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Abstract

An extended Landau/Levich model of liquid-propellant combustion, one that allows for a
local dependence of the burning rate on the (gas) pressure at the liquid/gas interface, exhibits
not only the classical hydrodynamic cellular instability atfributed to Landau, but also a pulsating
hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting
the realistic limit of small values of the gas-to-liquid density ratio p, analytical formulas for both
neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of
p in each of three distinguished wavenumber regimes. In particular, composite analytical expres-
sions are derived for the neutral stability boundaries A,(k), where A, is the pressure sensitivity
of the burning rate and k is the wavenumber of the disturbance. For the cellular boundary, the
results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the sta-
bilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations,
and the instability associated with intermediate wavenumbers for negative values of A,, which is
characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure
ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational
and surface-tension effects, but is more sensitive to the effects of liquid viscosity since, for typical
nonzero values of the latter, the pulsating boundary decreases to larger negative values of 4, as k
increases through O(1) values. Thus, liquid-propellant combustion is predicted to be stable (that
is, steady and planar) only for a range of negative pressure sensitivities that lie below the cellular
boundary that exists for sufficiently small negative values of A, and above the pulsating boundary

that exists for larger negative values of this parameter.
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ON PULSATING AND CELLULAR FORMS OF HYDRODYNAMIC
INSTABILITY IN LIQUID-PROPELLANT COMBUSTION

Introduction

The stability of liquid-propellant deflagration is a fundamental problem that was first treated
by Landau in a classical study [1] that introduced the concept of hydrodynamic instability in
a combustion context. Referred to as the “slow combustion of liquids”, that analysis is most
applicable to certain realistic limiting cases in which combustion may be approximated by an
overall reaction at the liquid/gas interface. For example, the gas flame may occur under near-
breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant,
or distributed combustion may only occur in an intrusive regime such that the reaction zone lies
closer to the liquid/gas interface than the length scale of any disturbance of interest, or the liquid
propellant may simply undergo exothermic decomposition at the surface without any significant
distributed combustion, such as appears to occur in some types of hydroxylammonium nitrate
(HAN)-based liquid propellants at low pressures [2]. The results of Landau’s study, along with a
subsequent paper by Levich [3] that replaced the effects due to surface tension in the earlier study
with those due to (liquid) viscosity, have been widely quoted and offer much in terms of physical
insight into the nature of this type of instability, which, as in the case of gaseous combustion,
is associated with the density change across the reaction front. However, since these models
assumed a constant normal burning rate, it has proven useful to improve upon these models by
incorporating a more realistic coupling of the normal propagation speed with the local pressure
and/or temperature fields, thereby allowing for a locally varying burning rate [4,5]. One result
that has emerged from this generalization is that, in addition to the classical Landau (cellular)
type of instability, the models now predict a pulsating hydrodynamic instability as well. The latter
arises specifically from the local pressure coupling and thus may be physically achievable since the
mass burning rate of many propellants has been shown empirically to correlate well with pressure.
Thermal coupling, on the other hand, introduces additional thermal/diffusive instabilities [5] that
will not be considered here. In the present work, we shall consider both types of hydrodynamic
instabilities, but particular focus will be placed on the pulsating stability boundary, since this type
of instability is absent from the earlier models that neglected the pressure coupling indicated above.
As in a companion study that focused on the the classical (cellular) hydrodynamic instability [6],

we develop a formal asymptotic theory by considering the realistic limiting case in which the

gas-to-liquid density ratio p is small.




Mathematical Model

The governing hydrodynamic equations consist of mass and momentum on either side of
the gas/liquid interface, supplemented by a pressure-dependent burning-rate law and associated
continuity and jump conditions across the interface [4-6]. Thus, it is assumed, as in the classical
models, that there is no distributed reaction in either the liquid or gas phases, but that there
exists either a pyrolysis reaction or an exothermic decomposition at the liquid/gas interface that
depends on the local pressure. For simplicity, it is assumed that within the liquid and gas phases
separately, the density and other fluid properties are constants, with appropriate jumps across the
phase boundary. The nondimensional location of the latter is denoted by z3 = ®,(z1,z2,t), where
the adopted coordinate system is fixed with respect to the stationary liquid at z3 = —oo (Fig.
1). Then, in the moving coordinate system = = z;, y = 23, 2 = 23 — D,(z1,22,t), in terms of
which the liquid/gas interface always lies at z = 0, the complete nondimensional formulation of

the problem in the absence of thermal coupling is given by

V-v=0, z#0, (1)
ov 0%, 0v - -1y 1 Pri o2 <
5% o 6z+(v V)v=(0,0,—-Fr~') {p—l}vP+{)\Prg}v v, z50, (2)
subject to v = 0 at 2 = —oo and the interface conditions
ﬁsxv_=ﬁsXV+, (3)
A 9%,
fig(v- —pvy)=(1— P)S(‘I’s)—a't- ) (4)
. 9%,
Ngv. — S((I)s) ot = A(p+) 5 (5)
P-—D+ =

