

Curved Crystal Study of De-excitation Gamma Rays in ^{184}W Following Neutron Capture

W F Davidson

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Division of Physics, National Research Council of Canada, Ottawa, Canada
K1A 0R6 and Institut Laue-Langevin 38042 Grenoble, France

C. W. Reich and R. C. Greenwood

Idaho National Engineering Laboratory, EG&G Idaho, Inc., Idaho Falls, Idaho
83415, U.S.A.*

H R Koch

Institut für Kernphysik, Kernforschungsanlage Jülich, D-5170 Jülich,
West Germany

MASTER

Earlier studies of the ^{184}W level scheme from radioactive decay of the two ^{184}Re isomers (McMillan *et al.* 1974) and from the $^{183}\text{W}(\text{n},\gamma)$ reaction (Greenwood and Reich 1974) have provided a rather detailed picture of the rotational-band structure of this nucleus in the region below ~ 2 MeV. The analysis of these data permitted a number of conclusions to be drawn regarding the nature and the strength of the coupling among the different bands of both collective and two-quasiparticle character. One of the interesting features to emerge from these studies was the observation of low-energy γ rays which could be assigned as transitions between excited positive-parity collective bands. To provide more definite information on these possible low-energy γ rays and hence to address the question of the existence of non-zero E2 matrix elements between the collective positive-parity bands in ^{184}W , we have remeasured the secondary γ -ray spectrum emitted following thermal-neutron capture in ^{183}W .

The capture γ -ray spectrum was studied using the curved-crystal γ -ray spectrometers installed at the High Flux Reactor of the ILL in Grenoble. Approximately 150 γ -ray transitions, from ~ 85 keV to 2.33 MeV, were assigned to ^{184}W . A partial level scheme of ^{184}W , showing the first four excited positive-parity bands and their de-exciting γ -ray transitions as observed in this study, is shown in Fig. 1. Especially noteworthy is the observation of a number of transitions connecting the various excited bands. Of the nine such γ rays shown in Fig. 1, only three (those from the 1386-keV state to 2_+^+ and 3_+^+ and the one from 1322 keV to 2_+^+) were previously reported and one (from 1431 keV to 3_+^+) was only tentatively placed in the earlier (n,γ) study (Greenwood and Reich 1974). Three new transitions to the ground-state band are also observed. The placement of two of these (from 1523 keV to 4_+^+ and 1322 keV to 2_+^+) is considered

*Work supported by the U. S. Department of Energy under DOE Contract No. DE-AC07-76ID01570.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

definite, while that of one of them (from the tentative 4^+ level at 1359 keV to 4^+) is considered as uncertain.

The transitions connecting the different excited bands are intrinsically rather strong. For those involving excited 0^+ states, where $E2$ multi-polarities can be assigned with confidence, the $B(E2)$ values, relative to those of transitions to the ground-state band, are quite large. From the 1322-keV, 0^+ ' state, for example, we calculate $B(E2; 1322 \rightarrow 1121)/B(E2; 1322 \rightarrow 2_g^+) \sim 960$, and $B(E2; 1322 \rightarrow 903)/B(E2; 1322 \rightarrow 2_g^+) \sim 230$. For the 1386-keV, 2^+ ' state, we find $B(E2; 1386 \rightarrow 1002)/B(E2; 1386 \rightarrow 0_g^+) = 5.2$. From the measured $B(E2)$ value of the 1386-keV, ground-state transition, we calculate $B(E2; 1386 \rightarrow 1002) = 0.022e^2 \cdot b^2$, a relatively large value.

These $E2$ -transition-rate data are presently being analyzed, using both a phenomenological five-band mixing approach and the results of IBA-model calculations, to see if non-zero values for the $E2$ matrix elements between the excited bands are required to explain these interband $B(E2)$ values.

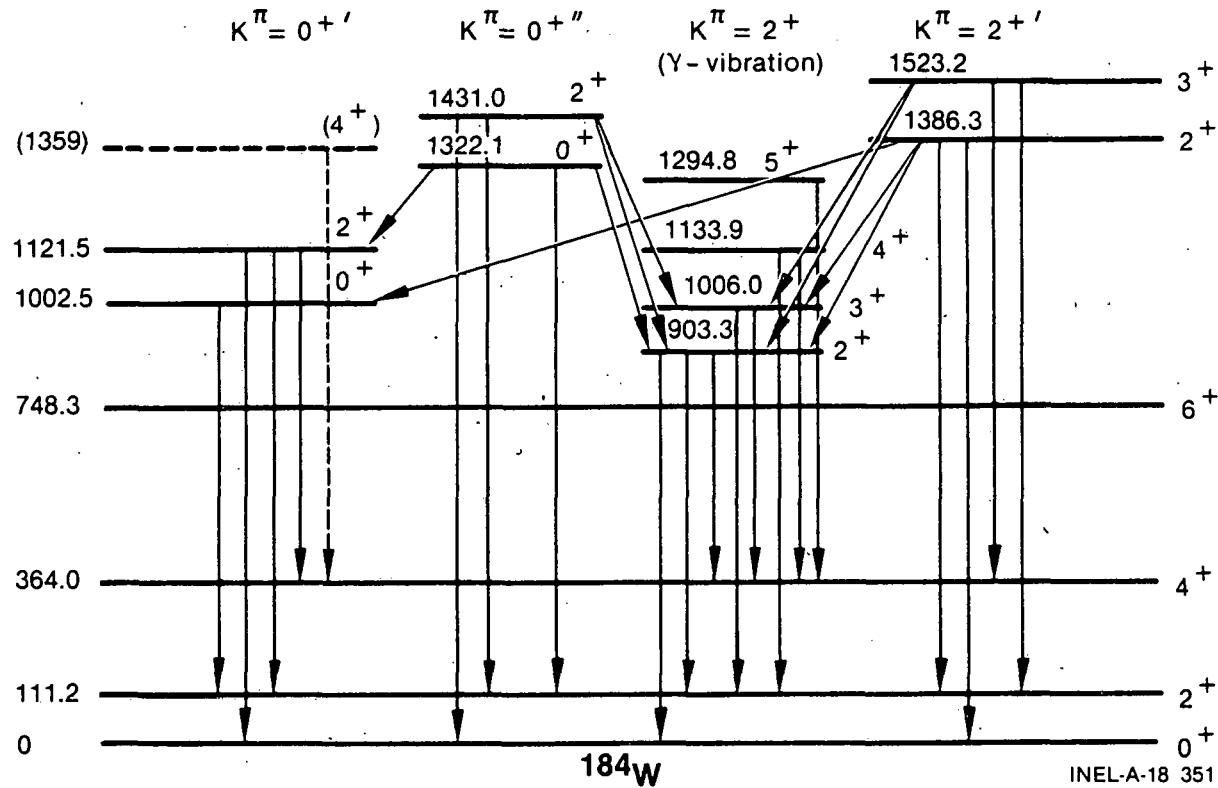


Fig. 1 $K^\pi = 0^+$ and 2^+ bands below ~ 1.5 MeV in ^{184}W .

McMillan D J, Greenwood R C, Reich C W and Helmer R G 1974 Nucl. Phys. A223 29.
 Greenwood R C and Reich C W 1974 Nucl. Phys. A223 66.