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A TWO-PHASE THERMAL MODEL FOR SUBSURFACE TRA ORT ON MASSIVELY
PARALLEL COMPUTERS

M. J. Martinez! and P. L. Hopkins?

ABSTRACT

This paper presents an unstructured grid numerical algorithm for subsurface transport in heterogeneous
porous media implemented for use on massively parallel (MP) computers. The mathematical model consid-
ers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the
gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for
spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-
passing and domain decomposition techniques are used for implementing a scalable algorithm for distrib-
uted memory parallel computers. Illustrative applications are shown to demonstrate capabilities and perfor-
mance.

INTRODUCTION

Many research activities in subsurface transport require the numerical simulation of multiphase flow in
porous media. This capabifity is critical to research in environmental remediation (e.g. contaminations with
dense, non-aqeous-phase liquids), nuclear waste management, reservoir engineering, and to the assessment
of the future availability of groundwater in many parts of the world. Scientific advancements in each of
these areas could benefit from a high-performance numerical simulation capability. This paper presents an
unstructured grid numerical algorithm for subsurface transport in heterogeneous porous media implemented
for use on massively parallel (MP) computers via message-passing and domain decomposition techniques.
Among the primary objectives of this research were to investigate the use of MP computing for general mul-
tiphase systems (which involve such complications as phase appearance and disappearance), and in particu-
lar, to develop scalable algorithms for general unstructured grids. The numerical platform which is presented
provides an excellent base for new and continuing research in areas of current interest to the geoscience
community.

MATHEMATICAL FORMULATION

The governing equations for nonisothermal multiphase flow in porous media are statements of mass
balance of water and air, over both liquid and gas phases, and a statement of energy balance, also over both
phases [1,2]. The canonical form of this coupled system of balance equations is given by
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where subscripts w, a and e denote water, air and energy. The bulk mass and energy densities are given,
respectively, by,
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In these and subsequent equations subscripts [, g, and s refer to the liquid, gaseous, and solid phases, respec-
tively. Also, ¢ denotes porosity, Yqp is the mass fraction of component o in phase B, p is phase density, e
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is internal energy, and Sg is phase saturation, and the pore space is assumed fully occupied by the liquid and
gas phases, $;+5 ¢ = 1. The net component mass fluxes are defined as

Fa = Y(lelvl+ Yotgpgvg-pgDagVqus (3)

where vy denotes the Darcy flux vector and D, ¢ is a pressure- and temperature-dependent effective binary
diffusion coefficient. The advective fluxes are described by the extended Darcy law, in which relative per-
meabilities are introduced to account for the multiphase motion of fluids. Thus the Darcy flux vector of
phase B (liquid or gas) is,
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where P is pressure, g is the gravitational acceleration vector, and p is dynamic viscosity. The intrinsic per-
meability tensor of the medium is k and the relative permeabilities are denoted kg The intrinsic permeabil-
ity tensor is assumed to be a property of the material under consideration, and as such is a spatially
beterogeneous quantity. Note that we have assumed that each phase has its own phase pressure. The phase
pressures are related via the capillary pressure relation, P,~P, = P.(S)), which, as indicated, is assumed to
be empirically specified as a function of the phase saturation of liquid. The net heat flux vector is defined by
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where A is a saturation-dependent effective conductivity, hp is phase enthalpy, 4., is the enthalpy of
component o in the gas phase, and J, is the gas-phase diffusion flux, the last term on the right-hand-side
of Eq. (3).

The foregoing describes the major components of the mathematical model. Some additional information
concerning thermodynamics and transport models can be found in [3].

NUMERICAL METHOD

Spatial and Temporal Discretization.

The numerical method applied for solving the initial-boundary value problem formed by the coupled
system of equations is a finite element method (FEM), enabling a general representation of complex geologic
stratigraphy. The spatial discretization is accomplished by the Galerkin finite element method [4] utilizing
fully integrated isoparametric multilinear elements via Gauss-Legendre guadrature. For problems with
discontinuous solutions (e.g. phase boundaries), an upwinding scheme similar to Ref. [5] is under
development. The resulting system of ordinary differential equations is integrated forward in time by a
variable-step backward-difference predictor-corrector scheme first described in [6]. Two time integration
methods are implemented. A first order scheme employs a forward Euler (FE) predictor with a backward
Euler (BE) corrector. A second order scheme employs an Adams-Bashforth predictor with a trapezoid rule
corrector. The predictors are used to obtain an initial estimate of variables at the next time step, #,,, ;, thereby
improving the initial estimate of the solution vector for use in a Newton iteration scheme applied to the
nonlinear system of equations. The predictor/corrector scheme provides a method for estimating the local
time truncation error, thereby providing a rational scheme for automatic time step control based on a user-
specified truncation error tolerance.

