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S.-T. Wang and S.-H. Kim 
Argonne Na t i ona l  Labora tory  

Argonne, I l l i n o i s  60439 

ABSTRACT 

Argonne Na t i ona l  Labora tory  (ANL) has recogn ized t h e  c l e a r  advantage o f  a  supercon- 

d u c t i n g  ohmic h e a t i n g  c o i l  and s t a r t e d  an aggress ive  development program i n  FY 1977. The 

main o b j e c t i v e s  a re  t o  develop h i g h  c u r r e n t  (-100 kA) c r y o s t a b l e  cab le  c o n f i g u r a t i o n s  w i t h  

reasonably low ac l osses ,  t o  b u i l d  a  demonst ra t ion  pu l sed  c o i l ,  and t o  develop a  r a t h e r  

inexpens ive  l a r g e  f i b e r g l a s s  r e i n f o r c e d  he l ium c r y o s t a t .  

A  1.5-MJ c r y o s t s b l c  pu l sed  superconr l~rc t ing  c o i l  has been developed and cons t ruc ted  

a t  ANL. The c o i l  has a  peak f i e l d  o f  4.5 T  a t  an o p e r a t i n g  c u r r e n t  o f  11.0 kA. A l a r g e  

inexpens ive  p l a s t i c  c r y o s t a t  has been developed f o r  t e s t i n g  t h e  pu l sed  c o i l .  The c o i l  

has been pu l sed  w i t h  a  maximum dB/dt  o f  11 T/s. The c o i l  was pu l sed  more than  4000 cyc les .  

D e t a i l e d  r e s u l t s  o f  t h e  ac l oss  measurements and t h e  c u r r e n t  s h a r i n g  o f  t h e  c r y o s t a b i l i t y  

wi 11 be descr ibed.  

Other  o b j e c t i v e s  o f  t h e  on-going pu l sed  c o i l  program i s  t o  s tudy  t h e  p a r a l l e l  opera- 

t i o n  o f  pu l sed  c o i l s ,  t o  develop and eva lua te  a  50-kA and a  100-kA c r y o s t a b l e  cab le  and t o  

perf or^^^ ic pr'el iminal-y eng incc r i ng  des ign o f  a 100-MJ eng inee r i nq  demonst ra t ion  c o i l .  

INTRODUCTION 

The conceptual  des ign s t u d i e s  o f  tokamak exper imenta l  power r e a c t o r s  undertaken a t  ANL and e l s e -  

where over  t h e  p a s t  severa l  years  have i d e n t i f i e d  t h e  need f o r  large-volume pu l sed  superconduct ing 

magnet systems t o  c o n t a i n  and d r i v e  t h e  plasmas i n  these i g n i t i o n  dev ices .  Because o f  t h e  l a r g e  

s t o r e d  energy o f  t h e  tokamak magnet c o i l s ,  t hey  must be c r y o g e n i c a l l y  s t a b l e ,  b u t  they  must a l s o  

t o l e r a t e  r a p i d  c y c l i n g .  A t  ANL, cons ide rab le  progress has been made t o  i d e n t i f y  c r i t i c a l  elements 

o f  tokamak c o i l  des ign and r e q u i r e d  techno logy development. The main f e a t u r e  o f  t h e  ANL pu l sed  c o i l  

progrdrir i s  l i s t e d  i n  Table I. 

The main o b j e c t i v e s  o f  t h e  p u l s e d - c o i l  program a r e  t o  develop h i g h  c u r r e n t  c r y o s t a b l e  cab le  

w i t h  reasonably l ow  ac l osses ,  t o  des ign and b u i l d  demonst ra t ion  c o i l s ,  t o  eva lua te  t h e  performance 

o f  these c o i l s ,  and t o  develop r e l i a b l e  l a r g e  f i b e r g l a s s - r e i n f o r c e d  he l i um c r y o s t a t  f o r  these c o i l s .  

Another impor tan t  o b j e c t i v e  o f  t h e  p u l s e d - c o i l  program i s  t o  i n v e s t i g a t e  t h e  p a r a l l e l - c o i l  ope ra t i on .  

I f  a  pu lsed c o i l  can be d i v i d e d  i n t o  many p a r a l l e l  pa ths  and t h e  p a r a l l e l - c o i l  o p e r a t i o n  i s  f e a s i b l e ,  

then a  pulsed-superconduct ing c o i l  can be charged w i t h  a  r e l a t i v e l y  low-vo l tage and a  r e l d t i v e l y  

h igh -ope ra t i ng  cu r ren t .  

* 
Work supported by t h e  U. S. Department o f  Energy. 



