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ABSTRACT
A NUMERICAL STUDY OF THE COLUMBIA HIGH BETA DEVICE:TORUS-II
Ralph Izzo

The ionization, heating and subsequent long-time-scale behavior
qf the helium plasma in the Columbia fusion device, Torus-II, is stud-
ied. The purpose of this work is to perform numerical simulations
while maintaining a high level of interaction with experimentalists.

The device is operated as a toroidal z-pinch to prepare the gas

.for heating. This ionizatién of helium is stu&iea using a zero-
dimensional, two-fluid code. It is essentially an energy balange
calculation that follows the development of the various charge states
of the helium and any impurities  (primarily silicon and oxygen) that
are present. The éode is an atomic physics model of Torus-II. In
addition to ionization, we include three-body and radiative recombina-
tion processes.

The plasma is heated by turbulent poloidal skin currents, induced
by a fast reversal of the toroidal magnetic field which converts the
toroidal z-pinch into a high beta tokamak. The heating dynamics are
simulated by solving single-fluid resistive magnetohydrodynamic eéua—
tions numerically in one- and two-dimensions. Inertia terms are kept
to capture the fast-time-scale plasma dynamics. The eqﬁations are

driven by prescribed boundary conditions for the poloidal flux and



current functions. Sinée the p}asma containment vessel is a non~con-
ductor, specification of poloidal flux on the boundary is difficult.
Inductance codes are used to describe the flux distribution realistic-
ally.36

Using heating results as initial conditions, a one-dimensional
MHD diffusion code, complete with resistivity, thermal conductivity, and
radiation losses, is used to simulate the high beta phaSe‘.37

The zero-dimensional code contains more than ionization and recom-
bination modeling. We also include bremsstrahlung and line radiation,
ohmic heating of electrons, wave heating of ions, electron-ion energy
transfer and other effects. Therefore, the code is useful in linking
the above MHﬁ computations.38

We present results for charge state evolution of all species, as
well as, ilon and electron temperatures during the z-pinch phase. For
the heating phase, profiles of currents, magnetic fields, density,
temperature, plasma beta, and safety factor, g, have been obtained.
We also identify maximum impurity levels for successful operation as
a high beta tokamak.

We conclude that Torué—II is an excellent vehicle for high beta

research. Some problems associated with the device and huw Lhey may

be corrected to allow for better operation are discussed.
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I. INTRODUCTION

The economic feasibility of fusion energy is greatly enhanced
by increasing the ratio of plasma pressure to magnetic field pres-
sure. This raﬁio is the plasma parameter, B . A common definition
for average beta is

<= <P >

=2
'{ B3,/8T}

where <P> 1is the volume averaged thermodynamic pressure and B@o
is the vacuum toroidal magnetic field at the geometric center of
‘the plasma.
High beta values are desirable for two principal reasons.2
FPirst, a hiéher beta due to large thermodynamic pressure results in
a higher fusion energy density. Secondly, small magnetic fields
are cheaper to produce than large fields. Thus, a strong emphasis
has been piaced on the need to increase beta to the iimits imposed
by stability considerations. It was thought that the beta of toka-
mak devices was limited by a critical value, above which plasma
préssure driven ballooning modes appear. Recent numerical3 and an-
alytical work?4 indicate that a second critical beta exists above
which the plasma is again stable. The result has been increased in-
terest in higyh beta research.

Several methods can be used to produce high beta plasmas. Re-
searchers at_Columbia employ a pinch technique with a unique heat-

ing scheme5 to generate such plasmas. The device is known as Torus-

II. It is particularly well suited for research into the proposed



second stability regime. Torus-II is basically a belt pinch geom-
etry with large poloidal ohmic heating currents. The.major radius
is 22.5 cm. The height to width ratio is 25.4 cm. to 12.6 cm. Its
operation is described in four separate stages. (See Figure I.l)
For completeness we give a brief description of each phase of oper-
ation and some general comments on how the phases are simulated.
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Figure I.l. Applied fields and currents in Torus-II. Ion is the
ohmic heating coil current for pre-ionization and z-
pinch. B, is the vertical magnetic field. By is
the toroldal (bias and maximum heating) field. &x-
perimental toroidal gas current is L.

The primary objective of this research has been to use exist-
ing codes -and also new codes to obtain a clear and comprehensive

picture of the. operation of Torus-II. We draw from different areas



of physics to achieve our desired result.

theory, electromagnetic theory and atomic physics.

.These areas are MHD

Figure I.2:

illustrates the experimental phases and the key phenomena occuring

at that time.

Also depicted is the manner in which numerical cal-

culations are used to help understand and explain these phenomena.
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This is the chief objective of the research. Emphasis is placed on
constant interaction with experimentalists. We are simulating an
active device with the intention of interpreting experimen;al results
already obtained and guiding future efforts to produce desirable
high beta plasmas.

Experimentally, during the pre-~ionization phase a sinusoidal
current form wikh amplitude on the order of 50 ka. is driven through
the inner toroidal coils (referred to as ohmic heating ceoils in Fig-

ure I.3). The helium gas is heated to initiate the ionization. No

RF OSCILLATOR
COUPLING ANTENNA

{AROUND BOTH
SLOW TOROIDAL 4___.;_/ VACUUM LINES)
FIELD (1-24G) 9
S (r-/’" 1::
VACUUM LINE bt
/vncuuu UINE
PORT ax VERTICAL FIELD
a4 e o\ CONTROL (1-21G}
~ /
~ '—"J
)
. . \. A
> o ..
H
FAST TOROICAL L.— of
FIELD (4-10%G)
CIRCUIT- 4 MODULES OHMIC HEATING - AIR CORE

TRANS FORMER - INOUCES I¢~25-60 [¥-}

Figure I.3. General description of Torus-II. Arrows indicate
direction of current flow in external conductors.

current is-programmed in the outer toroidal coils (referred to as
the vertical field coils) at this time, thus no vertical field is

present and the gas bounces off the vacuum vessel wall. This has



the important adverse effect of polluting the plasma. A toroidal
bias field (= 1 kG) is embedded in the plasma. We do not simulate
 this phase, however, it is important to note that most of the im-
purities enter the plasma region at this time.

The z-pinch phase continues the ionization process while posi-
tioning the plasma. Currents are programmed in both sets of toroid-
al coils thereby setting up a vertical field to keep the plasma away
from the chamber walls. The external currents are "V 100 ka. during
this phase. The net resulting vacuum vertical field is n 600-800 G. -
Recent experimental work indicates there is a strongly non-uniform

® This is contrary to earlier theor-

vacuum vertical field profile.
etical predictions of a uniform th profile7. Experimentalists re-
port a post-z-pinch plasma temperature of &5 éV with a peak elec—
tron density of "3 x lO14 em™3. The toroidal plasma. current is

V40 ka. The ionization of helium is nof complete.

The z-pinch is simulated using a zero-dimensional code. It is
essentially a two fluid, energy balance calculation complete with
the atomic physics that dominates this phase. The ionization of the
main gas (helium) and impurities (oxygen and silicon) is calculated
by coupling species equations with electron and ion energy equations.
Effects due to line radiation, recombination, bremsstrahlung, ohmic
heating, energy confinement, electron-ion equilibration and other
phenomena are also simulated. The results of the computation are

in excellent agreement with available experimental data.

The phase of greatest importance is the heating phase, during

which the most interesting physics takes place. There are two



heating modes in Torus-II, parallel and anti—barallel. In both
cases the toroidal field is ramped from its initial bias value to
its final value in 1.7 usec. For the parallel case, a positive
bias field is increased to a larger positive value. For anti-~
parallel heatiﬁg, a negative bias field is reversed. The final
toroidal field is 4-10 kG. The original design philosophy8 was to
use the rapid field reversal to generate large poloidal electric
fields ( § L kV/cm). This leads t6 microturbulence and an anomal-
ously high resistivity. The result is enhanced ohmic heating of
the electrons. The ions are heated through scattering with ion-
acoustic waves thereby obtaining some of the wave energy. Exper-
imental evidence indicates that this is indeed the heating mech-
anism for Torus-II. These results are presented in (9). The rapid
heating scheme generates a high beta plasma (<g> = 10%) which is
greatly elongated ( ~v4-5:1).

The major portion of this work is devoted to the simulation of
the heating phase. Several different codes are used. The heart
and soul of the calculation is performed using a two-dimensional,
single fluid, dissipative MHD code. Inertial terms are included
to caéture all fast time scale effects. Additional details of the
calculation are given later. The basic idea is to specify boundatry
conditions for poloidal magnetic flux and toroidal field which ac-
curately represent the effects of externally driven currents on the
actual device. The boundary conditions are responsible for forming
the post-heating plasma configuration. The spatial dependence of

the poloidal flux along the boundary is not a simple problem to



solve since the vessel is a non-conducting shell (pyrex). We de-
termine the realistic boundary conditions with inductance codes.
Essentially, the plasma is modeled as a toroidal current carrying

. conductor. With knowledge of the total plasma current and extern-
ally applied currents we calculate the poloidal field and flux pro-
files. This information is fed into the heating code as a boundary
condition. Using the value for plasma current obtained in the
heating calculation we again run the inductance codes to generate
a corrected value of the bogndary condition. The iterations are
~continued until the plasma current used in the inductance calcula-
tion agrees with that value resulting from the MHD heating simula-
tion. In this manner, the geometry of the device is accurately
modeled,

Precise modeling of transport physics is also important for
accurate simglation of the experiment. A one-dimensional, single
fluid, dissipative MHD code with inertial terms included is used to
study different regimes of parameter space. The one-dimensional
code requires much less computing time than the two-dimensional code
and is therefore the logical choice for extensive numerical experi-
ments. The key plasma parameters are electrical conductivity, ther-
mal conductivity and low density behavior. Testing of different |
numerical schemes is also much more easily accomplished with the 1-D
code..

Finally, the zero-dimensional code is also applied to the heat-
ing phase so as to gauge the dominant atomic processes during this

stage. A trade-off is made between complex physics modeling and



complex geometric effects in the simulations. Detailed energy stud-
ies are performed in the zero-dimensional code loaded with atomic
physics. Detailed transport studies are performed in one-dimension-
al MHD codes. Detailed external-coil~-geometry effects are studied
using two-dimensional MHEHD and inductance codes.

The result of heating is the high beta tokamak state. At this
time all external currents are crowbarred. Experimental results
vary depending on the plasma set-up phase. A dirty plasma quickly
( V10 usec) cools. A warm plasma (100 eV) has been maintained for
as long as 30 usec. There is experimental evidence of an axially
shrinking plasma throughout this-phase. Recent work indicates pos-
sible poloidal rotations of the plasma.

A one-dimensional, single fluid, resistive MHD code without
inertia terms is used to simulate the high beta tokamak phase. The
code includes radiative losses and more sophisticated modeling of
the thermal and electrical conductivities. Plasma evolution in
time is followed through successive equilibria thereby allowing fpr
efficient, inexpensive, long-time-scale simulations. Post-heating
phase plasma conditions are used as initial conditions. The plasma
is no longer driven by prescribed boundary conditions at this Eime.
Rather, tﬂe rhysics of the transport andllnss parameters respond to
the specified initial conditions to yield the decay of the high
beta state and the eventual loss of plasma confinement. This por-
tion of the overall simulation has been extremely important in ob-

taining operating limits due to radiative losses. Maximum tolerable



impurity levels for different high beta cases are calculated. The
code has been written so as to be easily adaptable to different
post-heating phase plasma states.

The time dependent zero-dimensional calculation has again proved
useful as a check on the plasma temperéture versus time behavior dur-
ing the high beta tokamak phase of the device.

The format for the remainder of the thesis is as follows. In
chapter II, we derive the equations that make up the mathematical
model. No reference is made to Torus-II since the equations are gen-
eral. We sketch the derivation of the two-dimensional start-up equa-

tions since it has been given in detail elsewhere.l0

The complete ..
one-dimensional transport equations are developed as well as the
derivation of the inductance equations and the ;tomic physics rela- .
tions.

In chapter III, we discuss the numerical methods used in gach
code. Here we return to the specifics of Torus-II when discussing
the types of mcdifications made on the general model described in
chapter II. We also discuss how each code is rﬁn, what information
is extracted from it and how this couples with other phases of the
simulation.

The results of the Torus-II simulation are presented in chap-
ter IV. An overview'of the plasma state and device operation is
given. Its significance for high beta research is also discusseqg.

For completeness, a listing of each code has been included in

the appendix.



II.  MATHEMATICAL MODEL
1.34) One- and Two~Dimensional MHD Equations With.Inertia
For completeness we present the equations* of magnetohydro-
dynamics for a single fluid with finite electrical and thermal con-
ductivity. In vector form, the continuity equatioh is
gg_ # Ve(pv) = O Ir1.1.1
1 &

‘'he momentum equation is

POV = -Vp + J x B II.1.2

The energy equation is

pC,DT = -pV-v + J-J + VekVT - P, II.1.3
Dt o
Faraday's law is
'139B = -VxE II.1.4
cdt

Neglecting the displacement current as usual, Ampere's law is given
by

J = ¢ VxB ' II.1.5

*All units are c.g.s-Gaussian unless otherwise specified.

10



For finite electrical conductivity, Ohm's law is

-vxB - II.1.6

allu
Q

The magnetic field is everywhere divergence free.

VeB =0 II.1.7

The above variables are:p mass density

T = flﬁid temperature

v = fluid velocity
J = current density
E =.electric.field
B = magnetic field

Cy= specific heat at constant volume
o = electrical conductivity

k = thermal conductivity

p = thermndynamic pressuxre

¢ = speed of light in vacuum

Py= radiated power loss term

D = Stokes' derivative =45 + (v'y)
Dt at

The equations are written for the cylindrical coordinate
system shown in Figure II.l, with axisymmetry about the z-axis ( ¢

is an ignorable coordinate).

‘11



12

Figure II.l. Coordinate system for which the MHD equations are
written.

Define the two functions VY (r,z,t) and x{(r,z,t) such that

) ¥ GZ II.1l.8
r
14

<

B=-lav¥ &, + x & +
r oz r ]
We omit the details of the usual derivation

Nl

see for example (1l1).
A brief skepch is given here. Clearly equation II.1.8 automatically
satisfies II.1.7. This is one of the two reasons for specifying B
as above. The other is the ease with which boundary conditions may
be cxpresgsed in terms of ¥ and yx.

From Ampere's law we write J in terms of ¥ and yx. Substi-
tuting J into Ohm's law ?ields the electric field in terms of VY,
X and the fluid velocity, v. This expression for E is then used in

Faraday's law. Of the three resulting scalar equations, two are not



identical. They are the two governing equations for psi and xi.

DY =c2 (r3__13¥ + 32y II.1.9
Dt  4mo dr rar Bzz
ax =c® (3 1 3x + 3 _13x)
3t  4m dr gror 9z 0dz
-rd (v - l3¥)
3r r r3d
+9 (v¢a_‘l’ - VyX ) I1.1.10
32 3r . . 1

Equations II.1.1-3,9,10 form a system of seven equations for the
eight unknowns ¥, p, T, ¥, X and p. To close the system, the ideal

gas law is used as an equation of state.

p=pC, (y-1) T II.1.11

where vy 1s the ratio of specific heats for the gas. Equations
II.1.1-3,9-11 when coupled to a proper set of initial-boundary
conditions completely determine the plasma state in two dimensions.
From this point it is trivial to derive the one-dimensional
equations. Simply set 3 = 0 in the above equations. We omit the

dz
details and present only the results.

Ir.1.12

|
[
n P
>
-©-
+
K [
Q@
n|-e
™
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14

Y + v 3¥ = ¢2 (ra_ lay) IT.1.13
ot oxr 41g dr radr

ax + r3d (wvex) = c¢Zrd (1 3x) II.1.14
3t or r 4T P grar

3p + 13 - (pvr) = 0 II.1.15
It r 3r

3 (pvy) + 193 (rpv% + (y=1)rpCyT) =
9 r3 '
C.T(y-1) + JQBZ - JZB¢
r T II.1.16
3T + v T + (y-1) T3 (xv,) =
ot ) x rd

1 3 (xxdT) + Jg + g2

pCyr dr or poCy,
T x 1.17
-bvc—v- IT.1.
For the fluid formulation to be valid we must have
L > X .
d Ir1.1.18
|_2| >> x
VP g

where L is a characteristic length of the plasma (typically on the
same order as p/Vp), Agq is the Debye length of the plasma and rg

is the Larmor radius of the particle.
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l.ﬁ) Initial and Boundary Conditions for the MHD Equations
With Inertia

The equations form a parabolic system although the continuity
and momentum equations look formally hyperbolic. A complete dis-
cussion of appropriate initial and boundary conditions is given in
(10,11). Briefly, initial values of p, T, ¥, x and v.are needed
everywhere. Boundary values of ¥, x, T and one component of vel-
ocity are needed.

It is easy to show that the functions ¥ and x have physical
meanihg. In particular, ¥ is related to the poloidal flux‘and X

to the total poloidal current. Following (ll) we state

b4 = poloidal flux
2T
X = 2x1I,

Therefure, 1t is 1lmportant that the boundary values préscribed for
¥ and x accurately represent the effects of the currents both ext-
ernal to and inside the plasma. Our approach for specifying these
conditions is more careful and realistic than earlier studies since
the previous work was related to experimental design while we are
concerned with an experimental simulation. Two complementary in-
ductance calculations are performed making use of elementary éir—

cuit theory and electromagnetic theory.
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12 .nd grrrts

1.B.i) Coils

The problem to be solved is as follows. Given a set of toroidal
current carrying conduétors with known total current, calculate the
magnetic field everywhere in the poloidal plane. The solution is
carried out in two parts.. First we obtain the current distribution
within the conductors (Coils) and then solve for B (EFFI). Consider
the geometry in Figufe II.2.A. Supéose the total current in ‘each

of the conductors is known and given as I,, I, and I;. To calculate

1’ =2

how the currents are distributed we proceed as follows. (Note: 1In
the general case this may seem to be an exercise of little interest,
however, our ultimate goal is to calculate poloidal flux along the
boundary of a toroidal fusion device. Such boundaries are always
close to external current windings. Thus, the current distribution
can be important.) Break each conductor into many smaller conductors
choosing the shape of the smaller conductor to match the larger one.
Sée Fiqure II.2.B. Conductor 1 is broken into M smaller conductors,

2 into N-M and 3 into K-N. The choice of N, M and K depends upon

the desired accuracy of the current distribution. For each conductor

M
I, = oI I1.1.19
1
N
I = I I. I1.1.20
2
M+l 7
K
13 = I Ij Ir.1.21

N+1



17

Toroidal axis |

of symmetry
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Figure II.2 A) Three toroidal current windings of arbi-
trary poloidal cross-section.
B) Filament-splitting model of same three con-

ductors.
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The flux enclosed by any one of the smaller current loops is

j=1.2,..K II.1.22

where Ljs is the mutual inductance of loopc j and 3. For the case
j=s we have a sgelf inductance. To this point we have 2K wunknowns
(Qj, I3 3j=1,...K) and only K+3 equations. The following constraint
is imposed on the system. Each of the original conductors 1, 2, 3,
must be a flux surface. This is only rigorously true if J = 0

inside the conductor, i.e. perfect conductors. Thus,

¢, = Qj j=1,2,..M I%.1.23
. = 1= 2
¢2 Qj J M+l,..N IT.1l.24
03 =0, UMLK II.1.25

where @l, ®5, 93 are three additionél unknowns. The above constraint
generates K new equations. It is easy to extrapolate the above for

a system of C large conductors each with a known total current. A
system of (K+C) equations is produced by breaking the C large con-
ductors into K smaller conductors. The equations are solved for the

K (I

j* j=1,2...K) plus C (Qj: j=1,...C) unknowns; thereby obtain-



ing the current distribution to the desired accuracy. The code

that performs this calculation is referred to as Coils. Next, con-
sider the second half of fhe problem. Given the current distribu-
tion, compute the magnetic field everywhere. Basically, a volume
integration of the Biot-Savart law generates the desired field pat-
tern. The method is compleﬁely explained in (13). The code used,
known as EFFI, calculgtes the vector potential and electromagnetic
field for coil systems of arbitrary geometry. The coils are con-
structed from circular arcs and/or straight segments of rectangular
cross sgctional conductors.' The code is also capable of calculating
magnetic flux surfaces, magnetic force and inductance. A combina-
tion of analytical and numerical integration of the Biot-Savart

law for a volume distribution of current is performed. In this
manner, field values inside and outside the conductors are cobtained.
Thus, Coils and EFFI are instrumental in determining boundary val-
ues of poloidal flux to be used in the two-dimensional MHD start-up

calculation.

