C | And--97—- W40
SANs]?a M?Z‘Z% 7- sttféa C

TOWARD PARALLEL, ADAPTIVE MESH REFINEMENT FOR CHEMICALLY REACTING
FLOW SIMULATIONS!

K.D. Devine?, J.N. Shadid?, A.G. Salinger?, S.A. Hutchinson?, and G.L. Hennigan?

ABSTRACT: Adaptive numerical methods offer greater efficiency than traditional numerical methods by
concentrating computational effort in regions of the problem domain where the solution is difficult to obtain.
In this paper, we describe progress toward adding mesh refinement to MPSalsa, a computer program
developed at Sandia National Laboratories to solve coupled three-dimensional fluid flow and detailed
reaction chemistry systems for modeling chemically reacting flow on large-scale parallel computers. Data
structures that support refinement and dynamic load-balancing are discussed. Results using uniform
refinement with mesh sequencing to improve convergence to steady-state solutions are also presented.

1. INTRODUCTION

Adaptive mesh refinement has been used with great success for a variety of applications [1, 5]. With
adaptive refinement, elements are subdivided into smaller elements in regions of the problem domain where
greater resolution is needed. In this way, computational effort is concentrated in regions where it is most
needed, without wasting high-resolution computation in other regions. While adaptive mesh refinement has
been widely used on serial computers, its use on parallel computers is complicated by the need for
distributed data structures, dynamic load balancing, data migration, and maintenance of a distributed
element database. In this paper, we describe our efforts toward implementing parallel mesh refinement in
MPSalsa, an unstructured finite element computer program developed at Sandia National Laboratories to
solve coupled three-dimensional fluid flow and detailed reaction chemistry systems for modeling chemically
reacting flow on large-scale parallel computers [12, 13]. In particular, we describe the data structure design
to support refinement and dynamic load balancing, the octree data structure used to store refined meshes,
and issues that arise due to the implementation of refinement in parallel. We have implemented uniform
refinement of 2D and 3D meshes as a step toward adaptive refinement. This step is a useful one. Through
mesh sequencing, uniform refinement can be used to accelerate convergence of the nonlinear solver and
enable steady-state solution of problems too difficult to solve from trivial initial guesses. We present three
examples of the benefits of mesh sequencing.

2. OVERVIEW OF MPSALSA

MPSalsa computes the solution of the conservation equations for momentum, total mass, thermal
energy, and individual gas and surface phase chemical species for low Mach number flows. These equations,
shown in Table 1, form a complex set of coupled, nonlinear PDEs. The continuous problem is spatially
approximated by a Petrov-Galerkin finite element method. For transient problems, this spatial
approximation is coupled with first- and second-order dynamically controlled time-stepping methods.
Necessary transport properties, diffusion coefficients, kinetic rate constants and diffusion velocities are
obtained from the CHEMKIN [10] library. The resulting nonlinear system is solved by an inexact Newton
method with back-tracking [14]. In the inexact Newton method, nonlinear residual information is used to
determine the accuracy to which the linear subproblems are solved. Back-tracking is a technique for further
improving the robustmess of the nonlinear solver. It shortens a Newton step as needed to ensure that the
nonlinear residual has been reduced adequately before the step is accepted.

The Aztec library [9] of parallel preconditioned Krylov techniques is used to solve the resulting linear
equations. The parallel Krylov algorithms implemented in Aztec include conjugate gradient, conjugate
gradient squared, generalized minimal residual (GMRES) and transpose-free quasi-minimal residual
methods. The available preconditioners are row sum and block Jacobi scaling, block Jacobi preconditioning,
Neumann series and least-squares polynomial methods, and many additive Schwarz domain decomposition
preconditioners using various incomplete LU factorizations with variable overlap.

1. This work was partially funded by the U.S. Department of Energy’s Mathematical, Information and Computational
Sciences Division, and was carried out at Sandia National Laboratories operated for the U.S. Department of Energy
under contract no. DE-AC04-94A1.85000.) . .