TABLE I 

ANL Pulsed Superconduct ing C o i l  Program 

I. HIGH CURRENT CABLE DEVELOPMENT 

A. Cable Study 

1. C r y o s t a b i l i t y  S tud ies  

2. AC Losses Measurement 

3. Mechanical P e r t u r b a t i o n  Stud ies  

R. Cable Development 

1. 12 kA 

2. 50 kA 

3. 100 kA 

C. H igh-Current  Conductor J o i n t s  

0. H igh-Current  Lead Development and Operat ion  

11. RELIABLE PLASTIC HELIUM CRYOSTAT DEVELOPMENT 

A. 1 -m Dewar 

B. 2-m Dewar 

111. MODEL COIL DEMONSTRATION 

A. 1.5 MJ C o i l  

6. 100 MJ C o i l  

I V .  PARALLEL OPERATION OF PULSED COILS 

V .  FULL-SIZE-PULSED COIL DESIGN . 

DEVELOPMENT AND FABRICATION OF THE 12-kA CABLE 

The cab le  c o n f i g u r a t i o n  g i v i n g  t h e  b e s t  compromise between s t a b i l i t y  and ac losses i s  i l l u s -  

t r a t e d  i n  F ig .  1. The s i x  pure  copper w i r e s  a r e  so lde red  t o  t h e  superconduct ing composi te f o rm ing  

an e s s e n t i a l  c u r r e n t  sha r i ng  subgroup. A t h i n  c o a t i n g  o f  o rgan i c  v a r n i s h  i s  brushed on t h e  su r face  

of  each of t he  t h r e e  subgroups i n  t h e  b a s i c  cable.  The v a r n i s h  coa t i ngs  serve t o  reduce t h e  eddy 

c u r r e n t  losses among t h e  subgroups. The c o a t i n g  i s  t h i n  enough, however, t h a t  l i m i t e d  c u r r e n t  shar-  

i n g  among subgroups w i l l  be al lowed. The c r i t e r i o n  chosen f o r  c r y o s t a b i l i t y  i s  such t h a t  bo th  m i n i -  

mum p ropaga t i ng  c u r r e n t  and recovery  c u r r e n t  a r e  g r e a t e r  than c r i t i c a l  c u r r e n t .  The b a s i c  cab le  i s  

r a t e d  a t  405 A a t  5 T. Each superconduct ing s t r a n d  h i s  a d iameter  o f  0.051 cm c o n t a i n i n g  2041 6 - p  

diameter  f i l a m e n t  w i t h  a t w i s t  p i t c h  o f  1.27 cm and a copper /n iob ium- t i tan ium r a t i o  o f  1.8. The 

bas i c  cab le  i s  made by fo rming a t r i p l e x  w i t h  a t w i s t  p i t c h  o f  2.2 cm. To s tudy t h e  ac losses and 

t h e  magnet c u r r e n t  shar ing ,  5-kJ model c o i l s 1 "  were wound. The r e s u l t s  o f  model . c o i l  performance 

t e s t s  were presented i n  Ref. 1. 

To form t h e  12-kA cab le ,  24  b a s i c  cab les  a r e  t w i s t e d  around 0.8-mm t h i c k  x 31.75-mm wide s t a i n -  

l e s s  s t e e l  s t r i p  a t  a t w i s t i n g  p i t c h  o f  22.5 cm as shown i n  F ig .  1. The s t a i n l e s s  s t e e l  s t r i p ,  which 

has 0.25-mm t h i c k  My la r  i n s u l a t i o n  f rom t h e  b a s i c  cab les ,  w i l l  serve as t h e  backbone i n  t h e  c a b l i n g  

processes and as t h e  s t r u c t u r a l  member aga ins t  hoop s t r e s s  o f  t h e  1.5-MJ c o i l .  The f i n a l  cab le  i s  

turkheaded w i t h  f i n i s h e d  cab le  dimensions o f  3.78-cm wide x 0.74-cm t h i c k .  The f i r s t  25-m cab le  was 



produced as a  t e s t  r un  f o r  cab le  product ion .  The t o t a l  l e n g t h  of  t h e  cab le  f o r  t h e  p roduc t i on  run  i s  

590;m. A 'closeup o f  t h e  12-kA cab le  cross s e c t i o n  i s  shown i n  F ig .  2. 

