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Augmented Lagrangian Methods f o r  .Cons t r a i n e d  
Optimization: The Role of t h e  Pena l ty  Constant  . 

I n  r e c e n t  years  t h e r e  has been cons ide rab le  resea rch  a c t i v i t y  i n  the  

area of p e n a l t y  f u n c t i o n  and augmented ~ a g r a n g i a n m e t h o d s  f o r  const ra ined 

opt imizat ion,  I n  t h i s  paper we review t h e  r o l e  t h a t  t h e  p e n a l t y  con- 

' 

s t a n t  p lays  w i t h  r e s p e c t  t o  f o c a l  convergence and rate of convergence. We 

see t h a t  a s  t h e  emphasis has changed from t h e  p e n a l t y  func t ion  methods t o  

t h e  m u l t i p l i e r  methods, and l a t e l y  t o  t h e  quasi-Newton methods, t h e r e  has 

been a corresponding decrease  i n  t h e  importance of t h e  pena l ty  cons tan t  . 
S p e c i f i c a l l y ,  i n  t h e  pena l ty  func t ion  method one o b t a i n s  f o c a l  convergence 

i f  and only i f  t h e  pena l ty  constant  becomes i n f i n i t e .  I t  is p o s s i b l e  t o  

o b t a i n  l o c a l  convergence i n  the  m u l t i p l i e r  method f o r  a f i x e d  pena l ty  con- 

s t a n t ,  provided t h a t  t h i s  constant  is  s u f f i c i e n t l y  . la rge .  However, one 

ob ta ins  s u p e r l i n e a r  convergence i f  and only  i f  t h e  pena l ty  cons tan t  becomes 

i n f i n i t e .  F i n a l l y ,  t h e  quasi-Newton methods are i o c a l l y  supej i l inear ly  

convergent f o r  f i x e d  va lues  of t h e  pena l ty  cons tan t  and a c t u a l l y  the most 
. .. 

n a t u r a l  formulat ion g ives  an a lgor i thm which is fndependent d f  t h e  penal ty  

cons tan t  . 

1. This work was supported by t h e  United S t a t e s  Department of ~ n & - ~ ~  
under Contrac t  EY-76-s -05r5046, 

2. ~ e p a r t m e n t  of  Mathematical Sciences ,. Rice  Univers i ty ,  'Houston, 
Texas 77001. 
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I. In t roduc t ion  and Prel iminar ies .  

Much of t he  background k t e r i a l  on mu l t i p l i e r  methods and. quasi-Newton 

methods . f o r  cons t ra ined  optimization is taken from Tapia (1977) 'and Tapia 

(1978). I n  descr ib ing  an i t e r a t i v e  procedure we o f t e n w i l l  not. u se  sub- 

s c r i p t s  o r  supe r sc r ip t s .  Insteadywe p1ace.a  bar over quan t i t i e s  which 

correspond to  t he .  successive i t e r a t e ,  e .  g.., i f  x denotes '  t he  present  

' n 
i t e r a t e ,  then 'd. denote5 the- next i t e r a t e .  If F:R 'R~, then Pi w i l l  

, denote t he  i - t h  :component f lnc t ion ;  ,F'(x) w i l l  d e n o t e ,  the- Jacobian , . 

matr ix  of F a t  x and OF (x) . denotes F' ( x ) ~  (transpose).  I n  the c a s e  

t h a t  m = l ,  we s e e  t h a t  m ( x )  w i l l  b e  the  gradient  of F a t  x and 

2 
. . 

V F(x) (=V(VF+(x) ) )  w i l l  be the  Hessian matrix of' F a t  x .. W e ,  w i l l  

a l s o  have occasion t o  consider F as a function of two vector  variables ' ,  

say F(x, 1). W e  use t he  subscr ip t  x .or '  h t o  denote the p a r t i a l  der iva-  
. . .- - 

t i v e  with r e spec t  t o  x o r  A . No subscr ip t s ,  e'.g., OF(x,A) of course,  . . 
. . 

denotes d i f f e r e n t i a t i o n  with respect  t o  the  t o t a 1 , v a r i a b l e  ( s , X ) .  

By a quasi-Newton method fo r  approximating a s t a t i ona ry  p q i n t  x* of 

t:xn R (i . e. , ' ~ f  (x') = 0) we mean the  i t e r a t i v e  procedure ' 

. . 
The matrix B(~,P,B) i s  i n k r p r p + e d , a s  an npproximat5on to  02 f (x*). The 

th ree  most popular quas i-Yewton methods a r e  

Newton's Method: 



Discre te  Newtons s Method: 

n 
where el,. . . e a r e  the  na tura l  basis  vectors  f o r  R , h is. a s m a l l  n 

pos i t i ve  s c a l a r  ( i d e a l l y  somewhere near t he ' squa re  r o o t  of t he  machine 

tolerance of the  ' p a r t i c u l a r  computer s y s t i m  being used) and ( a )  de- 
lJ . . - .  

. . 
notes the  matrix whose is j - th  component is '  a 

i j  . *  
- .  

. . . .  
Secant Methods : 

. . 
. . - x, y = V f  (3 - Vf(x) and BS s a t i s f i e s  the  secant  equation . where s = x  - 

A t  the  present  time the  most popular secan t  update i s  the  BFGS given by 

and I n  inverse. form by 

T. T T 'I" '1 ' 2 H = H  - [ s y T ~ +  ( H ~  - s)s . l / s  y+  SS (Y Hy)/(s Y) 

- 1 - -1 
where H = B and i? = B , For more d e t a i l ,  see Dennis and  ore' (1977). . 

I n  t h i s  paper we  a r e  i n t e r e s t ed  i n  algorithms f o r  so lv ing '  t he  constrained 

optimization problem . 

(1 9 9) minimize f (x) 

sub jec t  t o  g(x) = 0 

where ~ : R " - R  and g : ~ n - ~ m  with m _< n . I n  conjunction with problem (1.9) 



we consider t h e  

Lagrangian Function 

Let x* be a l o c a l  s o l u t i o n  of problem (1.. 9) . It is s I a s s i c a l  tha t  under ' .  

t he  very mild .iregulari t y  .assumptions t h a t  f and g are continuously 

* 
d i f f e r e n t i a b l e  at x* and Vg,. (x*) , . . . ,Vg (x ) are l i n e a r l y  independent m 

t h e r e  e x i s t s  a unique Lagrange mu l t i p l i e r  A* such t h a t  (2, X") is  a 

s o l u t i o n  of t he  nonlinear system 

Observe t h a t  

and 

By t h e  extended problem corresponding t o  problem (1.9) we mean problem 

(1.11). f n o the r  words, by the extended problem we mean the problem of 

f ind ing  a s t a t i o n a r y  po in t  of the  Lagrangian funct ional .  Moreover, i t  is 

a l s o  c l a s s i c a l  t h a t  (x*,~*) corresponds t o  a saddle  point  of the extended  

problem. Indeed, under t he  assumption of  r e g u l a r i t y  we have t h a t  vg(xe) f 0 

i and i t  is  not d i f f i c u l t  t o  demonstrate t h a t  t h i s  implies t h a t  v2A(x*,A*) 

is necessar i ly  i n d e f i n i t e  and the saddle po in t  behavior follows. The moti- 

v a t i o n  f o r  our use of the  terminology 'extended'should.be c l e a r - f r o m  the f a c t  

t h a t  . the dimension of pro.blem (1.11) ( i .e . ,  number of  independent var iab les )  



The extended problem w i l l  play a fundamental r o l e  i n  our development 

and a c t u a l l y  has been i n  the  background of the  der iva t ion  of many algorithms 

whether the  researcher vas  aware of i t  o r  not.  Our basic  assumptions f o r  

t he  .analysis  given i n  t h i s  paper w i l l  be the  standard Newton's method 

assumptions f o r  the  extended problem. Spec i f ica l ly ,  we assume 

(1.14) ( i )  f  and g have th ree  continuous der iva t ives  at x* 

and 

2 
(1.15) (iL) V ~ ( x * ~  I*) i s  i nve r t i b l e .  b ,  - 

. . 