2. Sandia National Laboratories, Albuquerque, NM, 87185-1111, kddevin@cs.sandia.gov.

3. New Mexico State University, Las Cruces, NM.

d
Momentum . ——(gt“) +Ve(puu) ~VeT -pg = 0
. : ap _
Total Mass ot +Ve(pu) = 0
) N, N,
Thermal Energy Cp[a————(gtT) +Ve(puT)} = -Veq+@+0+ Y BVejp— Y iy W, b,
- k=1 k=1
N,-1
. apY : .
Species Mass ®%, Vepu¥, = —Vej, + Wi, k = 1,2,..,N -1, and Yy = 1= Y ¥,
Fraction for Species k d y P

Table 1. Governing Conservation Equations

We use Chaco [8], a general graph partitioning tool, to divide the initial finite element mesh into
subdomains that are assigned to processors. Chaco constructs subdomain mappings that have low
communication volume, good load balance, few message start-ups and only small amounts of congestion. It
supports a variety of new and established graph partitioning heuristics, such as spectral techniques,
geometric methods, multilevel algorithms and the Kemighan-Lin method. For the results in this paper,
multi-level methods with Kernighan-Lin improvement were used.

3. IMPLEMENTATION OF PARALLEL MESH REFINEMENT

MPSalsa was originally written with array-based data structures. For example, data such as nodal
coordinates, global node numbers and global element numbers were stored in individual arrays. With mesh
refinement, however, new node and element information needs to be created and added to the mesh data
structures. Moreover, with dynamic load balancing, movement of data between processors requires entries to
be added to and deleted from a processor’s local arrays. To simplify these processes, we have redesigned
MPSalsa to used dynamic tree-based data structures instead of arrays. These data structures allow easy
insertion and deletion of entities (such as nodes and elements) during refinement, coarsening and data
migration. They also enable efficient searches of the entities by global number or position.

We have also made MPSalsa’s data structures more object-oriented. Instead of storing entity
information in many identically indexed arrays, the new data structures collect all information for a mesh
entity into one contiguous structure. For example, a node’s structure consists of its local and global node
numbers, its coordinates in the domain, information about its boundary conditions and unknowns, and a
pointer to the solution vector for its unknowns. The object-oriented data structures simplify data migration
during dynamic load balancing, since all of an entity’s data can be copied from one location rather than
gathered from several different arrays. Moreover, with the object-oriented data structures, cache usage
during the matrix-fill portion of the finite element code improved, since data for nodes and elements were
stored contiguously in memory.

We chose the octree (quadiree) data structure to implement mesh refinement for 3D (2D) meshes. The
octree data structure has been used in many serial adaptive mesh refinement codes [S5] and mesh generators
{2]. Work has begun to implement parallel versions of the octree for mesh generation [15]. In the octree data
structure, coarse-mesh elements are divided into some number of finer elements. These fine elements are
stored as “children” of the coarse-mesh “parent” element in a hierarchical tree data structure (see Figure 1).
‘While this data structure has higher storage and bookkeeping overhead than other refinement methods [3], it
has several advantages that make it attractive. Coarsening a refined mesh can be easily done by removing
child elements from the mesh and the octree data structure. Since information is available on several mesh
levels, meshes of differing resolutions may be used to solve different aspects of a problem. And since the
octree maintaing connectivity inforination between generations, multi-level preconditioners and solution
methods can be implemented in a straight-forward manner.

MPSalsa and Aztec use a nodal decomposition of the problem domain; each node is “owned” by a
unique processor. All contributions to the equations associated with a node’s unknowns are computed by its
owning processor. Along processor subdomain boundaries, external nodes’ values are communicated from
their owning processors and used to contribute to owned nodes’ equations. As a result of this nodal
decomposition, newly created nodes must be assigned uniquely to processors. A heuristic assignment

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. lmag.s.are

16| 15 11 Initia ilement
31
1 4 3
9 10 3 5
s ! 5/ 16| 7] |8
2
5 6

Figure 1. Adaptive refinement of an initial element (element 0) into three levels (left) and the
corresponding quadtree data structure (right).

strategy is currently used. Each new node along an edge is assigned to the lowest-numbered processor
owning a node of the parent element along the edge. Similarly, each new node on a surface is assigned to the
lowest-numbered processor owning a node on the parent’s surface. Center nodes are assigned to the
processor owning node 0 of the parent element. Using this heuristic, unique assignment of new nodes to
processors can be accomplished without communication between processors. This scheme also maintains
the communication patterns of the parent mesh; i.e., a processor communicates with the same neighboring
processors for both the coarse and the resulting fine meshes. However, load balance is not taken into account
with this strategy. Some processors may receive significantly more new nodes than other processors. The
effects of this load imbalance can be seen in some of the following experiments with uniform refinement.