1  .5-MJ COIL FABRICAT.ION~ 

The 1.5-MJ c o i l  has an i n n e r  diameter o f  41.6 cm, and an o u t e r  d iameter  o f  81 cm, and an a x i a l  

l e n g t h  o f  58.1 cm. A t  an o p e r a t i o n a l  c u r r e n t  o f  11 kA, t h e  c e n t r a l  f i e l d  i s  4.2 T  and t h e  peak f i e l d  

i s  4.5 T. Main c h a r a c t e r i s t i c s  o f  t h e  c o i l  a re  l i s t e d  i n  Table 11. The c o i l  bobbin , made o f  f i b e r -  

g l ass  G-10, has an 1.0. o f  40.64 cm and an 0.0. o f  45.72 cm. The c o i l  c o n s i s t s  o f  18 h e l i c a l  l a y e r s  

w i t h  an average number o f  t u r n s  pe r  l a y e r  equal  t o  14.3. Tu rn - to - tu rn  i n s u l a t i o n s  a re  prov ided by 

two l a y e r s  of  0.02 cm t h i c k  g l a s s - c l o t h  tapes and two l a y e r s  o f  0.01-cm t h i c k  My la r  tapes. These 

tapes have a  w i d t h  o f  2.54 cm and cover  t h e  conductor  edges ex tend ing 0.9 cm over  t h e  bo th  s i des  o f  

t h e  broad fa res  o f  t h e  cable.  

TABLE I 1  

CHARACTERISTICS OF THE PULSED SUPERCONDUCTING COIL 

Cen t ra l  f i e l d  

Peak f i e l d  

Operat ion  c u r r e n t  

Inductance 

C o i l  1.0. 

C o i l  0.0. 

A x i a l  l e n g t h  

No. o f  l a y e r s  

To ta l  No. o f  t u r n s  

Cryostab le  recovery  heat  f l u x  0.35 w/cm2 

Laye r - t o - l aye r  spacing 

Average c u r r e n t  d e n s i t y  

Cable c ross  s e c t i o n  

Cable l e n g t h  

To ta l  amper-meters 

0.48 cm (1-10th  l a y e r )  
0.32-cm (11-18th l a y e r )  

2290 A/cm2 (1-10th  l a y e r )  
2685 A/cm2 (11-18th  l a y e r )  

3.78 x 0.74 cm 

510 m 

5.8 x l o 6  A-m. 

Maximum r a d i a l  magnet ic pressure  83 Mpa 

Maximum a x i a l  magnet ic pressure  

Maximum dB/dT 

Maximum d I /dT  

Charging v o l t a g e  

Hys te res i s  l o s s  i n  t h e  f i l a m e n t s  

Eddy c u r r e n t  l o s s  i n  t h e  m a t r i x  a t  9  T/s 

AC losses /s to red  energy a t  9  T/s 

Eddy c u r r a n t  l o s s  i n  t h e  s t a i n l e s s  s t e e l  a t  9 T/s 

Heat f l u x  due t o  t h e  AC losses a t  9 T/s 

28 Mpa 

11 T/s 

27 kA/s 

650 V 

so. 1  kJ / cyc l  e  

2.65 k J l c y c l e  

QO.1% 

60 J l c y c l e  

~ 1 0  M W / C ~ ~  

C o i l  w ind ing w i t h  a  spongeous cab le  i s  a  r a t h e r  i n t e r e s t i n g  exper ience. F igu re  3 shows t h e  s e t -  

up f o r  t he  c o i l - w i n d i n g  ope ra t i on .  F i r s t ,  t h e  cab le  was layer-wound i n  a  spoo l i ng  bobbin.  The 

cab le -spoo l i ng  bobbin was then mounted t o  engage an e l e c t r i c a l  c l u t c h  which p rov ides  t h e  w ind ing  ten-  



s ion.  The i n i t i a l  t e n s i o n  used i n  t h e  w ind ing  was 225 kg. It was i nc reased  t o  450 kg  so t h a t  

approx imate ly  a  cons tan t  r a d i a l  p ressure  i n  t h e  c o i l  was main ta ined.  

The l a y e r - t o - l a y e r  sepa ra t i on  was main ta ined by many G-1O:str ips cove r i ng  approx imate ly  50% o f  

t he  su r face  o f  a  g i ven  c o i l  l a y e r .  For  .Co i l  Layers Nos. 1 t o  10, t h e  l a y e r - t o - l a y e r  sepa ra t i on  i s  

0.48 cm. For  Layers Nos. 11 t o  18, where bo th  t h e  magnet ic f i e l d  and the  ac l osses  a re  r e l a t i v e l y  

low, t he  l a y e r - t o - l a y e r  sepa ra t i on  i s  0.32 cm. 