The f a t t e r  assumption ( i i )  i s  o f t e n  r e f e r r ed  t o  as nonsingular i ty  of the  - -  

s o l u t i o n  x* and c l e a r l y  implies the  r e g u l a r i t y  of x* . . 
Before we leave t h i s  in t roductory s ec t i on  we would l i k e  t o  make some 

observations concerning the. h i s t o r i c a l  development o f  algorithms f o r  con- . 

- 2  - . s t r a i n e d  minimization problems. There has been an excessive amount of e f f o r t  

spent  on a t t ack ing  the  constrained minimization problem by so lv ing  a sequence 

of unconstrained minimization prob lem.  These approaches a r e  usua l ly  r a t i on -  

a l i z e d  by arguing t h a t  i n  t h i s  way one is  a b l e  t o  u t f l i z e  t h e  exce l len t  new . . 

quasi-Newton algorithms for unconstrained. minimization. Spec i f i ca l l y ,  we 
. . 

f i r s t  witnessed considerable a c t i v i t y  i n  penalty funct ion methods and then 
' 

s u b s t a n t i a l  a c t i v i t y  i n  mu l t i p l i e r  methods. This philosophy is wrong and 

has  re ta rded  the  progress of constra ined optimization theory. For tunately ,  - 

we have f i n a l l y  a r r ived  a t  the  po in t  where workers i n  the  a r ea  of constra ined 

opt imizat ion a r e  no longer wearing the  s t r a i g h t j a c k e t  of sequent ia l  uncon- 

s t r a i n e d  minimization formulations. 

The e n t i r e  course of events,  including the .  recent  a c t i v i t y  i n  the .area  

of quasi-Newtnn methods fo r  cons t ra ined  minimization, can be explained . be s t  

i n  terms of the  extended problem. To begin with,  qua5.i-Nevton..methods a r e ,  - 

i n  t h e i r  pures t  form,' algorithms f o r  solving sys terns of nonlinear equations. 



This  means t h a t  with respec t  t o  nonlinear funct ionals  they are, algorithms 

f o r  approximating s t a t i o n a r y  points  and not necessar i ly  j u s t  minimizers o r  

maximizers. Indeed, t h i s  is  the  way they were presented e a r l i e r  i n  t h i s  

s ec t i on .   o ow ever, k iny  researchers  seem t o  be secure  only when they a r e  . .  

applying these  algorithms to  a ~llinilnization (or  maximization) problem. 

Some of t h i s  s e c u r i t y  is understandable s ince  i n  t h i s  l a t t e r .  case- one can 

ob t a in  s t e p  leng th  con t ro l  from a l i n e  search rou t ine .  Namely, (1-1) is  

replaced wi th  

I .  , , 

- 
x = x - u*-lvf (x) 

. . 

where is  an  approximation t o  t he  so lu t i on  of t he  one-dimensional problem 

- P 
', (1.17) minimize f (x - cyB Vf ( x )  ) 

CY 

and f is the  nonlinear func t iona l  f o r  which a minimizer is  sought.  
. .--- 

There i's no doubt t h a t  some form of s t e p  length cont ro l  i s ' n e e d e d  f o r  
, , .  

the  e f f e c t i v e  implementation of qhas i -~ewton  methods. However, t h i s  i n  no 

way implies t h a t  only extremum problems can be handled e f f e c t i v e l y ,  This 

br ings  us  t o  our  main point .  For some reason the  v a s t  major i ty  o f  research  

a c t i v i t y  i n  cons t ra ined  opt imizat ion has h i s t o r i c a l l y  ignored t h e  extended 

problem. P a r t i a l  motivation f o r  t h i s  i s  nhviously tho fqc t  t h a t  the desired 

. . s o l u t i q n  -is known . t o  be a. saddle  point .  So, ins tead of so lv ing  'one problem 

we have been l e d  t o  so lv ing  an i n f i n i t e  sequence of  problems. W e  were asked 

t o  accept  t h i s  t a s k  simply becaus.eeach problem i n  t h i s  sequence.was a t r u e  

minimization problem. Moreover, t h i s  acceptance represen ts  a ten-year 

detour  i n  the  development of e f f e c t i v e  cons t ra ined  opt imizat ion algorithms . 
The t r u l y  f a sc ina t ing  aspect  of t h i s  research area is t h a t  (without 

being aware of i t )  researchers  have very recen t ly  suggested quasi-Newton 



methods f o r  constrained optimization problems which can be shown to  be 

equivalent t o  a quasi-Newton 'method applied , t o  the extended problem. 
. . 

These approaches w i l l  be discussed i n  d e t a i l  i n  Sec t ion  5 . I n  summary, 

i t  is i n t e r e s t i n g ' t h a t  the  c i r c l e  has been completed and we are now a t  

a point  i n  the  development of the theory t h a t  we would have been ten years 

ago, had i t  'not been f o r  the sequent ia l  unconstrained minimization detour. 



2 .  The Fundamental Role of  t h e  Penal ty  Constant.  

W e  w i l l  now show t h a t  t h e  fundamental r o l e  of t h e  p e n a l t y  c o n s t a n t  is 

o n e  of t ransforming anonconvex f u n c t i o n a l  i n t o  a l o c a l l y  eonvex f u n c t i o n a l  

s o  t h a t  minimizers e x i s t .  I n  t h e  pena l ty  func t ion  method and the mult i -  
. . 

p l i e r  method we w i l l  b e  concerned wi th  t h e  sequent ' ial minimizat ion of the 

fo l lowing  two f u n c t i o n a l s .  

P e n a l t y  Funct ion.  

and 

Augmented Lagrangian Function 

where f and g are given i n  problem (1.9) and h E R ~  . The  key q u e s t i o n  
/ 

h e r e  is  whether t h e s e  func t iona l s  have minimizers f o r  a f i x e d  h and a 
. . 

. f ixed  C . St ra igh t fo rward  c a l c u l a t i o n s  g i v e  

where t h e  Lagrangian R is  given by (1.10), 

Let x* be a l o c a l  s o l u t i o n  of  problem (1.9) and its a s s o c i a t e d  ' 

m u l t i p l i e r .  It i s  k n w n t h a t  d j ( x 4 , ~ )  x may be i n d e f i n i t e ;  hence t h e  .. 

Lagrangian f u n c t i o n a l  . A (x; 9:) need not have a minimizer i n  x . However, 

t h e  fo l lowing theorem shows t h a t  f o r  C s u f f i c i e n t l y  l a r g e ,  . . t h e  ~ e s s i a n  

of the  augmented Lagrangian func t iona l  a t  (x*,h*) is p o s i t i v e  d e f i n i t e .  



