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Preliminary Investigations on the Carbon Dioxide Sequestering Potential of
Ultramafic Rocks

Fraser Goff, George Guthrie, Dale Counce, Emily Kluk,
Deborah Bergfeld, and Marjorie Snow

ABSTRACT

Fossil fuels continue to provide major sources of energy to the modern world even though global
emissions of CO, are presently at levels of 19 Gt/yr. Future antipollution measures may include se-
questering of waste CO, as magnesite (MgCQOj3) by processing ultramafic rocks to obtain reactable Mg.
Huge ultramafic deposits consisting of relatively pure Mg-rich silicates exist throughout much of the
world in ophiolites and layered intrusions. Peridotites (especially dunites) and serpentinites comprise
the best ores because they contain the most Mg by weight and are relatively reactive to hot acids such
as HCI. Although mining such deposits on a large scale would have environmental impacts, the se-
questering process could provide Cr, Ni, and other metals as byproducts and could dispose of existing
waste (“white”) asbestos. Small ultramafic bodies (~1 km) can potentially sequester about 1 Gt of
CO; or about 20% of annual US emissions. A single large deposit of dunite (~30 km®) could dispose of
about 20 yr of current US CO, emissions. The cost and environmental impact of mining these deposits

must be weighed against the increased costs of energy and benefits to the atmosphere and climate.

1.0 INTRODUCTION

Numerous resource evaluations show that world-
wide reserves of fossil fuels can provide mankind’s
energy needs for many centuries (e.g., United Na-
tions, 1995), but the major drawback of consum-
ing these resources is that CO, emissions into the
atmosphere will steadily increase. The United
States already produces about 5 Gt of CO, annu-
ally, over 25% of the present global output of 19
Gt. These quantities are an order of magnitude
greater than the average yearly production of CO,
by volcanoes and metamorphic processes and an
order of magnitude greater than the consumption
rate of CO, by natural geologic processes (Kerrick
et al., 1995). During the last two centuries, CO,
levels in the atmosphere have increased approxi-
mately 30% (Ramanathan, 1988) raising legitimate
concerns about global climate change (Weart,
1997, Broecker, 1997).

Various schemes have been proposed that would
reduce CO, emissions while allowing continued
consumption of fossil fuels (Blok et al., 1992).
Lackner et al. (1995) described two chemical pro-
cesses to sequester CO, as carbonate minerals.

These processes would combine CO, with diva-
lent cations (principally Mg and/or Ca) derived
from natural mineral deposits by either direct car-
bonation at high temperature or by reactions in
aqueous solution. At this stage of research, both
processes look thermodynamically favorable but
details of actual implementation require further
investigation.

Magnesium and calcium make up about 2.0 and
2.1 mol% of the Earth’s crust, respectively, pri-
marily bound in silicate minerals (Brownlow,
1979). Although molar abundances are similar,
Mg silicates contain more reactive material per ton
of rock as a result of the lower molecular weight
of Mg. Also, pure deposits of Mg silicates are more
widely distributed and abundant than Ca silicate
deposits. Finally, two types of Mg silicate miner-
als occur in relatively pure deposits that have ther-
modynamic and chemical properties desirable for
carbon dioxide waste processing. These minerals,
forsterite and serpentine, are relatively soluble in
hot HCI. The rocks in which these minerals occur
are peridotites and serpentinites, two types of ul-
tramafic rocks (rocks rich in Mg and Fe).




The object of this paper is to discuss the geologic
distribution, geochemistry, and acid dissolution
properties of peridotites and serpentinites. We have
also provided very preliminary resource assess-
ments of two “ore bodies” (one from each type of
deposit) and have calculated the CO, sequestering
potential of eight ultramafic deposits in the United
States.

2.0 RESOURCES

2.1 Distribution, Origin, and Age

As mentioned above, the magnesium-rich, ultra-
mafic rocks (primarily peridotites and
serpentinites) that we envision as best candidates
for ores in the sequestering process, are distrib-
uted throughout the world. There are at least nine
types of ultramafic rock associations, but they oc-
cur in magmatic-tectonic settings too varied to
document here (Coleman, 1977). The most volu-
minous and widespread ultramafic rocks are the
alpine peridotites that form the basal sequence of
unique rock associations called ophiolites.
Ophiolites are slabs of oceanic crust uplifted and
eroded along subduction zones and plate bound-
aries. The basal peridotites represent detached
slices of the Earth’s upper mantle exposed by these
tectonic processes. Because they occur mostly
along the upper plate of present and past subduc-
tion zones, ophiolites are found as belts through-
out most of the world (Fig. 1), having discontinu-
ously exposed dimensions of as much as 1000 x
100 km. The younger belts are found primarily
along continental margins, but older belts are ex-
posed in older tectonic terraines. Famous ophiolite
massifs occur in the Alps (type locality), the Oman,
and New Caledonia. The one continent having
relatively little ophiolite is Africa.