2.A7) One-Dimensional MHD Transport Equations
The equations are identical to II.l.1-7 except that the mo-

mentum equation is simplified by dropping the inertial term.

yvp = IxB I1.2.1

C

The plasma motion is one of diffusion through states of successive

19
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equilibria. The spirit of the calculation is as follows. March
the equations for density, temperature and magnetic :field forward
in time such that IX.2.1 is always true. The details of the deriva-
tion are given. First, we non-dimensionalize all variables such

that a subscript "o" denotes a fixed reference value.

N .
[4] = L % = E—_ % = -r.ﬂ
Po Yo ry
N ‘
’1}1} = u &' = L _B_ = E.
(ro/to) To By
N v )
B = _p__ g =__ < E = __E
PyRT, (Boc/4nro) (B or:o'./cto)
o n, '
K = K_ g = g v o= rOV
Ko %
'\J —
P, = g ,
(-p -o"-'v'l'o/ to )

where R is the-.ideal .gas constant and u is the radial component of
velocity, previously written V.- Substitution of the above variables
into the continuity, momentum and energy equation yield (dropping

the tilde notation)

Q

o+
t

{pur) = 0 I1.2.2

o
K-
O)'Q)
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(IxB), = Cp3p
or
} I1.2.3
Cl = 4mp RT,
Bo
@PT + pudT = -C,pau + CyJeJ + C VexkVI = Py
ot 3 ar E—
o
}I1.2.4
= . - 2 . =
C2 = g_ 7 C3 - C_2 Cto ’ C4 - C2Koto
\4 C1 4ﬂr§co IopoCy

Similar algebraic manipulations with Faraday's law, Ampere's law
and Ohm's law yield

3B - vxE II.2.5
3
Jd = VXxB II.2.6
E=CJd-uxB
o
}  Ir.2.7
C5 = S—ﬁ £
o’ 4mag,
The ideal gas law simplifies to
p = pT

IT.2.8
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Note the physical significance of the dimensionless constants.

We can think of C, and Cg as time scale ratios.

C4 = R _ Ko tb = _t_o__ I1.2.9
Cv rgpoR Th
where Th = roxrg

is a thermal conduction time scale. Similarly,

I1.2.10

where T = 4Angax
b ———{}Jl
c

is a field diffusion time scale.

lhe constant, {;, can be written as the square of the ratio

of the thermal speed to the Alfven speed.

c. =, (4mp )‘5 2 ((RT)"°>)2
1 (BTPe! 3
Bo
17.2.11

2
= Vin
vy

The constant, C2, is the ratio of thermal to internal enefgy.



= 2
C; = R To = v

Continuing with the derivation, combine II.2.5-7 to get

Q

B = Vx (WxB) -Cg Vx, VxB I1.2.13

= —=

Q)

Combining II.2.3 and II.2.6 with a well known vector identity

yields

vicp + B2} = (B'V) B I1.2.14
2

For convenience, we collect our results to this point and present

them in scalar form. The one-dimensional continuity equation is

3p + 13 (pur) = 0 Ir.2.15
at rJ
- The momentum equation is
21 —
3 {cp+B}= -Bf II.2.16
9xr 2 r
The energy equation is
8T + wdT = CpTJ (ur) +C3 (IF+JZ) +C43 (B T)
3 3 xr r 9 po pr o 3r
- Pr II-2.17

23



The field eqﬁations have been combined to give

3By = Cgd (1 3 (rBy) ) -3 (uBy)
ot dr ordr ¢ . dr ¢
3Bz = Cg5d3_ (rdBz ) - 13 (uBzr)
3t rdr oG9« rar

The equations are not yet in their final form.

24

I1.2.18

II.2.19

By differentiating

the momentum equation with respect to time and substituting the

above expressions for 3p, 3 T.and 3 B we will generate a single ord-

3t 9t ot

inary differential equation for the plasma velocity.

We show only

the first few steps of this procedure. Taking a time derivative

of II.2.16 and using I1I.2.8 yields

C19 (3T +T3p) + 2
3 x t It dx It 3t

Q

Substituting II.2.15,17,18 and 19 gives

Cla_{Mu+Za_u'+N} + B_{Bz(—Bza_%—

u
or. r

Q
[+ %]
[o%4
(3]

d (rBz) + S)

+ By (-By du - udBy + )}

or or

(o P

= -2By{-Bydu - ud By + Q}
r or

Qo

r

IT.2.20



where

M = -T3 (pr) -paT - pCT II.2.21
rad or r
= 2 2 -
N 2 C3 (I +JIF) +Cgd (krdlD) - P I1.2.22
radr or
o}
Z 2 -(Cy+1)p II.2.23
Q 2 Cs3_(1 3 (B ) II.2.24
‘ 3 grar '
S = Cgd (rdB,) II.2.25
~TrJ gor

Omitting several pages of algebraic manipulation we now write

II.2.20 in its final form.

Ag,,+BE +DE+E = 0
I11.2.26
where
£= ur
P 2 4L w2
A = -—ClA + (_Bq) -+ Bz) IT.2.27
I1.2.28

w

1
O)QJ.
R

!
R |
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D 5. -r 3___(B¢/r)2 II.2.29
or
E = -r{C;3N+3 (sB)} - la__(B(pQIZ)
dr 9dr rar
IT.2.30

with N, 2, Q and S given by equations II.2.22-25 respectively.

2.B) Initial and Boundary Conditions for the One-Dimensional
Transport Equations
Equations II.2.15, 17, 18, 19 and 26, when combined with
proper initial and boundary values are solved for p, T, B and u
for all time and space. The field and energy equations form a
parabolic system. The continuity equation is formally hyperbélic
while the mémentum equation ls an ordinary differential egquation
with a two point boundary condition. Initial values of p, T,
and B are needed for all radial positions. Boundary values to be
specified as functions of time are written for temperature (or 9 T),
r
magnetic field (or a_f__) and plasma velocity. Since the momen.tuma
équation does not cifxtain inertial terms, there should be no need
to prescribe the velocity on the boundary. However, in our
derivation, a time derivative of the momentum equation is taken,

thereby re-introducing the need for specification of u on the

boundary.
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The purpose of the calculation is to follow the plasma evolu-
tion after it has been heated. This is a long time scale problem
in which plasma behavior is dictated by dissipative processes that
respond to specified initial conditions. The plasma is no longer
driven by external currents as in the start-up calculation. There-
fore, boundary conditions play a passive role in the transport
computation. Equation II.2.19 for the time evolution of B, is re-

written for the case

N
X |~

@

<

@
2]

where Y is the poloidal flux function described earlier. Sub-

stituting the above into II.2.19 yields

(]

oY + £3Y - Cg
r

9_(13y) = 0
t or radr

dr

Q
Q|n

Physical arguments are then used to appropriately prescribe wtt)
on the boundari.

Since detailed spatially resolved experimental data is not
always available, séme assumptions must be made when specifying
initial conditions. These assumptions are based on experimental
data known with certainty. The physical arguments and assumptions
made specifically for Torus-II are presented in chapter III

section 2.
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3.) | Zero-Dimensional Atomic Physics Modelld

This is primarily an atomic physics picture of the evolution
of all ionic species while maintaining energy balance. The basic
equations can be split into three groups. Firstly, there are
species equations to be solved. These equations follow the ion-
ization and recombination processes of the main filling gas and
all impurity elements through all charge states. Secondly, we
consider energy equations for two fluids, i.e. electrons and ions.
Thirdly, ohmic heating power supplied into the plasma must be
modeled. We forgo any detailed circuit modeling of externally
programmed currents and the coupling to the plasma current. Instead,
the plasma current is prescribed as a known function of time. Em-
phasis is placea on including all the necessary physics in the
energy and species equations.

Consider first the species equations. Let ni denote the num-

ber density of element x with a charge of z. The rate equation is

-, oz=1 - A zZ
dn§ = n, {n, s2 1. n, (Si + o)
dt
+ nz+l ¢z+i}' II.3.1
X X e

where ng electron number density (cm_3)

Si collisional ionization rate coefficient for atom x with

a charge state of z (cm3/sec)



x; = total recombination rate coefficient for atom x

with a charge state of z (cm3/sec)

The ionization and recombination coefficients can be obtained from

16,17,18

various sources. While each source presents the same func-

tional dependence of S: and < on temperature and density, they

X

each warn that no simple analytical formula is exact. For conven-

ience, the formulation of (16) is used. The ionization coefficient

is
z - . z
sy = 10 °(T./EZ) 5 exp (-E./Te) II.3.2
Zy1,5
(ER) (6. + T /EZ)
where T, = electron temperature (eV)
E: = the ionization energy required to produce charge

state (z + 1) of atom x (eV)
The recombination rate coefficient includes both radiative recomb-

ination and three-body recombination.

c:z c:z + ccz
= n
" X,r e’x,3 I1.3.3

The radiative recombination rate coefficient is

- ~14 z -5 S 4
e = 5:2x 10z (E/1)73{.43 + .5 In(E,/T,)

+ .469 (To/EZ)" 33}

Ir1.3.4
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The three-~-body recombination rate coefficient is

« = 1.4 x 1073% 241 )& (BZ/T.)2 exp!(

g ) II.3.5
2 (z+2) Te

For an element of atomic number Zx’ we note that equation II.3.1
is only true for z=l,..,(Zx-l). The rate equation for the neutral
species is

= n {-n%0 4 plal
9 = ng {-n8s) + nlal} II.3.6

&

o7}

t

The rate equation for the Zx charge state is

L

-1.2Zx-1 Zx Zx
x -
Sy n te ) I1.3,7

. -
= ng {n};

e T [o
i

The equations as written, conserve the total number of particles
for a given species, x. Consider any species, then the total num-

ber density of x is given by

n = n II.3.8

This number must remain constant. To show that this is true, we

sum the rate equations for z=0,1,...Z, to get
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_A~0c0 1.1 0c0 _ 1,4l 1 22
n, { nxsx + ng < + n.s’ nx(sx + “k) + novo +.u.

+ n2x"igBx niX“ZX} =0

X x _ X

. . 2 .
The contribution to the right hand side due to dn, is almost
dt
entirely canceled by the contribution due to dnZ. The remain-
dt
ing terms are (-nisi + n§+l¢:+l) which are ultimately canceled by
the contribution from ggix. This implies that n_ is independent
dt
of time as desired.

The electron number density is
n = ¥ I zZn IT.3.9
X

where the inner summation gives the contribution to the total num-
ber of electrons from any given species, X, and the outer summation
is the contribution from all the species. Similarly, the ion num-

ber density is
II.3.10

Next we consider the energy equations (actually a power bal-

ance). For the electron temperature,

4 (BuT) = Porm - Feq,ei ~ Pbrem = Py . = Prec - Py = Pegife

~ Prairr T Pagg,e E-3-1L



For the ion temperature,

heat Peq,ei

where each term on the right hand side of both energy equations

has units of eV/cm3/sec. These térms represent various power gains

and losses.

Pohm -

Peq,ei

Pbrem

ion

rec

P =

lx

Podaifs =

Praiff =

Padd,e
bR

P
heat

They are,
ohmi.c' heating power input to the plasma
electron-ion energy exchange rate
continuum fadiated power due to bremsstrahlung rad-
iation
power associated with ionization of all species
power associated with electron-ion recombihation pro-
cesses
power associated with line radiation of éll species
power associated with transport losses for a steady
state classical plasma
power associated with enhanced transport losses due
to field fluctuations
pPhenomenological power terms for electron and/or ion
equation specifically for experiment being simulated

power associated with heating of ions

Analytic formulae are used to model each power term. The

ohmic heating power delivered to the electrons is

Pong = 6725 X 1012 na2 II.3.13
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where - n is the plasma resistivity in units of ohm-m and J is the
total plasma current density in amps/m2. The electron-ion energy

exchange rate is given by (19) as

= 7.95 x 10733 n (T -T,) ImA {Z 1 ( & 5 2)} II.3.14
eq,ei e_e 1 X ﬁ' z=1
Té.s
where A = 1.55 x 1010 (r3/n )°5 T < 36.2 eV
: e e e—
5.61 x 101 (T /n )°S T > 36.2 eV
e e - e

Mx is the mass (grams) of one particle of species x. The power

due to bremsstrahlung radiation is given by (20) as

Zx =z
P = 1.06 x107!3T:5n n’z2 11.3.15
brem 107 *3T ong i(zél <2%)
The power lost due to the ionization of all species is

P, = ng g (Fx-1 EznzSz) II.3.16

ion x z=0

The power lost through recombination processes is

Z
P = 3n.T_z( T5 «ZnZ) I1.3.17
rec 2 °&x2z=1 xx

&

Assuming that all line radiation results from radiative decay
following collisional excitation of the ground state of the various

ionization levels, we use an expression for the radiated power loss
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due to the resonance line of an ion in a corona model plasma.
From (21),

Zx~-1
x

P, = 3.16 x 10~ 6n E{

Z.z =
1r s - I nxfx exp ( AEX/Te)}
e

ITr.3.18

where fi is an averaged oscillator strength for the resonance lines
. . z

of species x in charge state z. The texm AEx is an averaged ex-

citation potential (eV).

The classical transport power loss term is

Pogife = 3 neTe II.3.19
2 T¢
where T _ is an energy confinement time based upon classical argu-

ments. The enhanced transport power loss term is

3' nETe III3IA?IO

Praire =
) Tt

N

where T, is an energy confinement time modified due to field fluc~
tuations. Similarly, the phenomenological power losses are given
by
Poad,e n T /1 I11.3.21
i
where the subscript "e" denotes electron and "i" denotes ion.

Such a term is used to compensate for any additional arbitrary



loss not explicitly taken into account above. The power assoc-
iated with the heating of ions is given in (9). Ions gain energy
by scattering ion-acoustic fluctuations thereby obtaining some of

the wave energy.

ni'{<%2>/8w}Tem
neTe

Pheat = 1I.3.22

pi
where the bracketed term is the ratio of the energy content of the
plasma waves relative to the plasma energy. This is a good measure
of the turbulence associated with the excitation of longitudinal
plasmé waves.

‘The two energy equations together with the (Zx+l) ion rate
equations for each species, k, form a Coupled system of non-linear
ordinary differential equations. To solve for ion temperature,
electron temperature, ion densities and neutral atom densities,
all aé functions of time, we must prescribe initial v;lues for Te,

z

Ti, ny (for all x and z) as well as plasma current density as a

function of time.

35



36

III. NUMERICAL METHODS

1.A7) Solution of the MHD Equations With Inertia

The solution of the equations is similar to that of Lui and
Chu.lo Here we sketch the solution and discuss the significance
for this new work, i.e. how the equations are modified to repre-
sent Torus-II.

We non-dimensionalize all variables discussed in chapter II,

section 1. Let

"N N v
r.=£ zZ =2z p=2
a a Po
n o
t:_t_ %:5 052
t° KO Go
" n, v
v=yv vy= Y T = T
vy Boa2 Vz/cv
i X B
X B.a ° v & Tmp
0 a Po
o,
3=_3 E=B
Boc/4na E,
where Oy P and Koare the initial electrical conductivity, plasma

mass density and thermal conductivity respectively. B, is a char-
acteristic value of magnetic field and “"a".is the plasma chamber
half-width. First we write the parabolic equations for ¥, x and T
in the form (dropping tilde notation)

n n+l n n+l

n ntl | 3 oo : . =
Biv1,58841,5 * Bi, 84,5 * Si-1,354-1,5

Dn E_-, + gn + n g1').
Ri,j-184,3-1 % Bi, 384,35 * Ri 30154, 501

III.1l.1

-
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where §£ = . The scheme is implicit in alternating directions

¥
Ix
o T
(ADI). Thus, for one time step, subscript "i" refers to the radial

coordinate and the next time step it refers to the vertical coord-

inate. The hyperbolic equations are written in conservation law

form.

3a¥ + 13 rM(W,T) + 3 NW,T) = S(W,T) + F(J,B)

at r 3r az

with W =|p M = pVy
ov pV% +  (y-1)pT
pv PVLV,
PV PVrVy

o

e i

N = |evz g8 = 0
PVLVy (y-1)pT/x + pv%/r
pv% + (y-1)pT 0 ’
v,V -V Vy/T
PVZV4 J L PVyVe/
E. = 0
JgBgz - J,B
JrB¢ - J¢Bﬁ.
I8, - J B,

IIr.l.2

M, N, S and F represent radial and axial fluxes of mass and momen-
tum, the lower order source terms representing curvature effects
and the forcing terms due to J x B. To solve the set of equations,
we write

ITI.1.3

1=
N
ew
1=
|2
[
ow
|=



where,@ and,@ are non-unique, 4 x 4 matrices. We use

A = 0 1 0 0
(y-1)T - v2 2v, 0 0
- vz vV Vy 0
-V v v 0
i VeV ¢ Vr
P -
B = 0 0 1 0
Y
=V, Vv, v, Ve o]
(y-1)T - v% 0 2v, 0
-vzv¢ 0 v¢ v,
b -

IIr.1.4

An ADI method is also used for ﬁhe hyperbolic equations. A pre-
dictor value, W*, is calculated by an explicit Lax—Friedrichs22
scheme using known values at the old time step. This W* is used
for nonlinear terms in the parabolic equations. We then calculate

n+l n+l

n+l n+l and T . Then W is obtained by solving the hyper-

i,3° %43 i)
bolic equations with S given by .5(§? + 8*), F by .S(EP + g:n+lz,
AW by .5(A"W® + A*W*) and BW by .5(B™WP + B*W*).

N N N N N noT
To improve numerical stability, a Lapidus-type pseudo vis-
. . 1 s .
cosity is included. 1 Now we proceed to the modifications made
for Torus-II. (Note: For Torus-II operating ranges we can easily

show that L>> A4 and |P/Vp|>> rg as is necessary for the fluid

theory to be applicable.)
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1.B) Modification of the MHD Equations With Inertia

For the simulation of Torus-II, emphasis is placed on trans-
port modeling, a new low density treatment, more realistic boundary
conditions and radiation losses.

(i) Transport Modeling

We consider kinematic viscosity, thermal conductivity, elec-
trical conductivity, radiative losses and incomplete ionization
effects.

The ion kinematic viscosity coefficient scales as

Vi v TiTi/My

where Tj is the ion collision time, M; is the ion mass and T; is
the ion temperature. The corresponding dissipation time scale is
on the order of 1 msec. This is much longer than the heating time
of 4 uysec. Thus, no kinematic viscous effects are included in the
equations.

We are principally concerned with cross field thermal con-
duction. Using classical perpendicular ion thermal conductivity,
two cases were studied. A realistic time and'space dependent
conductivity and a constant conductivity model. It was found that
any non-smooth behavior in k during the heating phase leadslto
temperature singularities and eventual code failure. This occurs

quite readily since

K n n2/(T.5B2)



40

Our treatment of energy losses is not exact in other more important
respects-radiatiop, ionization, impurity transport.Thus, the second
model has been adopted where the thermal conductivity is maintained
at an appropriate fixed value.

" Field and mass diffusion are controlled by the electrical re-

sistivity. Field socak-in times scale as
Tg Lz/czn

Classical Spitzer values of n for temperatures of 100 eV yield

Te 1 msec. Experimental results cited earlier indicate the ex-
istence of an anomalously high resistivity resultihg from plasma
turbulence. Physically, the fast toroidal field reversal drives
large poloidal electric fields. When the electron drift velocity
greatly exceeds the ion acoustic speed, unstable plasma ion waves
drive microturbulence on the plasma edge. The turbulence "digs"
into the plasma resulting in the rapid soak-in of the field observed

experimentally (v5 usec). Typically, n is two orders of mag-

anom

nitude greater than n The resistivity is scaled linearly

class”®

with the electric field as in (8).

n = n.J I1T1.1.5

where J, is the maximum computed current density and
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= .y*33, -1- '
n, (8me/Ml) w pe ITII.l.6
is the empirical Buneman resistivity. To avoid numerical difficulty
in régions of low current density, a cutoff value is.seﬁ for n such

that

The anomalous resistivity is used for the initial 4 pysec of
the toroidal field reversal. We then switch over (within 2 usec)
to a Spitzer resistivity for the remainder of the simuiation. The
above model has proven quite effective in simulating Torus-II as
shall be shown in the next chapter.