A l though the  hoop s t r e s s  o f  t h e  c o i l  w i l l  be suppor ted by t h e  s t a i n l e s s  s t e e l  s t r i p  w i t h i n  t h e  

cable,  16 wetted-wound epoxy f i b e r g l a s s  bands were i n s t a l l e d  on t h e  su r face  o f  t h e  outermost l a y e r  

(Layer No. 18).  The cross  s e c c t i o n  o f  t h e  band i s  3.2 cm x 1.9 cm th ickness.  These bands w i l l  h o l d  

t he  w ind ings i n  t h e  outermost  l a y e r .  ,Furthermore, i t  w i l l  p r o v i d e  a d d i t i o n a l  hoop s t r e s s  suppor t  f o r  

t h e  c o i l ,  as shawn i n  F iq ,  4, 

DEVELOPMENT OF PLASTIC LIQUID HELIUM OEWAR 

The 1.5-MJ pu lsed c o i l  r e q u i r e s  r a p i d  cha rg ing  and d i scha rg ing ;  consequent ly,  i t  i s  necessary 

t o  use nonconduct ing dewars t o  min imize eddy c u r r e n t  losses.  The p l a s t i c  c r y o s t a t ,  as shown i n  

Fig.  5, c o n s i s t s  o f  two tanks w i t h  100 l a y e r s  o f  s u p e r i n s u l a t i o n  betwee.n. The i n n e r  tank  w i l l  ha.ve 

an 1.0. o f  91.4 cm and a  depth o f  152.4 cm w i t h  i n t e r n a l  p ressure  r a t i n g  o f  30 ps ig .  The w a l l  t h i c k -  

ness i s  0.95 cm. The o u t e r  tank  has an I.D. o f  107 cm, a  depth  o f  156.5 cm, and a  w a l l  t h i ckness  o f  

1.27 cm. Two r i n g s  a r e  p rov ided  t o  r e i n f o r c e  t h e  tank  a g a i n s t  buck l i ng .  Both tanks  a re  made o f  

fiberglass-reinforced.Hetron-31 p o l y e s t e r  w i t h  35% g lass  components. The s u p e r i n s u l a t i o n  i s  s l i t  a t  

one p l a c e ' t o  reduce t h e  eddy c u r r e n t  heat ing .  . 

It was n o t  c l e a r  t h a t  a  p o l y e s t e r  f i b e r g l a s s  t ank  c o u l d  be used as a  l i q u i d  he l i um vesse l .  

There fore ,  as a  s a f e t y  measure, i t  was decided t o  r e i n f o r c e  t h e  i n n e r  tank  w i t h  an 0.95-cm t h i c k  

layered-wound epoxy f i b e r g l a s s  on t h e  o u t e r  su r face  o f  t h e  i n n e r  t ank  t o  i n s u r e  t h a t  i f  the  p o l y e s t e r  

tank  shou ld  c rack  a l l  t h e  way through,  we would have another  t ank  b u i l t  around i t .  

The tank was mounted i n  a  l a r g e  l a t h e  i n  a  h o r i z o n t a l  p o s i t i o n .  The o u t e r  su r face  was sanded 

w i t h  b e l t  sanders, u s i n g  8 0 - g r i t  aluminum-oxide paper and then wiped down w i t h  e t h y l  a l coho l  t o  

remove a l l  dus t  and contaminants and i n s u r e  a  good bond between t h e  p o l y e s t e r  su r face  and t h e  epoxy 

l a y e r s  t h a t  were t o  be added. The epoxy used was S h e l l  Epon 815 w i t h  General M i l l s  versamid 140 cu r -  

i n g  agent i n  a  l t o  l r a t i o .  

The g lass  c l o t h ,  0.3 mm t h i c k  x 96.5 cm wide, was a p p l i e d  by b rush ing  a  l a y e r  o f  epoxy r e s i n  on 

t h e  tank  and then adding a  l a y e r  o f  g l ass  c l o t h  and work ing t h e  epoxy i n t o  t h e  c l o t h  w i t h  brushes and 

s e r r a t e d  s t e e l  r o l l e r s .  The l a y e r s  were added one a t  a  t ime,  and a l l  seams were staggered. Pa t te rns  

were c u t  f o r  t h e  bot tom o f  t h e  tank and these were a l l  i n t e r l e a v e d  w i t h  t he  g lass  c l o t h  on t h e  s ides  

t o  once aga in  i n s u r e  t h a t  t h e r e  were no d i r e c t  r e s i n  paths  th rough t h e  tank. Twenty-four l a y e r s  o f  

g l ass  c l o t h  were added t o  t h e  tank i n  t h i s  manner. 

The s u p e r i n s u l a t i o n  was now wrapped on t h e  o u t e r  su r face  o f  t h e  i n n e r  tank .  Th is  c o n s i s t e d  of  

100 l a y e r s  o f  6.25 x 10-6 nun a lumin ized Mylar  - alumimized on bo th  s ides ,  i n t e r l e a v e d  w i t h  5  x 

Dexter  paper. The s u p e r i n s u l a t i o n  was s l i t  i t s  e n t i r e  w i d t h  every  r e v o l u t i o n ,  and j o i ned .back  



t oge the r  w i t h  Scotch celephane tape, l e a v i n g  a  3-mm gap - t o  lessen t h e  chance o f  eddy c u r r e n t s  b u i l d -  

i n g  up i n  t h e  a lumin ized sur face.  The Dexter  paper was a l s o  used t o  i n s u l a t e  one l a y e r  o f  a lumin ized 

Mylar  f rom t h e  next.  