Within North America (Fig. 2), ophiolites are found
along the Appalachian mountain chain stretching
from the southeast US into Quebec and Newfound-
land and along the Cordilleran chain stretching
from Alaska to California. The Appalachian belt
resulted from uplift and deformation during early-
to mid-Paleozic subduction along the east coast of
North America, but the Cordilleran belt resulted
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from several late-Paleozoic to early-Tertiary sub-
duction events along the west coast. Smaller but
perhaps equally famous ophiolite belts also occur
in the Caribbean (particularly Cuba) and in Gua-
temala (Chuacus Mountains). These latter belts
are found along present, transform-fault, plate
boundaries (the North American and Caribbean
plates separated by the Motagua fault zone in Gua-
temala).

When examined more closely, the basal ultrama-
fic rocks in ophiolite belts are found to be elon-
gate ribbons and fragments that parallel regional
geologic structures (Fig. 3). The tectonic processes
that create ophiolites and expose elongate frag-
ments of the upper mantle are complex and usu-
ally take several million years to complete (Fig.
4). Individual exposures of ultramafic rock may
occupy hundreds of square kilometers or may be
as small as hand samples incorporated into fault
Zones.

The second most voluminous class of ultramafic
rocks occurs in large, layered intrusions at local-
ized spots worldwide. These magma bodies gen-
erally had initial compositions similar to mantle
basalt and were intruded into shallow levels of the
Earth’s crust (usually <8 km). The larger bodies
tend to be Precambrian age (=650 Ma). Because
of their great initial volumes, these magmas cooled
slowly within the crust and the first formed miner-
als of crystallization (primarily Mg-rich silicates)
settled by gravity toward the bottom of the intru-
sions. As aresult, layers of peridotite as thick as a
few hundred meters can be found in exposures as
long as several tens of kilometers at some sites.
The largest such body is the famous Bushveld
Complex in South Africa, but other well-known
bodies occur at the Stillwater, Sudbury, and
Skaergaard locations in North America (Fig. 2).
Of these three, the late Archean (2.7 Ga) Stillwater
Complex in Montana has the largest exposures of
gravity-settled peridotite in North America (about
48 km long; Czamanske and Zientek, 1985).

Ultramafic rocks contain many mineral resources.
They are the primary source of chrome, platinum
group metals, nickel, and cobalt; however, they
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Fig. 1. Polar projection of the world showing generalized locations of ophiolite belts (from Coleman, 1977).

may also be a source of manganese, copper, mer-
cury, and other metals. Diamonds are found in
ultramafic pipes (magmatic conduits) called
kimberlites. Chrysotile asbestos is mined from
serpentinites (O’ Hanley, 1996).

2.2 Geochemistry and Mineralogy of Perido-
tites and Serpentinites

Most alpine peridotites (Coleman, 1977) consist
primarily of Mg-rich olivine (forsterite,
(Mg,Fe),Si0,) with lesser amounts of Mg-rich
orthopyroxene (enstatite, (Mg,Fe)SiO;),
clinopyroxene, and chromite (chrome spinel,
FeCr,04). The clinopyroxene, usually Cr-rich di-
opside, contains some Ca, Al, Ti, and Na. Typical
alpine peridotites contain >10% orthopyroxene and
are called harzburgites (Fig. 5). If the composi-

tion contains 210% clinopyroxene, the peridotite
is called lherzolite. Peridotites with 290% olivine
are called dunites. The olivine in alpine perido-
tites generally contains 88% to 94% of the Mg
component, and coexisting pyroxenes contain up
to 7 wt% Al (Fig. 6). Peridotites with low concen-
trations of Al and alkali metals are more desirable
as ores (discussed below).