) ) ) A ) R o
fig: [pv.+ (s - v4) = V- (Bis - v-) — pAPTges - fis + Prie_ - fis] + fise (v — pv4)S(Bs) =2

2P b2 82® %,\2 0% 0% %P
_ 3 s 8 8 s 9l T8ZTs¥ T8
’75 (@s){amg [1+(ay)}+ ay2 [1+(61:)} 28:11 By Bazay}’

a@s
ot

where the latter represent continuity of transverse velocity components (no-slip), conservation

fg X [pv+(ﬁs V)= Vo (B vo)+ (Vo — pvy ) S(Ds) ] = s X (pAPrge, -fis — Prie_-Ag), (7)

of (normal) mass flux, the mass burning-rate law, and conservation of normal and transverse
components of momentum flux, respectively. Here, v and p denote velocity [with respect to the
original (z1,2,z3) coordinate system] and pressure, and the =+ subscripts denote evaluation at
z = 0%. The parameters Pr; and Pry denote the liquid and gas-phase Prandtl numbers, p and

A are the gas-to-liquid density and thermal diffusivity ratios, F'r is the Froude number, e is the
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rate-of-strain tensor and 7 is the surface-tension coefficient. All of these quantities are defined in
terms of their dimensional counterparts in the nomenclature. In addition, the factor S(®,) and

the unit normal n, are given by

S(®s) = [1+ (09,/02)* + (0%,/0y)?] /?, fs = (~03,/0z,-0%,/0y,1)S(®s),  (8)

while the expressions for the gradient operator V and the Laplacian V? in the moving coordinate

system are given by

_(_6__6@32_ 0 _9% 90 _?_) (9)
" \8z 9z 02’0y By 8z 82/’

5 8B,\2  0BN2] B2 8D, B 0%, 8% [8°D, 0%D,\ O
_W+5§2—+[1+(6a:) (ay) ]‘a?"2 8z 920z 2 By ayaz_(axz 6y2>

o
(10)

We remark that the factor multiplying v in Eq.(6) is the curvature —V - fi and note that pAPr, =

v2

pPry, where is the gas-to-liquid viscosity ratio. In addition, we observe that the burning rate A(p)
in Eq. (5) is assumed to depend on the local gas pressure at the interface, where A is normalized
to unity for the case of steady, planar burning. Indeed, in what follows, the pressure sensitivity
A, = 0A/8p of the local burning rate will emerge as an important parameter.
A nontrivial basic solution to the above problem, corresponding to the special case of a steady,
planar deflagration, is given by
R N T e
(11)
The linear stability analysis of this solution now proceeds in a standard fashion. However, owing
to the significant number of parameters, a complete analysis of the resulting dispersion relation
is quite complex, and we follow our previous approach [6] by restricting further consideration to
the realistic parameter regime p <« 1, 4 < 1, and in the case of microgravity, Fr~! < 1. In
contrast, the earlier classical studies only considered special limiting cases and/or assumptions.
Thus, in the study due to Landau [1}, viscosity was neglected and the effects of gravity (assumed
to act normal to the undisturbed planar interface in the direction of the unburned liquid) and
surface tension were shown to be stabilizing, leading to a criterion for the absolute stability for
steady, planar deflagration of the form (in our nondimensional notation) 4yFr=1p%/(1 — p) > 1.
In the study due to Levich [3], surface tension was neglected, but the effects due to the viscosity
of the liquid were included, leading to the absolute stability criterion Fr“an(3p)3/ 2 > 1. Thus,
these two studies, both of which assumed a constant normal burning rate (4 = 1), demonstrated
that sufficiently large values of either viscosity or surface tension, when coupled with the effects
due to gravity, may render steady, planar deflagration stable to hydrodynamic disturbances. In

our recent study [6], these results were synthesized and extended to the more realistic case of a
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nonconstant burning rate (i.e., Ap # 0) in the limiting parameter regime identified above. In the
present work, we summarize these results for the classical cellular boundary and use the resulting
scalings to derive an expression for the pulsating hydrodynamic stability boundary that arises from

the pressure-dependence of the local burning rate.

