

RECEIVED
AUG 22 1997
OSTI

7-29-97
ANL/CMB/CP-94237
CONF-9706202--

SYMMETRY-RELATED MUTANTS IN THE QUINONE BINDING SITES OF THE
REACTION CENTER -- THE EFFECTS OF CHANGES IN CHARGE DISTRIBUTION

Deborah K. Hanson & Marianne Schiffer.

\Center for Mechanistic Biology & Biotechnology, Argonne National Laboratory, 9700 S. Cass
Avenue, Argonne, IL, 60439, USA.

Received 00 month 1997; accepted (in revised form) 00 month 1997

Key words: photosynthesis, site-specific mutagenesis, phenotypic revertants, electron transfer, proton transfer

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Abstract

To probe the structural elements that contribute to the functional asymmetries of the two ubiquinone₁₀ binding pockets in the reaction center of *Rhodobacter capsulatus*, we targeted the L212Glu-L213Asp (near Q_B) and the M246Ala-M247Ala (near Q_A) pairs of symmetry-related residues for site-specific mutagenesis. We have constructed site-specific mutants that eliminate the sequence differences at these positions (L212Glu-L213Asp→Ala-Ala or M246Ala-M247Ala→Glu-Asp), and have reversed that asymmetry by constructing a quadruple-mutant strain, "RQ" (L212Glu-L213Asp-M246Ala-M247Ala→Ala-Ala-Glu-Asp). The mutations were designed to change the charge distribution in the quinone-binding region of the reaction center; none of the strains is capable of photosynthetic growth. In photocompetent phenotypic revertants of the RQ strain, second-site mutations which affect Q_B function are coupled to mutations in the Q_A site which restore an Ala or substitute a Tyr at the M247 site; one strain carries an additional Met→Leu substitution at M260 near Q_A. All of the RQ revertants retain the engineered M246Ala→Glu mutation in the Q_A site as well as the L212Ala-L213Ala mutations in the Q_B site. Kinetic characterization of the RQ revertants will give us an idea of what structural and functional elements are important for restoring efficiency to electron and proton transfer pathways in the RQ RC, which is far from native. To date, these preliminary results underscore the importance of an asymmetric distribution of polar amino acids in the quinone binding pockets and its influence on the functional properties of the reaction center.

Introduction

Stable, photo-induced transmembrane charge separation is achieved in the photosynthetic reaction center (RC) by the reduction of quinone species, Q_A and Q_B, which serve as the penultimate and terminal electron acceptors, respectively. In RCs of *Rhodobacter (R.) sphaeroides* and *R. capsulatus*, Q_A and Q_B are identical ubiquinone₁₀ molecules, whose different *in situ* chemical properties are defined by the natures of the protein environments that constitute their binding sites. Q_A serves as a one-electron gate and does not become directly protonated. Q_B

becomes doubly reduced following two successive turnovers of Q_A^- . The quinol form, Q_BH_2 , is generated by the conduction of protons through the protein to the buried Q_B binding site following the second flash. The Q_B site binds the various intermediate states of the quinone with differing affinities, facilitating the retention of Q_B^- and the diffusion of Q_B and Q_BH_2 into and out of, respectively, the RC.

The functional asymmetry of the two quinone binding pockets extends to the midpoint potentials of the Q_A/Q_A^- and Q_B/Q_B^- couples, which differ by about 60 mV at neutral pH. The Q_A and Q_B binding sites share structural and sequence homology and are related by an axis of approximate twofold symmetry in the high resolution structures of the RCs of *Rhodopseudomonas viridis* (Deisenhofer et al. 1985) and *R. sphaeroides* (Stowell et al. 1997; reviewed in Ermler et al. 1994). The Q_A site is relatively more hydrophobic than the Q_B binding site. The symmetry-related residues M246Ala in the Q_A site and L212Glu in the Q_B site represent a strictly-conserved polarity difference that distinguishes the two binding sites. The adjacent residues M247Ala (at Q_A) and L213Asp (at Q_B) represent a similar symmetry-related difference that is not as strictly conserved among several species of photosynthetic bacteria whose sequences are known [residue M247 is Ala or Gln, while residue L213 is Asp or Asn]. L212Glu and L213Asp have been shown to be important components of the pathway for proton transfer to Q_B^{2-} (Paddock et al. 1989; Takahashi & Wraight 1992; reviewed in Sebban et al. 1995a), whereas their alanine counterparts near Q_A are hydrophobic and nonpolarizable.