Two different radiation models are used in the heating phase
calculations. The first method is quite simple. Energy.losses
not accounted for otherwise, are lumped into a zero-dimensional
confinement time parameter (Tloss) in the energy equation. It is
chosen (V15 pysec) to match experimental results for the ion temper-
ature decay”as obtained from spectroscopic measurements. It has
the advantage of simpiicity while generating realistic plasma be-
havior. In particular, as temperature decreases, there is an in-
crease in the classical resistivity (vi—1e 8y resulting in a decay
of plasma current. In the second case, power loss is calculated
from radiation curves given in (23) for different elements. The

dominant impurities in Torus=II are silicun and oxyyen. They are



prescribed as a fixed percentage of the élasma density. The fun-
damental assumption of this model is that the plasma is in coronal
equilibrium. This is not a good assumption during the heating
phase of Torus-II. Its primary advantage over the first method,
(zero-dimensional loss term), is its spatial dependence. Since it
is rather cumbersome to use and computationally time consuming
we've opted for the zero-dimensional loss model during the heating
phase.

Ionization losses are accounted for by deliberately programming
less poloidal flux through the hole in the torus than the external
coils are capable of delivering. This automatically stipulates

that not all enerqgy is available for heating.

(ii) A New Low Density Treatment

As in earlier works (e.g. (10)) a 1low density cutoff value is
prescribed for two reasons. First, we wish to avoid treatment of
a vacuum region and a vacuum-plasma-boundary. Secondly, for extreme-
ly low density, the Alfven speed becomes large. The Courant-Lewy-
Friedrichs number grows such that explicit schemes become unstable
and implicit achemes lose accuracy. Typically, 1=10% of the in-
itial fill density is used.

Inaccuracies may still creep into the calculation. Thus,
every ~100 time steps each point is tested to see if it is in a
low density region. This is done by simpling calculating an average

density based upon neighboring points. For example,
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o, =1 . .+ . .+ p. . +p0. . . +o0.
p1,] '§ ( pl+2,] p1+l,] pl,] 91-2,3 P

TPi,5+1 T
If fhis averags dersity is significantly lesé than the peak plasma
density, it is considered to be in a low density region. If that
is the case, we proceed to smooth out any large grdienté in ¥ and ¥
by a simple averéging process. For the poloidal flux,

. ¥, N ) ) o + v
. . = 'lf + - , _
l,:l)smooth itl,] 1.] i-1,3 i,j+1 i,j-1

A similar expression is written for ¥

) This simple method

i,j’ smooth’
has helped tremendously to squash numerical fluctuations. It has
also been useful in simulating the physics of Torus-II. Recall that
the vacuum vessel of the torus is an insulator. Thus, any open
field lines that intersect it must carry zero current. Invariably,
simulations have shown that these field linés exist in regions of
low plasma density. 8Since J is obtained by differentiating ¥ and x
we are closer to the condition J £ 0 by smoothening out these two
variables in such regions.

Another pnenomena to be modeled is that the low density region
is probably loaded with all kinds of neutral species. To account
for this the resistivity is artificially fixed at Ny» thereby main-

taining a large resistivity even when J is small. This is quite

different from our treatment of the resistivity in the turbulent
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high density plasma region. (See egn. III.l.5) Augmenting the
resistivity serves to kill off any remaining currents not taken
care of by the filtering described above.

Another characteristic worth simulating is that while the
impurity levels may be ~1-2% in the bulk of the plasma, they are
probably quite high in the low density region. When the average
ion model is used for radiation losses, the impurity levels in

the low density region are fixed at 50% oxygen and 50% silicon.

(iid) Torus-II Initial and Boundary Conditions

For this heating simulation we start from post z-pinch
conditions. 1Initial conditions play a passive role in deter-
mining the final plasma state, whereas, the boundary specifications
for ¥ and x are directly responsible for plasma formation and heat-
ing. Most of our attention has been directed towards realistic
modeling of boundary conditions. Only a brief statement regarding
initial conditions is necessary.

The initial density profile is specified in accdrdance with
the total mass of plasma expected after heating. The original
heighit Lo widlli raliv is-Lakau Lo be 2:1. A uniform tenperatbure
of 1 eV is prescribed everywhere- Pressure is readily calculated
from tge ideal gas law. The fluid is initially at rest. Complete
experimental data for the negative toroidal bias field is available

along the horizontal midplane. (Figure III.l) The depth of the
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Figure III.l. 1Initial toroidal magnetic field profile along
horizontal midplane for Torus-II heating phase

simulation.

well decreases with distance away from the midplane. A perfect l/r
dependence is prescribed everywhere above the plasma. A toroidal
plasma current of 35 kA is assumed. This is integrated once to give
the z-component of magnetic field and integraﬁed again to give the
poloidal flux everywhere.

We have already discussed the boundary conditions required by
the differential equations ( Chapter II Section 1.8). However, the
difference schemes require additional boundary specifications for
plasma density and the remaining components of velocity. Thus,

for boundary conditions, the temperature is held at 1 eV, the normal
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component of velocity is zero and all other velocity components as
well as plasma density are extrapolated at the wall. Since the
simulation is performed for the upper half plane only, symmetry con-
ditions are used on the hofizontal midplane. The even variables

are

Y (+2z) ;l’(-z)

X (+2) = x(-2)

p(+z) = p(-2)
T(+2) = T(-2)
vr(+z) = vr(—z)

while v¢ and v, are taken to be odd about z=0. Since the plasma
chamber wall is non-conducting, ¥ and x must be prescribed as func-
tions of both space and time. Figure III.2 shows the coil geometry
of Torus-II in detail.

From Ampere's law, X 1s given in terms of coil currents through

the hole in the vertical direction. For a circular path around the

to¥ius we obtained

(t) = 2 I(t)
¢

X wall
We specify Xwall(t) independent of position since poloidal currents
¢an not leak into or out of the device. A simple linear time de-
pendence is used which preserves continuity of xwall(t=0) and the

initial condition described earlier.
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(6 = ‘init * Weinal T Xinid) Y B
wall X£inal t >tp

where t_is 1.7 usec for Torus-II and x, ., is a measure of the

P init
initial toroidal bias field. It is crucial to the amount of heat-
ing performed by the turbulent poloidal currents generated upon
‘the reversal of the bias field. The experiment can be operated at

different heating power levels. The parameter xfina is adjusted

1
to give the proper final vacuum toroidal field which is directly
related to the heating power used in the lab. We simulate two heat-
ing schemes, the so called guarter power (12 GW) and half power (25
GW) cases. For the qﬁarter power calculation Xfinal is set equal to
6x10" G-cm while for the half power case we use 8.3x10% G-cm. Such
conditions yield a vacuum toroidal field of 2700 G and 3700 G re-
spectively at the major radius of the device,

The poloidal flux function, ¥, is related to the primary trans-
former flux, the external vertical field flux and the flux due to
toroidal plasma currents. In the one dimensional analysis, given a
value of poloidal flux passing through the center of the device
(whole)' we integrateée various vertical field profiles to get Y at
the outer wall. This is similar to the earlier work of H.C. Lui.
In the two dimensional analysis we consider the effects of the
non-conducting side walls, the conducting copper plates on the top
and bottom of the device and the toroidal plasma current. For

both analyses, realistic values for Y are obtained using inductance

codes. This is a major deviation from the Lui formulation.
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The region of computation is 15 cm <r < 30 cm and O cm<z<15.75cm.

This is larger than the plasma chamber. Such a domain is convenient
because of the natural boundary conditions along the endlines of =z.
Specifically, at z=0 exists the horizontal plane of symmetry. The
reflection condition ¥ (-z)=Y¥(+z) discussed above is invoked here. The
boundary along z=15.75 cm coincides with the location of the upper
copper plate. These copper plates carry poloidal currents causing
the rapid reversal in toroidal magnetic field. For the time scales

of the simulation, the plates are modeled as flux surfaces.

¥(r,z=15.75,t) = Wtop(t)
Along the inner and outer walls the flux is prescribed as.a function

of time and height.

Y(r=15,z,t) = Wi(z,t)

Y(r=30,2,t) = Wo(z,t)

The boundary values of ¥ are obtained from EFFI and Coils. The
torus is approximated by 40 toroidal windings (Figure III.3) all
of dimensions comparable to the windings on the device itself.
Various combinations are run to simulate different times in the exp-
periment

12 300 ka

= i I. = { 200 ka
100 kA
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The results from Coils were surprising. Depending upon the combina-
tion of currents used, the flux through the hole (i.e. ¥ at any of
coil positions 1-12) was 3-8x10% G-cm? (.03-.08 V-sec) which is re-
markably close to experimental values of .08 V-sec deliverable by
the inner transformer. Also from Coils, we consistently found that

Y ~ .85 ¥

. This implies that 15% of the flux in the hole
top hole

leaks back into the vacuum vessel. Another surprising result from
Coils was that woutsidem l.ZSWhole which implies that the flux due

to the outer toroidal windings is almost as important as that due

to the inner transformer. Thus it is indeed not appropriate to refer to
these - windings as'"vertical field-ohmic heating" coils. The final
startling result was that the copper plates have a curre;t of 12-

25 kA induced flowing opposite to the outer coil currents on the

outside of the device and returning on the inside of the device.

These results are summarized in Table III.1. Equipped with the cur-
rent distributions supplied by the Coils code, we then use EFFI to

obtain more detailed information on the magnetic field distribution.

Results are shown in Figure III.4 for a plasma current of 35 ka,
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Table III.1

Summary of Coils Results

I 90 - 190 ka
outer
Iinner 100 - 330 kA
y . - . -
hole 03 08 V-sec
Woutside .05 - .10 V-sec
wtop .03 = .07 V-sec
I -
plates 12 - 25 k&
Average B
z
on left -60 to -600 G
Average B,
on right +2 to +3 kG

inner winding current of 220 kA and an outer winding current of 90 ka.

For comparison, two cases are shown, with and without copper plates.
EFFI clearly shows the leakage effects due to the geometry of the

external windings. Note that while EFFI also gives VY .03 V-sec,

hole

the purpose of these codes is not to extract exact numerical values
for ¥ along the boundary. Rather, the codes are used to answer the

following questions. How do Wtop' Whole and woutside compare w1§h

eachother? What are the leakage patterns? Where is the leakage

most important? What is the approximate numerical value of Whole?

Are the external toroidal currents performing the tasks for which
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they were originally designed? All of these questions have been
satisfactorally answered. Indeed the prescribed boundary conditions
for ¥ in the heating calculation were giveh a form that produces

the same leakage pattern as that obtained through the inductance
cal&ulations.

By using the inductance codes as described above we accurately
simulate the heating phase of the experiment. The questions raised
and answered by the inductance calculations are listed above. From
the heating simulation we wish to answer the following set of ques-
tions. What are £he effects of anomalous transport? How does it
compare with classical transport? What is the plasma current? What
do the flux surfaces look like? What is the magnetic field profile?
How_is the plasma confined? What are the plasma temperature and
pressure profiles? What is the heating mechanism? Can we form a

high beta equilibrium?
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2.32) Solution of the MHD Equations Without Inertia (1-D Diffusion)

The discretized forms ofequations II.2.15, 17, 18, 19 and 26
are omitted. Fully implicit, space centered difference schemes are
used. However, we do wish to point out that when each of these equa-

tions is discretized they are all of the same form. Symbolically,

n n+l n n+l n n+1l n .n
A . + B . + ) = ,
p(€ ) i1 p(i ) P Cp(E ) Pyl D, (P ,E7)
III.2.1
+1 +1 +1 +1 | + +1
AB¢(€n,pn ) Bg + BB¢(£“,on ) Bg + CB¢(€n,on L Bg
-1 i +l

n n+tl _n

- DB¢(C P ,B¢) ITT.2.2
+1 +1 + +1 n n+ +1
ag (€%0™h BTN v B (670" BT 4 o @™ B”
z. B Z, B z,
z j=1 z 3 z i+l
= p. (e, 0™ BY III.2.3
=. B g P , 2 PV
A
n +1 n+l n+1l n _n+l n+l n+l
AL (S, 3, Tl 4 e, g e
j-1 T J
n .ntl n+l n+l n _.n+l n+l n
+ CpE T Tip ) Tj+l = D (£7, 3 ", T,T) I11.2.4

n+tl _n+l n+l n+l, n+l n _n+l n+l n+l n+l n+l
ST i (ol e NI - TN T-ll - L LS L -
g -1 € ]
n. n+tl _n+l n+l n+l n+l n n+l _n+l n+l n+l
+ Cg(g IE r\l /T P ) gj+l = Dg(g IE l‘l /T P )

III.2.5



A doublesweep24 method is used to solve each equation thereby gener-
ating £n+l, Tn+l, §?+l and pn+l for all positions. Given initial
values for density, temperature and magnetic field, we solve III.2.5
to obtain the appropriate velocity distribution. This is kept as

the old velocity, &?. Equations III.2.1-4 are then solved in succes-
sion for the new density, temperature and magnetic field profiles.
All new currents may then be computed by Ampere's law and the new
field information. This information is used when solving for the
new temperature profile. The final step is to calculate the new
traﬁspdrt coefficients o?+l and K?+l. We then solve equation III.2.5

for the new diffusion velocity. The solution for the new time step

is then complete. The entire procedure is then repeated.

B) The MHD Equations Without Inertia and Torus-II

Once again, for Torus-II the emphasis is placed upon transport
modeling, the low density treatment and radiation losses. For this
phase of our work we stress initial conditions over boundary con-
ditions. Recall that the thrust of this work is to simulate the

high beta tokamak state.

(1) Transport Modeling

Once again kinematic viscous effects are ignored since the dur-
ation of the experiment is < 40 usec.

Since we are no longer driving the plasma on a fast time scale
one would expect that some of the fluctuations which forced us to

use a constant thermal conductivity would no longer be important.
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Indeed this is partially true. Since %b is no longer rapidly re-

versed and the plasma temperature profile is smoother than during

the heating phase, we can set

K v 1 I1I.2.6
T'SBZ
However, the code can not handle the n2 dependence in the thermal
conductivity. The reason 1is simple. The Torus-II plasma is nar-
row (a 3 ¢m) and dense (npeakmlolscm-3). If k is allowed to be

proportional to n? we found that the thermal conductivity 4rops

drastically in the low density regions resulting in unrealistic heat

concentrations and temperature spikes. . Thus, we use III.2.6

thereby allowing Kk to vary somewhat both in space and time.
The plasma turbulence discussed earlier is not a factor during
the high beta tokamak phase. Therefore, the electrical resistivity

is modeled classically. 1Its value is given by (in seconds)

n . = 3.3x10 * 1nA I11.2.7
perpendicnlar TS
for T in W and a 2 of 2, where 1lnA 1z the usual Coulomb

effective

logarithm. We do not use a constant value for the Coulomb loga-

rithmbut rather let
Ao~ (13070

This is done since for Torus-II operating parameters, the Coulomb



logarithm can vary by as much as a factor of three. We get,

5 <lnA <15

This can make the difference between a 20 usec diffusion time scale
and a 60 usec diffusion time scale. For a device with a total pulse
length of 50 psec, such discrepancies are important.

The radiation losses are simulated exclusively by uéing the

average ion model of (23). Briefly, when the electron collisional

ionization rate is exactly balanced by the total recombination rate,*

a "coronal equilibrium" exists. Radiation is caused by bremsstrah-

lung, radiative decay due to An=0 and An#0 line transitions follow-
ing electron collisional excitation, radiative recombination and
dielectronic recombination. Post gives results for the ("coronal

equilibrium") radiation obtained by solving the time dependent,

atomic physics, rate equations (similar to those presented in Chapter

II Section 3) until a steady state is reached. Radiation power
levels for silicon and oxygen as functions of temperature are given
in Figure III.5. The Torus-II plasma does not exactly satisfy the

condition for coronal eguilibrium given by (25) as

1012 < n < 10167 (ev) 33

T.
1

Tt should be a fairly good approximation since, for Torus-II, the

above will read (for oxygen and silicon at 100 eV)
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Figure III.5.A
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1'9.12 =10l6

T,

1

n, =1015 } 1018 ¢ 1015 < 1023

1016 35 = 1023
However, since it does provide us with useful information on time
and spatiélly varying cooling rates it has been included in the cal-

culation.

(ii) Low Density Treatment

To repeat, for the high beta tokamak phasé, we solve an elliptic
momentum equation. This was not the case in the heating calculation.
There is no need for the detailed smoothening of the field quantities
as described in Chapter II Section 1.B.ii. The fesistivity is still
artificially increased in the low density regions. The impurity
levels are again fixed at high levels in the low density regions.

The major difference from the low density treatment of the
heating simulation is that the total current is now set equal to
zero before computing the temperature in these regions. This is to
insure that no fictitious ohmic heating arises from numerically gen-

erated plasma currents in the high resistivity areas.

(iii) Torus-II Initial and Boundary Conditions
During the high beta phase of Torus-II, all external currents

are crowbarred. The decay time of these currents without plasma
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present has been experimentally determined to be in excess of 100

usec.26

However, in the presence of plasma, the outer windings ex-
hibit a rapid decay ( n30 psec) while the inner winding decay time
is not affected.?’ Obviously the decay of plasma current is the con-
trolling factor in the above observations. Therefore, boundary con-
ditions should always reflect the effects of plasma current decay
and must not be used to drive the plasma to any particular state.
This is fundamentally different from our treatment of boundary con-
ditions in the heating computation. Now, plasma evolution is deter-
mined solely by prescribed iﬁitial conditions and the modeling of
transport parameters.

We are dealing with a one—diﬁensional calculation. Temperature
is held fixed at 3 eV at each radial endpoint. The radial velocity
is set equal to zero on the boundary. A perfect crowbar is pre-
scribed for Bﬁ Experimental results indicate that this is true for
the time scale of interest. One must be careful in prescribing the
poloidal flux function. It was observed that by specifying a decay
rate for flux through the hole and flux in the plasma chamber. large
toroidal currents are induced in the low density regions. The
reason for this i3 as follows. Plasma responds through dissipative
processes to initially prescribed parameters. If the boundary con-
dition does not exactly match the plasma decay rates it will drive
the plasma to some other staté, but not necessarily the one to which
it would evolve if left unguided. The solution decided upon was to

extrapolate the value of the poloidal FIELD at both boundary points.



The results are astounding. The plasma decay is determined solely
by the physics of the dissipative processes as desired. There is
further justification for choosing such boundary conditions. The
region of computation is 15 cm < r < 30 cm. The inner windings are
located at r = 12 cm. Recall the earlier inductance calculations
which indicate a large amount of flux leakage into the vacuum vessel.
The result was that the plasma does not see all the flux in the hole
but somewhat less. When the system is crowbarred, the current in
the inner coil slowly decays thereby decreasing the flux in the hole.
Simultaneously there must be a decrease in the flux leakage into the
" plasma chamber. The net result is that the flux on the inner vessel
boundary is relatively constant. Thus, any specified decay in V¥
would be in error. By extrapolating Bz at this wall we can still
insure that the flux remains constant. - Another reason for extrap-
olating Bz will become evident as we discuss the somewhat different
physics at work along the outer wall. Here we must consider the
poloidal flux coﬁtributed by the toroidal plasma current as well as
external currents. The decay rate éf the flux from the plasma cur-
rent is determined both by the resistivity and plasma position. A
large resistivity causes a rapid decay in plasma currént. The decay
rate of the poloidal flux then depends upon the radial position of
the plasma since for plasma at large r there is a very small positive
contribution to the poloidal flux and a large negative contribution.
So a rapid decay in the plasma current would not lead to a rapiad

decay in the flux. Another view is that for plasma with a small
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major ra&ius there is a large vertical component of magnetic field
beyond the plasma. As the plasma current decays, this field col-
lapses (Y now does decrease rapidly) resulting in a loss of con-
finement. The critical point here is that Y on the éuter wall de-
pends on several different factors. By simpling extrapolating Bz

we avoid having to predict the flux decay but rather can observe il

as a result of the dissipative processes at work. Note that, in one -

dimension, extrapolating Bz implies

which implies J = O

This is very sensible. Recall our initial difficulty in specifying
¥ was the resulting induced toroidal current in the low density re-
gion. Now we avoid such a problem with the above boundary condition.
Once again, the numerical scheme requires a boundary specifi-
cation of plasma density. To avoid boundary layer effaects dua to

an improperly specified Pu (i.e. a condition which does not acour-

all
ately reflflect the dissipative processes of the system) we simply ex-—
trapolate its value there.