Solution Procedures.

The task for the nonlinear solver is to find the solution vector U that minimizes the global residual
vector, R = (R, R, Re)T, given by the discrete form of Eq. (1). The discretized system of nonlinear
equations can be solved for the solution variables by Newton iteration [7]; each step of the iteration requires
the solution of the following linear system for the update vector, 38U,
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Figure 1. Schematic of a domain decomposition in which the global mesh (a) is decomposed into two
subdomains, (b) and (c). The dashed elements denote the “ghost elements” on each
partition. The global mesh displays the global node numbering scheme, whereas the
subdomains display the processor-level node numbering, with the corresponding global
node numbers displayed in parenthesis.

JUHSU = _rUY), (6)

where J is the Jacobian matrix. The solution vector is updated at each iteration (g) via vit - piesutt! ,
until convergence is achieved. The Jacobian can be computed efficiently via forward difference approxima-
tions, by exploiting the fact that most terms are sums of products of basis functions and grid variables. This
“inexact” Newton scheme (the term inexact refers to a numerical approximation of the Jacobian) is a conve-
nient method of determining the Jacobian because any new transport parameter function or equation of state
can be implemented without the need for the user to also program the gradient of the functions with respect
to the solution vector. This is particularly helpful in the present class of problems where secondary variable
calculations depend on which phases are present at a particular node point. However, special care must be
taken in computing the forward differences to minimize finite-precision errors [7].

The Newton iteration scheme generates a linear system of equations to be solved for each update vector.
The systems are solved using a parallel processing preconditioned Krylov solver library called Aztec [8]. The
library includes several parallel iterative solution methods, including the conjugate gradient method for
symmetric positive definite systems and a number of related methods for nonsymmetric systems, e.g. the
generalized minimum residual method (GMRES). The library includes several preconditioners (e.g., Jacobi,
least-squares polynomial, incomplete LU decomposition), which can be “mixed and matched” with the
Krylov methods. See reference [7] for additional information.

Parallel Implementation.

The foregoing numerical algorithm is implemented for distributed memory parallel computers, or
networked systems, via domain decomposition and message-passing techniques. We used the MPSalsa code
[9] as a platform, including the parallel-processing implementation. However, there are several properties of
the current problem which necessitated some special developments. A special data structure was necessary
for the porous medium calculations. In our formulation it is necessary to have a unique material type specified
on a node-point basis. This requirement can be attributed to the capillary pressure vs. saturation constitutive
model, which is non-unique at a material boundary, and our choice of primary variables. Our solution to
accommodate this non-FEM data structure was to build a processor node-point-to-material mapping. To
ensure a consistent mapping across processors, inter-processor communication is required to update the
correct mapping for the “ghost nodes” on each processor. The domain decomposition itself is performed with
a modified version of the Chaco [10] graph partitioning code. The task for Chaco is to decompose the global
node set graph into a user-specified number of partitions (subgraphs) in such a way as to minimize the edge
interactions between partitions.

A simplified schematic of a domain decomposition is shown in Figure 1 for a structured grid (the
algorithm is implemented for general unstructured grids). The global domain is decomposed into two
subdomains, wherein the set of nodes assigned to each processor are numbered sequentially, starting with the
set of nodes that “belongs™ to the processor, and with the ghost or external nodes numbered last. In the figure,
the global node numbers corresponding to the processor-level node numbers on the mesh partitions (Figures
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Figure 2. Parallel processing performance data for the 3D hydrothermal simulation.

1b and 1c) are shown in parenthesis. The dashed elements are the so-called “ghost elements” and the
associated node points are referred to as “ghost nodes” or external nodes. Each processor is assigned the
nodes corresponding to the un-dashed elements in Figure 1. However, on each processor the data for the
external nodes is necessary to complete the processing for the border nodes, i.e. the surface nodes on each
subdomain. Interprocessor communication is required for exchanging information associated with the ghost
nodes, and those “border” nodes associated with the current processor. The interprocessor communication is
set up to take advantage of the native Intel Paragon communication structures, enabling efficient
communication on the Intel Paragon, and is also set up to use the standard message-passing library definition
MPI [11], thus making the algorithm highly portable.

APPLICATIONS

Hydrothermal Simulation.

