain amount of structure that the'prbblém has
to offer by only approximating tﬁe componeqt'éf V2L(x,x) in (5;5) wﬁich
-contaihs second order information. Basicaily, it ;eems ineffiéiéntlto aﬁprox-
imate firgt order informétioﬂ that has already been calcﬁlatediexactly, or
leven worse yet, to approximate the zero component in .. VzL(x,l)g.

Carrying this line of reasoning one step further we observe that-

5.6) LR %) = a0 + eva () V() T
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Consequently, although we have taken advantage of some structure we have -
more, i.e., we need not apprbxim;te the first ordef ihformatibn in (5.6).
fapia (1978),referred to this additional structure as superstructure (see
Saction 7 of Tapia a§78)), We modify the multiplier extension secant

method to take advantage of superstructure by replacing Eg' in (5;45 by

(5.7) B, =M (s,5,1) + VgV "
where

(5.8) BT ReX%
| (5.9) N Y=V AN -V L(x,0),

M is the current approximation to Viﬁ(x*;l*) and Mé' is a secant update. '3

Multiplier Update Quasi-Newton Methods

By a multiplier update quasi-Newton method for problem (1.9) we mean

the iterative procedure

(5.10) %= (788 gy "L (g - vg B 10£) - cg
. . -— _1 -
(5.11) x=x=B "V _L(x;})
| (5.12) §='B(x);: ),T’B)

where ﬁ(x,;,A;X,B) is an approximaéion to ViL(x*_,hx)° The multiplier update

secant methods result by choosing

(5.13) 8(x,%,\,X,B) =B (s,¥,B)

S is a secant update .

We take advantage of superstructure by replacing'(5.13) with (5.7) -

where s=%x-%x, ¥y =V}-{L(§,.7\) - VXL(x,T) and B

(5.9). ‘The multiplier update secant methods were proposed by-the.author .in

Tapia (1977) and in that paper inequality cbnstraints_were handled via a
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Iélack vagiable. Independentiy, Hén (19775 proposed secant methodé for proﬁleﬁs
with equality and inequalit& constraints which.use an-iﬁtermediate quadratic
program to solve for the ﬁultipliers. in thé case of pfobiem (1.95 (no iﬁ-v
-equality constraints) it is a simple matter tb show that.Han's_quadfétié
program. reduces to'(S.lpj and hence his algorithm reducés to theimultiplier
ﬁpdateAsecant method. 'Glad (1976),also indeéendently, éfoposed theimulti--
4plier updafe seéant method. He used aniacﬁiﬁe constraint philosdphy to
handlé inequality conétraints.. Ail three paperé estéblished superlineér

convergence.

Quadratic Programming Quasi-Newton Methods

By a quadratic programming quasi-Newton method for problem (1.9) we mean

thé iterative procedure

(5.14) _ - X=x+4x
(5.15) B =R(x,X,B)
where ﬁ(x,;,B) is an approximation to ViL(i*,h*) and Ax. is a solution

of the Quadratic program A

"~ (5.16)  min qAX) =F(x) + VF (%) Ax+ 38 BAx
7 Y o

subject to Vg(x)TAx4-g(x)==0'..
with

.17 ) = £60) + S0 8 (x)

- The quadratic programming secant methods result by choosing
(5.18) . B(x,%,B) =B, (s,y,B)

.where. s:=x-fx’ y::VXL(x,AQP)s-vxL(x,lQP), ﬁs }s a secant update and
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AQP is the multiplier obtained'in the solution of ‘the quadratic p;ogram
(5.16) . | -

This form of the quadratic programming qugsi-Newton method was introduced
by Garcia Palomares and Mangasarian (1976). Han (19765 added some anéiysis
and specific secant updates and Powell (19775,(19785 added furthér refine-
ments and analysis. A |

As before, we take advantage of superstructure by replaciﬁg (5;18) with

(5.7) - (5.9) .