Next we turn our attention to the all important initial con-
ditions. Values for density, temperature and magnétic field must be

given for all r. Three related methods are used. First, results

generated by the start-up calculation can be used as initial con-
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ditions for the high beta tokamak state. Secondly, experimental
data for this time can be used. Thirdly, arbitrary initial equi-
librium piofiles can be specified. Each has advantages and prob-
lems associated with it. The heating simulation, as we will see,
yields important qualitative and quantitative information regarding
the Torus-II plasma. However, to ask exact profiles of it is a bit
too much. Detailed experimental information of pressure and B pro-
files is simply not available. In making arbitrary assumptions
we run the risk of straying from Torus-II conditions. By combining
the strengths of each method, an effective set of initial conditions
for the high beta phase can be generated.

Consider "arbitrary" profile specification. Let w denote plasma
width, rp denote location of peak plasma density and np denote the
peak plasma numbe; density. Profiles symmetric about rp are con-

sidered, such that

nmin r<r-w;r>r+w
n(x) = { < P3 P35
n. +n (l. - r-xr n ) r -w <r <r +w
min © p byl 2 TPy

where noin is the cutoff plasma density discussed earlier and X
is any positive real number.
Similarly, let rT denote the location of peak plasma temper-

ature and Tp denote the peak plasma temperature. Based upon heat-

ing simulations, we want a temperature profile such that



<
kLr for «r rTL

T ~f IIT1.2.9

k r for r >r
R TR

where kL and kR are slopes for those regions in which the temperature
profile is prescribed as a linear function of r, namely, to the left
(towards inner wall) and right (towards outer wall) of the peak temp-
erature position. The positions where the linear profiles are na

longer valid are specified as Yo, and rTR' We require that the temp-

erature and its first derivative be continuous at these points.

ref
Therefore, at rTL

daTr = kL and T = TL III.2.10.a
dr

and at rTR
dr = = .2.10.
a%_ kR and T TR II1.2.10.b

with TL ;nd TR unknown. For a wall temperature of Tw, we take

where ri and ro are the usual boundaries for our calculation of 15 cm

and 30 cm respectively. We choose to write

rm— T X
kL(rT— ) " Top 2 F L%
ar = { T TL
a; r r XTR I1I1.2.12
’ Lr = zm < <
kR(r - r ) rT S —-rTR

TR T
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where Xpr, and Xnp are positive real numbers. By such a choice we

automatically satisfy the derivative conditions of II.2.10. The
above also insures that dT is zero at r,- Several parameters still

dr
have not been assigned values, they are, TL' TR’ xTL and XTR' With-
out these numbers, kL and_kR remain unknown. Consider an integra-

tion from the inner wall to rT.

jrarar = v_-7T
ri dr P )

Substituting equations III.2.9,11 and 12, performing the integra-

tion and rearranging terms we get

r. = To VRT/ (Kt 1) II1.2.13

+
1 BL/(XTL+ 1)

where

éw

A similar integration to the outer wall yields

+ f(x + 1
To ¥ Rel/ Opgt 1)

TR = IIT1.2.14
1+ BR/(xTR+ 1)
where r - r
BR = TR T
o T TR

Thus, by choosing XTR and xTL ("shape factors") we caﬁ calculate TL



and TR using III.2.13 and 14. Then we know dT/dr everywhere and can
integrate to get T(r) initially. Such a temperature distribution

is sketched in Figure III.6.

r r Radius

Figure III.6 Typical temperature profile used as initial condition
for simulation of high beta tokamak state of Torus-II.

Rather than specify Bz, we prescribe J, and integrate to get

¢
the magnetic field. We specify Ip' the total toroidal plasma current

and the plasma height, h. A continuous current density profile is

prescribed x

X - r JL
A <r<
Jo(,r rJL) rJL—F—FJ
J, = { J TJL III.2.15
¢ r._-r “JR
. <r<
o (2R R BERLLS
r -



r . .
where IR’ rJL' xJL and xJR are given parameters in much the same
way as for the previous temperature discussion. The peak plasma

current density, Jo, must be computed. The average plasma current

per unit height is

r
o J, dr
= S ¢

D}OH

r.
1

Substituting III.2.15 we can solve for Jo.

Jg_ = 1,/ I11.2.16

Q

r_- -r

(3 L5, o+ Tor 3,
+

xJL 1 XJR+ 1

Again, by specifying the "shape factors" xJL and X p We can com-
pute Jo above. We then have our initial J¢(r) by using III.2.15.

The poloidal field is calculated from the one-dimensional rela-

tionship

It is cagy to cupcrimentally obtain Bz at the outside wall of the
plasma chamber. Therefore, our initial profile is specified as
r
[0

B (r) = B (r) + J,  dr' I1r.2.17
z z o
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Similarly, the poloidal flux is obtained by integrating the vertical
component of the magnetic field.

r
i

r'B dr' I1I1.2.18
ri YA

Y(r) = +

whole

where whole is a known value for flux in the hole.
This leaves us with the toroidal magnetic field and poloidal
current yet to be determined. As in the case of the MHD equations

with inertia, we write

B = x(r) I11.2.19

with X representing the usual poloidal current function. For a

vacuum, X is independent of radius and we get B ,\1/r as expected.

¢

In the plasma region, a diamagnetic well or paramagnetic bump will
exist. The heating simulations indicate that the high beta plasma
of Torus-I1 exhibits a slight diamagnetism. Therefore, if we let
Iy be the deepest poin; of the well, PW the decimal depth of the

well and rBL’ rBR the locations where B¢ deviates from 1l/r behavior,

then

r<r and r>r
Xo B

B
| r .-t BR L R
x(r) ={x {l.-pPW(———— } r, <r<r
o} rBR rB - B BR
r - rBLxBL
.- —_—— r < <
Xo{l PW(r - r ) } BL zr —-rB

B BL
I11.2.18
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Xo is the known vacuum value of the poloidal current function. Again,
XaRr and Xor are prescribed "shape factors". Note that III.2.18

assures us of the continuity of B, at rB, r and r__.

) BL BR

The initial poloidal current density is easily obtained from

g, = 1 III.2.19
r or

In summation, from heating calculations and experimental data
we know the plasma width, peak plasma density, location of peak den-
sity, peak ;emperature, location of peak temperature, plasma current,
plasma height, poloidal flux in hole, vertical component of magnetic
field on outer wall, vacuum toroidal field, and the depth and loca-
tioh of the toroidal field well. Using all the above in conjunction
with assumed "shape factors" we generate all the necessary initial
values.

The high beta tokamak simulation is performed to answer some
very important questions. How long cén the plasma be maintained 1in
equilibrium? What are the important loss mechanisms? What are the
typical profiles of density, temperature, pressure,'current density
and magnetic field? How quickly does the temperature decay? What
are the maximum tolerable impurity levels? How quickly does beta
decay? What are the most desirable states to reach through heating?
That is, what are the optimum initial conditions to be used in order

to maintain a high beta plasma for times of interest?
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3.4) Solution of the Zero-Dimensional Atomic Physics Equations
A fourth order accurate Runge-Kutta scheme28 is used to solve

the equations. Formally, they are written

= - p ITI.3.1
dt
1 0 1 2
where x° = (t, Doy Doseey nxx’<Te' Ti)

and F(x) represents the right hand side of the rate equations de-
scribed in Chapter I1I Section 3. We prescr;be x(0) and march the
coupled system forward in time. Recall that the purpose of this
calculation is to simulate the ionization processes during the z-
pinch phase, the "burn through" during the heating phase and the

cooling of the high beta tokamak phase.

(V8

.B) Torus-II Parameters in Zero-Dimensional Simulation
The chief species present in Torus-II are helium (main filling
gas), silicon and oxygen (impurities from pyrex wall). We can now

gquantify the number of equations to be solved. They are equations

) ‘+1 ‘+2 ‘0 ‘+8 0 ‘+14 .
. .a n., A . T. andT™ f
for <, Duet Bher Pher Mox ot Pox’ Psir--f Mgi ! ve AT L v A

total of 30 equations.

To compute the ionization and recombination rates we need the
ionization energies for helium, oxygen and silicon in each charge
state. This information is given in Table III.2. For ény tempera-
ture, we can solve the species equations for helium, oxygen and
silicon. With these newly obtained number densities for each ionic

species we can compute the new electron number density and proceed



to the energy equations.

Table III.2

Ionization Energies (eV)29

Charge State Helium Oxygen Silicon
’ 0 24.6 13.6 8.2
+1 54.4 35.1 16.3

+2 - ' 54.9 33.5

+3 - 77.4 | 45.1

+4 - 113.9 166.8

+5 - 138.1 205.1

+6 - 739.3 246.5

+7 -" 871.4 303.2

+8 - , - 351.1

+9 - - 401.4

+10 - - 476.1

+11 - ' - 523.5

+12 - , - 2437.7

+13‘ - - 2673.1

The ohmic power in Torus-II varies drastically over the course

of the various phases of operation. Since we begin from a post-
preionization state, the plasma is only partially ionized (v1ol* em”3

+ . o ' .
He l). The toroidal plasma current is increased to V200 A/cm2 within
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2 usec .and held at that value for an additional 2 pusec. The plasma
resistivity is taken to be the classical (Spitzer) value. Instead

of using a z of 2 as before, we allow it to vary since we now

eff
can follow the ionization of all species in detail; This 4 usec
period is the z-pinch simulation. The toroidal field is reversed
and heating begins. This is simulated by tripling the plasma cur-
rent. More importantly, at this time,:we switch to an anomalous
resistivity. In Torus-II, since the Heating is céused by poloidal
edge currents which eventually dig into the plasma, the current
density is actually much higher where VxB is largest. Since we are
aealing with a zero-dimensional model we must use an average or bulk
plasma current density. The anomalous resistivity is modeled as
described earlier. The current is ramped upwards over 2 usec and
then decays to its original value within n 2 usec. At the completion
of the decay the anomalous resistivity is shut off. This marks the
end of the heating phase. During the ensuing high beta tokamak
state the resistivity is switched back to the classical form and the
current density is kept at v 200 A/cmz. It is im#ortant to realize
that as more is learned experimentally about Torus-II, these current/
resistance~time protfiles can be easily changed. The above is sum-
marized in Figure III.7. Note that ohmic power plays the role of
the plasma driving term just as boundary values for Y and x did in
the start-up calculation and initial conditions did in the one-

dimensional diffusion calculation. The plasma response is described

by the following loss terms.
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F?urbulent heating phase'
YIanomalous
chlassical rlclassical
0 2 4 6 8 10
TIME (usec)
Figure I1¥.7 Typical plasma current programming

for zero-dimensional simulation of
Torus-II, '

The electron-ion energy exchange rate is computed using m_ , m

He Ox

and m.y in equation II.3.14. This term alone is not sufficient to
explain the ion heating observed in Torus-II. It has been included in
the calculation since it can be important during the high beta state.
Ion heating is modeled through equation II.3.22. Usiné experimental

9 .
results™ , we can express this term as

= 2.5%107°2z __T n>° ev III.3.2

Pheat eff e 1 E:_I'(‘Ts—_



This term is included in the ion energy equation only during the
heating period. It is set equal to zero during the z-pinch and high
beta phases. This is done simply because the above term represents.
heating from the scattering of ion-acoustic oscillations by the ions.
This effect has been observed only during the turbulent heating phase.
In the electron energy equation, bremsstrahlung radiation is
included. The crucial losses during the z-pinch and initial portion
of the heating phase are due to the ionization of the helium, oxygen
and silicon. At low temperatures recombination losses are important.
The priméry loss mechanism during the high beta state is the line
radiation of the impurity elements, oxygen and silicon. For com-
pleteness, helium line radiation losses have also been included.
In Table III.3 we list the line transitions conside;ed, the transi-

tion energies and corresponding oscillator strengths.

Table III.3

I.ine Transition Data3o'31
AE (eV) £
0
. He+l 21.2 .276
He 40.8 .416
0
OX_;_l 10.7 .105
Ox+2 15.9 .551
Ox+3 16.0 .628
Ox+4 14.7 .657
Ox+S l12.6 .530
Ox+6 12.0 .196
Oox 561.0 .813

ox' 653.0 .416

76



- Table I1II.3 (continued)

AE (eV) £

Sifl 4.9 .625
Si+2 9.8 3.620
Si 3 9.6 3.956
si,, 8.9 1.605
Si o 104.6 .211
Si+6 49.9 .330
Si+7 44 .9 .740
Si+8 39.0 .443
Sig 35.8 .335
Si,lo 47.9 .539
si )y 33.7 .402
:;+12 28}.0 , 2.035
si+13 _ _

Other important effects in Torus-II .are those due to transport
losses. Long time . .constants (vl msec)are prescribed in equations
II1.3.19 and II.3.21 during the z-pinch and high beta tokamak states.
However, a short time constant (V10 usec) is prescribed during the
heating phase in equation II.3.20 due to the turbulence present at
that time. ''hésé ettects should not be written-off so readily. It
is difficult to quantify the time constants properly. For this rea-
son the accuracy of our calculations decxeases over long times. We
do not expect much difficulty over the early times.

The atomic physics calculations are ver? useful in solidifying
earlier MHD work. The zero—dimensionél code is the only one capable
of describing the z-pinch phase. It has helped to answer the follow-

ing questions. When is the helium fully ionized? How much power,
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designed to heat the plasma, is lost in ionizing helium? How

can this be corrected? What are the principal loss mechanisms?
What are the time dependent (as opposed to steady-state, coronal
model) radiation losses? What are the necessary ohmic power inputs
to achieve high beta? Perhaps the most important question of all
to be answered is, can we burn through the oxygen and silicon

radiation barriexrs to get to interesting temperatures?



79

Iv) RESULTS AND CONCLUSIONS

The results of the Torus-II simulation are presented here as
follows. First we describe the z-pinch predictions of the zero-
dimensional atomic physics code. Next, we discuss the heating phase
results from the MHD codes with inertia and the zero-dimensional
code. We then follow the plasma into the high beta state and give
the results of the one-dimensional transport code. In each case,
we relate the results to the important questions raised earlier.
After describing the present machine operation, recommendations

are made for an improved experiment.

1) The Torus-II Z-Pinch Phase

The initial conditions for this simulation are listed in Table

Iv.1.
Table IV.1l
Tnitial Conditions for Z-Pinch Phase

Ion Temperature .5 ev

Electron Temperature .5 ev

Helium (neutral) 9 x 1014 cm—3
Helium (+1) 1 x 10 em3
Oxygen (neutral) 2 x lOl3 cm—3
Silicon (neutral) 1l x lOl3 cm-3

The preionization phase does not heat the plasma appreciably, thus

the low starting temperatures. Typical dirty impurity concentra-



tions of 1% silicon and 2% oxygen (Si0O, from the pyrex wall) are

2
used. Two cases are run. The current is increased to its maximum
value within 2 usec and held fixed for an additional 2 usec. The
current densities chosen correspond to z-pinch plasma currents of
20-40 kA. Figure IV.1l shows the slight heating of the electrons and
ions. At a temperature of V5 eV, the ionization and recombination
rates of helium are comparable. Therefore, we see no appreciable
ionization of helium at this time. By thé end of the 4 usec period
only 17% ofAthe oxygen content i; singly ionized while ~80% of
silicon ié singly ionized. Radiative lossgs are not important during
this phase. The primary limitation of tﬁis calculation is that no
other code can help to supply the much needed chmic power input as
accurately as possible, thus, we depend upon some uncertaiﬂ exper-
imental results. It suffices to say that a significant number of
neutrals are present as we begin the heating phase, a very undesir-
able condition. The'above description of species evolution is illus-

trated in Figure 1IV.2.
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5
ELECTRON (A) J = 200 A/cm2
0 1 2 - 3 4
TIME (usec)
s .
4
3 m——— 2
ELECTRON (B) J = 100 A/cm
: max - 3 '

0 1 2 3 4
TIME (usec)

Figure 1IV.1
Computed electron and ion temperatures from zero-dimensional
code for Torus-II z-plnch phase.
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Figure 1IV.2

Ionization of impurity
species during Torus-II
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2) The Torus-II Heating Phase

2.A) One-~Dimensional Heating Study

To this point little has been said of the one-dimensional MHD
equations with inertia. This study is performed to define appro-
priate boundaries in parameter space for Torus-II. One of its maﬁy
important résults was that a high beta plasma with excellent radial
equilibrium can be obtained using the heating scheme of Torus-II.
The fast reversal of the toroidal magnetic field leads to poloidal
electric fields consistent with the scaling of the anomalous resis-

tivity. Typical inputs and results are given in Table IV.2.

Table IV.2
Heating Simulation (1-D)

Inputs: B¢(r=22.5 cm) = 2670 G

Bvertical= 200 G in hole

Linear ramp to "l kG in vacuum vessel

12 13 -1
oanomalous ~ 8 X lQ {J:,e.i,m;ziml.owm.}; secC
total
Kk = 2.8 x 10° erg /sec/X/cm
- . 5 a2
whole(t 0) ~» 47 x 10° G-cm
5 2
= n, -
whole(t 5 usec) 8T x 10° G-cm
Results: Temperature " 70 - 150 ev .
' Icp lasmam4o_50 kA
Density ~v o1 x 1015 em™3 /P
B v20-60%
B > n 40% ¢, well

¢



The simplicity of solution of the MHD equations in one dimension
allows for extensive probing of parameter space without consuming
excessive computer time. Indeed, the various methods described in
chapter III which are used to simulate the Torus-II heating phase
are all direct resulfs of exhaustive numerical experiments per-
formed with the one-dimensional code. For example, different anom-
alous resistivity models, different switching on and off of the
anomalous and classical resistivities, the effects of vériable ther-
mal conductivity, different filtering techniques of numerical oscil-
lations in the low density regions, varying the flux in the hole and
other effects were all tested using the one-dimensional calculation.
Using the values for Vafious plasma parameters obtained from the 1-D
code, the two-dimensional simulation is performed with emphasis on

the proper modeling of boundary conditions.

2.B) Two-Dimensional Heating Study

(i) Quarter Power Simulation

By coupling Coils, EFFI and the MHD equations, several impor-
tant characteristics of the plasma state are understood. The coil
geometry is directly responsible for the greatly elongated, high
beta plasma and its subsequent evolution. Using the initial con-
ditions described earlier we follow the plasma heating for 6 usec.
First consider the quarter power case. Important inputs are sum-

marized in Table IV.3.
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Table IV.3

Quarter Power Input Summary

Case number : 1 2 3
Whole(v—sec) .020 .020 .027

b4 (V-sec) .014 .021 .025
outer . .

Wtop 'Bwhole 'Bwhole '9whole

Variation in =z z8 z4 28

Tloss ® = ®

' The results of case 1 and case 2 differ in that the plasma cur-
rents at 6 HUsec are 66 kA and 80 kA respectively. The magnetic axis
of case 1 is shifted approximately 1 cm to the right of the magnetic
axis obtained in case 2. All other results are identical. To main-
tain a manageable number of figures, no graphs of case 2 are included.
The implications of the similarity of cases 1 and 2 are as follows.
Since plasma current has increased substantially by changing the
poloidal flux contributed by the outer toroidal windings, we can con-
clude that the coupling between the plasma and these windings is
strong. Indeed it is absurd to refer to such windings as the "ver-
tical field" coils since they play a significant role in inducing
the toroidal plasma current. This effect is not as pronounced as
expected since the flux variation along z is such that the flux (z“)
leakage is more spread out in case 2. This implies that the plasma
as a whole does not see as much flux as it would if the leakage was
8.

restricted to the corners (z Another important conclusion is
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that the heating of the Torus-I1I plasma must be caused by poloidal
plasma currents. This is obvious since the plasha temperature is
the same for both cases eventhough the toroidal currents are quite
different.