Peridotite horizons in layered intrusions typically
are richer in the two pyroxene minerals than al-
pine peridotites (Hess, 1960). Under the micro-
scope, olivine and orthopyroxene in alpine peri-
dotites usually display shears, semiparallel frac-
tures, deformed crystal structures, and kink bands
resulting from the stresses that the rocks have un-
dergone during subduction and emplacement.
These features are usually absent within the same
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Fig. 2. Locations of ophiolite belts and major layered intrusions of North America. Example ophiolite bodies
mentioned in text are: B = Baltimore Complex; BM = Belvidere Mountain; CM = Canyon Mountain; G = Green
Mountain; TS = Twin Sisters (Coleman, 1977, and references in text).

minerals of layered intrusions. Chemical analy-
ses of some peridotite bodies in the US, which high-
light alpine peridotites and the Stillwater intrusion,
are listed in Table 1.

Usually peridotites within ophiolite sequences and
layered intrusions are partly to completely recon-
stituted into hydrated Mg-rich silicates (serpentine
and related minerals). The hydration products form
by reaction of peridotites with seawater and
groundwaters during various stages of their evo-
lution and tectonic history (Coleman, 1971, 1977,
O’Hanley, 1996). The various metamorphic pro-
cesses that operate during serpentinization are
much too complex to review here. The resulting
serpentinites may contain some relict olivine and
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pyroxene, but more often they contain only ser-
pentine minerals (Mg;(Si,Os) (OH),)), magnetite
(Fe-rich spinel), and residual chromite, plus brucite
(Mg(OH),), carbonates (usually magnesite,
MgCQOs), and silica (SiO,). The latter three miner-
als are most common along veins and fractures but
can be pervasive. Serpentinites may contain as
much as 14 wt% water. Chromite, the least reac-
tive of the original minerals, is usually preserved.
Microscopic examination of serpentinite textures
reveals that the serpentine minerals retain crystal
shapes and other characteristics of original peri-
dotite minerals (O’Hanley, 1996).

The three serpentine minerals (lizardite, chryso-
tile, antigorite) are isochemical with very similar
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Fig. 3. Map of California (modified from Jennings, 1977) showing locations of ultramafic provinces and some
example sites described in text; the Vulcan Peak peridotite in extreme southern Oregon is actually part of the
greater Josephine ophiolite, the largest in North America.

sheet-like structures. When subjected to stress,
chrysotile sheets roll into the elongate fibers known

as asbestos. Lizardite and chrysotile are the most -

common serpentine minerals and form at lower
temperatures than antigorite (<250°C). Textural
evidence in rocks shows that the hydration of
forsterite to form serpentine (and brucite) is ac-
companied by a volume increase (as much as 53%).
Thus, the serpentinites are low-density rocks (about
2.6 g/cm3) relative to the original peridotites (about
33 g/cm3). Serpentine breaks down above 500°C
to forsterite + talc + water (O’Hanley, 1996).

Chemical analyses of serpentinites are given in
Table 2. Because of their lower densities and high
water contents, serpentinites contain substantially
less Mg than peridotites (compare with Table 1).
On the other hand, unaltered peridotites in large
volumes (>1 km3) are much less common in na-
ture because of their high reactivity in the geologic
environment. Table 1 highlights some of the larger,
unaltered peridotites in the US.

Because ultramafic rocks are low in K and P, they
sustain a unique flora and fauna that are notice-
able to even the most casual of observers
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Fig. 4. Schematic diagrams showing various mechanisms for emplacement of ophiolites; Fig. 4-D shows the
mechanism most similar to the western margin of North America (from Coleman, 1977). The detailed mecha-
nisms of ophiolite emplacement are much more complicated than these cross-sectional drawings.

(O’Hanley, 1996). Most grasses will not grow on
serpentinites; instead, one observes a restricted as-
semblage of thorny brush and pines. Ultramafic
soils tend to be brick red to dark orange from oxi-
dation of Fe. Near-surface outcrops combine these
bright soil colors with the greens, grays, and blacks
of the host rock. Sharp vegetation and soil con-
trasts occur along contacts between ultramafic
rocks and other formations.

2.3 Best Ultramafic Ores for Carbonate Dis-
posal

As described below, olivine and serpentine miner-
als are relatively soluble in hot HCI at relatively
low pressure. In fact, mineralogists of an earlier
era used hot, 1:1 HCI as a test for olivine and ser-
pentine (Berry and Mason, 1959). The reaction
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produces a yellow-green acidic solution contain-
ing divalent cations (primarily Mg*> and Fe*?) and
residual silica gel (+ water). In contrast, spinels
and pyroxenes do not dissolve readily in the HCI.
These residual minerals and the silica must be sepa-
rated from the acid solution before the sequester-
ing process can continue. Although Cr-spinel (and
other potentially valuable metals) may contribute
greatly to the economics of the whole process, the
pyroxenes contribute virtually nothing of value.
Thus, peridotites and serpentinites with little py-
roxene comprise the most desirable ores.