Linear Stability Problem

With respect to the basic solution (11}, the perturbation quantities ¢s(z,y,t), u(z,y, z,t) and
¢(z,y, z,t) are defined as

B =B(t)+ s, v=V2(z)+u, p=pe)+(. (12)

Substituting Egs. (20) into the nonlinear model defined above and linearizing about the basic

solution (11), the perturbation problem becomes

37.61 + Buz + 6U3

5% Ty e z#0, (13)
Ch e (S (i S Doty
A GG ). o
subject to u =0 at z = —00 and
U], - =], g = (071 = 1)%, (15)
Us,g- = Ua|, s = (07" - 1)%, (16)
sl - = pus|,_ge = (1= )2, (17
g — St = Anllucor (19
Clemo-—Cle=o+ = 2(usl,_qv —usl,_q +2Pn(%"3 T %‘—j z=o+) _7<%2§+%%), (19)

where Eqgs. (15) — (17) have been used to simplify Egs. (19) - (21).




Nontrivial harmonic solutions for ¢5, u and ¢, proportional to ew!*ik12+ik2y that satisfy Eqgs.

(21) - (22) and the boundary/boundedness conditions at z = o0 are given by

. iwttikyxzt+iksy
¢s=¢e ’

¢ = gittibiotikay bie*z — Fr-1, z2<0
boe k% — pFr-l, z2>0,

wy = giwttikiztiky bsed* — iky (iw + k) "b1e*?, z<0
! | bge™ — iky (iwp — k) "Lhoe™*?, 2> 0,
= giotFikarikey [ bse? —iky(iw + k) Hores, 2 <0
2 bge™* — iky(iwp — k) "tbee %%, 2>0,

wn = piwttikratikyy [ b7e%” — k(iw + k) "1hiets,  2<0
3 bge® + k(iwp — k)" hoe k%, 2> 0,

(22)

(23)

(24)

(25)

(26)

where the above solution has been normalized by setting the coefficient of the harmonic dependence

of ¢ to unity. Here, the signs of k; and k3 may be either positive or negative, and we have employed

the definitions k = /k? + k32, and q and r are defined as

2Pr;q =1+ +/1+ 4Pri(iw + Pr k2),

2uPrir =1— /14 4uPr(iwp + uPr k?).

(27)

(28)

Substituting this solution into the interface conditions (15) - (21) and using Eq. (13) for

z S 0 yields nine conditions for the eight coefficients b; - bg and the complex frequency (dispersion

relation) iw(k). In particular, these conditions are given by
ik1bs + ikobs + gby =0,

ik1b4 + ik2b6 + Tbg = 0,

ik ; 1
by — by — by + by = (1 1)k,
p

iw+k iwp—k
ko tko (1 )
° iw+kb1 b6+iwp—-kb2_<p 1)“62’
pk ,
by — - - =(1-
4 z'w-l-kbl pbs iwp——kb2 (1= pliw,
by — k by —Apby =14 Fr~14
7 iw—i—kl pO2 = W — pIT P
[1+ k (2kPn—1)]b1— [1+ k (2KkuPri +2 = p)]bo
w4k wp—k

+ (1 =2Priq)by — (2= p— 2uPrir)bg = (1 — p)(Fr~! —iw) + vk?,
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(29)

(30)

(31)

(32)

(33)

(34)

(35)




ik
(uPryr — 1)bg + (2kpuPr; + 1) iw; 1_ kbz + ik puPr bg
. 36)
ik . 1 . (
4{1—Pn@%+{ﬂ%ﬂ—d%wikh—thnmz(;—lyh,
. "
(uPrir — 1)bg + (2kpPry + 1)Z,w’p 2 -ba + ikopPr b
. (37)
ko ) 1 .
+ (1= Priq)bs + (2Prik = 1)y — ikoProby = (; - l)zkg.

Although the above problem is linear in the coeflicients b; - bg, explicit expressions for the dispersion
relation iw(k) and the neutral stability boundaries, are not readily obtainable in closed form, except
in certain special cases as noted below. However, it is possible to develop tractable perturbation
expansions for these quantities in the realistic limit that the density and viscosity ratios p and p

are small, as is Fr~! in the case of reduced gravity.