Now we compare case 1 with case 3 since these are noticeably
different. Consider Figures IV.3 and IV.4. (Note: We will. try
to give details in our discussions and use graphs only to illus-
trate the key points. This is done to keep the number of graphs
manageable.) At 1.5 usec both cases exhibit some loss of plasma
to the top of the vessel. By 2 usec we observe a much broader
plasma for case 3 while at 3 usec the two are equally wide. At 4
usec, note that a fairly well confined, hot plasma has formed in
both cases. At 6 psec a substantial loss of plasma to the outer
corners of the device is observed for case 1 while case 3 has
maintained excellent confinement. $o the plasma of case 3 remains
squatter and better confined than that of case 1. This effect is
also easily observed in Figures 1v.5 and Lv.6. Note that at all
times there is a greater amount of flux towards the inside of the
device for case 1 than for case 3. This is caused by the pre-
scribed leakage flux which is greater in case 1 (20%) than it is
in case 3 (10%). The result is a squeezing and elongating of the
plasma. The effect is most evident at 2.5 psec. Note the re-
sultiﬁg shift in magnetic axis of 1.5 cm. This is clearly caused
by the sizeable increased amount of vertical field programmed in

case 3. The toroidal plasma current is 88 kA at 6 psec for this
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TIME= 1.5 usec.

DENSITY

2.5 usec.

. TIME
~DENSITY

(3)

Density profile in upper half plane for heating case 1.

Figure IV.3.
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Figure IV.3.C

6.0 usec.

OENSITY

TIME

.5 usec.

!

TINE
LDENSITY

(A)

Density profile in upper half plane for heating case 3.

Figure IV.4.
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Figure IV.5
pPoloidal flux
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Figure IV.6.B
Figure IV.6.C
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same case. At the risk of over emphasizing a point, Figures IV.7 and
Iv.8 also point to a squatter, better confined current profile for
case 3. Note the loss of current to the corners for both cases but
the greater severity exists when the leakage is greater. To re-
search this point further, simulations were performed with leakage
fluxes of 40 - 60%. The result was that no plasma coﬁld be confined
in such a system. Therefore, the leakage flux in Torus-II can be

a problem if it gets too large.

Next, consider the plasma along the horizontal plane of sym-
metry, z=0. Figures IV.9 and IV.1l0 show that due to the better ver-
tical confinement of case 3 it is always denser (and often broader)
than the plasma of case 1. The usual plasma bouncing is also seen.
Figures IV.1l1 and IV.12 indicate a slightly warmer plasma for case
3. At early times this is easily explained by the steeper grad-
ients iq B¢ which give rise to larger poloidal currents for case 3.
Observe how the plasma edge is heated first and then the remainder
of the plasma. These effects are due to the confinement scheme.
Less leakage results in a greater plasma density along z=0. This
in turn results in a deeper, more. lasting?ad B¢/3 r which translates
into a warmer plasma. Both cases have diamagnetic wells after the
heating is completed. See Figures IV.13 and IV.1l4. The larger well
for case 1 is expected since the plasma beta is higher than in case

3. (Same pressure but plasma is in lower. B, region for case '1.)

¢

The toroidal field soak-in phenomena has been observed experimentally

on the same time scale as illustrated in Figures IV.13 and IV.14.
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density contours
in upper half
plane for heating

Toroidal current
case 3.

Figure IV.8

(a)
(B)

de A..nu.y .\..H,‘i\l...\ 1i.!.;l1....,4.|!I|....-|.|.1l.-.|<ll|..-..
N

14

N IS . az

|0
o wl

£

al (=
a oo . e

G o

-
-
e et e s s #

{m | .
] 1
o a e i

L R !
() e T B AR
L e e, = p.
qq . T~ —T T e . — —

at ’ (.
J}

D
1

r%// .|-...ll’..”iol._lx..lil!. — e wu r.. M//r i ' : \ 1 | W SR T v LA ‘
U1y IWITLUIA oE UIuo B L1 AA




(2]
1

Bl
[5]
T

Figure 1IV.9

Plasma density
profiles along
horizontal mid-
plane for heat~
- { 1ing case 1.

w
¥

DUNS LTY

RO N J
: ~ < - —
) RY) - [ n = A - 0 = s
~ ~ ~ ~ ~N - - - - - -

R 2 Il By ded s,

NOFMELIZZD RACILCS

NITI. NGRMALIZED
TivE. 2.7 uSEl 4 (a)
=Redy, I3ETL RSLT-LISTHAT.3 OM

~n
[

[

Wl NS 1LY

a
o

SLToIm (B)




o
o

ra
[ 5

Figure 1IV.9.C

u

(NS 1Y

(-]
u

ro
(V1)

~
©

Figure 1IV.10

wm

Plasma density
profiles along
horizontal mid-
plane for heat-
ing case 3.

DENSTY

s
u

Ca

(a)



[}
(41}

~
(]

Figure IV.10.B

NG Y

[
.

-
‘s - = ) = = a4 = 2 2 b
~ ~ ~ ~ ~ = ™ el ™ o -

i = ol

NOEME S0 =G IUS

=y

-t

Yo =T

)
&)

. Figure IV.1l0.C

DEMNGCLIY G

s
L)
Lt 4
> [}
= ~ - = n = N T 2 = k)
~ ~ ~ ~ ~ - - - - - -
NCEMEL TETT 22acus
Vot ab i e Ll - =
.
. AR
PRI R




99

[¢1]

ur

Figure IV.11

Plasma temperature
profiles along
horizontal mid-
plane for heating
case 1.

HEMPE R URE,

(Rl
+
(3]
Gles
2.9

(a)

~ )3

S

LMPERNTURI

(B)




a1t 1
it 1
£l 1

Figure IV.1l1l.C

[ 1}
B
"

=
=} 1
=
=
—— 1
=
= ]
=
2F
'\\‘
.
2
T.35 % N = 2 k-] 2 N = (=] = =
~N -, o~ o~ ~ - - = ] -~ -
NORMAI (PSR 2007449
NOQRMRLZ=0 Relils

(V-]

Figure IV.12

Plasma temperature
profiles along
horizontal mid-
plane for heating
case 3.

FFMPERDTURL

(a)

.
(W]
3

&

100



101

IV.12.B

Figure

4

) 1

N VR STV

Iv.l2.c

Figure

[
)
v
I
r
N
(K
q
(.
= 3
o oh
1
(e
3 A A L A 1 i 1 1 :.N
o @ [ .:x_v.__d ! _M—. _F_z_‘_ o . «.w.m“
(1))




102

11
T oo
— o < d
M v 0O E O
— o~ o
N HWod —
g © M — _
i oqefds 2 .
Q T~ O 1] ~— a
5 Bwane
o 84 0 M © D
s O M OH L
5] B g ooyerd
T - ' . . ah N
(U] o
) “
9'¢ D e O
O t--1
PL (9]
v Cr
e ¢y e &
il 2
i el
2°f (RN 12 |
[y N
_ |
ar CL o
= ;8 8 3
S az
Z 3 ) .
" - Az Z HEY
"y -
0l "
ae . _-u
1)
" W
e EAra
"7 L ) A .

TG

T T T s

3

2




103

[
(V1]
1

.
[+

T
i

Figure IV.13.C
25% well .

o

[
¢

oo thne st kb

A
¢ . -
sn2s N = ¢ = = N = = =2 3
~ ~ ~ ~ ~ - - - = - =
avo 1TTO =an g .
NOﬁNﬁ;Lig' i I

Figure IV.1l4

Toroidal field
profiles along
horizontal mid-
plane for heat-
ing case 3.

w

AR

~HORA DN

£-22 - —
T o= ~ = )
~ o~ ~ ~
2.7 ez (R)
STIII. -2 To TTT.T. T o




104

m O
< <<
— —
> >
H H
[ [}
N ~
=] j=]
o o]
v v f v A s.—- Ll T LS s.—-
ne "y
LW )
qﬁ._..u [
e s
W e, .,__'
1) -
- - (]
S Ll .
2% LRI
| o
)
ae &N
bt ne e
AN -
Q) s ]
1ne A g S Oy
. oy
.
97 a2 ._.
_u
Wz .,,...
(A h'e q._.
:.:..
oy
22 2z “““ ’ '
’ .._ag_..o_
Yo
"
A A i | . (L 1 1 1 1 v 1 5 ae :
g . n " e " " Al M “” . "
ROCRIE TS R O " SR Yo, g




Analysis of Figures IV.15 and IV.16 indicates that the magnitudes of
the toroidal current densities are the same for both cases, however,
it is spread over a larger region in case 3 thereby resulting in a
larger plasma current. Published experimental values of plasma
current are V20 - 30 kA. At the time of this writing there was an
expressed desire to obtain additional magnetic probe data to confirm
such numbers. The most recentlexperimental data indicates that the
plasma current may be as la?ge as 90 kA during the heating phase.
The 25 kA measurement was made 20 psec after the toroidal field re-
versal. While lower values of plasma current have 5een simulated,
we have never succeeded in.heating to a plasma state with such low
plasma currents. The codes do indicate a loss of current to the
corners. Later we will discuss plasma flow patterns and "current
shedding"”. Regardless of the magnitqde of the plasma current ob-
tained, its distribution along z=0 as é function of time is always
characterized by an initial skin effect followed by a soak-in to

a parabolic shape with marked current reversal on the plasma edge.
The current then shifts and piles up on the outside. As the plasma
returns and moves inward, the plasma current distributes itself
parabollically again. Further detailed discussion will be pre-
sented in Chapter IV Section 2.B.ii. In Figures IV.1l7 and IV.18 we
observe the compression of the poloidal magnetic field as the plasma
moves towards the outside and its subsequent relaxation as the plas-

ma returns inward. Note that the structure of BZ is the same in

105



106

:t 4
Figure IV.15
>t . ;
=2 . Plasma toroidal
- current density
= profiles along
= horizontal mid-
Ter 1 plane for heat-
= ing case 1.
_ -2t :
= N r ) -] 2 ~ E w 2 -]
~ N ~ :.4' ~ - - - = - -
NORMELIZZC BrOTUS
. (a)
5t ]

o
\J

)
 —

,

NG TT

R

.
\l ”_,
» 1Y 1
T

"
~y
[+

¥

. g
= . = < £} = ~ = -] = =
N e ~ ~ ~ - - - - = -
MORMZ [FSS 2270 7iR
:lr:, 1™ ] -

-rm -
i =
y O ¢ (B)
: EEIN ) B
e .22 =2 T IrtTL,T T T
wmu& ez YIIDIT O e -



107

O Q
wn n
— —~
> >
H [
[ [0}
N M
3 =)
o o
. lal
=] [<]]
ah -
| 9L
)
9t 7D
LI )
[}
i
L s
(2
L hid
A AW
-
e &
=
S
{az Z 5 . 5
Cw ")
K
92
it
3
hZ (&3
~
oy
Q
P

i 'Y 1 A 1 L. 1 A acs I 1 A A L [ 3 . I
mor P ARIGRIOFINF R B $= - WITENIR IN RO 5 P
- T



«©

HENS LY

UBENTS

¢

-22
el

(-1

i

NS ol Y

SERBCAT I

L

1
~N
[+

o
N
n

Figure IV.1l6

Plasma toroidal
current density
profiles along
horizontal mid-
plane for heat-
ing case 1.

(a)

(B)

108



S o
SRR
p
E
F
4
= = = = = s
: ~ B = - =
N =iA T
v T
SeTMe
- e = o~y
=T T - > .

Figure IV.16.C

Figure IV.16.D

109



110

W

(3]

Figure IV.17

Poloidal field
profiles along
W. horizontal mid-
" plane for heat-
ing case 1.

P OIDAE | LELL

-23 J
=23 ]
P
.32
= ]
s =
- - -
7.2 QM
st
e
P S
<b
—_
N
S3F
o '
h
RS o
|
-3}
—_~
=
—
=
J—
—— -
gt
=
.3 /
3 __,‘—“_ '
ERN )
s = = = a = ~N o = =
o~ ~ ~ ~N - i 2 z :

N

=
« -
NORMA_TIZ3 3807y

(B)




111

22+ b
sl ]l Figure IV.17.C
—_
-9 e
s
=t 1
=
—
fam W ad -
—_
—
-3 4
==
o
Py
-2k J
USSR 1
=R X . .
s N = ) = = N Ea <= ] E)
~ ~ ~ ~N N e} = = m s =
-~ ~, e Sl = - o ~
NoRM=L 1220 ARLILS

Figure IV.18

Poloidal field
profiles along
horizontal mid-
plane for heat-
ing case 3.

wr

©

[ F1ul)

Pal G nng

[

LAVE Y

€2

"
]

= ™ - ) = ) 3 Es = = =
N ~ ™ ™~ o el hel bl el el =
. NTDN, T DTS oS T 2
e BT s e Y -

(&)




112

Figure IV.18.B

).

1y

R R

"F

0wer

0ne

92

(YA
LRI }
1)

1

(]

Q
@
-
o
-
0]
N
3
o
-
by
O8O @At d TIDON0 W Ny

0'h

e

W'r,

n2

a%q

w¢




113

both cases. This should be obvious from the similarity in the cur-
rent density profiles. The important differences are the previously
mentioned shift of the magnetic axis and the enhanced value of Bz

on the outside. Both are caused by the additional vertical field
progrémmed in case 3.

We omiﬁ graphs oﬁ plasma pressure since such information is
easily extracted from the density and temperature profiles. At 6 usec
the peak beta is 85% for case 1 and 78% for case 3. There is no ex-
perimental data for these earl? times to check against. It is impor-
tant to realize that no radiation or ionization losses are included
in the above simulations. Modeling these effects would decrease the
plasma beta.

Due to the elongation of the plasma, even at these large values
of toroidal plasma current, for case 1 the safety factor has been

computed to be .95 on the axis and 1.1 on the plasma edge.

(ii) Half Power Simulation

Next we consider three cases of half power heating. The results
are sufficiently different from those of the previous section to war-
rant detailed explanation once more. Radiation and ionization losses
are accounted for in these simulations. The principal inputs are
listed in Table 1IV.4.

A post z-pinch configuration is the initial configuration. Again,

rather than include all the graphs generated by the code, we state that
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Table IV.4

Half Power Input Summary

Case number- 4 5 3]

¥ o1e(V-sec) .020 020 .010
wouter(v_sec) .019 .01l9 .013
Yiop .8 ¥ .9 9 ¥

hole hole “hole
Variation in =z 78 ‘ z8 z8
Tloss(usec) 10 10 15
Ionization correction Yes No No
Crowbar Perfect Perfect Perfect
n (sec) ° - 1.25 x 10 2 J >
anomalous {1-5 = 10 1
k (ergs/cm/sec/K) 3 x 106 3 x 10° 3 x 106

cases 4 and 6 differ the most while case 5 has common characteristics
with both of the others. For this reason we willldescribe case 5
without including an enormous numbgr of graphs.

The toroiéal plasma current of case 4 after 6 usec (66 ka) is
identical to that of‘case 5 at the same time. This is expected due
‘to the specification of identical amounts of poloidal flux on the
boundaries.

The peak temperature obtained in case 5 (=215 eV at 2 pusec) is
the same as that for case 6, however, it does cool less rapidly.

This is related to the better confinement of plasma in case 5,

that is, there is less plasma near the cold walls. The ionization
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correction listed in Table IV.4 is simply an ad hoc correction to

the gas constant. Since we are uéing a single fluid model,
P=P +P, =k(nT + n,T.)
i e e i7i
. = = T we
For Tl Te we get,
P = (n + n,)kT
e i

Depending upon the degree of ionization of the helium we obtain,

Thereforé, we program a time dependent electron number density such
that the helium is completely ionized after 1.7 usec. This lowers
the pressure thereby affecting both the momentum and energy equa-
tions directly. The net effect was determined to be quite small.
The programmed ionization case was found to be only slightly (v2%)
cooler. This indicates that compressional heating is not important
in Torus-II. It does not imply that poor plasma preparation has no
effecf on heating as will be discussed when we present.the results
of the zero-dimensional computation. Another calculation lending
support to this claim is that the computed values of pC@'Tﬁ t are
the same order of magnitude as the ohmié heating term, nJ2. Re-

turning to the issue of confinement, we note that the only difference



between cases 4 and 5 is the leakage near the copper plates. Once
again we conclude that more leakage yields poorer confinement. The
flux contours for these two simulations indicate that a sizeable
magnetic pressure due to the leakage will tend to elongate the plas-
ma substantially.

Comparing cases 5 and 6 we find a major difference in the plas-
ma current. The latter carries 44 kA at 6 usec compared to the 66 ka
of case 5. This is due to the reduced amount of flux used in the
boundary conditions. Plasma confinement is quite similar due to the
prescription of equal percentages of flux leakage. However, in case
6, plasma is lost to the outer wall. This does not happen in case 5.
This is a result of the low vertical field specified in case 6. The
effects of a large plasma current on the temperature is evident only
at later times. We.are referring to toroidal plasma current. We
will discuss this matter below. It is best to now directly compare
cases 4 and 6.

The principal difference in the inputs is the poloidal flux on
the boundaries and the amount of leakage. Case 4 exceeds case 6 on
both counts. The results of greatest interest are those relating
to effectiveness of heating and confinement.

Plasma temperature is slightly higher for case 4 than case 6.
Let us now finalize our ideas regarding the heating mechanism. For
convenience, the toroidal plasma current for each case described
in this chapter and the corresponding peak temperature are listed

in Table IV.5 Bearing in mind that cases 4-6 contain the phenom-

116
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Table IV.5

Plasma Heating Summary

Case Toroidal Current (kA) - Temperature (eV)
1 Qu P 66 140
a8 % '
2 t e 80 140
e r
r .
3 88 145
4 H 66 215
a P
1f ow
5 e 66 210
r
6 44 210

enolpgical loss time constant while cases 1-3 do not, we must con-
clude that the heating mechanism can only be ohmic poloidal currents.
This must be true since the hotter plasmas are characteristic of
larger B, and there is no correlation to the torcidal current. The

¢

role of J¢ in heating becomes evident as we return to our comparisonz
of cases 4 and 6. Note that the loss constant for the ;atter is
larger than for the former. Thus, we should expect more rapid cool-
ing for case 4. However, this is no£ observed for two reasons.

While poloidal currents are responsible for the initial heating of
the plasma, any losses that are important over long times must be
compensated for by ohmic heating from toroidal gurrents since these
last much longer than the poloidal currents. Thus, a plasma with

a larger J, will cool much less rapidly eventhough the initial heat-

¢

ing is determined solely by the poloidal current. The second reason

is related to plasma confinement. This will be discussed again later.



Briefly, the plasma of case 6 rests against the cold outer wall and
looses energy by conduction. The slight discrepancy in the temper-
ature of cases 4 and 6 (See Figure IV.19 and IV.20) can also be re-

lated to the way the resistivity is computed. Recall,

nooo (Ji + %)

Thus, larger toroidal currents will yield a higher resistivity and
enhance the heating. It is important enough to repeat, that.barring
large scale plasha confinement difficulties, plasma temperature is
directly related to the final reversed toroidal field. A large
part of plasma cooling is caused by the zero-dimensional loss term.
As more experimental data becomes available, this term can be ad-
justed to more closely follow the experiment. With respect to the
plasma resistivity, several attempts were made to run the code with-
out an enhanced value. For the known rise times ot the external
currents, the code bombed without exception. This implies that an
enhanced resistivity must be present for successful operation of
the cades and is probably a good representation of the experiment.