To probe the structural elements that contribute to the functional asymmetries of the two ubiquinone₁₀ binding pockets, we constructed a family of site-specific mutants of the *R. capsulatus* RC that eliminated the sequence differences at these symmetry-related positions, or reversed that asymmetry (Table 1). All of the site-specific mutants are incapable of photosynthetic growth (PS^-), and pseudo-revertants have been isolated that have regained the photosynthetic phenotype (PS^+). The pathway for proton transfer to Q_B^{2-} has been shown to be blocked in the L212-L213AA mutant (Hanson et al. 1992b, 1993; Maróti et al. 1994), and we have characterized a number of phenotypic revertants of this strain that have regained this function (Hanson et al.

1993; Maróti et al. 1994), and preliminary characterization of two phenotypic revertants of the M246-M247ED strain has also been reported previously (Laible et al. 1997). Here we describe phenotypic revertants derived from the RQ quadruple mutant, an RC in which the important sequence asymmetry at these positions in the Q_A and Q_B binding sites has been reversed.

Materials and Methods

The quadruple mutant RQ was constructed by ligating L and M gene segments from the previously-constructed L212-L213AA (Hanson et al. 1993) and M246-247ED (Laible et al. 1997) site-specific mutants. Cultures derived from independent colonies of the RQ strain were grown under chemoheterotrophic conditions. Aliquots of these dark cultures were used to inoculate anaerobic tubes of RPYE medium (Hanson et al. 1992b), which were then incubated in the light for several weeks. Individual revertants were isolated by restreaking for single, photosynthetic colonies on MPYE/kan agar. Growth curves and the localization of compensatory mutations by plasmid recloning, complementation mapping, and DNA sequencing have been described (Hanson et al. 1992a). The original RQ revertants carry compensatory mutations in both the L and M genes of the RC (all compensatory mutations were plasmid-borne), thus unique restriction sites of plasmids pU29 (Bylina et al. 1986) and pU2922 (Bylina et al. 1989) were used to construct "half revertants" which coupled a revertant Q_A site with a wild-type Q_B site (the strains designated with an "A" in Table 2), and vice versa (strains designated with a "B").

Results and Discussion

The RQ mutant strain potentially carries the largest change in charge distribution of any of the mutants listed in Table 1. In RCs of *R. capsulatus*, L213Asp is ionized at neutral pH (Hanson et al. 1992b), and the apparent pK_a of L212Glu is ~ 10.1 (Maróti et al. 1995; Sebba et al. 1995a,b). [Other experimental evidence obtained with *R. sphaeroides* RCs suggests that L212Glu may be partially ionized in the neutral pH region (Hienerwadel et al. 1995), and theoretical electrostatic calculations predict that this residue interacts strongly with several other nearby

charged residues (Beroza et al. 1995; Lancaster et al. 1996)]. In the RQ mutant, these residues near Q_B are replaced by neutral alanines. The Glu and Asp residues at M246-M247 in the RQ mutant are polar, and their ionization states have not yet been determined. However, the effects of the mutations extend well beyond the immediate environment of the quinones. The RC of the RQ mutant is characterized by a slightly slower rate of $P^* \rightarrow P^+ H_A^-$ electron transfer (P. D. Laible and D. K. Hanson, unpublished observations) and these mutations also resolve the Q_x bacteriochlorophyll transitions near 590 nm in the 4 K absorption spectrum into two distinct peaks of ~ 587 nm and ~ 602 nm (T. J. DiMagno, personal communication).