Fresh dunite (or any unserpentinized peridotite for
that matter) is relatively uncommon in large quan-
tities. The largest such body in the US is the Twin
Sisters Dunite (Ragan, 1963) in the Cascade Range
of northwest Washington (Fig. 2; Table 1). This
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peridotites (Coleman, 1977).

dunite mass covers roughly 90 km” and is pres-
ently mined by open-pit methods for refractory
(foundry) sand. Our examination of a large (20-
kg) sample provided by the operator shows that it
contains <4% serpentine and other secondary re-
action products. Arelatively large, unserpentinized
peridotite named the Green Mountain Peridotite
(>5km®) occurs in the Appalachians of North Caro-
lina and is also mined primarily for foundry sand.
This material contains =5% orthopyroxene and
roughly 10% of high-grade metamorphic products
including talc and amphibole (minerals not soluble
in HCI; see Appendix A). This material is less
desirable than dunite as an ore even though it con-
tains nearly comparable amounts of Mg.

Partially serpentinized peridotite and dunite in large
masses (20% to 80% serpentine) are more com-
mon. Examples include the Belvidere Mountain
prospect in Vermont (Labotka and Albee, 1979),
the Canyon Mountain and Vulcan Peak deposits
in Oregon (Thayer, 1977; Himmelberg and Loney,
1973), the Del Puerto and Burro Mountain bodies

of California (Himmelberg and Coleman, 1968;
Page, 1967), and others (Figs. 2 and 3; Table 1).
The Belvidere, Vulcan Peak, and Del Puerto masses
contain small zones (<1 km2) of relatively unal-
tered dunite.

Completely serpentinized peridotite is exception-
ally common in certain areas of the eastern and
western US. The Baltimore Complex contains
>80% serpentinite (Fig. 2), and nearly all the Cali-
fornia deposits shown in Fig. 3 consist of 295%
sepentinite (Morgan, 1977; Rice, 1957; Table 2).
The Wilbur Springs body in north-central Califor-
nia covers over 200 km> (Rice, 1957). Perhaps
the largest body of continuous serpentine outcrop
in the US occurs in the Josephine Peridotite of
northwest California, extending over at least 800
km® (Harper, 1984). These deposits, although
huge, display variable alteration of mostly
harzburgite and are not so desirable as the unal-
tered dunites. Some occur in rather remote loca-
tions that make them economically unattractive.
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3.0

ACID DISSOLUTION EXPERIMENTS

We conducted a variety of experiments on several
ultramafic rock samples to compare analyses re-
sulting from HCl dissolution to those resulting from
dissolution by a more common rock reagent (HCI-
HNO;-HF). X-ray fluorescence (XRF) analyses
and standard values for some samples are listed in
Table 3. The results of these experiments show

that
1.

Hot HCl is better at dissolving Mg from ul-
tramafic rocks than the three-reagent mix-
ture (=35 wt% versus <15 wt% Mg). Re-
sidual products (about 45 t0 60 wt%) from
HCl dissolution include silica gel, spinels,
and pyroxenes and additional silicates such
as talc, amphiboles, chlorite, and sericite.

The three-acid mixture apparently precipi-
tates MgF compounds while dissolving the
rock.

Hot HCl is slightly better at dissolving Mg
from serpentinite than from peridotite, in-
cluding dunite, because serpentinites con-
tain less nonreactive silicates such as pyrox-
ene. Much of the Fe in serpentinites occurs
as microcrystalline magnetite that is rela-
tively easy to dissolve in HCI.

Hot HCl is less effective at dissolving many
trace metals from ultramafic rocks than the
three-acid mixture. This is especially true
for high field-strength elements like Cr and
slightly true for Mn. On the other hand, Co
(not listed in Table 3) and Ni mainly reside
in olivine; thus, HCI dissolution works well
for these elements.
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Table 3: Results of dissolution and analysis using 1 g of ultramafic rock sample mixed in hot, 1:1 HCI
or in HCI-HNOs3-HF. The results are compared with XRF analyses (D. Counce and E. Kluk, EES-1).
The residues are primarily mixtures of silica gel, spinels, and pyroxenes. No single reagent can effec-
tively dissolve all components from ultramafic rocks, but HCl is more effective at dissolving Mg than
the mixed reagent and works better on serpentinites than peridotites.