4. MESH SEQUENCING EXPERIMENTS

Mesh sequencing is a technique for accelerating the convergence of the nonlinear solver for steady-
state problems. In mesh sequencing, a solution is found on a coarse mesh. The coarse mesh is then refined
uniformly (e.g., see Figure 2). The solution on the coarse mesh is interpolated (using the finite element basis
functions) to the fine mesh. The interpolated solution is used by the nonlinear solver as an initial guess on
the fine mesh. In this way, a fairly good initial guess to the desired fine-mesh solution can be obtained
inexpensively on the coarse mesh, thus decreasing the amount of work needed to obtain the fine-mesh
solution. Moreover, for some highly nonlinear problems, trivial initial guesses do not produce converged
solutions on fine meshes, but the improved initial guesses obtained from coarse-mesh solutions enable

convergence on the fine meshes.

1 1 AY

I

1

Figure 2. Uniform refinement of an unstructured quadrilateral mesh for mesh sequencing.

In the following examples, a GMRES linear solution algorithm with a Krylov sub-space size of 200
‘was used. Incomplete LU preconditioning with domain overlap and node reordering was applied to the
linear systems. Backtracking and the inexact Newton method were used in the first two examples; in
Example 3, we used an exact Newton method without backtracking. A trivial initial guess x = 0 was used
for all coarse-mesh solutions and non-sequenced runs. In each case, we compare the number of Newton
steps, the number of iterations of the linear solver, the number of backtracking steps (where appropriate), the
load balance 8 given by _
average number of nodes per processor
~ maximum number of nodes per processor ’
and the total execution time for sequenced and non-sequenced runs. Sequenced mesh runs are specified by
the sizes of the meshes separated by an arrow; e.g., 50 x 50 — 100.x 100 indicates a mesh sequence from a

. 50 x 50 -element mesh to the 100 x 100 -element mesh obtained from one level of refinement. Statistics for

a sequenced run are given as sums, where each summand applies respectively to a mesh of the sequence.

Example 1. Lid Driven Cavity

In this standard benchmark problem {7, 11], the momentum transport and total mass conservation
equations defined in Table 1 are sclved on a unit square to simulate confined flow driven by a moving
boundary (4; = 4,000) on the upper wall. No-slip boundary conditions are applied on all other walls.
Other parameters are chosen so that the Reynolds number Re = 4,000. A solution computed on a
200 x 200 -element mesh is shown in Figure 3.

We solved this problem using mesh sequencing on 50 x 50-, 100x 100 -, and 200 x 200 -element
meshes. In Table 2, we show the resulting solver statistics and solution times (on 20 processors of the Intel
Paragon) for each mesh. Because the problem is highly nonlinear and the load balancing for the fine meshes
was good (8 2 0.92), mesh sequencing was highly effective. The mesh sequence 50 x 50 — 100x 100 —
200 x 200 reduced the execution time 48% relative to solving the problem from a trivial initial guess on a
200 x 200 -element mesh.

Megh or Mesh Number of | Number of Linear Number of Load Balance 8 Total Solution
Sequence Newton Steps Iterations Backtracking Steps Time (secs.)
50x50 42 1368 20 0.99 108.57
100x100 40 2192 19 1.00 500.87
200x200 38 4719 17 1.00 3070.37
50x50 — 100x100 42 +22 1368 + 1566 20+ 4 0.99 —» 0.95 43255
50x50 — 200x200 42424 1368 + 2948 20+6 0.99 — 0.92 1950.87
100x100 — 200x200 40 + 16 2192 + 2924 19+2 1.00 — 0.97 2057.37
50x50 — 100x100 — | 42+ 22+ 15 | 1368 + 1566 + 1829 20+4+1 099 - 095> 1578.98
200x200 0.92

Table 2. Mesh Sequencing Experiments for Example 1.

Example 2. Thermal Convection

In this problem, we model thermal convection (or buoyancy-driven) flow in a differentially heated
square box in the presence of gravity. The momentum transport, energy transport and total mass
conservation equations defined in Table 1 are solved on a unit square. No-slip boundary conditions are
applied on all walls. The temperature on the heated wall and other parameters are chosen so that the
Rayleigh number Ra = 1,000,000. In Figure 4, we show the solution of this problem on a 128 x 128 -
element mesh. Thermal boundary layers form along the hot and cold walls of the domain.