Since neither symmetrized double mutant strain (L212-L213AA or M246-M247ED) is capable of photosynthetic growth, RCs of the quadruple mutant RQ strain must compensate for engineered mutations in both quinone sites in order to regain function. Table 2 summarizes the sequences found near the Q_A and Q_B sites of RCs of the phenotypic revertants isolated from the PS⁻ RQ mutant strain, and Fig. 1 shows the locations of those residues. The changes at each quinone binding site are summarized below:

Revertant Q_A sites. The engineered M246Glu substitution is still present in the Q_A site of all of the RQ revertants, even though Ala at this site is strictly conserved in several species, and Ala or Gly had already been seen to substitute for M246Glu in phenotypic revertants of the M246-M247ED mutant (Table 2; Laible et al. 1997). The RQ revertants have compensated for the deleterious changes in the Q_A site by the change of M247Asp to the original Ala (RQrev4) or to Tyr (RQrev3 & RQrev5). In the case of RQrev6, a third mutation, M260Met \rightarrow Leu, has been added to the M246Glu-M247Tyr sequence found in the Q_A sites of RQrev3 and RQrev5. Molecular modeling shows that the bulky M247Tyr points away from Q_A into a cavity of the structure (Fig. 1). It is likely that the M260Leu substitution relieves some of the crowding that is caused by the presence of M246Glu, which could lead to a slightly different binding site for Q_A and, thus, a change in its redox potential.

Revertant Q_B sites. None of the RQ revertants regained a wild-type Q_B site since the engineered L212Ala-L213Ala mutations at Q_B are still present. As seen previously for phenotypic

revertants of the L212-L213AA strain (Hanson et al. 1993; Maróti et al. 1994; Sebban et al. 1995b), distant suppressor mutations compensate for the loss of L212Glu and L213Asp by making the electrostatic environment of Q_B more negative, either by the addition of an acidic residue (RQrev3/6, RQrev5) or the removal of a basic residue (RQrev4). The M43Asn→Asp suppressor mutation seen in RQrev3 and RQrev6 [characterized previously in (Hanson et al. 1992a; Maróti et al. 1994)] is 9 Å from Q_B (Fig. 1). Suppressor mutations in RQrev4 (L217Arg→Cys) and RQrev5 (M5Asn→Asp) are also distant from Q_B ($\approx 11\text{Å}$ and $\approx 10\text{Å}$, respectively). All of these suppressor mutations affect members of a network of charge-charge interactions that connects the many ionizable residues in this region of the RC (Sebban et al. 1995). Distant mutation-induced shifts in these interactions propagate as the pK_a s of other residues involved in the network change, resulting in an experimentally quantifiable increase in the negative potential surrounding Q_B^- (Maróti et al. 1994; Sebban et al. 1995b; Miksovska et al. 1996; Valerio-Lepiniec et al. 1997).

"Half-revertants". Since the RQ revertants carry compensatory mutations at both the Q_A and Q_B sites, we constructed plasmids that separate the amino acid substitutions which compensate for site-specific mutations near Q_A from those which compensate for site-specific mutations near Q_B . The strains designated with an "A" carry chimeric plasmids in which the Q_A -site mutations of the revertant are coupled with a wild-type Q_B site. The strains designated "B" carry a revertant Q_B site linked to a wild-type Q_A site. Uncoupling the compensatory mutations using these chimeric plasmids will allow us to determine how the electrostatic mutations near Q_B interact over a large distance with those at the Q_A site in the full revertants to restore the functions lost in the RQ mutant RC.

Preliminary result of kinetic experiments indicate that the RQrevs "X" A have rates of $P^+H_A^-$ $Q_A \rightarrow P^+H_A Q_A^-$ electron transfer that are intermediate between those of the wild-type and RQ strains (P. D. Laible and D. K. Hanson, unpublished observations). The L217Arg→Cys mutation, which is additional to the L212Ala-L213Ala mutations in the RC of RQrev4B, is capable of restoring a nearly native free energy gap between the $P^+Q_A^-$ and $P^+Q_B^-$ states, with a similar pH

dependence (Valerio-Lepiniec et al., 1997). In contrast, the energy level of the $P^+Q_B^-$ state in the RC of RQrev5B is only slightly higher than that of the L212-L213AA double mutant. However, the native-like electrostatic environment for Q_B^- in RQrev4B does not result in a corresponding increase in the rate of transfer for the second electron since that rate is similar in both the RQrev4B and RQrev5B RCs. The L217Arg→Cys mutation does not compensate for the proton donor function of L213Asp, which is another component that is essential for rapid proton transfer to Q_B^- .