The tank  was l e f t  i n  i t s  h o r i z o n t a l  p o s i t i o n  i n  t h e  l a t h e  and s l o w l y  r o t a t e d  u n t i l  t he  wrapping 

of  t h e  t ank  was completed w i t h  t h e  supe r i nsu la t i on .  Care was taken no t  t o  wrap t o o  t i g h t l y  - a l l o w -  

i n g  a  2.54-cm bu i ldup.  The bottom dome p o r t i o n  o f  t h e  t ank  was covered by c u t t i n g  p a t t e r n s  c o n s i s t -  

i n g  o f  a  c e n t e r  c i r c l e ,  w i t h  pie-shaped wedges fann ing  o u t  f rom i t .  These were stacked 25.4 cm a  bun- 

d l e ,  r o t a t i n g  a1 1  t h e  seams, and then i n s e r t e d  i n  t h e  bot tom by. i n t e r l e a v i n g  t h e  pie-shaped p ieces 

w i t h  t h e  m a t e r i a l  on t h e  s ides  o f  t h e  tank .  

The cover  p l a t e  f o r  t h e  he l ium dewar i s  a  5-cm t h i c k  l inen-base pheno l i c .  To reduce the  heat  

f rom r a d i a t i o n ,  a  30.48-cm t h i c k  s ty ro foam p l u g  .w i t h  a  90-cm d iameter  was a t t ached  beneath t h e  cover 

p l a t e .  I n  a d d i t i o n ,  two r a d i a t i o n  b a f f l e  p l a t e s ,  made f rom 1.59-mm t h i c k  G-10 coated w i t h  a lum in i zed  

Mylar ,  was a l s o  a t t ached  beneath t he  s ty ro foam p lug.  

It took 24 h r  w i t h  a  13-cfm rough ing pump and a  15.2-cm diameter d i f f u s i o n  pump (5.08-cm d iameter  

pumping l i n e )  t o  a t t a i n  a  vacuum o f  1  x l o m 4  t o r r .  L i q u i d  he l i um was d i r e c t l y  b u t  s l o w l y  t r a n s f e r r e d  

i n t o  t h e  dewar. Soon a f t e r  (about 6  h r )  t h e  l i q u i d  he l i um i s  c o l l e c t e d  a t  t h e  bot tom o f  t h e  dewar, a  

vacuum of b e t t e r  than 5 x l o - '  t o r r  was a t t a i n e d .  When the  1  i q u i d  he1 ium l e v e l  has a  depth  o f  

80 cm and t h e  c r y o s t a t  has reached e q u i l i b r i u m ,  t h e  measured heat  leak ,  w i t h o u t  t h e  c u r r e n t  l e a d  feed- 

throughs i n  t h e  cove r  p l a t e ,  was 1.8 W. A  Veeco l e a k  d e t e c t o r  was hooked i n t o  t h e  pumpout p o r t  t o  

sample t h e  gas i n  t h e  vacuum j a c k e t  between t h e  tanks  t o  check f o r  p o s s i b l e  he l i um permeat ion th rough 

t h e  w a l l s  o f  t he  i n n e r  dewar. No he l i um was de tec tab le .  Th is  was checked aga ins t  a  Veeco s tandard  

he l i um l e a k  s e n s i t i v i t y  c a l i b r a t i o n  Type SC-4 l e a k  r a t e  4.3 x cc/s.  

PERFORMANCE TESTS OF THE 1.5-MJ  COIL^ 
Tes t i ng  Setup 

The t e s t i n g  se tup o f  t h e  1.5-MJ c o i l  i s  shown i n  F igs .  4  and 5. The c o i l  i s  supported by a  

2.54-cm t h i c k  M i c a r t a  p l a t e  wh ich  i s  suspended t o  t h e  M i c a r t a  cover p l a t e  o f  t h e  he l ium dewar by 

e i g h t  s t a i n l e s s  s t e e l  rods ,  0.64 cm i n  d iameter .  The c o i l  t e rm ina l s  were c a r e f u l l y  brought  t o  t he  

t op  f l ange  o f  t h e  c o i l  bobbin. A f t e r  removing t h e  o rgan i c  i n s u l a t i o n  i n  t he  bas i c  cab le ,  t he  c o i l  

t e rm ina l  i s  so ldered t o  t he  bot tom t i p s  o f  t h e  vapor-cooled leads. 