— .

T

DU AR

OESCR_-TOINCOa
YLl

BRSNS IBOUN O e
BN NN ND NN
InalininAA A AR

TISE D.0000

Figure 3. Contour plot of the stream_mnction for Figure 4. Contour plot of temperature for
Example 1 at Re = 4,000. Example 2 at Ra =1,000,000.

Mesh sequencing was used to find solutions to this problem on 64 x 64, 128 x 128, and 256 X 256 -
element meshes, In Table 3, we show the resulting solver statistics and solution times (on 64 processors of
the Intel Paragon) for each mesh. Using mesh sequencing from a 128 x 128 -element mesh to the
256 x 256 -element mesh improved the solution time by 44.9% compared to solving the problem directly on

-a 256 x 256 -element mesh. Mesh sequencing from a 64 x 64 -clement mesh to the 256 X 256 -element
mesh also showed over 40% reduction of execution time relative to solving the fine-mesh problem from a
trivial initial guess. However, the superior load balance and initial guess of the 128 x 128 — 256 x 256
sequence made that sequence more effective.

Mesh or Mesh Number of ‘ Number of Number of Load Balance 0 Total Solution
Sequence Newton Steps | Linear Iterations | Backtracking Steps Time (secs.)
64x64 27 1761 8 0.97 53.8

128x128 30 2047 13 1.00 228.09
256x256 35 7773 11 1.00 1618.05
64x64 — 128x128 27+5 1761 + 1058 8+0 0.97 - 0.85 128.47
64x64 — 256x256 27+ 11 1761 + 3647 8+0 0.97 - 0.78 959.19
128x128 — 256x256 30+10 3047 + 3311 13+0 1.00 5094 906.94

Table 3. Mesh sequencing experiments for Example 2.

Example 3. Tilted Chemical Vapor Deposition (CVD) Reactor

We demonstrate the effectiveness of mesh sequencing for 3D unstructured meshes uasing the Tilted
CVD Reactor. In Figure 5, we show the reactor configuration and an example solution in the reactor. The
reactants enter the reactor through the rectangular region on the left. The rectangular susceptor has a disk in
its middle that spins to produce more uniform deposition. The base of the reactor slopes up at a nine-degree
angle to accelerate the flow and shrink the boundary layer over the disk; these effects offset the decline in the
deposition rate down the length of the reactor due to reactant consumption. A reaction mechanism with four
chemical species was used, resulting in nine unknowns per node.

Figure 5. Reactor configuration and example solution for the Tilted CVD Reactor used in Example 3.

We solved this problem with an SGI workstation using a 336-clement coarse mesh. We uniformly
refined the coarse mesh to produce a 2688-element fine mesh. We computed steady-state solutions both from
a trivial initial guess on the fine mesh and via mesh sequencing from the coarse mesh to the fine mesh (see
Table 4). By using mesh sequencing, we reduced the execution time needed to obtain a fine-mesh solution
by 39.5% relative to the use of the trivial initial guess.

Mesh or Mesh Number of Number of Number of Total Solution
Sequence Unknowns Newton Steps Linear Iterations Time (secs.)
336 elements . 5211 8 23 155.88
2688 elements 32,445 9 97 - 3645.48
336 -> 2688 elements | 5211 — 32,445 8+5 23 +49 2205.85

Table 4. Mesh Sequencing Experiments for Example 3.

The need for dynamic load balancing or a more sophisticated assignment of nodes to processors is
more evident for this 3D problem than for the 2D problems presented earlier. In experiments with this

-example run on 16 processors of the Intel Paragon, load imbalance was costly. For the trivial initial guess
solution, the fine mesh was perfectly balanced among the processors by Chaco; i.e., 6 = 1.0. The resulting
execution time was 827 seconds. With mesh sequencing, the coarse mesh was also perfectly balanced among
the processors; the coarse mesh solution required 70 seconds. However, when the coarse mesh was refined,
the assignment of newly created nodes to processors resulted in load imbalance: 8 = 0.74 . As a result, the
total execution time using mesh sequencing was 901 seconds.