Asymptotic Analysis of the Cellular Stability Boundary

It turns out that the p < 1 limit implies the existence of several different wavenumber regimes
[6], which in turn implies several different expansions for the dispersion relation. This is motivated
by considering the solution of (29) — (37) in the limit of zero viscosity (u — Pr; = 0), which leads
to a tractable form of the dispersion relation for arbitrary p. In particular, the neutral stabil-
ity boundaries with respect to infinitesimal hydrodynamic disturbances proportional to efwtFikx

where k and x are the transverse wavenumber and coordinate vectors, respectively, are given for

A, <0 by [5]
p(1 = p)Fr=t 4 pyk? — (1 - p)k
A = <0, :0, 38
AT ey T T 38)
and )
P 2 l4p, 1, &k k]
Ap=—t Pkt T 4 B 39
P 1=y [1—p 1-p" " p (39)

where £ = |k|. For A, > 0, the basic solution is always unstable, and thus steady, planar com-
bustion is only stable in the region A, < 0 that lies between these two curves (Fig. 1). The first
of these boundaries is a cellular boundary (w = 0) that corresponds to the classical Landau insta-
bility. Indeed, in the limit A, = 0, corresponding to a constant normal burning rate independent
of pressure, Landau’s classical result is recovered since in the limit that vFr~! approaches the
value (1 — p)/4p? from below, the cellular stability boundary recedes from the region A, < 0. The
pulsating stability boundary (39), on the other hand, only occurs for nonzero A,, and hence was
not predicted by the classical theories that assumed a constant normal burning rate. We note that
zero and negative values of A, over certain pressure ranges are characteristic of the HAN-based

liquid propellants mentioned above [2].
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The formalism necessary to analyze the fully viscous problem is suggested by the fact that, for
small p, the cellular boundary (38) has different limiting forms dependent on the relative magnitude
of k with respect to p. Thus, based on characteristic parameter values, we introduce a bookkeeping

parameter € < 1 and define the scaled parameters g*, p*, u* and A; according to

g

p=p'e, p=p'e, Ap,= A, Fr"l={g*€,

(40)

where v and Pr; = P are regarded as O(1), and the scaling for A, is motivated by Eq. (38). Here,
the lower scaling on Fr~! corresponds to a reduced gravity limit, whereas the upper definition
indicates the normal gravity case. Equation (38) then suggests three wavenumber scales; an inner

(small) scale k;, the outer O(1) scale k, and a far outer (large) scale ks, where the first and last

_J ke, Frol~0(1) _
k; = {k/e2, Fr=1~0(e), kf=ke. (41)

Thus, in each of these regions, the corresponding leading-order expressions for A are deduced
from Eq. (38) as

are defined as

@) [ PH(p*g — ki) /2 ROV ST B e

and hence a uniformly valid composite expansion A;(C)(k) may be constructed as
*(c) (%) *(0) =(f) ; *(2) : *(f)
ALY ~ AR + AT + ARV — k}l_r)noo A — lim A

k;—0
1,,1 . ep*2g/2k
5P T 5P 7k+{62p*2g*/2k,

(43)

where the definitions of k; and k¢ have been used to express the final result in terms of k. In terms

of the original unscaled parameters, Eq. (43) becomes

2 2
Ay~ —g + %% + -g—EFT_l , (44)

which, in the parameter regime considered, is a leading-order asymptotic representation of the exact
relation (38). It is readily deduced from Eqs. (42) — (44), as discussed in further detail elsewhere
[6], that surface tension stabilizes large wavenumber disturbances, while gravity stabilizes small
wavenumber perturbations. In the reduced-gravity limit, the minimum in the stability boundary
is thus shifted to smaller wavenumbers, and thus the hydrodynamic cellular instability becomes a
long-wave instability phenomenon (Fig. 2).

Corresponding results may be obtained for the viscous case. However, to deduce the asymp-
totic forms of both the cellular and the pulsating stability boundaries, it is preferable from the

standpoint of tractability to introduce the scalings (40) and appropriate perturbation expansions
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for the coefficients b; directly into Eqs. (27) — (37) for each wavenumber regime, and to obtain the
neutral stability boundary in question from the expanded form of those equations. Thus, for the
cellular boundary Aj(k) [6], we deduce the following expansions and results for each wavenumber
regime.
(?) k~0O(1): r~riEF, T = u Pk, (45)
1

g+, @0=55 (14 VIFAPR) (46)

by~ BV 4 by pMet ..., i=2,8, (47)

b~ b +bMet.o, i=1,3,4,5,6,7, (48)

Ap =43~ (459 + A1t --), A =—p*/2. (49)

g ) ke epp2fE+-- 1 o [ 4.
@) b= {5 rewPR{ST amgperR{GT (50)
b0 1 pMe ... ,
b: ~ i i i=2,8, 51
: {b§1)6+b§2)e2+~--, (51)
M., @2
by ~ bgl)e;r b; o, i=1,3,4,56,7, (52)
bz € + bt € + b
G £(i) | g% <) [ p"(p*g — Ki)/ 2k
Ap= A0~ (A5 + ATt o), 45D ~ {p*(p*g* ~k)/2ke. )

| 1
e . -1 —_ *
(ti5) k=ky/e: TN € e, Ty = 3P (1 —4/14+4p 2P2kf,) , (54)

g~ qene e, gy =ky, (55)
by~ bVt 4 b e i=1,3,5,7, (56)
b~ b2 4 bl e 4.l i=2,4,6,8, (57)
Ap=ADe (A5 + APty (58)