Preliminary results indicate that the symmetry-reversed RC of the RQ strain is capable of transferring two electrons to Q_B , at a rate which is not sufficient to support photosynthetic growth (M. Valerio-Lepiniec and P. Sebban, personal communication). Revertants of the RQ strain will give us an idea of what structural and functional elements are important for restoring efficiency to electron and proton transfer pathways in the RQ RC, which is far from native. Experiments are in progress that will determine whether the nature of the compensatory residues that restore function to the Q_A site influences the type of compensatory mutations that are recovered near Q_B (and vice versa). Results should be applicable to mechanistic problems of RC evolution, electron and proton transfer, and protein structure/function.

References

Beroza P, Fredkin DR, Okamura MY, Feher G (1995) Electrostatic calculations of amino acid titration and electron transfer, $Q_A^-Q_B \rightarrow Q_AQ_B^-$, in the reaction center. *Biophys J* 68: 2233-2250

Bylina EJ, Ismail S, Youvan DC (1986) Plasmid pU29, a vehicle for mutagenesis of the photosynthetic puf operon in *Rhodopseudomonas capsulata*. *Plasmid* 16: 175-181

Bylina EJ, Jovine RVM, Youvan DC (1989) A genetic system for rapidly assessing herbicides that compete for the quinone binding site of photosynthetic reaction centers. *Biotechnology* 7: 69-74

Deisenhofer J, Epp O, Miki R, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center from *Rps viridis* at 3 Å resolution. *Nature* 318: 618-624

Ermler U, Michel H, Schiffer M (1994) Structure and function of the photosynthetic reaction center from *Rhodobacter sphaeroides*. *J Bioenerg Biomemb* 26: 5-15

Hanson DK, Nance SL, Schiffer M (1992a) Second-site mutation at M43 (Asn→Asp) compensates for the loss of two acidic residues in the Q_B site of the reaction center. *Photosyn Res* 32: 147-153

Hanson DK, Baciou L, Tiede DM, Nance SL, Schiffer M, Sebban P (1992b) In bacterial reaction centers protons can diffuse to the secondary quinone by alternative pathways. *Biochim Biophys Acta* 1102: 260-265

Hanson DK, Tiede DM, Nance SL, Chang CH, Schiffer M (1993) Site-specific and compensatory mutations imply unexpected pathways for proton delivery to the Q_B binding site of the photosynthetic reaction center. *Proc Natl Acad Sci USA* 90: 8929-8933\

Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mäntele W (1995) Protonation of Glu L212 following QB- formation in the photosynthetic reaction center of *Rhodobacter sphaeroides*:

Laible PD, Zhang Y, Morris AL, Snyder SW, Ainsworth C, Greenfield SR, Wasielewski MR, Parot P, Schoepp B, Schiffer M, Hanson DK, Thurnauer MC (1997) Spectroscopic characterization of quinone-site mutants of the bacterial photosynthetic reaction center. *Photosyn Res*, in press.

Lancaster CRD, Michel H, Honig H, Gunner MR (1996) Calculated coupling of electron and proton transfer in the photosynthetic reaction center of *Rhodopseudomonas viridis*. *Biophys J* 70: 2469-2492

Maróti P, Hanson DK, Baciou L, Schiffer M, Sebban P (1994) Proton conduction within the reaction centers of *Rhodobacter capsulatus*: The electrostatic role of the protein. *Proc Natl Acad Sci USA* 91: 5617-5621

Maróti P, Hanson DK, Schiffer M, Sebban P (1995) Long-range electrostatic interaction in the bacterial photosynthetic reaction centre. *Nature Structural Biology* 2: 1057-1059

Miksovska J, Maróti P, Tandori J, Schiffer M, Hanson DK, Sebban P (1996) Distant electrostatic interactions modulate the free energy level of Q_A^- in the photosynthetic reaction center. *Biochemistry* 35: 15411-15417

Paddock ML, Rongey SH, Feher G, Okamura MY (1989) Pathway of proton transfer in bacterial reaction centers: Replacement of glutamic acid 212 in the L subunit by glutamine inhibits quinone (secondary acceptor) turnover. *Proc Natl Acad Sci USA* 86: 6602-6606