This means t h a t  t h e  pena l ty  func t iona l  w i l l  have a l o c a l  minimizer i n  x 

provided Cg(x) i s  near  A*, whi le  t h e  a u b n t e d  Lagrangian w i l l  have . . 

a minimizer i n  x provided h-t Cg(x) - is near A* 

Theorem 2.1. Let x* be a ' l o c a l  s o l u t i o n  of problem (1.9) 'and le t  1% . 

be i t s  assoc ia ted  m u l t i p l i e r .  Suppose cond i t ions  (1.14) and (1.15) hold. 

Then t h e r e  e x i s t s  c*> 0 such t h a t  f o r  a l l  C ~ C *  t h e  matrix . . 

is  p o s i t i v e  d e f i n i t e .  

Proof. We g ive  a s h o r t  proof due t o  Buys (1972). L e t  A denote <E(X*,A*)' 

and G denote vg(x*). Consider the compact set 

d 

I f  t h e  theorem is  not  t r u e ,  then t h e r e  e x i s t s  a sequence '(7,) i n  S such 

t h a t  

But ('$1 has a convergent subsequence converging t o  f i ~  S . s i n c e  . . . . 

T T 
GG 720 V 7l i t  fol lows t h a t  

T- 
The f i r s t  - p a r t  of (2.9) impl ies  t h a t  G 7 = O . The s tandard  second .order 

necessary c o n d i t i o n s  ( see  Chapter 2 of Fiacco and ~ c ~ o r m i c k  (1968)) imply . 

-T - 
t h a t  ll A q 2  0, which toge the r  wi th  t h e  second p a r t  of (2.9) impl ies  t h a t  



I t  fo l lows  t h a t '  the problem - 
T T .  minimize ($q All: G 71 = 0) 

. . - m 
has a s o l u t i o n  at 7j . Hence there e x i s t s  a mul t ip l i er  P E R  such that 

. . .. . 
This i m p l i e s  that  the columns of V * L ( ~ , A * )  ( s ee  (1 .13))  are l inear ly  : .  

. . 
'independent and contradicts  assumption ( 1 . 1 5 ) .  i 

, The main problems with  t h i s  theorem are  that i t  does not tell us what' 
. . 

is and i t  only  g i v e s  us convexity near the so lut ion .  . 
' eQ 

. . 



3. The Pena l ty  Function Method. 

The pena l ty  f u n c t i o n  method f o r  approximating x*, t h e  s o l u t i o n  of 

problem (1 .9 ) , i s  e s s e n t i a l l y  t h e  i t e r a t i v e  procedure.  

c a l c u l a t e  = arg min P(x) 
X 

. . - 
(3.2)  , '  choose C > C  

. . 

whese, of course ,  P(x) i s  t h e  pena l ty  func t ion  given by (2.1) The 

. . pena l ty  func t ion  method has  been known f o r  yea rs  and among t h e  f i r s t  t o  

cons ide r  i t  was Courant (1943). The approach was developed and publ ic ized ' 
t o  a l a r g e  e x t e n t  by Fiacco and McCormick (1968), al though numerous o t h e r  

. . 
au thors  have c o n t r i b u t e d  t o  t h e  sub jec t .  

. . 

From (3.1) we must have 

Considering t h e  f i r s t  o r d e r  necessary cond i t ions .  (1.11) we a r e  l e d  to  t h e  

conclus ion t h a t  ~ g ( 3  is  an approximation t o .  t h e  Lagrange mu1 t i p l i e r  < . . .  

assoc ia ted  wi th  x* ~ o r e d v e r ,  i f  x +  x*, then Cg(x) + A*; but  g(x) 4 0 .' 

, . s o  n e c e s s a r i l y  C-. +m and we have converge'nce on ly  i f  t h e  p e n a l t y  cons tan t  
. . . . becomes i n f i n i t e .  The fol lowing main' convergence theorem f o r  t h e  penal ty  

. funct ion method i s  due t o  Polyak (1971). 
. . 

Theorem 3.1. There e x i s t s  a cons tan t  2 such t h a t  f o r  every  c>; t h e  

. pena l ty  func t ion  P(x)  has  a l o c a l l y  unique minimizer, s a y  x ( C )  . Further-  
. . . . . . 

. . . more, t h e r e  e x i s t s  a c o n s t a n t  M >  0 such t h a t  

(3 ~ 4 )  I~x(c) - x*ll _<N/c ' \I c > 2 . . 

and 



. Proof. For a  proof see Polak (1971) o r  Bertsekas (1976). Berts&kas' proof 

is s l i g h t l y  more general  and h i s  condit ions a r e  implied by our assumptions 

(1.14) and (1.15). 

Coro l la ry  3.1. Suppose t h a t  t he  i n i t i a l  penalty constant  i n  t h e  penalty 
n 

func t ion  method is  l a r g e r  than-  C i n  Theorem 3.1. . Then the  penal ty  funct ion 
. . 

: ,  

method is convergent i f  and only i f  C + + w  

Corol la ry  3.2 ; - A s  t h e  penal ty  funct ion method converges t he '  numerical condi- 

t i on ing  (as measured by the condi t ion number' hf tbe'~esoian.of .P(x)). bc- , - 
, ,  . 

. . 

comes a r b i t r a r i l y  bad. . . 

. . 
. . 

Proof.  A s  C 4  co any norm 0.f t he  matrix i n  (2.6) w i l l  become i n f  irqi.te. a -- . . 

, , 

It i s  very important t o  observe t h a t  the  penal ty  function method .is not  

- 
r e a l l y  an  i t e r a t i v e  procedure. Namely, x  does not depend on x unless the  - - 

- 
choice  of C depends on x . The penalty constant C actually playc a r o l e  

analogous t o  t h e  r o l e  the  mesh spacing plays Sn the  so lu t i on  of d i f f e r e n t i a l  

and In reg ra l  equations by t i n i t e  di f ferences .  Spec i f i ca l l y ,  we can  ge t  

a r b i t r a r i l y  good accura-cy by choosing the  f n i t i a l  penal ty  constant  s u f f i s i e n t f y  

l a rge .  The ques t ion '  t h a t  should be asked is: 1hy.minimize .P(x) . .for var ious  
. . 

, , 

. . values  of C ? Obviousfy, we need only minimize P(x) f o r  t h e  l a rges t  , 

' v a l u e  of  C t h a t  we are i n t e r e s t e d  i n .  Of course, t he  numerical conditioning 

of t h e  problem en t e r s  i n  (as i t  'does i n  f i n i t e  d i  f ferences) and i t  is not 

c l e a r  rhat the  optimal va lue  o f  C should be. Our po in t  here  i s  tha t  t h e  

na ture  of the penalty funct ion method i s  s i g n i f i c a n t l y  d i f f e r e n t  than t h a t  of a 

s tandard  i t e r a t i v e  procedure and is s imilar , f rom a  phi losophical  point of 

v i e ~ ? ,  t o  the  d i s c r e t i z a t i o n  methods i n  d i f f e r e n t i a l  equations.  This point  

seems ho t  t o  have been apprecia ted i n  the  l i t e r a t u r e ,  y e t T i t s  implications 

a r e  i nc red ib l e  a s  we s h a l l  nm.7 s ee .  



To begin with, the  ques t ion of l o c a l  convergence i s  meaningless. 