2p*p* P [1 + ks(p*y + 2u* P + 2p* P)]
4u*P(1+ p*Pkg) — [1 — (1 + 4p*2P2k2) %] (0%~ + 2u* P)

ASD) o 4 (59)

We observe that the leading-order results (49) and (53) are equivalent to the corresponding
inviscid results (42). Thus, to leading order, neither the inner nor the outer wavenumber regimes
are influenced by viscous effects, which, to a first approximation, are only significant for large-
wavenumber disturbances. This is reflected in the leading-order expression for the cellular stability
boundary given by Eqs. (58)-(59), where, among other features, it is readily observed that both the
liquid end the gas-phase viscosities (through the parameters P and p* P, respectively) enter into
this expression, reflecting an equal influence of viscous and surface-tension effects on the neutral

stability boundary in the large-wavenumber regime. The equal importance of gas-phase viscosity
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relative to that of the liquid phase stems from the fact that gas-phase disturbances are, according to
Egs. (56) and (57), larger in magnitude than those in the liquid phase, such that a weak damping
of a larger magnitude disturbance is as significant as an O(1) damping of a smaller magnitude
disturbance. In the limit P — 0, the inviscid expression (42) is recovered. It is easily shown that
limg, o AL) = —p*/2, so that the far outer solution can be matched to the outer solution (49).
Indeed, a uniformly valid composite expansion spanning all three wavenumber regimes may be

constructed as in the inviscid case, giving the result

2p*u*P[1 + ek(p*y + 2u* P + 2p* P *2 e
A9 g p*u* P [1 + ek(p*y + 2u™ P + 2p* P)] - +/;_k{eg*, (60)
4p* P(1 + ekp* P) — (p*y + 2p* P)[1 — (1 + 4u*2P2e2k2) /7] g
or, reverting to unscaled parameters,
P 2pP 2
A9~ pt 2puP [1 + k(py +2uP +2pP)] gy (61)

4uP(1 + kpP) — (py + 2uP)[1 — (1 + 4p2P2k2)"/?] 2k

The cellular stability boundaries, based on Eq. (60) are reproduced in Fig. 3, where only those
portions of the curves that lie in the region A} < 0 are shown. For sufficiently small positive values
of Ay, it may be shown that there always exists a positive (real) root iw of the dispersion relation,
which implies that this region is intrinsically unstable. We note from Eq. (59) that as ks increases,
ARV ) increases, intersecting the Aa(f ) = 0 axis at the value k 5= (p*7)" 1= p*P/(p*y +2u* P)],
which agrees with the inviscid result in the limit y*P — 0. It is readily seen from Fig. 3 that, asin
the inviscid case, the essential qualitative difference between the normal and reduced-gravity curves
is the location of the critical wavenumber for instability. Specifically, the minimum in the neutral
stability boundaries occurs for O(1) values of k under normal gravity, and at k ~ O(e!/2) in the
reduced-gravity limit considered here. It is also clear from Fig. 3 that increasing the values of any
of the parameters P, u* P or v serves to shrink the size of the unstable domain through damping of
short-wave perturbations. The non-negligible effects of gas-phase viscosity represents an important
correction to Levich’s original treatment [3] in which these effects were simply assumed to be small.
The result (60) — (61) thus synthesizes and significantly extends the classical Landau/Levich results
[1,3], not only in allowing for a dynamic dependence of the burning rate on local conditions in the
vicinity of the liquid/gas interface, but also in its formal treatment of those processes (surface

tension, liquid and gas-phase viscosity) that affect damping of large-wavenumber disturbances.