The difference in the larger toroidal current of case 4 over
case 6 can not be quickly dismissed as simply due to the boundary
values of poloidal flux, although such boundary values are impor-
tant. Note that the curren; densities of the two cases are very
similar (Figures IV.21 and IV.22) for the early times. Indeed, J¢
profiles for all the simulations are similar for t <4 ﬁsec. At

the later times, depending upon the shape of the confining fields
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the plasma will lose current. This is the "peel off"” effect
mentioned earlier. Current is lost to the upper regions of the
vacuum vessel where the flux leakage is concentrated. For case 6
there is the additional problem of insufficient vertical field needed
to keep the plasma off the outer wall during the early part of the
heating. Whenever plasma approaches the outer wall, it encounters
a greater concentration of open field lines. No current is allowed
to flow on these lines since they intersect the non-conducting glass
wall. Thus, the current is squeezed out of the plasma. Additional'
proof of the "peel off" phenomena is presented in Figures IV.23 and
IV.24. 1In Figure IV.24.B, plasma flow patterns have been sketched.
While acceptance of this calculation as a true detailed account of
the Torus-II plasma velocity spectrum is not possible, it is .quite
useful in showing once again that the outer layer of the plasma
can move along open field lines to the upper regions of the vessel.
This has been observed experimentally with streak cameras.32 This
flow pattern is caused by the leakage flux into the vessel at the
inner wall and out of the vessel at the outer wall, thus, this is
not a transport problem but one of coil geometry. The inner plasma
regions experience a counter-clockwise poloidal rotation. Experi-
ments are being conducted to test for this effect.33

Continuing with this line of thought, we analyze the poloid-
al flux contours in Figures IV.25 and IV.26. The contours for plas-
ma subjected to less flux leakage (case 6) are squatter than those

of case 4 for t < 2 pusec, repeating the trend observed in cases 1 - 3.
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Figure Iv.25.C

Uiy THITLY3A

Pt

L

Poloidal flux
upper half plane
for heating

Figure 1IV.26
contours in

TUHAT A

(a)



130

Figure IV.26.B
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However, unlike the earlier resulés, the flux contours do not remain
squat. Case 4 exhibits squatter contours than case 6 for times be-
tween 2.5 and 5 pusec. The reason for this is that there is ndt
enough vertical field to confine the hot plasma in case 6. By now
it should be evident exactly how confinement is affected by the
poloidal flux specification. In most high beta devices, the plasma
is confined by diamagnetic poloidal lcurrents crossed with the toroid-
al magnetic field. This occurs to some extent in Torus-II. How-
ever, the geometry of the extefnal toroidal windings are also very
important for Torus-II. As plasma is heated it shifts radially

outward. For given values of ¥ and Y if tﬁe return leak-

hole outer’
age along the inside of the device is high (>20%), there is a large
magnetic pressure supplying an additional outward push on the plas-
ma. Another way to look at this phenomenon is that the leakage
flux effectively reduces the vertical field applied externally. If
there is a large flux leakage out of the vessel towards the outer
wall it will push plasma inward. The plasma finds itself squeezed
in the middle thereby assuming an elongated shape and squirting out
to the top and corners. Again, another way to look at the leakage
on the outside of the device is that the vertical field is improperly
shaped. It should be directed inwardly at larger heights. The
Torus-II coil geometry produces the opposite pattern. Plasma con-
finement improves with decreasing leakage since the field lines,

which exert a smaller pressure, can be more easily compressed. In

doing so, the boundary conditions are such that the field lines tend
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to bend over the top of the plasma maintaining excellent vertical
equilibrium. (See for example Figures IV.6.B and IV.25.B) However,
for case 6 the contours do not remain squat for reasons other than
the flux leakage. In this simulation the amount of vertical field
is simply too small. Therefore, the hot plasma easily compresses
all the field without the characteristic "bending over" of magnetic
pressure. This is not a new result. 100 little exlernal vertical
field has long been known to lead to loss of plasma confinement.
The weaker vertical field also manifests itself in a smaller com-
puted Bz.» Typically, it is 500 G smaller for case 6 than all
others. The position of the magnetic axis along r is again dictated

by wouter' with larger fluxes pushing the axis inward as expected.

Direct viewing ot the plasma density uver the upper half plane
(Figures IV.27 and IV.28) or along the horizontal midplane (Figures
IV.29 and IV.30) substantiates the above discussion of confinement.
Case 6 is different from all others. This is the first time plasma
hits the outer wall. There is a resulting decrease in plasma density.
Earlier we sketched briefly the dynamics of the plasma motion. It
is best now to describe it in detail.

In all cases, upon initial heatiny (L v 1 usas), the plasma
expands along r while contracting slightly along z. As the plasma
temperature increases, it begins to move outward radially, expanding

in width while doing so. Depending upon the shaping of the pre-

scribed boundary conditions, the plasma is compressed along z to
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Figure IV.28.B
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some extent. When the outer edge of the plasma encouﬁters a large
enough vertical field it ceases its radial motion. The trailing
edge of the plasma continues moving outward until the plasma pres-
sure is balanced by the magnetic pressure. The contraction of the
plasma along z continues. Since the plasma has finite inertia it
over-compresses the field on the outside. The plasma is then pushed
radially inward, expanding both alonq r and z. This motion continues
until the magnetic pressure near the inner wall is sufficient to re-
tard the plasmavmotion. If the prescribed vertical field is too
large, this balance will not occur and the plasma strikes the inner
wall. Such results were observed but are not presented here. The
elongation along z is dictated by the relative squeezing of the
plasma due to leakage patterns. After radial motion has stopped,
the plasma continues to flow in the vertical direction to the outer
corners of the vessel. For this reason we believe that the plasma
shrinks. Thus, the plasma elongation of ~5:1 presented here does
not exist at later times. It may shrink as low as N2.5:l.34 This
behavior has not been simulated due to the computational costs of
running the two-dimensional code for such long times.

After 6 usec we compute all components of pDv, J x B and VP.
Dt

The results are interesting. For regions of appreciable plasma

density ( p > 10% ppeak) we find that

PPL o~ 107%(we, 3 xB)_

Dt 'r,¢ ¢



vP|
r,

© I

r.é

is true half-way up the plasma column. The condition

is true in regions close to the horizontal midplane only. No com-
ponents of VP and JxB are equal near the top of the plasma column.

This is in agreement with the continued flow/loss of plasma into the

corners of the vessel. It is important to repeat that this is inde- "

pendent of any loss mechanism other than the coil geometry of the
device. Due to this flow, we are unable to compute to tbe point
where pressure is a function of the poloidal flux alone. That is,
P=P(y). While the plasma is in excellent equilibrium along 2z=0,
the "information" onlplasma state is not communicated all along the
flux contour. Rather, at the top, equilibrium does not exist and
the "flow of information” is disrupted. Thus, along the lower part

of the plasma column we find

P, =P (¥) P = Pply) P (¥) # P(¥)

where the subscripts L,R refer to left and right of the magnetic

axis. Strictly speaking, we are unable to heat to a two-dimensional

MHD equilibrium. We do not claim that one does not exist in Torus-II

but only that it may take longer to achieve than the study period of
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6 usec.

Figures IV.31 and 1IV.32 again illustrate the rapid soak-in of
the toroidal magnetic field. This is consistent with the results
obtained by (8). At 6 pusec we compuﬁe peak plasma beta values of
33% and 39% for cases 6 and 4 respectively. Due to the inclusion
of the large loss term in the energy equation, plasma temperature
drops to 37 eV for case 4 and 31 ev for case 6. ''he accuracy of
such a rapid decay is debatable. BAs experimental results are obtained
from Thompson scattering measurements, the phenomenological loss term
can he adjusted to give an appropriate 8 decay. For completeness we
exhibit profiles of Bz and pressure along the horizontal midplane
after heating. (Figures IV.33 and 1V.34) The poloidal field com-
puted at r=30 cm agrees very well with recent experimental probe data.

A brief discussion of the plasma safety factor, g, is in order.

We compute g at 6 usec by numerically integrating2

q(¥) =x(¥) ¢ a1 1
21 Tﬁpol|;2

Such a calculation is suspect since we do not have a strict equilib-
rium even at 6 psec. However, it certainly gives us a rough quanti-
tative estimate of the plasma g-profile. 1In Figure IV.35 we exhibit
such profiles for cases 4, 5 and 6. We can weakly state that within
the limits of certainty of the numerics (finite grid spacing-numeri-

cal integration), g 3 1 in all cases. For the values of plasma cur-
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rent computed in the half power case (40-70 kA), this result appears
surprising. It is the ~5:1 elongation that saves the larée current
carrying plasma from going kink unstable (g <1l). As the plasma
shrinks it is accompanied by a loss of current. While we have not
quantified such a phenomena over long times, we expect thelloss of
plasma current to balance the plasma shrinking such ‘that the safety
factor remains greater than one throughout the durétion of the ex-
periment.

Implicit in all the above'discussion is that the external cur-
rents are heating at least a singly ionized (and usually double
ionized) helium ion. MHD can not simulate ionization processes.
Therefore, to test if Torus-II can indeed "burn through" the ion-
ization of helium and subsequently overcome impurity radiation
losses, we must use the zero-dimensional atomic physics code de- -

scribed earlier.

2.C) Zero-Dimensional Heating Study

The results of this phase of our work are particularly sen-
sitive to the amount of time for which we use the anomalous re-
sistivity. The heating phase is characterized by the switching on
of the anomalous resistivity. This is done immediately after the
4 psec z-pinch phase has been simulated. To emphasize the varying

results possible we present three typical cases in Table IV.6.
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Table 1IV.6

Inputs for Zero-Dimensional Heating Study

Case number 1 2 3

Z-pinch

Peak current (A/cm%, 200 200 100
Heating

Peak current (A/cm?) 500 - 500 800
Heating time (psec) 3 4 4

% Oxygen 2 2 2

% Silicon 1 1 1

In Figures IV.36 and IV.37 we exhibit the computéd ion and elec-
tron temperatures. The important point to be emphasized from these
results is that for typical Torus-II parameters, the heating mechan-
ism can "burn through" the ionization and radiation barriers.

.Figure IV.38 shows the time history of fully ionized helium. Wec
clearly see that the ionization of helium occurs during the heating
phase. For each case, ionization is complete within 3 usec after
the onset of the turbulent poloidal currents. Minor differences
exist. Por example, He' exists for a longer time in case 1 than
case 2 or case 3. However, since Te 2 40 ev at 6 usec for the three
simulations, the ionization rate is large enough to give similar
values of He++(t).

4

; 5 . + ik
For the colder temperatures of case 1 we obtain Ox 3 and Si .

' o+ +
The hotter temperature of case 3 yields Ox > and Si 6 at the end
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of heating. Thus, both plasmas will continue toArédiate power away.
We observe a 2 usec delay in ion heating in every simulation despite
the anomalous ion-wave heating term. This is coincidental with the
rapid ionization of helium, oxygen and silicon. Thus, &(niTi)/dt
includes a large dni/dt component. When this vanishes at 6 usec we
observe heating of the ions. Here we have another effect of poor
plasma preparation.'

These results clearly indicaﬁe that if Torus-II is to beqome
hot we must have a successful onset and sustained turbulent period.
The heating mechanism is enouygh to produce interesting temperatures
despite poor plasma preparation. The dominant loss mechanism during
the early part of the heating is due to ionization. As the plasma
is heated, transport losses become a more important part of the
simulation. When the turbulence is shut off, the principal loss
process is impurity line radiation. This leads ns to our next topic

of discussion, the description of the high beta plasma state.
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3) The Torus-II High Beta Tokamak Phase
We now combine the information supplied by the heating simula-
tions with all available experimental data to set up appropriate

initial high beta plasma states and follow the decay processes.

A) ‘Quarter Power Study '
The heating phase simulation produced high temperature piasmas,

N 100 eV, Recall however that no radiative losses were included.
Experimentally, the peak plasma temperature has been reported32 as

V30 eV. Also from (32), the plasma is set up further towards the
outside (r = 24 cm) than predicted by the heating simulation (r=22 cm).
Specifying a plasma current of 40 kA énd an elongation of 3:1, we
vary the oxygen and silicon content. At this temperature, the average
ion model predicts a maximum in the radiated power lost due to oxygen.
The. plasma cools within 10 usec. Figure IV.3°¢ shows.the central
plasma temperature as a function of time for different impurity levels.
We see that the silicon concentration is not important at these tem~
peratures. The quarter power case is not a promising candidate for
high beta research due to this rapid cooling. A time scale analysis
was performed for the above initial conditions. Using data gener-

ated by the one-dimensional transport code, we found the following.

240 usec

-
[}

-
1

190 usec

70 usec

lal
[
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Figure IV.39 Central plasma temperature decay during the high beta
tokamak phase. 1Initial conditions are post-quarter

power heating phase.
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where T represents a convective (flow) time scale, T

conduction time scale, T, is an ohmic heating time scale due to tor-

oidal plasma currents, Tb is a magnetic diffusion time scale for a

classical resistivity, and Tr is a radiation time scale for 1% oxygen.

The decay rates of the fields measured in Torus-II are in acécordance

with our computed Tb. This ¢alculation illustrates the difficulties

associated with a high beta plasma resulting from quarter power heat-

ing. For these reasons, the effort devoted to the quarter power

heating and diffusion simulations was considerably less than that
devoted to the half power operating case. We forgo discussion of
profiles for the quarter power case and proceed immediately to the

half power simulation.

B) Half Power Study

Using our one-dimensional dittusion code, we §imulate the high
beta state resulting from half power heating. Again we make use of
~ the heating simulation results and experimental observations to pre-
sCribe initial conditions, Since the resulfa of plasma hcating ocan
never be completely .{or totally accurately ) known either through
simulations or experimental measurements, we also ask the question,
what if the plasma state is..... ? This is related to the "arbi-
trary" initial conditions discussion of chapter III. Two-dimensional

diffusion design studies of Torus-II were performed by Chu and Byrne?

is the thermal
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Presently, H.C. Lui is working on a two-dimensional diffusion code
that will eventually be applied to Torus-II.

Extensive probe data is available for the toroidal magnetic
field as a function of radial position along the horizontal mid-
plane9 for the quarter power case. Linear extrapolation from this
50 kV case to 70 kV (half power) yields the toroidal field profile
used as the initial condition for the high beta simulation. The max-
imum well depth is 10%. The plasma is 6 cm wide.with a peak density
of 1013 cm 3 located at a major radius of 25 cm. The height of the
plasma is set to 12 cm. We perform the necessary integrations de-
scribed earlier. The toroidal plasma current is 25 kA and the
poloidal flux, ¥, in the hole is .0l V-sec. The initial B  is set
to 1.5 kG on the ogter wall. Three different initial temperatures
are run (65 eV, 130 eV, 175 eV) for combinations of oxygen and sili-
con concentrations of .5% and 2% yielding 12 simulated cases. We
wili describe, in detail; the best and worst cases for each of the
initial temperature specifications. Based upon earlier discussions
it should be obvious that the best prospects for high beta research
are for impurity levels of..5% oxygen and .S%‘silicon. The worst
cases are those of 2% oxygen and 2% silicon. We will briefly men-
tion the intermediate cases as we proceed. Table IV.7 summarizes
the initial temperature and impurity levels for each case.

Consider first the‘plasma with an initial témperature of 65 eV.
During the very early times (t £10 usec) the power radiated by sili-

con (v2 MW) dominates the cooling. When the plasma temperature
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Table IV.7

Summary of.High Beta Tokamak Study

Case Number ;;itial Oxygen Silicon
T oepk
{x10 K)
1 75 2% .5%
2 ' 75 2% 2%
3 ' { 75 .5% .5%
4 ‘ 75 .5% 2%
5 150 2% .5%
6 150 2% 2%
7 - J 150 . - .5% . .5%
8 4 | 150 .5% 2%
9 200 2% .5%
10 200 2% 2%
11 - 200 .5% .5%
12 200 .5% 2%

reaches 40 eV, the oxygen radiated power loss (6.5 MW) destroys the
plasma. This is illustrated in Figure IV.40 where we see the plasma
rapidly cooling off. The radiated power Loss is obtained from a
numerical volume integrgtion of the power densities supplied by Post.
We conclude the obvious, that oxygen is the primary cause for con-
cern at these temperatures.

Whenever plasma undergoes rapid cooling (typified by cases 1

and 2) the basic assumption of our calculation must be examined.



(x10

Mmomag» @Y Ema

75

.Case 3
50 \ : N
N k/,éase 1
K) .
Case 4
- 25 Case 2
0
10 . 20 30

TIME (usec) '
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Recall, the code calls for diffusion through states of suc-
cessive equilibria so that we can ignore.the inertia terms in the
momentum eéuation. Figure IV.41 allows us to follow the plasma den-
sity distribution in time for cases 2 and 3. As expected, plasma
is lost to the outer wall for the case of large impurity content.
The cooling results in an increase in plasma resistivity. This
causes a decay in toroidal plasma current and diamagnetic poloidal
currents (disappearance of toroidal field‘well) leading to the sub-
sequent loss'of confinement. PFigures IV.42 and IV.43 follow these
processes. |

Calculations show that while both cases,start with peak beta
values of 23%, case 3 decays to 1l0% and case 2 drops to 2%. Analysis
of code flow data indicgtes that both cases 2 and 3 have velocities
on the order of the plasma diffusion velocity, 10*-10° cm/sec for
temperatures of 20-65 eV thereby justifying our ignoring of the
inertia terms. This does break down in case 2 by 30 usec¢ when the
plasma velocity réaches 10% cm/sec and equilibrium is no longer
maintained. The plasma motion about the minor axis is a typical
diffusive spread accelerated by the increasing plasma resistivity.
The plasma motion along the major radius is more subtle. We claim
that the ultimate state is that of zero plasma current. Of course
confinement is lost before such a state is ever reached. As the
plasma épproaches this state, we expect Bz to approach its wvacuum
profile which is everywhere positive. Therefore, the magnetic axis

shifts slowly towards the inner wall resulting in a peaked toroidal
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" Density profile
for cases 2 and 3
of the high beta
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current along the inner half of the plasma. At these late times,
the toroidal current is thernly heating source in that only it can
compensate for radiative losses. The result is that the plasma
temperature profile is skewed such that it is hotter on the edge
closer to the inner wall. The resulting pressure profiles are shown
in Figure IV.44. Note that VP is much larger in the positive radial
direction. Also, for Torus-II, since BZ is equally strong on either
side of the plasma and B¢Nl/r, the total magnetic pressure is less
towards the outer wall. These field and pressure characteristics
tend to shift the plasma outward towards the wall. This is observea

experimentally as well as computationally. There are important impli-

cations. The loss of confinement to the wall is caused by loss of
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plasma current. In the one-dimensional transbort calculation this
is aue to increasing resistivity résulting from radiation losses.
However, any loss of plasma current will yield the same result.
Recall that our two-dimensional heating simulations indicated that
the coil geometry alone leads to a loss of plasma current. Thus,
Torus-1I must battle both types of current loss to maintain con-
finement. It can not. No experiment hés lasted 35 usec beyond
the onset of plasma heating. Does heating to high temperatures
help?

Consider an initial plasma témperature of 130 eV as in cases

5, 6, 7, and 8. Throughout most of these simulations the dominant
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energy loss mechanism is silicon radiation ( 5.6 MW). ©Not until
much -later times (=20 pusec) does the oxygen content play a signi-
ficant role (7 MW) in plasma cooling. The central plasma tempera-
ture as a function of time for these cases is given in Figure IV.45.

This clearly illustrates the importance of the silicon content. The

oxygen content is not a factor until the plasma temperature has cooled

to V35 eV. Figure IV.46 permits us to follow the plasma density
evolution for cases 6 and 7. Thé two simulations are drastically
different. For a 2% silicon level, the plasma binches thereby be-
coming skinnier and more dense, contrary to the earlier spreading
out observed in cases 1l-4. However, case 7 (.5% silicon) remains
perfectly confined. The plasma pinching is best.explained as fol-
lows. As silicon rapidly radiates away energy from the plasma there
is a large drop in the thermodynamic pressure. This occurs on a timg
scale of V10 usec. This is much faster than the diffusion time scale
of 300 usec for a 130 eV classical plasma. As energy is lost and
temperature decreases, the diffusion time scale is greatly decreased.
To maintain equilibrium, as required by the code, the plasma seeks

to fight the decrease in pressﬁre. This can be done in two ways.
First by increasing density, that is, the pinching effect.observedL
Secondly, by fighting the energy loss through increased ohmic heat-
ing. This is accomplished by pinching of the plasma éurrent density
since

3T ~ nJl

It
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Through the pinching of J, and p the plasma seeks to minimize the

¢
rate of pressure loss. The pinching of toroidal current is readily
observed in Figure IV.47 for case 6. Note that since case 7 does
not experienée a rapid loss of energy its current density does not
pinch but rather undergoes a gradual resistive decay. Also note
that in case 6, the pinching process is eventually overtaken by a
sharp resistive decay due to sevVerely deflated temperatures. Thus,

there is a large drop in J, from 30 to 35 usec.