Theorem 5.1. The multiplier extension secant method; the multiplier updaté
secant method, and the quadratic programming seca&t me thod are,equivalént in
the sense thét they generate identical (x,)) iterates. _Moreover,‘fo? ;
C;:é wﬁere ~6 is given by Theorem 2.1 these methods are locally Q-super-

linearly convergent in the variable (x,d) .

Proof. Thé proof of the local Q-superlinear convergence is somewhat involved
and the reader interested in details is referred to Section 10 of Tapia (1977).
The equivalence proof is instructive and short so Qe will reproduce it. The
first line of (5.2) is exactly (5.11). By‘subétituting (5.11) into the .

second line of (5.2) we arrive at
| ! T -1 —
(5.19) _ vg(x) Bx VxL(x,x)==g(x) .

Solving (5.19) for % leads directly to (5.10). and éstablishes the equivalence
between the multiplier extension and the multiplier update secant methods.

Now, problem (5.16) is equivalent to
(5.20) ‘Vf(x)i-BAx%-Vg(x)[AQP4*Cg(x)]==0

(5.21) Vg (x) ax+ g(x) =0 .
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From, (5.20) we see that
o . . .

A
VxL(x,, ) ..

(5.22) | Ax = -B Q@

Substituting (5.22) into (5.21) and solving for kQP gives
(5.23) L

where K is given by (5.10) .

It certainly seems reasonable to question the choice of WOrkiné withthe-
penaity function F given by (5.17) iﬁ the constant and figst order terms
of (5.16) and using the augmented Lagrangian-in the second.ordef term, in:
contrast to working with the augmented Lagrangian in ali three‘térms. “Such
an approach'would require the explicit usé of an épproxim;te multipl‘iérc

This leads to the following modification of the quadratic programming secant

method

(5.24).' | x=x+ x
(5.25) | A=+ AL
(5.26) N B=f(s,y,B)

where Ax and A\ are the solution and corresponding mhltiplier obtained

_from solving the quadratic program ' ' o .
R A -~ T N | T '
(5.27) 3@3 q(&x) = L(x,A) + VXL(X,X) Ax+ sAxX"BAX |

subject to Vg(x) Ax+ g(x) =0 - S .

with _s'=§-x,‘ y=VxL(§,')_L) -VXL(x,;)'\) and as before R, 1is a secant update,.’

S .

Proposition 5.1. The quadratic programming secant method (5.14) -(5.18)‘wiﬁh

AQP and the modified quadratic programming secant method (5.24) - (5.27) are

equivalent. Specifically A in (5.25) and ‘AQP rare the.same.for any value
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of A 1in (5.27); consequently these two aigorithms generate identical

(x,)\) iterates.

Proof. An argument~$imilar to that used in the p?oof of Thebreﬁ 5.1 can-bel
usea to show that |
(5.28) - S S
and the result follows. ®
Since the algorithm (5.24)-(5.27) is independeﬁt‘of the particular
choice for ix one maf‘és well choose ” A =0 and work witﬁ (S,ih) = (5.18).
- The choice €=0 also has specialléignificance as we will now déménstfaté.:
The role of the penalty ébﬁstahtishopld“now bevéléaf. Namely,. it éllows
‘one to 6btain a po;igive definite Hessiaﬁ ViL(x*,x*),v Moreover, it is
stahdard proéedure to implement the BFGS secant method so that the approximate"
Hessians are always positive definite. Solévetjthihg fits together’niceiy
.in the sense thaf we afe approximating a positive definite matrix by a éequeﬁce
of positive definite matrices. Let us now look gloéely at the'éuperstrgctured
'versiOns. .To begin with they aré also equivalent since the.pfbof of Theorem
5.1 only used the fact that the B, matrix in these three algorithms was
the same. However, we'arg nqw-éfproximating Viﬂ(x*;lf), whicﬁ'is not -
necessarily positive definite, by matrices ﬁ which (és secant updates) are
positive definite. Since. Mn1 -e#ists, it is natural to question the rolerf 
c fin.this case, i.e.,. E;A aé given'by (5.7) will be well-defined éveﬁ.in'
the extreme case when C=0. The question becOmeé, what does pos?tive c
buy us? ° The follo&ihg fheorem provides us with a very satisfactory answer

to this question.