Asymptotic Analysis of the Pulsating Stability Boundary

As indicated previously, the existence of a nonstationary pressure dependence on the burning
rate (i.e., A, # 0) leads to the prediction of a pulsating hydrodynamic stability boundary that

is absent when such a pressure coupling is neglected, as in the original Landau/Levich theories.
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In the inviscid case, this boundary (39) is a straight line that lies below the cellular boundary
discussed above, but this is modified under the influence of viscosity, as we shall demonstrate.
For the scalings (40) adopted in the preceding section [in particular, for P ~ O(1), p ~ O(e)],
it turns out that, unlike the cellular stability boundary for which viscous effects only have a leading-
order effect in the far outer wavenumber regime, the effects of viscosity have a leading-order effect
on the pulsating boundary for O(1) wavenumbers as well. Thus, in the outer wavenumber region,

we seek a solution for the dispersion relation in the form
iw ~ e M2 (iwg + iwr €/ +iwe/? -1 ), (62)

where the leading-order term is suggested by the explicit results for the inviscid case [5, 6], and

the expansion in powers of €1/4

and (28), have the form

is suggested by the expansions for r and ¢, which, from Egs. (27)

r e rael? + et et (63)
T2y = —iwop®, T3/ =—iwip®, 711 =—iwsp* — (u*Pk)?,

- 1 . -
qn~ CI(—1/4)€—1/4 +go€® + -+, q-1/4) = Viwo/P, qo= 5P (1 +W1/\/ %wo/P) . (64)

Corresponding expansions for the coefficients b; in Eqgs. (29) — (37) are determined as

by = bVl 4 b3 V=34 Ly D12 L 21,28, (65)
bi —_ b§*1/2)6—1/2 +b§_1/4)6—1/4 4oen, i = 3’ 4, 5’ 6, (66)
b= b0 b0 4, =T, (67)

where the leading terms in the expansions for by, be, b4, bg and bg are consistent with the inviscid
results [5] and the remaining coefficients appear only for nonzero values of P and are conservatively
postulated to have the indicated expansions. Substituting these expansions into Egs. (29) — (37)

and equating coefficients of like powers of €, we obtain the leading-order equations/results

ik 052 4 iky 6D gy gy 05 =0, (68)
ik 05D ik bR gy b3 =0, (69)
T (70)
P
: 2
b = ol )
(-1 _ AN
5§ _—(1+—p*2);;, (72)
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57D 4ol — i) =0, (73)

where Eq. (72) was obtained from the leading-order difference of Egs. (33) and (34), and the
remainder of the leading-order versions of Egs. (29) — (37) give redundant results. Substituting
Egs. (70) — (72) into Eq. (73), we obtain

k2( Az
iwp)? = — 1+2—”), 74
(o) s e (74)

and thus (iwe)? 2 0 for Ay 2 —p*/2, which essentially recovers the leading-order cellular stability
boundary (49) for O(1) wavenumbers, but gives no information on the pulsating boundary since
iwg is purely imaginary for Aj < —p*/2. Hence, stability in the latter region is determined by
higher-order coefficients in the expansion (62) for iw.

Continuing with the analysis of the expanded forms of Egs. (29) — (37), we obtain the second-

order equations/results

iky 5 ik bV g1y Y + go b =0, (75)
iky S 4 kg b 1y 0 gy b5V = 0, (76)
b5 =0, (77) |
kb5 M — gy = ok (1 - %) : (18)
b4 %bg-3/4> = iws (79)
b3 =0, (80)
(731 = 2p{~3/ =0, (81)
p{7HA = 51D = 9, (82)

where Eq. (78) was obtained from the sum of Eq. (31) multiplied by ik; and Eq. (32) multiplied
by iks and the use of Eq. (68), Eq. (80) was obtained from the difference of Eqgs. (33) and (34),
and Eqgs. (82) follow from Eqgs. (36) and (37) in conjunction with Eq. (77). From these results
and Eq. (68), we thus conclude that .

*

_ - A
B =y =0, b5 = g (1— —E) , (83)

where the fact that iw; = 0 implies the need to calculate iwy to determine stability in the region

A}, < —p*/2. Proceeding in this fashion, we obtain from the next-order versions of Egs. (33),
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(35), the difference of Egs. (33) and (34), and the sum of Eq. (36) multiplied by ik; and Eq. (37)
multiplied by iks, the relations

© _ Ky itk on aen | agen
T T e P T T =, (849
b~ 1/2)+ oo 2Pk~ 16 4 b8 1/2)+2z“’]:p bV — 28{ 7Y = iy, (85)
- el iwop*? wy (= -
—-p*bz(3 Y2 4 p bg 12 4 —i;;—bg Dy Apbg 12 o —iwpp®, (86)
- _ _ B2
—iwop*b$Y + kB 4 iweptbSTY + iwbl” ——(2Pk—1)sz—b§ Y —o, (87)
0

which, when combined with the expressions for bg_l), bg_l), bg_l), bg—l/ 2 and iwp given above,
constitute four equations for the four unknowns bg—l/ 2), b;o), bg_l/ » and iwg. Solving these simul-

taneous equations, we thus obtain

A* A* 2 N A* '2
b = —2PK?, BV = [2Pk—% 1+—p——2(p ) ]z’wo, bi M = [1— (p—”) ]iwo, (88)

guzz =k {(%@)2 — 2Pk ~ 1] . (89)

Equation (89) is the desired result, from which we conclude that iw; $ 0 for (43/p*)? S 1+ 2Pk.