¢
The plasma has yet another mechanism to maintain equilibrium.
It can increase its total pressure not only through the thermodynamic

pressure as described above but also by increasing the magnetic

pressure. Thus we note the appearance of a paramagnetic bump in
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Figure'IV.4S for the case of 2% siiicon; This results in paramag-
netic currents which aid in confinement much as the diamagnetic
currents previously. Once again for the case of .5% silicon we see
a more gradual disappearance of the toroidal field well with no on-
set  of paramagnetism evident at these times. While both cases begin
with a peak beta of 46%, case 6 decays to a beta of 4% and case 7 to
one of 19% after 35 pysec. The evolution of the pressure profile is

shown in Figure 1IV.49 for case 7.

Analysis of the plasma velocity gives the following results.

For case 6, the plasma moves at the diffusion speed throughout the
temperature decay. Thus, we are moving éhrough successive equilibria,
but rather rapidly. Typical velocities are los,cm/sec. Calculations
indicate that the poloidal current contributes significantly to con-
finement. Plasma velocity in case 7 is quite impressive.‘ It never
exceeds 10% cm/sec, often hovering around 103 cm/sec! Confinement
is excellent throughout the simulation. Perhaps what is most im-
pressive is that case 7 nearly exactly matches half power exberi-
mental results for temperature decay presented in (9). This clearly
illustrates the potential of Torus-II as a high beta research device.

The last set of cases we will consider are for an initial plas-.
ma temperature of 175 eV. Throughout this set of calcu;ations the
dominant energy loss is due to radiation of silicon. The power
loss gets as large as 6 MW. For cases where the oxygen content is

2% there is significant cooling at later (=25 pusec) times. The
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central plasma tempefature as a function of time for cases 9-12 is
shown in Figure IV.50. This provides a clear illustration of the
dominance.of the silicon radiation. Again/ we observe a rapid drop
.in temperature due to radiating oxygen at lower temperatures (w40 eV).
As before, we follow the evolution of the plasma density profile for
two cases in Figure IV.51. The results are quite different from
eachother. For a high silicon content, we observe a doubling of the
peak plasma density along with the formation of an extremely ﬁarrow
plasma. This is the pinching effect described earlier. Once again

it accompanies that case where plasma cdoling is most rapid. Case

11 increases its peak plasma density by roughly 20%. For the 130 eV
cases we observed a piﬁching of the tofoidal plasma current at 25 Hsec
followed by a rapid resistive decay (e.g. Case 6). Since our initial

temperature is now higher, the plasma current does not begin to pinch

until 35 usec for case 10. For the simulation with a lqw silicon
content we observe a very slow decay in plasma current without pinch-
ing. (Figufe Iv.52)

The toréidal field evolution (Figure IV.53) is characterized
by the development of a paramagnetic bump. Unlike earlier simula-
tions the bump now appears in the slow cooling case as well as the
fast. It is much more pronounced in case 10 and also appears very
early (t =10 usec). Both cases begin with a peak plasma beta of
61%. Case 10 decays to a peak beta of 7.5% and case 1l decays to a
peak beta of 27% both within 35 pusec. The evolution of the pressure

profilc for both cases is shown in Figure IV.54.
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simulation.
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In keeping with our earlier procedure, we now analyze the com-
putéd plasma velocity. For case 10 the plasma velocity is 10M cm/sec
for the init;al 30 usec and climbs to 105 cm/sec by 35 usec. A
description of the dynamics of the plasma motion is in order. For
t < 25 usec, the plasma velocity is everywhere in the negative radial
direction. However, the velocity increases as we move outward. Thus,
plasma is swept inward and the pinching process begins. At later
times theAdirection of plasma flow is modified such that the plasma
near the inner wall begins to move outward while the plasma near the
outer wall continues to be swept inward resulting in a more rapid
pinching. The primary reason for this type of motion is the evolution

of the toroidal plasma current. At early times, the well centered
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toroidal current is crossed into a céntered Bz generating a force of
J¢Bz inwards. The diamagnetic currents in the poloidal direction
are also centered.- However,.the toroidal field is not symmetric about
the point of maximum plasma density. Thus, the force JzB¢ pqinting
radially outward also decreases as we move radially outward. This
results in the observed increasing negative plasma velocity. As the
plasma pressure continues to drop, the inward sweéping is no longer
sufficient to maintain an equilibrium. The toroidal plasma current
then shifts inward, away from the plasma center. The paramagnetic
bump becomes quite large and the resulting J x B force pushes the
inner plasma towards the outer wéll in an attempt to slow down the
pressure decay. For case 1l the velocity‘never exceeds lou‘cm/sec.
As in ca§e7, the piasma moves through successive equilibria much
more slowly than when the large silicon content forces a rapid cool-
ingi For most of the simulation (t & 30 psec) the sweeping of plas-

ma inward described above is sufficient to maintain a one-dimensional

equilibrium.
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4) Conclusions and Future Work

The different operating stages of Torus-II and the resulting
plasma states have been studied. Many important gquestions have been
answered, some gualitatively and many quantitatively, through the
use of MHD, atomic physics and inductance coaes. The singular, most
important conclusion we have reached is that Torus~II is quite capa-
ble of ohmically heating to a high beta plasma configuration. The
heating is indeed a turbulent process resulting from large poloidal
currents. An anomalous resistivity must be used for the MHD codes
to match experimental field data. The amount of heating is ¢ritically
sensitive to the duration of the turbulent period. Thus, experimen-
tally, a typical "cold/bad shot" is one in which the turbulence is
quickly damped and the plasma never gets hot. We've shown that the
present device is able to "burn through" to a hot, high beta plasma.
Radiative losses are a problem at later times. If the plasma heats
to 30-40 eV (typical of quarter power heating) ﬁhere is a rapid ra;
diative loss of energy due to oxygen resulting in a second type
of "cold/bad shot". Similar problems arise if we heat to the silicon
radiation barrier. The impoitant point is that high beta experi-
mental results have been reproduced computationally.

Equally important has been the ability of the simulatiéns to
point out some problems associated with the device. Clearly radia-
tive power loss is one such prsglem. Another is the nature of the
coil geometry. ' We studied the difficulties associated with the

"shortness" of the inner and outer windings, the problems caused by



the leakage flux and the effects of the copper plates. Experimental
values for the toroidal plasma current are now under careful scrutiny
due to code predicﬁions. Coupling between the plasma current and
external toroidal windings has been researched, the results of which
have led to new programming of these external currents. The coil
geometry leads to a decay of the plasma state as badly as impurity
radiation. The two are not indepéndent problems since a more effec-
tive programming of external currents can keep plasma away from the

walls resulting in a cleaner discharge. The high beta tokamak state

has been observed as successive high beta (but decaying) plasma equi-

libria.

Work is in progress to modify the present Torus-II expériment.
We will address the problems cited above while holding on to the
fundamental operating charactgristic of the device. That is, keeping
the_toroidal field reversal as the heating scheme, how can we set
up a more stable plasma state? How do we shape theAexternal windings
to avoid the loss of plasma to the top and corners? How can we de-
crease the impurity levels? Should we switch to a quartz vacuum
vessel? - Is it desirable to maintain a large toroidal current during
the high beta state to offset plasma cooling? How can this be done
without going kink unstable? Should we decrease plasma current by
decreasing the external current in the inner and/or outer windings?
Can we operate at higher heating powers, i.e. larger toroiaal fields?

These and other questions are now under consideration.
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PROGRAM NAME: COILS

WRITTEN BY: R. 1ZZ0

CONTRIBUTOR: G. ERLEBACHER

LANGUAGE: FORTRAN

COMPILATION DEVICE: CDC 7600

REFERENCES:FOR GOOD DISCUSSIONS OF INDUCTANCE CALCULATIONS
SEE LANDAU AND LIFSHITZ, ‘ELECTRODYNAMICS OF CON-
TINUCUS MEDIA’; PARIS AND HURD, ‘BASIC EM THEORY * ;
HALLEN, *ELECTRIMA3NETIC THEGRY’
FOR CALCULATIONS &= INDUCTANCES SEE GROVER, ‘INDUCTANCE
CALCULATIONS ; ‘NATIONAL BUREAU OF STANDARDS 1912 voL.8’

AN INDUCTANCE CALCULATION OJF THE GENERAL FOGM PHI=Lx*! IS

USED TG CALCULATE CURRENT JISTRIBUTIGNS IN ALL EXTEXINAL COILS,
IN THE PLASMA, AND 1IN THE COPFER PLATES ON TOP AND BOTTOM OF
TORUS-11. THE SELF INDUCTANCE |S CALCULATED USING SINITE GEO-
METRY CONSIDERATIONS WHILE THE MUTUAL INDUCTANCE IS BASICALLY
A FILAMENT APPROXIMETIGN. A CGMPLETE DESCRIPTION OF VAR-
1ABLE LABELS, ETC., FOLLOWS.

XEXRKXKKKEXKRNXXRXBEGIN FROGRAMK X % 3% % 3% % 3 % % X X X %X % X X X % X X X

CALL DREPFILE(0)
CALL CREATE(6, " INCOUT",3 -1

DOUBLE AA,B, X

DIMENSIEN A{12),B1 QL<44,44),Q(21),R(44),
1 D(44,44),2(44),A (4é 49) ,B(49), xt49$

3K K K K K K K K Ok K K DA T A X KK kK K X K X

Ud: MAGNETIC PERMEABILITY IN FXREE SPACE
N: NUMBER OF EQUATIONS OR UNKNGWNS
“O:g.*3.14165-07

NS: HALF THE NUMBER OF COILS
COHM: CURRENT IN INNER TCRCIDAL WINDINGS (AMPS)
CPLA: PLASMA CURRENT (AMPS
CVEE 2gURRENT IN GUTER TORGIDRL WINDINGS (AMPS)
COHM=220000.
CPLA=-35000.
CVER=95000,
A: MAJOR RADII OF GRIGINAL LARGE COILS
Bl: MINOR RADII OF NEW SMALL CO:LS USED TO REPRESENT LARGE ONES.
FOR EXAMPLE, IN THIS CODE, 12 COILS ARE USED TO REPRESENT THE
INNER TdRGIDAL WINDINGS.
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Z: HEIGHT OF COlL AS MEASURED FROM HORIZONTAL MIDPLANE
DATA A/1S. 26 25, .,lsé }7.,19. 21.,23.,25.,27.,29.,31./

DATA B1/.5,1.5, 5,.75,.
DATA 2/10 é75 g, é25 7.37S, 5 625, 2. 625 .875,5.5,1.5, ll 8,7,

1. 85,, .6,17.6,17.6,17.6.17. é 17. 17.6.17 6 17.

2 -16. 8‘75 -9.125,-7.375, - 625 25.-.875 -5.5, -1. s
3 -11., -7. -s.,—a.,-w -is ,-16.3,-16. 3 -16

4 -1s6. 3,-16 3,-16.8,-16.3/

KKKXKXKKKKKXEXKXCALCULATE INDUCTANCES (HENRIES) % %%k % % X % ¥ X %

Q: SELF INDUCTANCE

Q(1): SELF INDUCTANCE OF ANY SMALLER COIL USED TO REPRESENT

INNER TOROIDAL WINDING,

Q(2): DITTO FOR PLASMA,

Q(gé:l ?I¥Tg FOR OUTER TOROIDAL WINDINGS.
G(I)=0.01%xUCXA(1)x(B1(1)xB1(1)/24,./AC1)/AC1)=1.75+(1.+B1(1)xB1(1)
1 /8. /AC1)/AC]1))*ALOG(8. xA(1)/B1(1)))
CONTINUE

SEBS éN?UST?gCES FOR THOSE COILS REPRESENTING COPPER PLATES
Q(1)=0.01xUOxA(1)x(B1(4)xB1(4)/24. /A(l)/A(I) 1.75+(1 . +B1(4)xB1(4)
1 /8,/A(1)/AC1))*xALOG(8. xA(1)/B1(4)))
0(I+9)=.01*U0*A(ll*(B1(5)*BI(5)/24 JACI)ZAC1)=1,754
1 (1.+Bl(5)*Bl(5)/8./A(l)/A(l))*ALGG(B xA(1)/B1(5)))
CONT I NUE

NOoW WE TAKE ’‘COMMON‘ INFORMATION AND DISTRIBUTE 1T APPROP-
RIATELY. FOR EXAMPLE, ALL OF SMALLER COILS 1-6 AND 23-28 HAVE
THE SAME MINOR AND MAJOR RADII AND THEREFORE, SELF INDUCTANCE
SINCE THEY EACH REPRESENT A PART GF THE INNER TORGIDAL WINDING.
THE SYSTEM IS SET UP SYMMETRIC TG THE MIDPLANE, THUS, I AND
I+NS ARE USED T8 REPRESENT THE SAME WINDING.

QL INDUCTANCE MATRIX.
R: MAJGR RADI! OF SMALL COILS.

INNER TGR?I%AL WINDING
=

S6tl
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c
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31

32

33

34

35

10

WRITE (6,100)
7 CONTINUE

WE WRITE THE ENTIRE SYSTEM OF EQUATIOGNS IN MATRIX FORM.
1 AND TOTAL CURRENT=SUM OF SMALL COIL

QLcl,Jd),J=1,1)

CURRENTS TO GENERATE AA%*X=B,

COMBINE PHI=L «
D& 31 1=NM4,N
D& 31 J=1,N
AA(1,J)=0.
AA(J 1)=0,
CONT i NUE
Do 32 1=1,6
AA(NM4, 1121,
AA(NMA. [ +NS) =
AACT,NMA)==-1.
AA(T+NS, NM4) =
CENTI NUE
Do 33 1=7,8
AA(NM3, 1)1,
AA(NM3. | +NS)
AACL,NM3)=-1
AA(1+NS, NM3)
CONTINUE
DG 34 1=9,13
AA(NM2, 1121,
AA(NM2. [ +NS

CONT I NUE
DO 35 1=14,22
AA(NMY, 1) =1,
AA(N, 1 +NS) =1
AACT.NM1)=-1
AA(I+NS,N)=-
CENT I NUE
DS 9 I=1,NMS
B(1)=0.

B (NM4) =COHM/ 1
B(NM3)=CPLA/ 1
B(NM2)=CVER/ 1
B(NM1)=0.
B(N)=0.

D& 10 I1=1,NM5
DO 10 J=1.NM5
AACT,J)=al(1,

.E+06
.E+06
.E+06

J)/1.E-086

L6t
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SOLVE THE MATRIX EQUATIGNS BY GAUSSIAN ELIMINATION
CALL GAUSS(AA, N)

CUTPUT THE CURRFNT iN EACH SMALL colL, THE POSITION OF THE COIL,

THE AVERAGE MAGNETIC FIELD THROUGH THE KOLE OF THE TORUS, THE

AVERAGE FIELD T8 THE LEFT AND RIGHT OF THE PLASMA, AND THE VALUES

OFWE?%EI?QLIEE?X COMPUTED ALOGNG THE ORIGINAL WINDINGS.

DO 51 I=1,
WRITE (€, 170) 1,RCI),ZC1)Y, X 1)

FORMAT
]FORMAT

FORMAT

INDUCTION MATRIX"
RADIUS 2 '

RENT (MA)")

X,3(E15.7))

HE FLUX SURFACES ARE (WEBERS): “//5E15.7/7/)

E CORRESPONDING AVG. VERTITAL FIELDS ARE (GAUSS):“

****ixxxx**xx**x:x*xt*SUBRGUT]NE SECTHONX X % 5 X % X X &% X % X X X X X

GAUSSIAN ELIMINATION ROUTINE OBTAINED FROM JOHNSGN AMD RIESS,
‘NUMERICAL ANALYSIS’

SUBROUT I NE GAUSS(AB BB, X,N)

DOUBLE A3,BB, X, TEN?

DIMENSION’ AB (49, 49) , BB(49) Xi49)

FORMAT (11)

NM1=N-

D& 25

~Di~nnu

BB(1)=BB(J)
BB(J)=TEHP
GO TO 24
CONT I NUE

861



AB(K, J)=QxAB(1,J) +AB(K,J)

IF (AB(N,N) .EQ. 0.) GO TO 28
X(N)=BB(N)/AB(N, N)

NP1=N+1

DG 27 K=1,NM1

Q=0.

NMK=N-K

DO 26 J=1,K
Q=Q+AB(NMK, NP1 -J)xX(NP1-J)
?égEK:=(BB(NMK)-Q)/AB(NMK,NMK)
WRITE (6,200) IERR

RETURN

IERR=2

WRITE (6,200) IERR

RETURN

END
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C...CODE: ZERO-DIMENSIEGNAL ATEMIC PHYSICS COMPUTATION
C...WRITTEN BY: . 1z2zé
C...LANGUAGE: FORTRAN
C...COMPILATIGN DEVICE: CDC 7600 .
C...REFERENCES: THE TwkO ORTOLANI PAPERS (LOS ALAMOGS AND PADGVA
c... REPGRTS) HAVE BEEN INSTRUMENTAL IN THIS WORK.
C...A ZERG-DIMENSIONAL ENERGY BALANCE FOR ELECTRONS AND IONS IS
C...MAINTAINEC WHILE FOLLOWING THE [ONIZATIEN OF HELIUM, OXYGEN AND
C...SILICEBN. WE TAKE INTG ACCOUNT IOGNIZATIEN, THREE-BODY AND RADIA-
C...TIVE RECOMBINATION, LINE RADIATION, BREMSSTRAHLUNG, OHMIC HEATING
C...HEATING, ELECTRON-iGN ENERGY TRANSFER, TRANSPORT LOSSES AND ANY
C...GTHER PHENOMENGLOGICAL LGSSES DESIRED.
Crrxxn kX RRXXRAREXRXKKBECIN PROCRAMR I XXX XK KERR KK XK R K
C...WE DEFINE ALL VARIABLES AS THEY ARE ENCOUNTERED IN THE CODE.
xSELECT PRINTLOG=LOGZ
*FILE NAME=ZERGD
DIMENSION RNOG1(9),RNG2(91,RNH1(3),RNH2(3),RNS1 (15!,
1RNS2(15),016N(9), BREC(9),
2HION(3) ,HREC(3),SIDN(15) .SREC(15),EH(3),EB(9),ES(15)
3,Y(30, 2)
COMMON/T2/RNE1, RNE2, RNI1,RNI2, RNH2, RNO2, RNS2, TE1,
INHP1,NGP1,NSP1,EH, ES,ES, TIME, RN, T1.T2, T3, T4, 5,07
1, NH, Mg, NS ‘ :
CALL DRGPFILE(O)
CALL GPEN(10, "DATA",0,0)
CALL CREATE(&, "GUTZERG", 2, -1)
C...ATSH!% NUMBERS FOR HELIUM, OXYGEN AND SILICON.
NO=8
NS=14
NHP1=NH + 1
NEGP1=NO + 1
NSP1=NS + 1
C...IONIZATION ENERGIES FOR HELIUM, GXYGEN AND SILICON.
EH(2)=24,.587
EH(3)=54.416
EG(2)=13.618
£6(3)=35.116
EG(4)=54.934
E6(5)=77.412
E6(6)=113.896
EG(7)=138.116
EG(8)=739.315
EG(9)=871.387
ES(2)=8, 151
ES(3)=16.345

WAVE
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00
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CWENIINHLWN—=DOVENOULWN—

p****ht******lNlTlALlZE NUMBER DENSITIES AND TEMPERATURES X% X %X % % X % % X

C...INITIAL HELIUM NUMBER DENSITY.

o0

o000

. .RN

46.52

NoOou
Qm—g

OA*

oW

.5

mmmmmmmmmmmm
LLuuuL_nhunnnn
;m .~~~
-ttt it = (DO IO UT D
BuunEBWON—=AW

QAR WN = O~~~ v
e I [ | N T T 1]

0
3
4
4
S
2
2

RYG
PO
PS=.01

HEINIT=1.E+15

41(J), RNH2(J):

OLD AND NEW TIME RESPECTIVE
RNH2(1)=HEINITx(1, -HI©®)
RNH2(2) =HEINI TxHI 3
RNH2(3) =

. +ALL UNKNOWNS ARE STORED
...FROM 1 TG 30 (TOGTAL NUMBER OF UNKNOWNé)
.FOR OLD GR NEW VALUES,.