Indeed, the  i t e r a t e s  are independent of the  i n i t i a l  iterate and as long 

a s  t h e  i n i t i a l  pena l ty  constant  is large enough s o  t h a t  t h e  minimization . . 

.problems are w e l l  def ined we w i l l  always o b t a i n  convergence. .Is. it f a i r  

t o  s a y  t h a t  t h e  a lgor i thm is g l o b a l l y  convergent? What about convergence 

r a t e s ?  W e l l ,  s i n c e  each iterate depends o n l y - o n  t h e  penal ty  cons tan t  and 
. . 

we a r e  f r e e  t o  choose t h e  pena l ty  cons tan t s ,  i t  i s . c l e a r  t h a t  from a ' , . . 

t h e o r e t i c a l  p o i n t  of  view we can o b t a i n  a convergence rate of any order.  

These s ta tements  are s u r p r i s i n g ,  bu t  mathematical ly t rue .  However, the  r u b  . 

is Coro l l a ry  3.2,  i.e., round-off e r r o r ,  and these  e l a b o r a t e ' c l a i m s  would 

be impossible t o  demonstrate on any f i n i t e - p r e c i s i o n  computer. I n  su-ry, ' ' 

. . 

we conclude t h a t  t h e  pena l ty  cons tan t  has  an extremely important  and unique 

r o l e  i n  t h e  p e n a l t y  func t ion  method. 



4.  The l i u l t i p l i e r  FIethod. 
- 

The m u l t i p l i e r  method was o r i g i n a l l y  proposed by Hes tenes  (1969) - 

and independent ly  i n  d i f f e r e n t  but  - equ iva len t  forms by Powell. (1969) and. 

Haarhoff and Buys (1970). The r a t i o n a l e  f o r  t h e  m u l t i p l i e r  method is t o  

g i v e  a m t h o d l  which is as e f f e c t i v e  a s  t h e  p e n a l t y  f u n c t i o n  method but  does 

n o t  s u f f e r  from t h e  numerical  i l l - c o n d i t i o n i n g  of  t h e  p e n a l t y  f u n c t i o n  

method , 

Tl~e mu1 Lip l  ier method f o r  problem (1.9) as suggested by Hestenes,  

*- 
c o n s i s t s  of  t h e  i t e r a t i v e  procedure: Given an  i n i t i a l  A and C > O  

c a l c u l a t e  Z = a r g  min ~ ( x ,  A), 
X 

- 
(4*2)  l e t  A = 1-1 ~ g ( z ) ,  

- 
(4 -3 )  choose C > 0 ,  

where t h e  augmented Lagrangian L(x,x) is  given by *(2.2). Haarhoff .and 

Buys sugges ted  t h e  same a lgor i thm except  t h a t  i n s t e a d  of t h e  m u l t i p l i e r  

upda te  formula (4.2) they  sugges ied t h e  m u l t i p l i e r  update . fo -mula  

P r o p o s i t i o n  .. _--. 4.1;. The m u l t i p l i e r  methods w i t h ' t h e  nn1l t ip l ie . r -update  f o r n u l a  

(4.2) and t h e  m u l t i p l i e r  method w i t h  t h e  m u l t i p l i e r  update formula (4.4) 

g i v e  i d e n  t i c a l  (x, A) i terates. 

u The proof 1s s cra ight forward .  

The m u l t i p l i e r  method mot ivated  some v e r y  b e a u t i f u l  d u a l i t y  theory f o r  

n o n l i n e a r  programming problems. This  theory  was developed independently by 

Euys (1972), Luenberger (1973) and Rockafe l l a r  (1973). We s h a l l  p resen t  

Buys ' approach beloi?. Motivated by h i s  d u a l i t y  theory,  Buys sugges t& t h a t  



the  mu l t i p l i e r  update formula (4.2) be replaced by the mu l t i p l i e r  update 

Tapia (1977) proposed the  general  m u l t i p l i e r  update formula 

where A and D are .mXm and nX n matrices which may, depend on. x, h 

and C . H e  shoved t h a t  a l l  previously suggested mu l t i p l i e r  update fornu las  

were spec i a l  cases  of t h i s  general  formula. For more d e t a i l  on  m u l t i p l i e r  - . .' 

update formulas s e e  s ec t i ons  2 ' and  4 of Tapia (1977) 
. . 

W e  f i r s t  analyze the  r o l e  of the  m u l t i p l i e r  update formula (4.2) and 

t h e  s p e c i f i c  r o l e  of t h e  penalty constant i n  t h i s  formula. .Th i s  w i l l  be 

accomplished by looking at Buys' nonlinear d u a l i t y  theory. Let ' x* be the 
. . . . 

nohsingular s o l u t i o n  o f  problem (1.9) wi th  associated Lagrange mu1 t i p l i e r  

A* . Assume t h a t  C > C* where C* is given i n  Theorem .2.1 . By the i q l i c i t  

funct ion theorem (p. 128 of OrtegaandRheinboldt (1970)), t he re  e x i s t s  a 
. . 

neighborhood W of A* and a funct ion , X : W C R ~ _ ~ R ~  with  t h e  following 
. . 

proper t ies :  . . . . 

and 

h (A) = min L(x, h )  
X 

is  wc l l  dcf ined on W. Prohl.em (1.9) is caf l ed  t h e  prinial.. parob1em. ?The 
. . 

dual problem is defined below: 



(4.11) max h ( A) " .. 
X 

I n  (4.11) we have , t a c i t l y  assumed tha t  A is r e s t r i c t e d  t o  the  ,open s e t  W. 

Since 

us ing  (4.8) and (4.9) we s e e  t h a t  

2 
From ~ h e o r e i  2.1, <L(x*, A*) is pos i t ive  de f in iLe ;  so  h(~*.4) ' is 

negative d e f i n i t e .  Combining these remarks leads us t o  the ' fol lowing 

d u a l i t y  pr inc ip le .  

. . Theorem 4.2. (Local Dual i ty) .  11 x* solves the primal pro.blem, then . - 
. . 

. . . . 

i t s  associated Lagrange mul t ip l i e r  A* solves the  duai  problem .and .x3: . . 

can be obtained from * a s  the so lu t ion  of min L(x,x') . 
X 

Theorem 4.3. The mul t ip l i e r  method with mu l t ip l i e r  update formula (4.2) 

is the  gradient  method with s teplength C applied t o  the dual problem 

and the mu l t ip l i e r  method with mu l t ip l i e r  update. formula (4.5) is P?&ton's 

method applied t o  the  dual problem. 

Let us consider  the  mu l t ip l i e r  method a s  given by (4.1) - (4,'3). One . - ,  . 

func t ion  tha t  the penalty constant .has is to  make s t e p  (4.1) w e l l  defined 

as d i c t a t e d  by   he or em' 2.1. Another r o l e  t ha t  it plays, according' to (4.2) 

and   he or em 4.3, is t h a t  of ac t ing  as  the s t e p  length i n  the gradient 

method applied to  the dual problem. This l a t t e r  r o l e  tells us Zrom gradient  

method theory we w i l l  be ab l e  t o  obtain  l oca l  l i nea r  convergence for  a range 

of penal ty  .constants .  h his range w i l l  depend on.  the e i g e n ~ a l u e  :structure 



. . 