Sample Types Residue MgO  Mn Ni Cr
Wt%) _ (wt%) (all ppm)

Peridotites

DTS-1 Std Value (dunite) -— 4959 929 2360 3990
DTS-1 powder (3 acids) -— 8.04 916 2454 157
DTS-1 powder (hot HCI) - 596 53.057 951 2530 20
UNIMIN-2 Std Value (dunite) 48.01 - 2907 8867
UNIMIN-2 XRF (4% serp) 4793 930 2830 3820
UNIMIN-2 ore (hot HCI) 56.5 4247 747 2524 21
UNIMIN-2 hand ground ore (hot HCI) 63.1 4038 761 2430 27
UNIMIN-2 XRF powder (hot HCI) 53.0 46.89 830 2728 127
UNIMIN-1 Std Value (peridotite) - 4765 - 3500 1710?
UNIMIN-1 XRF (10% serp) —- 46.68 1005 140 3832
UNIMIN-1 XRF powder (hot HCI) 48.1 41.28 738 2479 657
PCC-1 Std Value (peridotite) - 43.43 930 2380 2730
PCC-1 powder (3 acids) — 8.04 899 2484 804
JP-1 Std Value (peridotite) — 4472 930 2460 2970
JP-1 powder (3 acids) - 7.73 914 2445 709

Serpentinites

UB-N Std Value (100% serp) — 3521 929 2000 2300
UB-N powder (3 acids 5/96) — e 981 2064 2145
UB-N powder (3 acids 2/97) - 13.71 985 2102 2200
FG96-312 XRF (100% serp) - 33.06 1045 2514 2688
FG96-312 XRF powder (3 acids) — 1014 2312 1998
FG96-312 XRF powder (60°C HCI) 48.8 3092 765 2385 1440
FG96-312 XRF powder (<128°C HCI) 46.6 3275 865 2120 1595
FG96-312 XRF powder (£208°C HCI) 47.5 32.66 840 2270 2135
FG96-312 60°C residue (3 acids) - — 103 57 1481
FG96-312 60°C (residue + HCI leachate) — 868 2442 2921
UMD96-14 XRF (85% serp) - 3541 1155 2253 3054
UM96-14 XRF powder (hot HCI) 422 3404 985 1960 1992
UM96-14 XRF powder (3 acids) — 15.19 1039 2137 2849
UMD96-17 XRF (50% serp) e 41.63 1050 2560 2794
UM96-17 XRF powder (hot HCI) 46.7 34.64 784 2141 185
UMB96-17 XRF powder (3 acids) — 12.79 908 2285 435
UMB96-21 XRF (40% serp) - 4431 951 2754 3160
UM96-21 XRF powder (hot HCI) 43.4 41.82 828 2398 25
UMD96-21 XRF powder (3 acids) — 1146 822 2653 33
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4,  HCI dissolution at 60°C and atmospheric
pressure is nearly as effective as HCI at
200°C and 15 bars for dissolving Mg from
serpentinite (see results for sample FG96-
312, Table 3). However, the gain in trace
metal dissolution is too small to make this
procedure worthwhile.

4.0 CALIFORNIA STUDY REGION

At this point in our investigations, we have chosen
to focus on California ultramafic bodies (Fig. 3),
because their basic geology is well known, their
distribution and volume is significant, their prox-
imity to population and power manufacturing cen-
ters is favorable, their previous exploitation is well
established, and one author (Goff) has previous
experience with them.

California ultramafic bodies occur in four geomor-
phic provinces: the Coast Ranges, Big Sur, Sierra
Nevada foothills belts, and the Klammoth-Trinity
region (Saleeby, 1982; Harper, 1984; Dickinson et

al., 1996). It is well beyond the scope of this re-

port to review the age and tectonic history of each
province in detail, but each formed during subduc-
tion-related events that occurred from about 300
to 50 Ma (Paleozoic to Early Tertiary). Two ultra-
mafic bodies in the Coast Ranges belt were cho-
sen for preliminary study: The Del Puerto body
because it contains a large mass of relatively
unserpentinized ultramafic rock and the Wilbur
Springs body because it is mostly serpentinized.
Chemical analyses of all samples studied from
these two bodies appear in Appendix B.

4.1 Del Puerto Ultramafic Body

The Del Puerto ultramafic body lies 60 km due
east of San Jose in the California Coast Ranges
(Himmelberg and Coleman, 1968). The ultrama-
fic and surrounding rocks are well explored be-
cause they have been mined for Mg (magnesite),
Mn (pyrolusite, MnQO,), cinnabar (HgS), and
chromite (Bodenlos, 1950; Hawkes et al., 1942;
Maddock, 1964). The body is part of an elongate
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slab of ophiolite whose ultramafic part (up to 300
m thick and about 40 km®) is variably serpentinized
(Evarts and Schiffman, 1982).