DC Cur ren t  Test 

P r i o r  t o  t he  c o i l  e n e r g i z a t i o n  by a  5-V, 12-kA dc power supply,  t h e  heat  l e a k  o f  c u r r e n t  leads 

were measured. The c u r r e n t  leads were purchased f rom American Magnet ics,  Inc., and have a  dc c u r r e n t  

r a t i n g  o f  15 kA, n ~ ~ r i n g  t h e  heat - leak  measurement t h e  l i q u i d  he l i um l e v e l  was main ta ined between t h e  

bottom t i p  o f  t h e  leads and the  top f l a r q e  o f  the c o i l .  A t  zero  c u r r e n t ,  a  hea t  leak  o f  22 W was 

obtained. A t  12 kA and i n  s teady -s ta te  e q u i l i b r i u m ,  t h e  heat  l e a k  was 30 W .  

Du r i ng  t h e  f i r s t  e n e r g i z a t i o n  o f  t h e  c o i l ,  no  major  conductor  mo t i on  was.observed. F i g u r e  6 

shows t h e  c r i t i c a l  c u r r e n t  and t h e  l o a d  l i n e  o f  t h e  c o i l .  The c r i t i c a l  c u r r e n t  o f  t h e  cab le  was 

determined f rom t h e  s h o r t  sample measurements o f  t r i p l e x  cables.  



To demonstrate t h e  c u r r e n t  sha r i ng  and t o  determine t h e  c r y o s t a b i l i t y  o f  t h e  c o i l ,  t he  c o i l  was 

charged beyond t h e  c r i t i c a l  c u r r e n t  up t o  11.75 kA ( f rom p o i n t  A  t o  p o i n t  B  i n  F ig .  6 ) .  Beyond 11 kA, 

a  c o i l  unbalanced vo l t age  was observed. The unbalanced vo l t age  increases l i n e a r l y  w i t h  t r a n s p o r t  cu r -  

r e n t .  The process IS r e v e r s i b l e  and s t a b l e  i n d i c a t i n g  a  s t a b l e  c u r r e n t  sha r i ng  w i t h i n  t h e  cab le .  

Pulsed Current  Tests 

The c o i l  was charged and d ischarged by a  power supp ly  w i t h  c650 V ou tpu t  v o l t a g e  and 10.9 kA o u t -  

pu t  cu r ren t .  The c o i l  was charged t o  4.4 T  peak f i e l d  i n  0.4 s  and d ischarged t o  zero  i n  0.6 s, ach iev-  

i n g  a  maximum dB/dt  o f  11 T/s. The o f f - t i m e  between pu lses  was 10 s. The ramping r a t e  i s  l i m i t e d  by 

t h e  power supp ly  r a t h e r  than by t he  pu l sed  c o i l .  The c o i l  was ene rg i zed  and de-energized f o r  more 

than 3000 c y c l e  i n  the  s i n g l e  p u l s i n g  ope ra t i on .  

To s i m u l a t e  t he  f u l l  f l u x  swing o f  a  superconduct ing  ohmic h e a t i n g  c o i l ,  t h e  c o i l  was energ ized 

t o  4-T peak f i e l d  (10.6 kA) i n  0.64 s  and de-energized imned ia te l y  back t o  zero  i n  t h e  n e x t  0.64 s. 

Then i t  was i nmed ia te l y  energ ized back t o  4  T  i n  0.64 s  and de-energized t o  zero  i n  t h e  nex t  0.64 s. 

The doub le-pu ls ing  cha rg ing -d i scha rg ing  generates ac losses f u l l y  e q u i v a l e n t  t o  a  f u l l  f l u x  swing o f  

an ohmic h e a t i n g  c o i l .  The f u l l  p e r i o d  o f  t h e  double p u l s i n g  was 9.5 s  w i t h  an o f f - t i m e  o f  6.9 s. 

The c o i l  had exper iences more than 500 cyc les  o f  t h e  doub le-pu ls ing  ope ra t i on .  

AC Losses 

The ac losses o f  t h e  c o i l  were determined f rom he l ium b o i l - o f f  d u r i n g  t h e  p u l s i n g  and f rom t h e  

e l e c t r o n i c  i n t e g r a t o r  method. AC losses as a  f u n c t i o n  o f  ( dB /d t )2  a r e  shown i n  F ig .  7. Data p o i n t s  

o f  c i r c l e s  and t r i a n g l e s  a re  ob ta ined  f rom t h e  t e s t s  w i t h  s i n g l e  pu lses ,  and data  p o i n t s  marked w i t h  

dark rec tangu la rs  a re  ob ta ined  f rom t h e  doub le-pu ls ing  t e s t .  The l i n e a r  v a r i a t i o n  o f  t h e  ac losses 

as a  f u n c t i o n  o f  B2 i n  F ig .  7  i n d i c a t e s  t h a t  most o f  t h e  losses a re  due t o  t h e  eddy c u r r e n t  i n  t he  

copper. 