Thus, in the region A} < 0, iwy vanishes on the boundary
Ay~ —p*V1+ 2Pk, (90)

which is a pulsating boundary (Fig. 4) since, from Eq. (74), two is purely imaginary along this
curve.

Equation (90) is valid for O(1) wavenumbers, but since it matches to the leading-order inviscid
inner pulsating boundary A7 = —p* as £ — 0, and becomes large in a negative sense as k becomes
large, it is clear that Eq. (90) represents the pulsating boundary for arbitrary wavenumbers.
That is, for P ~ O(1), the effects of (liquid) viscosity on the pulsating boundary are, to a first
approximation, absent for small wavenumbers, are first felt for O(l) wavenumber perturbations,
and are sufficient to move this boundary to larger-magnitude values A7 ~ O(e*/2) in the far
outer wavenumber regime. In contrast, the cellular boundary (60) is unaffected for O(1) and
smaller wavenumbers, and is only modified an O(1) amount for O(e™!) wavenumbers. Thus, the
hydrodynamic pulsating boundary is more sensitive to viscous effects than is the corresponding
cellular stability boundary. For smaller-magnitude viscosities such that P = Pe ~ O(e), it may be

shown by an analogous calculation (Appendix) that O(1) modifications to the pulsating boundary
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then occur in the far outer wavenumber regime according to A; = —p* (1 + 2Pk f)l/ 2, which, in

terms of unscaled quantities, is the same as Eq. (90).

Conclusion

The present work has presented a formal asymptotic treatment of hydrodynamic instability
for a surface model of liquid-propellant combustion in which burning takes place at the liquid/gas
interface. The model itself is based on a synthesized version of the classical models analyzed by
Landau [1] and Levich [3], generalized to allow a coupling of the burning rate with the local pressure
field [4,5]. The realistic smallness of the gas-to-liquid density ratio proved to be a convenient small
parameter upon which to base an asymptotic treatment, resulting in three distinct wavenumber
regimes with different physical processes assuming dominance in each. Both cellular and pulsating
hydrodynamic stability boundaries are predicted by the present model, the former corresponding
to Landau’s original notion of hydrodynamic instability, and the latter representing a new predic-
tion arising from the pressure dependence of the burning rate. For the cellular type of instability,
it was shown that the gravitational acceleration (assumed to be normal to the undisturbed lig-
uid/gas interface in the direction of the liquid) is responsible for stabilizing long-wave disturbances,
whereas surface tension and viscosity are effective in stabilizing short-wave perturbations. In the
case of pulsating instability, neither gravity nor surface tension play a leading-order role, and vis-
cous effects are the dominant stabilizing influence. Indeed, for O(1) liquid Prandtl numbers, the
stabilizing effects of (liquid) viscosity on pulsating instability are significant for disturbances whose
wavenumbers are O(1) and higher. On the other hand, viscous effects are only significant for large
wavenumber disturbances in the case of cellular instability, where the influence of gas and liquid
viscosity are comparable despite the small ratio of these two parameters. Although the onset of
pulsating hydrodynamic instability is predicted to occur only for sufficiently negative values of
the pressure-sensitivity coefficient A,, the persistence of the pulsating stability boundary (in the
presence of viscous effects) for small wavenumbers suggests that it should be observable in those
types of liquid propellants, such as those based on hydroxylammonium nitrate (HAN) and/or tri-
ethanolammonium nitrate (TEAN), that are characterized by negative pressure sensitivities over
certain pressure ranges. In connection with this, we note that sloshing behavior has been observed
during combustion of certain HAN/TEAN/water mixtures [2], but since nonsteady burning can
arise via secondary and higher-order bifurcations in the cellular region [7], as well as from a primary
crossing of the pulsating boundary described here, further measurements are generally needed to

determine the precise origin of such behavior in any given experiment.
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Nomenclature
burning rate
pressure-sensitivity coefficient
coefficients in perturbation solution ({ =1, 2, ... ,8)

rate-of-strain tensor

Froude number

inverse Froude number (gravitational acceleration)
perturbation wavenumber

unit normal

pressure

Prandt]l number

quantity defined by Eq. (27)
quantity defined by Eq. (28)

time variable

perturbation velocity vector

velocity vector

moving coordinate system
surface-tension coefficient

small bookkeeping parameter
perturbation pressure

gas-to-liquid thermal diffusivity ratio
gas-to-liquid viscosity ratio
gas-to-liquid density ratio
perturbation in location of gas/liquid interface
location of gas/liquid interface

complex perturbation frequency

Subscripts, Superscripts:

o @ ~n

*

inner wavenumber regime or integer variable
far outer wavenumber regime

liquid

gas

outer wavenumber regime

scaled quantity
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Appendix. The Pulsating Stability Boundary for Small Liquid Prandtl Numbers