5. CONCLUSIONS AND FUTURE WORK

We have described our progress toward the implementation of parallel mesh refinement in MPSalsa.
To date, parallel uniform refinement has been implemented. We have used uniform refinement for mesh
sequencing, a technique that accelerates convergence to steady-state solutions. Experiments with mesh
sequencing have shown reductions in execution time of approximately 40% on 2D and 3D problems.

In our future work, we will continue toward parallel adaptive mesh refinement by designing refinement
strategies and implementing modifications to the finite element assembly needed along interfaces between
coarse and fine elements. We will investigate effective error estimation techniques for reacting flows and use
them to guide the adaptive refinement. And we will implement dynamic load balancing and data migration
strategies along the lines of [4, 6] to redistribute load imbalance created by adaptive refinement.

6. REFERENCES

1. I Babuska, O.C. Zienkiewicz, J. Gago, and E.R. de A. Oliveira, editors. Accuracy Estimates and
Adaptive Refinements in Finite Element Computations. John Wiley & Sons, Ltd. (1986).

2. PL.Bachmann, S.L. Wittchen, M.S. Shephard, K.R. Grice, and M.A. Yerry. “Robust geometrically
based automatic two-dimensional mesh generation.” Int. J. Numer. Meths. Engrg., 24 (1987) 1043-1078.

3. M.J. Berger and J. Oliger. “Adaptive mesh refinement for byperbolic partial differential equations.” J.
Comput. Phys., 53 (1984) 484-512.

4, R. Biswas and L. Oliker. “Load balancing unstructured adaptive grids for CFD problems.” Proceedings
of the §th SIAM Conf. on Parallel Processing for Scientific Computing, Minneapolis, MN, March, 1997.

5. K. Clark, J.E. Flaherty and M.S. Shephard, editors. Special Issue on Adaptive Methods for Partial
Differential Equations. Appl. Numer. Math., 14 (1994).

6. H.L. deCougny, K. Devine, J.E. Flaherty, R. Loy, C. Ozturan, and M.S. Shephard. “Load balancing for
the parallel adaptive solution of partial differential equations.” Appl. Numer. Math., 16 (1994) 157-182.

7. U. Ghia, K.N, Ghia, and C.T. Shin. “High-Re solutions for incompressible flow using the Navier-Stokes
equations and a multigrid method.” J. Comput. Phys., 48 (1982) 387-411.

8. B. Hendrickson and R. Leland. “A user’s guide to Chaco, Version 1.0.” Sandia National Laboratories
Technical Report, SAND93-2339, Albuquerque, NM, (1993).

9. S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro. “Aztec User’s Guide: Version 1.0.” Sandia National
Laboratories Technical Report, SAND95-1559, Albuquerque, NM, (1995).

10.R.J. Kee, EM. Rupley, and J.A. Miller. “Chemkin II: A Fortran chemical kinetics package for the
analysis of gas-phase chemical kinetics.” Sandia National Laboratories Technical Report, SAND89-
8009, Albuquerque, NM, (1989).

11.R. Schreiber and H.B. Keller. “Driven cavity flows by efficient numerical techniques.” J. Comput. Phys.,
49 (1983) 310-333.

12.]J. N. Shadid, H. K. Moffat, S. A. Hutchinson, G. L. Henmgan, K. D. Devine, and A. G. Salinger.
“MPSalsa: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theory
Document.” Sandia National Laboratories Technical Report, SAND95-2752, Albuguerque, NM, (1996).

13. A.G. Salinger, K.D. Devine, G.L. Hennigan, H.K. Moffat, S.A. Hutchinson, and J.N. Shadid. “MPSalsa:
A Finite Element Computer Program for Reacting Flow Problems: Part 2 -- User's Guide and
Examples.” Sandia National Laborztories Technical Report, SAND96-2331, Albuquerque, NM, (1996).

14.J.N. Shadid, R.S. Tuminaro and H.F, Walker. “An Inexact Newton Method for Fully-Coupled Solution of
the Navier-Stokes Equations with Heat and Mass Transport.” Sandia National Laboratories Technical
Report, SAND97-0132, Albuquerque, NM, (1997).

15.M.L. Simone, H.L.. deCougny, and M.S. Shephard. “Tools and techniques for parallel grid generation.”
Proc. of the 5th Int. Conf. on Numerical Grid Generation in Computational Fluid Dynamics and Related
Fields, Starkville, MS, April, 1996.