The contact between ultramafic rock and underly-
ing marine deposits of the Franciscan Complex
(Jurassic to Eocene) is relatively flat and sharp.
The extreme base of the ultramafic body consists
of strongly foliated antigorite schist grading up-
ward into sheared to massive, serpentinized
harzburgite and local zones of dunite. The west-
ern crest of the deposit consists of material that is
only 5% to 40% serpentinized and contains 245
mol% MgO (Tables 1 and 2). The east end of the
deposit is more highly serpentinized (Maddock,
1964; Himmelberg and Coleman, 1968).

Within the deposit, cross-cutting faults are perva-
sive. A set of high-angle, northwest-trending faults
and fractures host magnesite veins, pods, and
eroded spring deposits (Bodenlos, 1950). Consid-
erable geochemical research has shown that the
magnesite forms from groundwater alteration of
the ultramafic rock and transport of Mg to favor-
able sites for precipitation (Barnes et al., 1967;
1973). Obviously, the host rocks are completely
compatible with the magnesite waste that would
be generated by our carbonate disposal process.

Although the magnesite has been largely mined
out, the haul roads, shafts, pits, and dumps are still
visible (Fig. 7a). Since World War II, the region
has been mostly used for cattle ranching and hunt-
ing clubs. The ultramafic rocks are covered pri-
marily with brush of manzanita and live oak with
scattered pines. The area may be reached by paved
roads from the west, east, and north. A small
county park is located on the northeastern margin
of the area. More recently, small subdivisions and
“ranchettes” of single-family homes have been
built in the San Antonio Valley on the west margin
of the ophiolite. The impact of renewed mining
for carbonate waste disposal would be carefully
examined by the local public. Historic (and di-
lapidated) mining infrastructure is visible all over
the Del Puerto body.




4.2  Wilbur Springs Serpentinite

The Wilbur Springs serpentinite mass is located
about 150 km NNE of San Francisco on the east-
ern side of the Coast Ranges (McLaughlin et al.,
1989). The serpentinite is the preserved base of
an extensive, north-trending sheet of ophiolite that
isroughly 50 km long and averages 2 to 6 km wide.
The thickness of the deposit varies from a few tens
of meters on the west to several hundred meters
on the east.

In contrast to the Del Puerto deposit, our examina-
tions show that most outcrops have very little pre-
served peridotite minerals (5% overall), although
original textures are occasionally well preserved.
The rocks are serpentinized harzburgites that are
pervasively faulted and sheared throughout much
of the deposit (Fig. 7b). Typical samples from
widespread locations in the mass contain about 36
mol% MgO (Table 2). The serpentinites overlie
deformed Franciscan Complex rocks on the west
and south and are overlain by Great Valley se-
quence marine sediments (Jurassic-Cretaceous) on
the east.

A WNW-trending group of hot springs in an 8-
km-long zone occurs at the extreme southern edge
of the serpentinite body and is the surface expres-
sion of a small geothermal reservoir (Goff and
Janik, 1993). Drilling for geothermal resources in
the 1960s failed to find sufficiently high tempera-
tures for electrical generation (reservoir tempera-
ture is £140°C at >2000 m). The presence of low-
temperature mineral springs, which occur sporadi-
cally throughout most of the serpentinite, indicates
that modern day serpentinization is happening by
reactions with groundwaters. Complexion Spring
(£20°C), near the heart of our study area, precipi-
tates brucite (Mg(OH),) and has a pH <12 (Barnes
et al, 1972).

The southern margin of the serpentinite also hosts
several small cinnabar mines, last worked in the
early 1950s, and one small gold mining district that
has not been worked since World War I (Peters,
1991; Goff and Janik, 1993). Homestake Mining
Company reexplored the deposit in the 1980s but
decided to drop their lease because of low tonnage
of gold-bearing rock. Wilbur Springs proper is a
small, but thriving, hot springs resort first devel-
oped before the turn of the century (Goff and Janik,

blocky rubble.

Fig. 7. (a) Looking northwest at magnesite prospects (white
dumps) along the faulted western margin of the Del Puerto
ultramafic body, California; note the brushy vegetation that
characterizes the peridotite and dunite. (b) Outcrop along
‘Walker Ridge Road in the Wilbur Springs serpentinite, Cali-
fornia (rock hammer for scale); the serpentinite (sample
UMB96-12, Appendix B) has been sheared and fractured into

(b)
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1993). The resort now caters to people who seeck
quiet, natural surroundings.