PULSING EFFECT ON CRYOSTABILITY 

A f t e r  t h e  p u l s i n g  t e s t s  o f  t h e  c o i l ,  another  dc c u r r e n t  t e s t  has been conducted u s i n g  a  50-kA, 

5-V dc power supply.  Th is  t e s t  i s  t o  i n v e s t i g a t e  t h e  p u l s i n g  e f f e c t  on t h e  c r y o s t a b i l i t y  o f  t h e  c o i l .  

The c o i l  was charged w i t h  a  cha rg ing  vo l t age  o f  0.7 V. No s i g n i f i c a n t  change i n  t h e  c r i t i c a l  c u r r e n t  

was observed. The c o i l  remained i n  a  c u r r e n t  s h a r i n g  s t a t e  up t o  1  kA above t h e  c r i t i c a l  c u r r e n t ,  

and recovered t o  superconduct ing  s t a t e  by reduc ing  t h e  cu r ren t .  The c o i l  was quenched when the cur -  

r e n t  was f u r t h e r  increased. The c o i l s  were quenched t h r e e  t imes  and no deg rada t i on  i n  c o i l  p e r f o r -  

mances were observed. 

ON-GOING PROGRAM 

50-kA and 100-kA Cable Development 

The cab le  c o n f i g u r a t i o n s  f o r  a  50-kA cab le  and a  100-kA cab le  a re  shown i n  F igs .  8 and 9, res- 

p e c t i v e l y .  These cab le  designs bear many s i m i l a r  f ea tu res  t o  t h a t  o f  t h e  12-kA cab le  which was suc- 

c e s s f u l l y  developed f o r  t h e  1.5-MJ c o i l .  The main d i f f e r e n c e s  a r e  t h a t  t h e  b a s i c  cab les  chosen f o r  

t h e s e . h i g h  c u r r e n t  cables have a  l a r g e r  c u r r e n t  c a p a c i t y  and t h a t  s t a i n l e s s  s t e e l  cables were 



i n t roduced  as the  s t r u c t u r e  members o f  t h e  bas i c  cable.  

The cables a re  designed t o  be opera ted . i n  a  8-T f i e l d .  The copper/superconductor (NbTi)  r a t i o  

. i s  about 10. L i k e  t h e  12-kA cable,  c r y o s t a t i c  s t a b i l i t y  i s  accomplished w i t h i n  t h e  b a s i c  s t r a n d  

which w i l l  be coated w i t h  0.0125-mm t h i c k . o r g a n i c  i n s u l a t i o n .  The t h i n  c o a t i n g  w i l l  g r e a t l y  reduce 

eddy c u r r e n t  losses and y e t  a l l o w  l i m i t e d  c u r r e n t  shar ing.  The c o a t i n g  i s  so t h i n  t h a t  t h e  heat  

t r a n s f e r  c h a r a c t e r i s t i c s  w i l l  be enhanced r a t h e r  than h indered.  

The f i n a l  cab le  w i l l  c o n s i s t  o f  24 b a s i c  cab les  f u l l y  t ransposed around a  s t a i n l e s s  s t e e l  s t r i p .  

As shown i n  F igs .  8  and 9, t h e  s t a i n l e s s  s t e e l  s t r i p  i s  i n s u l a t e d  w i t h  Formvar and then f o l d e d  i n t o  

t h e  shape as shown. T h i s  w i l l  reduce i t s  eddy c u r r e n t  losses.  The s t a i n l e s s  s t e e l  s t r i p  w i l l  serve 

as t h e  backbone f o r  t h e  c a b l i n g  ope ra t i on  as w e l l  as f o r  t h e  s t r u c t u r a l  suppor t  f o r  t h e  hoop load. 

Design o f  Pu lsed-Coi l  S t r u c t u r e  

Because ot t h e  spongeness o f  a  h igh -cu r ren t  cab le ,  i t  i s  impor tan t  t h a t  a  l a r g e  p u l s e d - c o i l  

s t r u c t u r e  must a l l o w  us t o  i s o l a t e  t h e  e lec t romagne t i c  f o r ces  i n  bo th  t h e  a x i a l  and t h e  r a d i a l  d i r e c -  

t i o n .  F igu re  10 i l l u s t r a t e s  such a  c o i l  s t r u c t u r e  u s i n g  a  100-kA cable.  The cab le ,  as hown i n  F ig .  9, 

w i l l  be i n s u l a t e d  w i t h  epoxy f i b e r g l a s s  bands. I t  w i l l  be l o o s e l y  f i t t e d  i n t o  a  s t a i n l e s s  s t e e l  chan- 

ne l  (F ig .  10) .  The w ind ing  bobbin w i l l  be a  G-10 c y l i n d e r .  The s t a i n l e s s  s t e e l  s t r i p  which may o r  

may n o t  be welded t o  t h e  channel ,  w i l l  suppor t  b o t h  t h e  a x i a l  and t h e  r a d i a l  e l ec t romagne t i c  fo rces .  