Sebban P, Maróti P, Hanson DK (1995a) Electron and proton transfer to the quinones in bacterial photosynthetic reaction centers: Insight from combined approaches of molecular genetics and biophysics. *Biochimie* 77: 677-694

Sebban P, Maróti P, Schiffer M, Hanson DK (1995b) Electrostatic dominoes: Long distance propagation of mutational effects in photosynthetic reaction centers of *Rhodobacter capsulatus*. *Biochemistry* 34: 8390-8397

Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. *Science* 276: 812-816

Takahashi E, Wright CA (1992) Proton and electron transfer in the acceptor quinone complex of *Rb. sphaeroides*: Characterization of site-directed mutants of the two ionizable residues, Glu^{L212} and Asp^{L213}, in the Q_B binding site. *Biochemistry* 31: 855-866

Valerio-Lepiniec M, Delcroix JD, Schiffer M, Hanson DK, Sebban P (1997) A native electrostatic environment near Q_B is not sufficient to ensure rapid proton delivery in photosynthetic reaction centers. *FEBS Lett* 407: 159-163

Table 1. Symmetry-related Mutants in the Quinone Sites

Strain	QA site		QB site		Phenotype
	M246	M247	L212	L213	
Wild type	Ala	Ala	Glu	Asp	PS ⁺
L212-L213AA	Ala	Ala	Ala	Ala	PS ⁻
M246-M247ED	Glu	Asp	Glu	Asp	PS ⁻
RQ	Glu	Asp	Ala	Ala	PS ⁻

Table 2: Phenotypic revertants of quinone site mutants

Strain	Q _A site				Q _B site				Phenotype	Doubling Time (h)
	M246	M247	M260	L212	L213	L217	M5	M43		
Wild type	Ala	Ala	Met	Glu	Asp	Arg	Asn	Asn	PS ⁺	5.0
RQ	Glu^a	Asp	Met	Ala	Ala	Arg	Asn	Asn	PS ⁻ , site-specific	>100
RQrev4	Glu	Ala	Met	Ala	Ala	Cys	Asn	Asn	PS ⁺ , spontaneous	18.5
RQrev4A	Glu	Ala	Met	Glu	Asp	Arg	Asn	Asn	PS ⁺ , constructed	5.9
RQrev4B	Ala	Ala	Met	Ala	Ala	Cys	Asn	Asn	PS ⁺ , constructed	18.5
RQrev5	Glu	Tyr	Met	Ala	Ala	Arg	Asp	Asn	PS ⁺ , spontaneous	21.1
RQrev5B	Ala	Ala	Met	Ala	Ala	Arg	Asp	Asn	PS ⁺ , constructed	8.0
RQrev3	Glu	Tyr	Met	Ala	Ala	Arg	Asn	Asp	PS ⁺ , spontaneous	n.d.
RQrev3A=5A	Glu	Tyr	Met	Glu	Asp	Arg	Asn	Asn	PS ⁺ , constructed	n.d.
RQrev3B=6B	Ala	Ala	Met	Ala	Ala	Arg	Asn	Asp	PS ⁺ , constructed	6.1
RQrev6	Glu	Tyr	Leu	Ala	Ala	Arg	Asn	Asp	PS ⁺ , spontaneous	9.7
RQrev6A	Glu	Tyr	Leu	Glu	Asp	Arg	Asn	Asn	PS ⁺ , constructed	15.6
M246-M247ED	Glu	Asp	Met	Glu	Asp	Arg	Asn	Asn	PS ⁻ , site-specific	>100
QArev1	Ala	Asp	Met	Glu	Asp	Arg	Asn	Asn	PS ⁺ , spontaneous	6.0
QArev2	Gly	Asp	Met	Glu	Asp	Arg	Asn	Asn	PS ⁺ , spontaneous	20.0

^aBold type indicates mutant residue.

Figure 1. Molecular model of a cross-section of the *Rb. sphaeroides* reaction center (Chang et al., 1991; viewed from the periplasmic surface) near the level of the quinones, showing the α -carbon backbone of the L, M, and H chains, and the side chains of residues which are substituted in the revertant strains. All of these residues lie at approximately the same level in the membrane. Wild-type residues shown: L212Glu, L213Asp, L217Arg, M43Asn, M5Asn, M260Met. Also pictured: Mutant residues M246Glu, M247Tyr.