. Most of the land occupied by the serpentinite be-
longs to the US Bureau of Land Management
(BLM) or to a few cattle ranches. Indian Valley
on the west side of the mass contains a reservoir
that is used for recreational purposes, when there
is water. The serpentinite hosts scrubby vegeta-
tion consisting of manzanita, buckthorn, live oak,
scattered pines, and rare cypress trees that can be
nearly impenetrable to humans on foot. The area
may be reached by dirt road from the south, east,
and northwest.

As a precedent for open-pit mining in this region,
the McLaughlin gold mine (Homestake Mining
Company) was constructed in a similar geologic
and physiographic environment to Wilbur Springs
in the late 1970s. The McLaughlin mine is located
about 30 to 40 km southwest of the Wilbur Springs
serpentinite (Sherlock et al., 1995). The gold has
now been mined out, and the site is being re-
claimed. Processing of stockpiled ore will yield
19.2 tons of gold before Homestake abandons the
site in the year 2003 (Field, 1996). A large open-
pit mine designed for carbonate waste disposal
would probably have considerable community sup-
port in this economically depressed area. Of
course, the environmental impact would have to
be fully evaluated before any development were
to proceed.

5.0 DISPOSAL OF CRYSOTILE ASBES-
TOS

Serpentine minerals (chrysotile, lizardite, and
antigorite) are the common hydration products of
ultramafic rocks. Consequently, serpentinites host
commercial deposits of chrysotile or white asbes-
tos (Coleman, 1977; O’Hanley, 1996). Because
most serpentinites contain appreciable chrysotile
(usually in noncommercial form), special environ-
mental precautions may be required during min-
ing (Coleman, 1996). However, this is not a new
issue. As noted above, mining activities are ongo-
ing in these areas and have been for many years.
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Chrysotile is a layer silicate with the ideal formula
Mg;S1,05(0OH), (Veblen and Wylie, 1993). It ac-
counts for ~90% of the asbestos that has been used
historically in the United States (Ross, 1981), and
itis the primary type of asbestos used in tnsulation
and many other construction materials. Crysotile
forms the bulk of asbestos-contaminated waste
resulting from removal activities.

The health risks associated with chrysotile have
been the focus of extensive scientific and public
debate. Much of the debate has focused on whether
chrysotile can cause mesothelioma (a rare type of
cancer) in humans. Although this issue is largely
unresolved, the risk from chrysotile appears to be
much less than that posed by amphibole asbestos
{Mossman et al., 1990). Chrysotile asbestos contin-
ues to be removed from buildings, albeit at a lower
level than in years past. This asbestos-containing
material must be disposed of in a landfill with spe-
cial precautions prescribed by EPA (e.g., the use
of a >6-inch cover of asbestos-free material).

Chrysotile is readily amenable to the sequestering
process outlined above. For each kilogram of
chrysotile, 0.48 kg of CO, can be consumed in the
process (i.e., R(CO,) = 2.10, Table 4). Further-
more, chrysotile dissolves rapidly relative to many
other Mg-bearing silicates such as tremolite. Hume
and Rimstidt (1992) studied the kinetics of chryso-
tile dissolution at 37°C, pH 4 to 7 and low ionic
strengths as found within the human lung and found
that the dissolution rate is approximately constant
and zero-order with an average rate of k = 5.9 x
107 mol m™s™. They also developed a shrink-
ing solid-cylinder model to determine the times
required to dissolve completely chrysotile fibers
of specific sizes. This model predicts that a chryso-
tile fiber would dissolve ~20 and ~600 times faster
than a comparably sized fiber of amphibole or
silica, respectively. In other words, chrysotile (and,
probably, all of the serpentine minerals) dissolves
very rapidly relative to most other phases in ultra-
mafic rocks under conditions similar to those pro-
posed in the sequestering process (as verified by
acid dissolution experiments).
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6.0 SEQUESTERING POTENTIAL OF
TYPICAL ULTRAMAFIC BODIES

The CO,-sequestering potentials of some US ul-
tramafic bodies are compared in Table 4. Besides
listing the mineralogy of fresh and altered compo-
nents, the volume, bulk density, and bulk Mg con-
tent of each body were estimated using published
geologic maps, reports, and chemical analyses.
Fresh peridotites, especially dunites, contain the
most Mg/t of rock. Because Stillwater peridotites
contain relatively more pyroxene and less olivine,
it is the least attractive peridotite body evaluated.
Completely serpentinized peridotite is more reac-
tive to hot HCI than fresh peridotite, but all eco-
nomic tradeoffs for processing various ultramafic
rocks have not been evaluated. For example, fresh
peridotite is more precious and possibly more dif-
ficult to mine than typical serpentinite.