Since t h e  cab le  w i l l  be l o o s e l y  f i t t e d  i n t o  t h e  channel ,  t h e  c o i l  body fo rces  cou ld  n o t  be accumulated 

t o  t h e  cable.  The c o i l  a x i a l  forces w i l l  be b r i dged  through G-10 p l a t e s .  Tu rn - to - tu rn  i n s u l a t i o n  

w i l l  be p rov lded  by a  I-mm t h i c k  G-10 o r  pu l t r uded  f i b e r g l a s s  s t r i p .  

Large P l a s t i c  Hel ium Oewar f o r  Pancake C o i l  Performance Test 

To eva lua te  t h e  performance o f  t h e  50-kA/lOD-kA h igh -cu r ren t  cable,  a  l a r g e  p l a s t i c  dewar w i t h  - 

50-kA/100-kA c u r r e n t  leads must be developed. The des ign o f  t h e  t e s t i n g  dewar i s  shown i n  F ig .  11 

and the  photographs o f  these p l a s t i c  tanks  i s  shown i n  F ig .  12. The p l a s t i c  c r y o s t a t  w i l l  c o n s i s t  o f  

two tanks w i t h  100 l a y e r s  o f  s u p e r i n s u l a t i o n  between. The dimensions o f  bo th  tanks  and t h a t  of  t h e  

dewar cover p l a t e  a re  i n d i c a t e d  i n  F ig .  11. An aluminum a l l o y  suppo r t i ng  s tand w i l l  be i nco rpo ra ted  

i n t o  t h e  o u t e r  t ank  so t h a t  t h e  dewar cou ld  be supported i n  an u p r i g h t  p o s i t i o n .  The c o i l  we ight  

w i l l  be supported by an e x t e r n a l  suppor t  frame. 

CONCLUSION 

We have demonstrated t h a t  h igh -cu r ren t  c r y o s t a b l e  cab les  and l a r g e  fas t -pu l sed  superconduct ing  

c o i l s  cou ld  be opera ted w i t h  .good s t a b i l i t y  and r e l a t i v e l y  low ac losses.  We have a l s o  demonstrated 

an inexpens ive  techno logy f o r  f a b r i c a t i n g  l a r g e  p l a s t i c  he l i um dewars f o r  f a s t - p u l s e d  superconduct ing  

c o i l s .  Using these techniques, we b e l i e v e  one c o u l d  s u c c e s s f u l l y  develop much l a r g e r  pu l sed  super-  

conduct ing  c o i l s  f o r  energy s torage o r  superconduct ing ohmic h e a t i n g  c o i l s .  
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FIGURE CAPTIONS 
.. 

F ig .  1. 12-kA cable.  

F ig .  2. Close.up o f  t h e  12-kA c a b l e  c ross  s e c t i o n .  

F i g .  3. Setup f o r  t h e  1.5-MJ c o i l  w ind ing.  

F i g .  4. Setup f o r  t h e  1.5-MJ c o i l  t e s t s .  

F i g .  5. P l a s t i c  he.l ium c r y o s t a t  f o r  t h e  1.5-MJ c o i l .  

F i g .  6. 12-kA c a b l e  s h o r t  sarnp1.e c h a r a c t e r i s t i c s  and t h e  l o a d  1 i n e  

.. o f  t h e  1.5-MJ c o i l .  

F ig .  7. AC l osses  versus'  (dB/d t )2 .  

F i g .  8. 50-kA ac superconduc t ing  cab le .  

F i g .  9. 100-kA c a b l e  conductor .  

F ig .  10. Pul sed -co i l  s t r u c t u r e .  

F i g .  11.- P l a s t i c  dewar f o r  h i g h - c u r r e n t  c a b l e  pancake c o i l s .  

F ig .  12. I n n e r  and o u t e r . p l a s t i c  t anks  f o r  t h e  he l i um dewars.. 
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F i g .  1. 12-kA cable. 











Fig .  6. 12-kA c a b l e  s h o r t  sample c h a r a c t e r i s t i c s  and t h e  load l i n e  
of  t h e  1.5-MJ c o i l .  





0.25 cm DIA, INSULATED 
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F ig .  8. 50-kA ac superconduct ing cab le .  
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~ i g .  9. 100-kA c a b l e  conductor .  
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F i g .  10. Pulsed-coil structure. 



STRUCTURE 

- 

Fig. 11. P l a s t i c  dewar f o r  high-current cable pancake c o i l s .  



Fig. 12. Inner and outer plastic tanks for the helium dewars. 