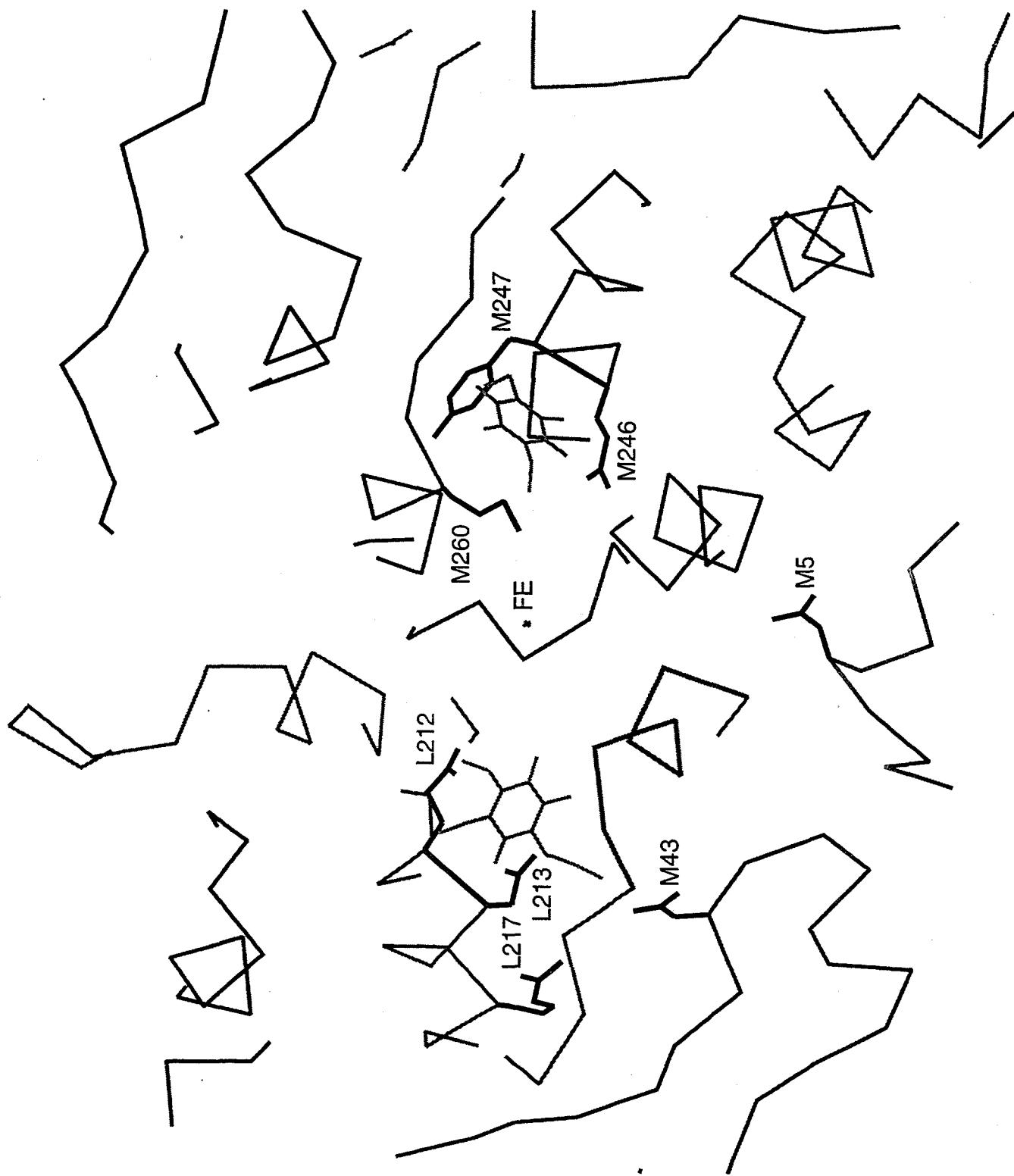


Figure 1