At a deposit such as the Del Puerto site (R(CO,) =
2.40), every ton of sequestered CO, would require
mining, crushing, and dissolving 2.4 t of ultrama-
fic rock (on average). Every ton of CO, would
precipitate 1.8 t of magnesite that would be back-
filled into the open-pit mine. An additional 1.2 t
of silica and residual minerals such as pyroxenes
and chromite would be backfilled with the mag-
nesite, although some could be sold for other in-
dustrial uses. The process would also generate
roughly 0.15 t dissolved Fe per ton of fixed CO,
that could be precipitated as the oxide for feed-
stock in the steel industry.

If completely mined, the Del Puerto site would
yield over 7 Gt of Mg, roughly 2 Gt of Fe, about
80 Mt of Cr, another 80 Mt of Ni, and perhaps 30
Mt of Mn. These quantities could impact the ecci—
nomics of existing metals industries. The dissolved
Mg could fix 14 Gt of CO,. Although the ton-
nages seem huge, the US currently generates 5 Gt
of CO, yearly. Consequently, this deposit could
sequester the equivalent of only 2.8 yr of domestic
CO, waste and only 0.74 yr of terrestrial CO,
waste. Larger ultramafic bodies such as the Twin
Sisters dunite or the serpentinites of the Baltimore
Complex could sequester considerably more CO,
over time than an intermediate-sized deposit such
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as the Del Puerto mass. The environmental im-
pact of such large-scale mining and industrial pro-
cessing would have to be weighed against the im-
pact of continued CO, emissions to the atmosphere,
the risk of global climate change, and increased
energy costs.
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Appendix A: Electron Microprobe Analysis of Ultramafic Rocks

A scheme was developed for rapid identification of primary and secondary minerals in ultramafic
rocks using the electron microprobe (EMP). As an example, we first examined by petrographic micro-
scope the minerals present in a polished thin section made from a densely packed grain mount of
crushed rock from the Green Mountain Peridotite, North Carolina. This examination revealed that the
perdiotite grains were composed of about 70% olivine, pyroxene, and chromite (primary minerals).
Other possible phases (secondary minerals) included talc, phlogopite, chlorite, serpentine, anthophyllite,
tremolite, brucite, and magnesite. Next, a generic EMP analysis file was created to quantify the ele-
ments Si, Al, Fe, Mn, Nj, Ti, Cr, Ca, Na, Mg, and K to provide information on as many mineral phases
as possible. No attempt was made to account for water in known hydrous minerals such as talc and
serpentine, and for possible presence of fluorine and chlorine. PAP matrix corrections were used to
reduce the raw data (Pouchou and Pichoir, 1985). Because Mg-rich silicate phases were the specific
target of this thin section reconnaissance, analyses of Fe-Cr oxide minerals were not studied further.
We did not identify brucite or magnesite in our grain mount of this rock. Analyses with totals less than
80 wt% were rejected. Cations were normalized to six oxygen atoms per unit cell for all analyses to
promote mineral recognition by chemical stoichiometry.

Initial microprobe analysis of about 50 randomly selected grains verified that olivine (approximately
Fogy) was the dominant phase. In order to sample as many other phases as possible, olivine grains were
avoided during the second step of data acquisition (100 randomly selected grains) in which talc, tremo-
lite, chlorite, serpentine, pyroxene, chrome spinel, and the ubiquitous olivine were identified. Phase
identification was based on general chemistry and cation ratios. Specifically, a plot of Si cations
versus Sum (Fe + Mg) cations (Fig. A-1) clearly separates the phases present and is especially useful in
identifying minerals that may have appreciable cation substitution such as serpentine. This analytical
scheme provides rapid identification and compositional information on the silicate alteration phases
(>1 modal%) that typically occur within ultramafic rocks.
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Fig. A-1: Plot of Si cations versus sum (Fe + Mg) cations for the 100 grains analyzed in step two of the
microprobe investigation. Secondary minerals in slightly metamorphosed Green Mountain Peridotite form dis-
tinct populations of points. Trem = tremolite; pyrox = pyroxene; oliv = olivine.
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