For small liquid viscosities such that P = Pe, and the same scalings (40) as in the P ~
O(1) case analyzed in the main body of the text, the effect of viscosity on the cellular boundary
disappears at leading order [P — 0 in Egs. (60) and (61)], while the effect of viscosity on the
pulsating boundary is only significant in the far outer wavenumber regime. In that case, the

appropriate expansions analogous to Egs. (62) ~ (67) are given by

iw ~ e~ 3/2 (iwo + iwr €4 + dwoe/2 - - ) , (91)

T~ T(_1/2)61/2 +0(e™ 4y, T(—1/2) = —iwop”, (92)

g~ g5/t + 0, gsy = W, (93)

by = b De 2 4 b7V L B3R 4L 1=1, 2,8, (94)
by = b D32 L p(TH M54 L. i=34,5,6, (95)

by = b8 Lyl e o =T, (96)

Substituting these expansions into Egs. (29) — (37) and equating terms corresponding to like
powers of e then gives, as previously, a sequence of equations for the recursive determination of
the coeflicients in the above expansions. Similar to the calculation for P ~ O(1) in the outer

wavenumber regime, we obtain in this case that

ikg (A; - A;) , dw =0, iwy=ky [(-ﬁ:;)z —2Pks — 1] , (57)

(iwo)2 =

where fi;‘, = (p*/2)(p*vks —1) is the inviscid cellular boundary in the far outer wavenumber regime
given by the last of Egs. (42). The first of Eqs. (97) thus recovers the cellular stability boundary,
but since iwp is purely imaginary for A7 < fi;, stability in that region is determined by the real
part of the next nontrivial coefficient in the expansion (91). Thus, setting iws = 0 in the last of

Egs. (97), the pulsating stability boundary in the far outer wavenumber regime is given by

AL =—p*\/1+ 2Pk, (98)

which, in the limit k; — 0, matches with the leading-order pulsating boundary Ay = —p* in
the outer wavenumber region, which is unaffected by viscosity to this order of approximation.
Thus, Eq. (98), which in terms of & is given by A; = —p* 1+ 215614:) Y 2, is valid for arbitrary
wavenumbers. Writing P in terms of its unscaled counterpart P, this expression becomes identical

to Eq. (90), which thus remains valid in the limit of small P.
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Fig. 1.
Fig. 2.

Fig. 3.

Fig. 4.

Figure Captions

Hydrodynamic neutral stability boundaries in the limit of zero viscosity.

Asymptotic representation of the cellular hydrodynamic neutral stability boundary in the limit
of zero viscosity. The upper (lower) solid curves correspond to the two cases described by Eqs.
(57) for normal and reduced-gravity, respectively (curves drawn for the case € = 0.04, p* = 1.0,
g =25, g*=1.0).

Asymptotic representation of the cellular hydrodynamic neutral stability boundary for the
viscous case. The upper and lower sets of curves correspond to the normal and reduced-
gravity regimes, respectively, in the asymptotic limit considered in this work {curves drawn
for the case € = .04, p* = 1.0, g = 6.0, g* = 2.0). The solid curves correspond to the inviscid
limit (P = 0) with nonzero surface tension {y = 2.5). The dash-dot curves correspond to
nonzero surface tension (y = 2.5) and liquid viscosity (P = 1.0), but zero gas-phase viscosity
(u*P = 0). The dash-dot-dot curves differ from the dash-dot curves by the addition of gas-
phase viscosity (u*P = 1.0), and are similar to the dash-dot-dot-dot curves, where the latter
correspond to larger viscosities (P = p* P = 2.0). The dash-dot-dot-dot-dot curves correspond
to a viscous case (P = u*P = 1.0), but with zero surface tension (y = 0), so that, from Eq.

(99), the curves do not intercept the A} = 0 axis.

Asymptotic representation of the pulsating hydrodynamic neutral stability boundary for the
viscous case (P > 0). The region between the pulsating and cellular boundaries (the latter
are shown on an expanded scale in Fig. 3) is the stable region with respect to hydrodynamic

instability.
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HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)
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HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)
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