2 
of t h e  Hess ian  mat r ix  V ~ L ( X * ' , ~ * ) .  Bforeover, we are l e d  t o  b e l i e v e  tha t ,  

i n  c o n t r a s t  t o  t h e  pena l ty  func t ion  method, we cannot l e t  the  pena l ty  

c o n s t a n t  grow a r b i t r a r i l y  f a s t ,  I n  f a c t ,  a t  t h i s  p o i n t  we do 'not even know 
- .  

i f  i t  is p o s s i b l e  t o  l e t  t h e  pena l ty  cons tan t  become . i n f i n i t e  and if any- 

t h i n g  would be gained by such a choice.  

W e  n o i ~  cons ide r  l o c a l  convergence, and convergence rates f o r  t h e  mufti-,  . - 

plier '  method. Bertsekis (197 6) genera l ized Polyak's theorem' (Theorem 3 .I) to 

inc lude  t h e  m u l t i p l i e r  method i n  t h e  fol lowing manner. A s  before,  we are 
- ,  

assuming cond i t ions  (1.14) and (1.15) and x* is a l o c a l  s o l u t i o n  of . ' 

problem (1.9) w i t h  assoc ia ted  m u l t i p l i e r  A* . 
. . 

Theorem 4.4. Let  S be a bounded s u b s e t  of  R~ which conta ins  A* a s  
A A . . 

a n '  i n t e r i o r  po in t .  .Then t h e r e  e x i s t s  a c o n s t a n t '  C such tha t '  f o r  C >C 

and AES t h e  augmented Lagrangian L(x,A) has a l o c a l l y  unique minimizer,' 

s a y  x(A,C) . Furthermore, t h e r e  e x i s t s  a cons tan t  M > O  such t h a t  . 

and 

and 

Severa l  ques t ions  immediately come t o  mind concerning l o c a l  convergence 

and convergence r a t e s  nf the m u l t i p l i e r  method and we s h a l l  a t tempt  t o  answer 

thcoc ques t ions  i n  thp. reminder of t h i s  s e c t i o n .  To begin wi th ,  f r o m  (4.16) 

of  Theorem 4.4, we expect  t o  be a b l e  t o  analyze convergence of A i n  terms 

of Q-convergence. However, (4.15) does not  l e a d  t o  t h e  same con jec tu re  i n  

t c m  of  t h e  convergence of x . I n  f a c t ,  on t h e .  s u r f a c e  i t  looks  as ,if, one  

might have t o  set t le  f o r  an a n a l y s i s  i n  terms of :R-canvergence. '.Fo.r , d e f i n i t i o n s  



of t h e s e  convergence no t ions  s e e  S e c t i o n  8 of Tapia. (1977) and f o r  more 

d e t a i l  see Chapter 9 of Ortega and Rheinboldt (19.70). The fol.lowing . 

r e s u l t  proved i n  S e c t i o n  9 of Tapia (1977) g ives  us t h e  s a t i s f a c t i o n ,  t h a t  

t h e  convergence i n  x and A is e s s e n t i a l l y  t h e  same.. 
. . 

. . . . ... 

P r o p o s i t i o n  4.2. Suppose t h a t  t h e  m u l t i p l i e r  method wi th  art a r b i t r a r y .  

Lagrange m u l t i p l i e r  update formula and an  a r b i t r a r y -  bounded. sequence of 
. . 

k "  
p e n a l t y  con3tants  (ck) such t h a t  C >.C t h e  seqyences  (xk) 

. and ($1 . ''Then Ak- A* w i t h  Q-order q i f  and only i f  ik*x" w i t h  

P r o o f ,  The proof of  t h i s  r e s u l ~  i s  g i v e n  i n  Sec t ion  9. o f  ~ e ~ i a .  (1977). ; 

A s  a d i r e c t  consequence of Theorem 4.3 8-nd P r o p o s i t i o n  4.2. we have 

t h e  fo l lowing convergence r e s u l t  f o r  t h e  m u l t i p l i e r  method. . 

P r 0 ~ o s i t i o n . 4 . 3 .  For  any given i n i t i a l  estimate of  t h e  Lagrange mul t ip l ie- r  . -- 
A 

' . A -  t h e r e  e x i s t s  a pena l ty  cons tan t  C > O  such t h a t  the m u l t t p l i e r  method 
A 

w i t h  f i x e d  pena l ty  c o n s t a n t  C > C  is Q- l inea r ly  convergent  i n  and i n  X. . 

Obseirve t h a t  i n  t h e  m u l t i p l i e r  method the  penalty c o n s t a n t  cannot  be i n -  

c reased  a r b i t r a r i l y  f a s t  as i t  can i n  t h e  pena l ty  funct ion.  method, If i t .  

too  f a s t ,  then h ( h , ~ )  given by (4.17) w i l l  become. e x c e s s i v e l y  large 

(i .e. ,  it w i l l  not  remain i n  t h e  set  S i n   heo or& 4.3)' and the convergence 

w i l l  s u f f e r .  I t  is c l e a r  t h a t  t h e  inc rease  i n  C  must be b a l a n c e 6  w i t h  the 

decrease  i n  g(x). However, from (4.16) w e  see t h a t  Q-super l inear  convergence A 

would r e s u l t  i f  i t  were p o s s i b l e  t o  l e t  t h e  sequence o f  p e n a l t y  c o n s t a n t s  

become unbounded. This l a t t e r  cons ide ra t ion  is the s u b j e c t  of the fo l lowing 

P r o p o s i t i o n  . .. 4 .4 .  I t  is p o s s i b l e  t o  choose (ck) s o . t h a t  ck+- and t h e  



m u l t i p l i e r  method with penalty constant  {ck) is convergent i n  x and A . 

Proof. The proof follows d i r e c t l y  f r &  Theorem 4.3. Spec i f ica l ly ,  let 

0 0 0 
. . .  

S = (h:-llh - A*ll_< 1}, and choose C > E so  t h a t  M/C < $ and choose I. 

s o  t h a t  llh" - Aoll _<$ . Then 

k .  k . . 
From (4.19)it  is c l e a r  t h a t  we  can choose [C 1 .  s o  t h a t ,  C 4- , 1;4 

. 
W e  a r e  concerned wi th  the  r o i e  of the  penal ty  constant i n  t he  m u l t i p l i e r  

. . 

method. So f a r  v e  have seen t h a t  i t  allows one t o  obtain  Q-linear conver- , 

. . 

gence and Q-superlinear convergence i f  i t  becomes i n f i n i t e .  Reca l l  t ha t  i n  

t he  penal ty  funct ion method we obtained convergence i f  and only i f  the  pena l ty  

constant  became i n f i n i t e .  The s i t u a t i o n  would be mathematically s a t i s f y i p g  
. .  . 

' i f  t he  analogous s i t u a t i o n  f o r  the m u l t i p l i e r  method was such t h a t  we were 

a b l e  to  ob ta in  super l inear  convergence i f  and only i f  the  penal ty  constant :.' . 

became in£  i n i t e .  Tne f  01 lowing propos i t ion  e s t ab l i shes  t h i s  f a c t  . For the. . : .. . 
CI 

yurpuses ol: t h i s  r e s u l t  we w i l l  assume that C w 0 , .  . . 

-%. 

Proposi t ion 4.5. Suppose t h a t  t h e  m u l t i p l i e r  method with pena l ty .cons tan ts  
. . 

' ck i $  convergent. Then the convergence is  . . .  Q-super l inear  i n  :X .if and-only  ' . 