In this example we examine multiphase hydrothermal transport, due to a heat-generating source
distribution, in a large scale 3D region modeled after Yucca Mountain (YM), Nevada, a site being considered
for placement of a high-level nuclear waste repository. The computational grid is composed of over 358,000
node points and includes the major hydrostratigraphic units at YM. The entire region modeled measures about
1.6 km east to west, includes about 0.7 km above the water table (the lower boundary) and extends 3 km along
its length. The materials are modeled as composite fractured media using the so-called equivalent continuum
model (ECM) model [12] which assumes the fracture and matrix systems are locally in pressure equilibrium.
The property data for this problem are those specified in [3], which contains additional information about this
problem. These materials, and especially with the ECM, display many orders of magnitude variation in
permeability from unit to unit, rendering a highly nonlinear problem which requires the Newton iteration
scheme for convergence.

Lateral boundaries are specified as no-flow for all mass and energy balance equations. The entire lower
boundary is modeled as a water table (moisture saturation unity) at 1 atmosphere pressure and a temperature
of 20° C. The upper boundary is also at 1 atmosphere pressure, but at a temperature of 15° C. An infiltration
flux of water at 0.1 mm/yr is applied uniformly over the entire upper boundary. These conditions simulate an
upper boundary in contact with the atmosphere.

This problem was run on various numbers of processors to assess the parallel performance on the 1800
processor SNL Intel Paragon. This simulation, on a mesh consisting of 358,000+ grid points, requires the
solution of a linear system composed of about 1.1 million equations which are solved at each time step. The
problem was computed using the GMRES solver with incomplete LU preconditioning, and the forward/
backward Euler predictor/corrector time integrator. The total CPU time, excluding loading mesh data and file
handling, is shown in Figure 2 as a function of the number of processors. Each simulation, performed with
different numbers of processors, required 71 time steps and 125 Newton iterations to integrate the solution
out to 3000 yrs. This demonstrates the correct parallel implementation of the solution algorithm. The speedup
ratio shown is relative to the CPU time on 256 processors, defined as 256 ® T,5/T ,, where T, is the time
on p processors. This formula estimates the CPU time to run the problem on one processor using the CPU




time on 256, the smallest number of processors able to run this size problem on the Intel Paragon. The current
problem is far too large to fit on a single processor of the Intel Paragon. On a fixed size grid, such as in the
present case, the efficiency will always decrease as the problem is partitioned onto more processors, which
increases the relative amount of communication compared to floating point operations.

Infiltration in heterogeneous media on a networked system.

To demonstrate the code’s capability to execute in parallel on multiple workstations using the Message
Passing Interface (MPI), a 3D problem involving patch infiltration into an initially “dry” layered region,
measuring 8x2x6.5 m3 (see [3] for additional details), was performed on one, two and four Sun
SPARCstation20 workstations communicating over ethernet. The problem was computed on a fixed-size grid
composed of 21758 node points using the GMRES solver with incomplete LU preconditioning and the
forward/backward Euler integrator with automatic time step control, requiring 80 time steps and 164 Newton
iterations to integrate to a time of 30 days. The CPU requirements and speedup ratios are shown in Figure 3.
Note the high parallel efficiencies achieved, due to the high compute load per processor compared to
communication overhead. The 94% efficiency on 4 processors is very good for performing communications
over ethernet, demonstrating that existing distributed computing assets can still be used effectively to perform
parallel calculations with this simulator.

A recent improvement in the simulator is the development of a general interface for specifying
heterogeneous data. It allows the user to specify heterogeneous data on a nodal point basis not only for typical
parameters (permeability, porosity), but also for user-specified parameters which may enter into transport
models which the user may also define. This capability enables analysis of the impact of spatial distributions
of material properties and model parameters, and uncertainty studies. The aforementioned 3D problem
involving patch infiltration into a layered region was modified to demonstrate this capability. The modeled
domain is shown in Figure 4 and originally involved four homogeneous regions; two thin layers across the
full domain extent, and a high-permeability, rectangular inclusion in the remaining region. Different spatial
distributions were used to assign permeability values at each computational node in the three “bulk” regions;
the inclusion was left unchanged at its constant value. A plot of the resulting permeability field is shown in
Figure 4, along with a comparison of saturation values along the same vertical profile (x,y)=(1,0) m for the
original problem (solid line) and the heterogeneous problem (dotted line). The heterogeneity results in
dispersion of the saturation plume.

SUMMARY AND CONCLUSIONS

The equations describing nonisothermal two-phase flow in heterogeneous porous media have been
implemented in a computer code for use on massively parallel computers, or over a network of computers,
using unstructured grids. Good performance in terms of speedup and efficiency have been demonstrated
through applications of practical interest. The capability described herein may be applied to many problems
once considered intractable due to size or property complexity.
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Figure 3. Parallel processing performance data on a network of workstations communicating over
ethernet via MPL.
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Figure 4. Contour plot of the generated permeability field and comparison of saturation profiles resulting
from the original (solid line) and heterogeneous (dotted line) problem definition.
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