' Theorem 5.2. The superstructured versions of the multiplier extension,
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multipler update and quadratic programming secant methods generate iden-
tical (x,\) iterates which are independent of the penalty constant C . ,

Proof. We will work with the' quadratic programming method.
Observe that in the case B =M+ CvgVg ' the system (5.20) - (5.21)

reduces to the system
(5.29) O MAHVEG) 4 VE()Np =0

(5.30) ) Vg(x)TAxﬂ-l.- g(x) =0

. We are assuming that the initial M matrix is independent of C; hence, '

Ax and )‘QP obtained from (5029); (5.30) will be independent of C, and

from (5.9) we see that M willi be independent of C . B

We can say with some confidence that taking advantage of available
structure is worthwhile since it obviously leads to better approximate
Hessians. However, acceptance of this statement in;plies that there is no‘
need for the penalty constant aﬁd we have folloved the role of"the éenalty
constant to its Iogiqal conclusion. .

In the literature we have seen several authors argué that the penalty .
conétant should not be used because it is difficuit to choose and its use
tﬁe:ely makes the algorithm messy. Of course, we have had to accept 'Fhis.
denial of the penalty constant in the context that it was made; namely, 'with
little confidencé. Recently Bertocchi, Cavalli and Spedicato (1979) pex;-'

formed numerical experiments',and concluded that the choice C=0 was probably

optimal, This form of demonstration carries considerable validity. More-

over, it is very satisfying to couple Theorem 5.2  to their finding and con-~
clude C=0 is obviously the choice. However, are we really seeing the
complete picturc? The message that we have presented is the following: -7AS

LONG AS LINEARIZED CONSTRAINTS ARE SATISFIED,‘WE 'DON'T “NEED *A "POSITIVE
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DEFINITE HESSIAN AND c=0 IS OPTTMAL IN OUR QUASI-NEWION METHODS.

This, of course,vmerelyileads us to the question: should linéarizedvconf
vséréints_always be satisfigd?.,Most would agree with us thét near thé
solution they should be satisfied. FHowever, far ffom the solution li:eér;
approximatiops are often misleading. We feel that ;he question of wﬁethér

or not:an‘augmented,Lag;angian can >Se u;ed in an effeqtive ‘manner far f:dm
‘theréoluti§n'is still an open question.  Recénf1§ thefe.has’beéh soma
,intefesting work along this line by Biggs (1978).and by Boggs and Toilé aorny .

AL the Liwe of this writing, the local ﬁhoory for' C==0 is still he- -

hind that for c>0, in:spite of the numerical experiments which favo:_ghé ‘
former locally. Specifically, a 1ocai chvergeﬁcélthéo;emffof fhese guasifi
Newton methods with C=50 does not ewist (sée Theorem 5.1). j?owelll(l??&)
proved that if the x-iterates in the quadfatic.programming secant method .
with C==O‘ convérged, then they dic so Rfsupéflinearly.. Althoughquveli ‘~1A -
expressed some disappointment that he was not able to establish Q-superlinear
convergence in X, this has nbt been demonétrated éven,in the case of " C>0.
‘Observe that.Theorem 5.1 demonstrates'Q—superlinéarfconvefgence of the paif-
(x,7A), which in furn implies R-supérlinear éon?efgeﬁce of. x -and of X
separately. We believe that withoﬁi,some slight ﬁodificétioniéf theApro;
cedure used for approximating fhe meltiplier (as'ﬁas'done'ip Tapia (1977))
R-superlinear convergence is all one will bé able Lo QQmuustLate for the

x variable alone. It would be worthwhile fnvestligaliug whether Towell's
proof for C=0 . could be modified to give Q-superiinear éoﬁveféence of

the pair  (x,7) .
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