Proof. The ' i f '  p a r t  f o l l m ~ s  d i r e c t l y  from Theorem.4..3. -.The ''only i f '  p a r t  

was f i r s t  demonstrated i n  Section 9 of Tapia (1977). The proof is s u f f i c i e n t l y  

k 
i n t e r e s t i n g  and novel t h a t  we w i l l  reproduce i t  here .  Assume t h a t  . A  

converges Q-superli-nearly to A* . We a r e  concerned w i t h  '-the : i t e ra t ion  



.. . where 

and x(A) is as i n  (4.7) - (4.14) . Now fo r  a f ixed C we s e e  f r o m  (4.9) 

t h a t  

2 . . 

Let : A = V  l(x*A*) and G=vg(x*) s o  tha t  
. . x 

and from (4.22) 

(4.24) . 
T " T --1 

s;(A*,c) = I - CG (A+ CGG ) G . 
. . 

From t h e  Sherman-Morrison-Woodbury formula (page-5.0 of Ortega and: 

Rheinboldt (1970))we ob ta in  

so. that 
. . - 

Observe t h a t  f o r  C 2 0 t h e  matrix ( * c )  . is pos i t i ve  d e f i n i t e  and 

t hence inve r t i b l e .  
.?. - 

From McLeod's mean-value theorem (see Tapia (1971.)) we have - 

where 

k k . Suppose t h a t  a subsequence of (C ) (a l so  deno,ted by (C )) converges to 

K < - b  . .. Let 



. . . . . . 
. . 

By compactness, (sk) has  a subsequence ('ich we a l s o  denote by (sk]) 

.'k * 
which converges t o  s* 0 . Dividing both s i d e s  of (4.20) by 111 - h 11, ., 

r e c a l l i n g  t h e  d e f i n i t i o n  of  Q-superl inear convergence, and l e t t i n g  k+-, 

we o b t a i n  ' 

However, t h i s  is a c o n t r a d i c t i o n ,  s i n c e  s;(A"K) is i n v e r t i b l e .  It 

fol lows t h a t  ck+- and t h i s  proves the  proposi t ion .  B .  . 

Our analys ' is  of t h e  r o l e  of  t h e  penal ty  func t ion  i n  the  m u l t i p l i e r  

. . 
method is  now complete. . . .  

. . 



. . 
5. The ~uas i -h~ewton  Methods f o r  Cons t r a ined  Optimization. . . 

Let us  summarize our  presentat ion up t o  t h i s  point .  W e  have observed 

t h a t  i n  t he  pena l ty  funct ion method the p r i ce  one pays f o r  convergence is 

a  d e t e r i o r a t i o n  i n  numerical condit ioning,  s i n c e . t h e  penalty cons tan t  m u s t  

go t o  i n f i n i t y .  I n  t he  mu l t i p l i e r  method, the  p r i ce  one pays' f o r  super- 
. . 

. . . l i nea r  convergence is  a l s o  a  d e t e r i o r a t i o n  i n  numerical,.conditioning,-.$ince 

agai* t h e  pena l ty  func t ion  must go t o  i n f i n i t y .  c l e a r l y  the s t a g e  is set f o r  

au algorfthm which w i l l  give super l inear  convergence without a corresponding' 

d e t e r i o r a t i o n  i n  numerical condit ioning.  Such algari thms oxis t and wL11 now - 
' be presented.  

There a r e  e s s e n t i a l l y  three  philosophies f o r  extending quasi-Newton 

methods from unconstrained optimization t o  constra ined optimization.  These 

,phi losophies  cons is  t of t h e  mu1 t i p l i e r  extension quas i-Newton methods, the 

m u l t i p l i e r  update quasi-Newton methods and the  quadrat ic  programming quasi-  - -. 

Newton methods. I n  Tapia (1978) these  t h r e e  approaches are shown t o  be 

equivalent  f o r  problem (1.9). Our presen ta t ion  w i l l  f o l  low .Tapia (1978) 

cfosefy. 

For t h e  purposes of t h i s  sect ion,  by the  extended prnhl ern will rnaln 

t he  problem of f i nd ing  a  s t a t i ona ry  point  of the  augmented ~ a g r a n ~ i a n  
. . 

given by (2.2), f .e., the problem of finding (x,A) such 'that 

(5.1) .VL(X,A) = O  e 

As fn p=evious sed t ions  we denote a  l o c a l  solu ' t ' ion'of problem ( f i g )  by 

a- 

x^ and i t s  assoc ia ted  Lagrange mu l t i p l i e r  by A* * 

Mul t ip l i e r  Extension Quasi-Newton Methods 

By a m u l t i p l i e r  extension quasi-Newton method f o r ,  problem (1.9) ,we mean 

t h e  i t e r a t i v e .  procedure 



* '  j; 
where is  an, a~pr ix ima t ion  t o  ~ L ( X  , A  ). . . 

X . . . . 

.The mul t ip l i e r  secant  methods r e s u l t  by choosing . . 

- 
where s = x - x, y = vxl(x,X) - vxl(x,x), Bx is the cur ren t  approximation td  . . 

. . 

v2L(x*,2) and % i s  one of the popular secant  updates, e.g., BFGS . The 
X .  

,mu l t i p l i e r  extension secant  method played an important r o l e  i n  t h e  theory 

. . developed i n  Tapia (1977) and ( a t  present)  we have no references  t o  e a r l i e r  
. . 

. . 

us age. 

Observe ' t h a t  a s t r a i g h t f o n ~ a r d  quas %-Newton method would cons i s t  of 

- .  
approximating the  e n t i r e  Hessian matrix ' , 

. . 

Our mul t ip l i e r  extension quasi-Newton is not' tha.t G i v e .  ~ ~ e c i f i c a l l ~ ,  we' 

have taken advantage of a cer ta in  amount of s t r u c t u r e  t h a t  the' proble'm has 

t o  o f f e r  by only approximating the component, of v2L(x, A) in (5.5) which 

. contains second order information. Basically,  i t  seems i n e f f i c i e n t  to  approx- 

imate f i r s t  order  information tha t  has already been ca lcu la ted  exactly,  o r  

even worse ye t ,  t o  approximate the zero component i n  . . v Z L ( x , ~ ) .  
. . 

Carrying t h i s  l i n e  of 'reasoning one s t e p  fu r the r  we observe t h a t  - . 



Consequently, a1 though ve have taken advantage of some s t r u c t u r e  we have . 

more, i .e. ,  we need n o t  approximate t h e ' f i r s t  o r d e r  informat ion  i n  (5.6), . . 

Tapia  (1978) r e f e r r e d  t o  t h i s  a d d i t i o n a l  s t r u c t u r e  as s u p e r s t r u c t u r e  (see  

S e c t i o n  7 o f  Tapia  4978) ' ) .  W e  modify t h e  m u l t i p l i e r  ex tens ion  secan t  

- .  
method t o  t a k e  advantage  o f  s u p e r s t r u c t u r e  by r e p l a c i n g  Bx i n  (5.4) by 

2 *. * M is t h e  c u r r e n t  approximation t o  V i ( x  , A  ) and M S  is a s e c a n t  update. , . 
X 

. . 
N u l t i p l i e r  Update Quasi-Newton Methods 

By a m u l t i p l i e r  upda te  quasi-Newton method f o r  problem (1.9) we mean . 

t h e  i t e r a t i v e  procedure  

where ~(x.;, h,x, B) i s  a n  approximatjon t o  v21(x*, x A*) . The mu1 t i p l i e r  update 
. . 

s e c a n t  nethods r e s u l t  by choosing 

- 
where s = x - x, y = V~L(&, 'X)  - V ~ L ( X , ~ )  and BS i s  a s e c a n t  update . 

Isre t a k e  advantage o f  s u p e r s t r u c t u r e  by r e p l a c i n g  (5.13) wi th  (5.7) - 
. (5.9).  mu1 t i p l ' i e r  update s e c a n t  methods were .proposed by. t h e ,  author . i n  

Tap ia  (1977) and i n  t h a t  paper i n e q u a l i t y  c o n s t r a i n t s  were handled v i a  a 



s l a c k  var iab le .  Independently, Han (1977) proposed secant  methods f o r  problems 

with  equa l i ty  and inequa l i ty  cons t r a in t s  which use a n  intermediate quadrat ic  

program t o  solve f o r  the  mu1 t i p l i e r s  . I n  the  case  of probf e m  (1.9) (no i n -  

e q u a l i t y  cons t ra in t s )  , . i t  i s  a simple matter  t o  shdn t h a t  Ran's 

program, reduces t o '  (5.15)) and hence h i s  algorithm reduces t o  t h e  m u l t i p l i e r  
, . . . 

update secant method. Glad (1976),also independently, proposed the  multi-  

p l i e r  update secant  method. He used an. a c t i v e  cons t r a in t  philosophy t a  ' 

. . 

handle inequa l i ty  cons t r a in t s  . . A 1 1  th ree  papers es tab l i shed  super l inear  

convergence. 

. . 
, . 

. . . . Quadra t ic  Prosammino Quas i-Newton Methods ; 

. . 

By a quadratic programming quasi-Newton method for problem (1.9) we mean 
. . 

t he  i t e r a t i v e  procedure . .  . 

2 * *  
where B(X,;,B) is an approximation t o  V L(x , A  ) and Ax is a so lu t i on  

X 

of t he  quadratic program 

. . . . 'AX . . 

T 
sub jec t  t o  Vg(x) Ax+ g(x) = 0 .. 

' with  

(5.17) 
C T .  F(x)  = f ( x ) + p ( x )  g(x) . 

The quadrat ic  programming secant  methods r e s u l t  by choosing 

- 
wlrerr s = x - x, y = V ~ L ( ~ ,  h ) - vXL(x, A ) , t& i s  a secant update and 

QP QY 



h ~ p  
is t h e  m u l t i p l i e r  obta ined i n  t h e  s o l u t i o n  of ' t he  q u a d r a t i c  program 

(5.16) 

Th i s  form of t h e  quadra t i c  programming quasi-Newton method w a s  introduced 

by Garc ia  Palomares and blangasarian (1976). Han (1976) added some a n a l y s i s  

and s p e c i f i c  s e c a n t  updates a d  Powell (1977),(1978) added f u r t h e r  r e f i n e -  

ments and a n a l y s i s .  

A s  before ,  we t a k e  advantage of supe'i-s t r u c t u r e  b y  r e p l a c i n g  (5.18) w i t h  

(5.7) - (5.9) . 
Theorem 5.1. The m u l t i p l i e r  ex tens ion  s e c a n t  method, t h e  m u l t i p l i e r  update 

s e c a n t  method, and t h e  quadra t i c  programming secan t  method a re .egu iva1en t  i n  
. . 

t h e  s e n s e  t h a t  they genera te  i d e n t i c a l  ( x , h )  i t e r a t e s .  . Moreover, ' fo r  

. CI 

. C 2 2 where C i s  given by Theorem 2 . 1  these  methods are l o c a l l y  Q-super- 

l i n e a r l y  convergent '  i n  t h e  v a r i a b l e  (x,A) . 
Proof ,  The proof of t h e  l o c a l  Q-superl inear convergence is somewhat involved 

and t h e  r e a d e r  i n t e r e s t e d  i n  d e t a i l s  i s  r e f e r r e d  t o  S e c t i o n  10 of Tapia (1977). 

The equivalence  proof is i n s t r u c t i v e  and short so we w i l l  reproduce it. The 

f i r s t  l i n e  of  (5,2) is  e x a c t l y  (5.11). By s u b s t i t u t i n g  (5.11) i n t o  t h e  . 

second l i n e  of (5.2) w e ' a r r i v e  a t  

- 
Solv ing  (5.19) f o r  1 l e a d s  d i r e c t l y  to (5. lo). and. es t a b i i s h e s  t h e  equivalence 

between ' the  m u l t i p l i e r  ex tens ion  and t h e  m u l t i p l i e r  update secant-methods.  

N o w ,  problem (5.16) i s  equ iva len t  t o  

T vg (x) Ax + g(x) = 0 . 



From. (5.20) we s e e  t h a t  

. . 

s u b s t i t u t i n g  (5.22) i n t o  (5.21) and so lv ing  f o r  
. A~~ 

gives  

- 
where 1 is given by (5.10) . . . 

' d t  c e r t a i n l y  seems reasonable  t o  ques t ion  t h e  cho ice  of working wi th  t h e .  , 

'. . . . 

p e n a l t y  f u n c t i o n  F given by (5617) i n  t h e  c o n s t a n t  and f i r s t  o rde r  t e r n s  
<-.. , . 

of  (5-16) and us ing  t h e  augmented Lagrangian i n  t h e  second order term, in 
. . 

. . c o n t r a s t  t o  working w i t h  t h e  augmented Ugrang ian  i n  a1 l t h r e e  terms. ' Such.  . 

a n  approach would r e q u i r e  the  e x p f i ' c i t  use  of a n  approximate m u l t i p l i e r .  

. . 
This  l e a d s  t o  t h e  f o l lo~- r ing  modi f i ca t ion  of t h e  quadra t i c  p rograming  secan t  

method 

where Ax and Ah are t h e  so-lution and c o r r e s p o ~ d i n g  m u l t i p l i e r  obtained 
. . 

. .  , 

. - . . , f rom s o l v i n g  t h e  quadra t i c  program 

subject t o  pg(xlT&+ g(x) = 0 
. . 

- - - 
w i t h  s ' = x  - x ,  y  = VxL(x, ),) - \L(x,D and as before  % is a secant  update.. 

P r o p o s i t i o n  5.1. The quadra t i c  p rograming  secan t  method (5.14) - (5.18) w i t h  

$P 
and t h e  modified quadra t i c  p rograming  secan t  method (5.24)-  (5.27) are 

equ iva len t .  S p e c i f i c a l l y  A i n  (5.25) and 
*kp 

:are the., same , for  any va1u.e 



of  i n  (5.27) ; consequently these  two algori thms genera te  i d e n t i c a l  
. . 

(x, A) i t e r a t e s .  

Proof .  An argument s i m i l a r  t o  t h a t  used i n  t h e  proof o f  ~ h e b r e m  5.1 can  be '  

used t o  show t h a t  

and t h e  r e s u l t  fo l lows.  . . 

Since  t h e  a lgor i thm (5.24). - (5.27) is independent .of t h e  p a r t i c u l a r  . . 

. 
cho ice  f o r  1 one may as w e l l  choose ' A = O  and work with  (5,14) - (5.18). 

The cho ice  C = O  a l s o  has  s p e c i a l  s i g n i f i c a n c e  as we w i l l  now demonstrate. 
. 

. . The r o l e  of  t h e  p e n a l t y  constant  should.now be c l e a r .  Namely,. i t  a l lows 
, . 

. , 
one t o  o b t a i n  a p o s i t i v e  d e f i n i t e  ~ e s s i a k  L ( * )  Moreover, i t  is 

X 

s tandard  procedure t o  implement t h e  BFGS s e c a n t  method s o  t h a t  the  approximate 
- -  - 

Hessians a r e  always p o s i t i v e  d e f i n i t e .  So every th ing  f i t s  toge the r  n i c e l y  

, i n  t h e  sense  t h a t  we are approximating a p o s i t i v e  definite m a t r i x  by a sequence 

of  p o s i t i v e  d e f i n i t e  mat r i ces .  . Let us now look c l o s e l y  at t h e  supers  t r v c  tured 

ve rs ions .  'Lo begin w i t h  they a r e  a l s o  equ iva len t  s i n c e  the  proof  of Theorem 

5 . 1  o n l y  used t h e  f a c t  t h a t  the  Bx matr ix  i n  these  t h r e e  al.gorithms was 
. . 

t h e  s e e  . Howaver, we a re  nor? approximat i n g  2 ( ) , which is n o t  
x .  

n e c e s s a r i l y  p o s i t i v e  d e f i n i t e ,  by matrices M which (as secan t  updates)  are 
-1 . . 

p o s i t i v e  d e f i n i t e .  S i n c e  M e x i s t s ,  i t  is n a t u r a l  t o  q u e s t i o n  the  r o l e  of ' 

, h 

C i n  t h i s  case ,  i .e . ,  B a s  given by (5.7) yill be' we11 -defined even i n '  
x .  

t h e  extreme c a s e  .when C = 0 .  The ques t ion  becomes, what does pos ' i t ive  C 

buy u s ? .  The fo l lowing theorem provides us wi th  a v e r y  s a t i s f a c t o r y  answer 

t o  t h i s  ques t ion.  

a Theorem 5.2. The supers  t r u c t u r e d  ve rs ions  of t h e  m u l t i p l i e r .  extens ion,  



.- C 

29 

mult ipfer  update and quadrat ic  programming secant methods generate  iden- 

t i c a l  (x,A) i t e r a t e s  which a r e  independent of the  penal ty  constant  C . , 

Proof. We w i l l  work wi th  the  quadrat ic  programming method, 
. . 

Observe t h a t .  i n  t he  case  B = M+ cVgvgT the system (5.20) - (5 -21) 
' 

reduces t o  the  system 

. . . . 

(5.*9) MAX+ vf (x) + V ~ ( X ) \ ~  = 0 

. We are assuming t h a t  t h e  i n i t i a l  M matrix is Sndegendent of C; hence, 
. , 

Ax and 
h g p  

obtained from (5.29)'- (5.30) w i i l  be independent of C, and 
- 

from (5.9) we see  t h a t  M w i l l  be  independent of C .. 

Wc can say  with some confidence t ha t  taking advantage of ava i l ab l e  

s t r u c t u r e  is worthwhile s ince  i t  obviously leads t o  b e t t e r  approximate 

Hessians. However, acceptance of this '  statement implies t h a t  t he re  is no 

need f o r  the  penalty constant  and we have followed the  r o l e  of t h e  penalty 

. . 
constant  t o  2ts l o g i c a l  conclusion. 

I n  t h e  l i t e r a t u r e  we have seen severa l  authors argue t h a t  ' t h e  penalty 
. -  . . . 

constant  should not be ,  used because i t  is d i f  f i c u i t  to  choose and i ts  use . . . 

merely makes t he  a lgor i thm messy. Of course, we have had t o  .accept t h i s  

den i a l  of t he  penal ty  constant  i n  the context t h a t  it was made; namely, wi th  

l i t t l e  confidence. Recently Bertocchi, Cava l l i  and Spedicato (1979) per- 

formed numerical experiments ,and concluded t h a t  the  choice  C = O  was probably 

optimal. This form of demonstration c a r r i e s  considerable v a l i d i t y .  More- 

over, i t  is  very s a t i s f y i n g  to couple Theorem 5.2 . t o  t h e i r  f ind ing  'and con- 

clude C = O  is obviously the  choice. However, a r e  we r e a l l y  see ing  the  

. . 
complctc pic ture?  The message t h a t  we have presented is t h e -  following: ..."A S 

LONG AS LINEARIZED CONSTRAINTS ARE SATISFIED, "WE DON ' T *NEED *A"POSITIVE 



D E F I N I E  HESSIAN AND C ='O 'IS OPTZlAL Ih' OUR QUASI-NEWTON ME'i'lIODS. 

This ,  of course, merely'. leads  us t o  the question: should l inear ized  can-. 

s t r a i n t s  always be s a t i s f i e d ?  . .Most -zmld agree w i t h  us tha t  near  the 

s o l u t i o n  they should be s a t i s f i e d .  However, f a r  from the so lu t i on  l i x a r .  

approximations a r e  o f t e n  misleading. We f e e l  t h a t  t h e  question o f  b+;ether 

o r  not a n  .augmented . Lagrangian can 32 used i n  an e f f e c t i v e  ' manner f er f r a  

' the s o l u t i o n '  is  s t i l l  i n  open question. . Recently th& .has bedn s m e  

i n t e r e s t i n g  work, a long t h i s  l i n e  by Siggs (1978) and by Boggs and Tolle (l9771: , 

AL tlrv I . i l u e  01 this 'm-iting, the L o c a l  thoozy for' C = O  is  sti l l  he- - 
hind  t h a t  f o r  C >0 ,  i n '  s p i t e  of tbe ~ ~ ~ n e r i c a l  experiments which favor the 

, . 

former l oca l ly .  Spec i f i ca l l y ,  a loca l  convergence theorem:for these quasi- 

Newton methods with  C = 0 does not e x i s t  (see Theorcm 5.1) .' .Powell, (1978) 

proved t h a t  i f  t he  x - i t e r a t e s  i n  the  q u a d r a t i c  programing secan t  rceet:lod , 

with  C = 0 converged, then they d i d  so  R-super l inear ly .  A 1  though - ~ o ~ e l l  . - -. 

expressed some disappointment t ha t  he  was not a b l e  to  e s t ab l i sh  Q-superlinear 

convergence i n  x, t h i s  has  not been denonstrated e v e n , i n  the  case  or' ' C>O. 

Observe t h a t  Theorem 5.'1 demonstrates Q-super l inear  - convergence of the pair 
. . .  . 

(x, A ) ,  which i n  t u rn  implies R-superlinear convergence o f .  x . and or' ?I . 
. . 

separa te ly .  W e  be l ieve  t h a t  wi thout ,  sose s l i g h t  modif icat ion o f  the .  ?ro- 

cedure used f o r  approximating the mu1 t i p i i e r  (as  'was ' done ' i n  ~ a ~ i a  (1977)) 

R-superlinear convergence is  a l l  one wlll be able LO d e u u ~ l b t ~ d t e   CIS the 

x va r i ab l e  alone.  It would be wor r;?.x.%ile inves L l g a L i ~ ~ g  wlietlier I'owcll 's 

proof f o r  C = 0 . could be inodified to  give Q-super l inear  convergence of 
- 

. , the  p a i r .  (x, A) 
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