2
437.676
673.108

NOQND SILICON AS PERCENTAGE OF TOTAL HELIUM.

.IN&TéAL]FRACTIGN OF HELIUM SINGLY IGNIZED.

;gEN IS IN NEUTRAL STATE.

IN MATRIX Y(1

Y(2,1)=RNH2(1)
Y(2,2) RNH2( 1)
Y(3,1)=RNH2(Z)
Y(3,2)=RNH2(2)
Y(4,1)=RNH2(Z)
Y (4,2)=RNH2(3)
INITIALLY, ALL ©
RNO2(1)=HEINIT
Y(5,1)=RNG2(1)
Y(5,2)=RNOG2(1)
DG 1 J=2, NOP1
RNO2(J)=0.
Y(J+4,2)=RNEG2(J)
Y(J+4,K2)=RNO2(J)
CONTINUE
INITIALLY, ALL SILICON
RNS2(1)=HEINI T*xPS
Y(14,1)=RNS2(1)
Y(14,2)=RNS2(1)
DO 2 J=2,NSP1
RNS2(J)=0.
Y(J+13,1)=RNS2(J}
Y(J+13,2)=RNS2(J}
CONTINUE

THE FIRST INDEX RUNS

THE SECOND INDEX IS

IS IN NEUTRAL STATE.

NUMBER DENSlTY 6F HELIUM IN CHARGE STATE (J-1)

1

OR 2,

102



ONNNNNNNSNNNOOOOOOOOOUOUUNUGUIOVNULADMLALADDMRAADMWOWOWWOWWWWONNNNNNNDNND
CVOENOUNAWN~OOWEONOUDLWN=0OONOUIAWN—=0OOONOUIAWN—~OWONOUAWN—~OOENOULWN—

C...NITMAX: MAXIMUM NUM3ER OF ITERATIONS (TIME STEPS)
NITMAX=70001

C...IN ALlZE ELECTRON AND 1€N TEMPERATURE.

1.

1.

LIZE TOTAL ELECTRON AND IGN NUMBER DENSITY.
2“22(2) + RNO212) + RNs2(2)

C...IN

v

NN ——y
——— e TN

A AL | I 1 I

S _DURING THE STMULATION IN MICRGSECONDS. FO
RT OF HEATING, SWITCH OGN OF ANGMALOUS RESISTIVITY

00
m
x
>
b d
m
)
PO W—
A2 A=
»m

C...6UTPUT THE
WRITE (€
IOOOIEORMAT(“i

. E
"TOTAL IN
s

NITIAL CONDITIONS.

000) T1k, TE1 HEINiT HI®,PO,PS, RNE2, DT
ITIAL CENDITioNS" 7" [oN TEM#ERA UREZ ",
F{AELECTRON TEMPERATURE= “.E11.4,- Evh s
G

TIAL HELIUX= LJEi1.4," CM(- 3)"/"FRACTIGN OF
NGLY 10OKIZED= LE11, 4 /"FRACTION OF OXYGEN
S ,E11. d/"FRACIION GF SILICGN\IMPURITIES' ",
11.4/"INITIAL ELECTAGN DENSITY= * 4," CM(-31"/
“TIME STEP= ,E11.4," SEC"/ "lMPUle!ES ARE [NITIALLY NEUTRAL")
C...NBEQ: NUMBER OF EQUATIOGNS.

NBEQ=30
3 CONT I NUE

..DT: TIME STEP. HAS DIFFERENT VALUES DEPENDING ON PHAS

. DT§§|EGISIMULATED USUALLY SMALLEST DURING TURBULENT HEATING.
IF ((TIME .GT. T2] .AND. (TIME .LT. T5)) DT=10.E-11

C...NITW: WRITE EVERY MITW ITERATIONS.

NI TW=100D ‘

IF ((TIME .BT. T2) .AND. (TIME .LT. T5)) NI1TW=5000

C...SOLVE THE 30 ORDINARY COUPLED DIFFERENTIAL EQUATIONS.
CALL RGKUT(NBEQ,DT,NIT,Y)

C...STORE THE SOLUTION IN THE MORE FAMILIAR VARIBLES.
TIME=Y(1,1)

DO 4 J=1,NHP1

I
1
N
v
I
I
E

o0

coc



d_dd_dd__ad_a__ddd
WO WOWOOWWOOVOVEEMENE®E®
ONOUDWN=0OVONOUIAWN=

(o]
(S}

200

208
209

INOMONIMIN WM VHVINT VN

N b = b ot b o et et et
CVOENOUNLWN~O

221
222

(219

+RNHE: NUMBER DENSITY OF ELECTRONS FROM IGNIZATIGN OF HELIUM
RNHE=RNH1(2) + 2. %RNH1(3)
.RNgEéE NUMBER DENSITY OF ELECTROMNS FROM I1ONIZATION OF OXYGEN

gGJI? J=2,NeP1
RNOE=RNOE + ZxRNO1(J)
16 CONTINUE

.Rngﬁé NUMBER DENSITY OF ELECTRONS FROGM 1ONI1ZATIGN OF SILICON

gOJI? J=2,NSP1
RNSE=RNSE + 2ZxRNS1(J)
17  CONTINUE

.COMPUTE TOTAL ELECTRON NUMBER DENSITY
RNE1=RNHE + RNOE + RNSE

..COMPUTE TOTAL NUMBER DENSITY OF HELIUM (RNH), OXYGEN (RNO)
.ANDNaILICON (RNS) IONS.

DG 18 J=1,NHP1

RNH=RNH+RNH1 (J)
18 CONT I NUE

RNGO=

DO 19 J=1,NGP1

RNG=RNO+RNG1 (J)
19 CONTINUE

RNS=0
DB 20 J=1,NSP1
BNSZRNS +* RNS1 ()
20  CONTINUE

RN=RNS +RNH+RNO
RNI1=RNH+RNG+RNS-RNH1 (1) -RN&1(1) - RNSi(l)

IF- (MOD(NIT,NITW) .EQ. 1) GO T 21
GO TO 3 .

.GUfPUT THE NEW DENSI
WRITE (6,1001)TIME
T(RNHI(L),L=1,NHP1)

IES AND TEMPERATURES.
NIT,RNEY, TE° T12,RNH, RNO, RNS,
(RNG I(L) NGPi) (RNSI(L) L=1,NSP1)

P

. T
2 s

€02



1001 FORMAT(IH1,“TIME= ", E11.4," SEC CYCLE= "
1“ELECTRGN DENSITY=_ *E11i
1,E11.4," EV"/"ION TEMPERATURE-
2’ BELGW ARE" CM(-3)"/"TOTAL HEL1UM="
3E11.4/"TOTAL SILICON= ,E11, 4/"HELIUH 0=
4,E11.4/"HELIUM 2= “ E11.4/°6XYGEN 0=
SE11.4/"OXYGEN 2= “,E11.4/"OXYGEN 3= s
6E11.4/"OXYGEN 5= ",E11.4/"0OXYGEN 6= .El‘ 4
7E11.4/"GXYGEN 8= *",El11.4 "SILICON 0= “LEN.
8"SILICON 1= "“,E11.4/"SILICON 2= “,EN1.4/"S]
9"SILICON 4= " ,E11.4/"SILICON 5= *“,El1.4/"8]
1"SILICGN 7= ",E11.4/"SILICON 8= “,EL1.4/"Sl
2"SILICON 10= ",E11.4/"SILICON 11= “,EIl1.4/"S]
3"SILICON 13= ",E11.4/"SILICON 14= “,El1.4)

IF (NIT .LT. NITMAX) GO TG 3

1M

21

31

41

c..
c..

CALL EXIT(2)
END

.4, " CM(- 3)"f"ELECT§ON TEMPERATURE =
JEN1. 4.7 EV"/UALL UNI
£1}.47"TOTAL OXYGE

.THIS IS A FOURTH ORDER RUNGE-KUTTA SUBREGUTINE SUPPLIED

SUBROUTINE RGKUT (NMBEQ,
DIMENSIGN Q1(30),G2(3d),

HH=H/2.
DB 11 1=1,NBEQ
YOI, 2)=¥i, N
ai(iY=rFev,i,2)
Y(I,1)=¥(f,2)+
D8 21 1=1,NBEQ
Q2(1)=F(Y.1,1)
YOI, 1)=Y(l,2)+
DS 31 1=1,NBEQ
Q3(1)=F(Y T, 1)
YOI, 1=yed, 2+
D8 41 1=1,RNBEQ
Q4A(1)=F(Y.1,1)
YOI, 1)=Y(i,2)+
centINUE
NIT=NIT+1
RETURN

END

FUNCTION F(Y,

DIMENSIGN RNG1(9)
1016N(9) , BREC(9), Hi

HH*x@1 (1)

HHxG2(1)

HxQ3(1 .,

H/6. x (N1 (1)+2,. x(Q2(1}+Q3( 1)) +Q4(1))

)

2E0(9), ES(IS) Y (30,

COMMON/T2/RNE1,RNE2, RNI 1,RNI 2, RNH2, RNGR , RNS2, TE1,

H,

NI
Q3

T,Y)
3(30),04(30),Y(30,2)

RNO2(9), RNH1(3) , RNH2.3)
5N(3) HREC(G) SiﬁN(lS) §RE cal

S1(

85 ENta

.FUNCTION COMNTAINS THE ALGORITHMS NECESSARY FOR THE ATOMIC
.PHYSICS CALCULATIOGNS.

S2(
3),

TS

N- [1}
LE11.4/"HELIUM 1=
“ EV11.4/"OXYGEN 1= *,
" E11.4/"6XYGEN 4=
“@XYGEN

€15),

BY
..G. ERLEBACHER WHICH ACTUALLY SOLVES THE COUPLED SET OF EQUATIONS.

vozZ
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321
322

O 000

o0

c..
C.

1NHP1,NGP1,NSP1,EH,E0_ES, TIME,RN, T1,T2,T73,T4,T5,DT
2,NH, NG, NS

..1: COUNTER FROGM RUNGE-KUTTA SUBROUTINE THAT TELLS FUNCTIOGN

WHICH ©6.D.E. 1S BEING SOGLVED. THIS ALLOWS US TGO AVOID
NEEDLESS COMPUTATIONS.

.F=TIME DER!VATIVE OF DIFFERENT VARIABLES DEPENDING UPGN ‘1°,

IF (1 .GT. 1) GO TO 1
F=1.

RETURN

IF(1 .GT. 4) GO TO 4

. .COMPUTE THE IGNIZATION RADIATIVE AND THREE-BODY RECOMBINATION
.COSFFICIENTS FOR HELIU

HIONC1)=1.E- b*SQRT(Y(ZQ JY/EH(2))/EH(2)x%x1.5/(6.+Y(29,J)/EH(2))
1XEXP(-EH(2) /Y (29, J))
HIGN(2)=1.E-S*SQRT(Y(ZQ,J)/EH(G))/EH(3)**1.5/(6.+Y(29.J)/EH(3))
;EXP(‘EH(S)/Y(ZQ,J))

=1

RADREC=5.2E-14%ZxSQRT(EH(2)/Y(23,J))%( .43+ .5%xALOG(EH(2)/Y(29,J))
1+.469%(Y (29, J)/EH(2))#*.333)
TREC=1.4E-31%((Z+1)/2)%x6x (EH(2) /Y (29, J) ) xx2
1%EXP(EH(2)/Y(29,J)/(2+2)/(2+2))

;REC(Z)'RADREC + RNE2xTREC

RADREC=5. 2E- ld*Z*SQRT(EH(S)/Y(ZS J))x(,43+ .5xALOG(EH(3)/Y(29,J))
1+.469x%x(V(29,J)/EH(3) ) *xx, 333)

TREC=1.4E- 31*((Z+I)/Z)*xG*(EH(S)/Y(ZQ J) ) xx2
1XEXP(EH(3)/Y(29,J)/(2+2)/(Z2+2)

HREC(3)=RADREC + RNE2xTREC )

IF (1 .EQ. 4) GO TO 3

IF (1 .EQ. 3) GO TO 2

F=RNE2x (-HIOGN(1)xY (2, J)+HREC(2)%xY(3,J))
RETURN

EE$”E2*(HIGN(I)*Y(2 J)-(HREC(2) +HION(2))xY (3, J)+HREC(3)xY(4,J))

F=RNE2x (HION(2)xY(3,J) -HREC(3)xY(4,J))
RETURN

IF (1 .6GT. 13) GG TG 7
IF (I .6T. 5) GG TO S

.COMPUTE THE I1ONI1ZATION, RADIATIVE AND THREE-BODY RECOMBINATIGN
.CGEFFICIENTS FOR OXYGEN

OION(1)=1.E-5*%SART(Y(29,J)/E0G(2))/EQ(2)%x1.5/(6.+Y(29,J)/EO0(2))
l;E?P(-EO(Z)/Y(ZQ,J)).

RADREC=5.2E-14%ZxSQRT(EG(2)/Y (29, J))x(.43+.5%ALOG(EQ(2)/Y(29,J))
1+.469%(Y(29,J)/EG(2))xx, 333)
TREC=1.4E-3{ % ((Z+1)/2)x%x6x (EQ(Z) /TE1) x%2
1¥EXP(EB(2)/TE1/(2Z2+2)/(2+2))

OREC(2)=RADREC + RNE2xTREC

] 014
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DOAMDDRADNNADN

) == b b b b b it ok
COENOUILWN—=O

Q0

F=RNE2x (-OION(1)xY (S, J)+OREC(2)xY (6, J))

RETURN

IF (1 .EQ. 13) GO TO 6
OlON(1-5)=1.E-5*SQRT(Y(29,J)/EOG(1-4))/EG(1-4)%xx1.5/(6.+Y(29,J)
1éE?(é-4))*EXP(-E0(l-4)/Y(é9,J))

R;DREé=5 2E-14*ZxSQRT(EO(1-4)/Y(29,J))*( .43+, 5*ALOG(EG(]-4) -
1/Y(29,J))+,.469%(Y(29,J)/EO(]1-4))xx,333)
TREC=1.4E-31%x((Z+1)/2)xx6Xx(EO(1-4) /Y (29,J) ) x%2
1XEXP(EG(1-4)/Y(29,J)/(2+2)/(Z+2))

OREC(1-4)=RADREC + RNE2xTREC

COION(1-4)=1 . E-S5xSART(Y(29,J)/EG(]-3))/EQ{1-3)xx1.5/(6.+Y(29,J)
léE?(l‘S))*EXP( EG(1-3)/Y(29,J))
RADREC=35.2E-14x%Z*3QRT(EG(1-3)/Y(29,J)1%x1 43+.5xALOG(EC(]-3)
1/Y(29 J))+,469%(Y(29,J) /EG(1-3))x%x,333)

TREC= 4E-31*((2*ﬂ)/Z)*mG*(EO(I-3)/Y(29,J))**2

1*EXP(E0(I =3)/Y(29,J)/(242)/(2+2))

OREC(1-3)=RADREC * RNE2xTREC
lF;??E?*S?;ON(I-S)*Y('-I,J)-(OIGN(I 4)+OREC(1-4))*xY(1,J)+OREC(]-3)
X +1,.

RETURN

OIGN(8)=1.E-5*SQRT(Y (29, J)/EO(9))/EQ(D)*x).5/(6,+Y(29,J)/EE(9))
1#EXP(-EG(9)/Y(29,J))

RADREC 5.2E-14xZ2xSART(EG(9) /Y (29, J))*[.43+.5xALOG(EG(9) /Y (29, J))
1+.469%x(Y(29,J)/EQ:9))

TREC=1.JE-31x((Z2+1)/2)xx6x (EG(9) /TE1) %2
1*EXP(EOIQ)/TE1/(Z+2)/(2+2

OREC(9)=RADREC + RNE2xTREC

F= RNEZ*'OIGN(B)*YIIZ J)-GREC(9)xY(13,3))
RETUR

IF (I .GT. 28) GG TO 10
IF (I .GT. 14) GO TO 8

. .COMPUTE THE IGNIZATION RADIATIVE AND THREE-BODY RECOMBINATION
.CUEFFICIENTS FOR SILIC

SION(1)=1. S*SORT(Y(ZS JY/ES(2))/ES(2)%%1.5/(6.+Y(29,J)/ES(2))
1;E¥P(-ES(2)/Y(29 J))
RADREC=5.2E-14*Z*SQRT(ES(2)/Y(29,J))*{.43+.5xALOG(ES(2)/Y(29,J))
1+. 469*(\(29 JY/ES€2))xx%x,.333)

TREC=1.4dE- 31*((Z+1)/Z)*x6*(ES(2)/Y(29 JY)xx2
1XEXP(ES(2)/Y(29,J)/(Z2+2)/(2+2))

SREC(2)=RADREC + RNE2xTREC

F=RNE2x (-SION(1)x%¥(14,J)+SREC(2)*xY(15, Jl)

RETURN

IF (1 .EQ, 28) GO TG 9
SIGN(I1-14)=1.E-5*SQRT(Y(29,J)/ES(1-13))/ES(1-13)%x1.5/(86,
IEY{Z?AJ)/ES(I-IG)}*EXP( ES(1-13)/Y(29,J)) -
RADRECQE.2E-14*Z*SQRT(ES(I-13)/Y(29,J))*( 43+ .S5xALOG(ES(1-13)
1/Y(29,J))+.469x(Y{29,J)/ES(1-13))%x,353)
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10

16

17

18

19

20

1/Y(29,J)
1%EXP (ES (

1xY(1,J

)

)

E
RADREC=S5, 2E

+.

TREC=1.4E-

)

)

i
SREC(1-12
F=RNE2x (S
)

- 3%

RETURN

N O+ x

O=~n -~ 0=
+ oD XD+~

-
¥ -3

F=RNE2x (S1OM(14)xY

RETURN

RNHE=Y(3,J) + 2.

RNOE=0.
DO 16 JJ=6,13
2=JJ-5

*

LNV MA@\

<=<

- X~4J~N
VAZN\N-
o~ T~ %
1 ~NN %
MmN % + 0
WQ;NX

——— NN~

Xz = iN-
M-~ % —m
—— PNN¥NO
* +OM~
Gl AN * (=
D=~
mMNMe——

2
S
(
Cc
(

SHON(I-13)+SREC(I-13))

- .
r
~

+

S(15))/ES(15)x%x1.5/(6.+Y(29,J)

9,J))*(.43+.5%ALOG(ES(15)/Y(29,J))
1/Y(28,J) ) xx2

-~ <
-t b ~
-a N

.COMPUTE THE ELECTRON AND IGN NUMBER DENSITY AS BEFORE.

Y(4,J)

RNGE=RNOE + 2ZxY(JJ,J)

CAONT I NUE

RNSE=0.
DG 17 JJ= 15,28
Z=JJ-14,

RNSE=RNSE + ZxY(JJ,J)

CONTINUE

RNE2=RNHE + RNOE + RNSE

RNH=0.

DO 18 JJ=2,4
RNH=RNH+Y (JJ, J)
CONTINUE

RNG=

DO 19 JJ=5,"'3
RNGi= RNO+Y(JJ J)
CONTINUE

RNS=0

D6 20 JJ= 14 28
RNS=RNS + YiJJ,
CONT I NUE

Loz



wmmmmmmmwwwmmgg
CVLENOOUNLWN—=DO®

NN
N —

c..

C.

0o

RN=RNS +RNH+RNO
RNI2=RNH+RNO+RNS~RNH2(11-RNG2(1)-RNS2(1)

.WRITE NEW NUMBER DENSITIES IN FAMILIAR FORM

DG 11 JJ=1,NHP]
RNH2(JJ) =Y (JJ+1,3)

T CONT I NUE
DB 12 JJ=1,NOP1
RNO2(JJ)=Y(JJ+4,J)
12 CONT I NUE
DO 13 JJ=1,6NSP1}
RNS2(JJ)=Y(JJ+13,J)

13 CONTI NUE

.SGQEHNUMBERS THAT APPEAR REPEATEDLY.
DG 14 JJ=2,NHP1
2=JJ-1
Z2H=Z2H+ZxZxRNH2(JJ)
14 CGNTINUE
220=
DG 15 JJ=2,NOP1
2=JJ-1
Z2G=220+ZXZ*RN02(JJ)
15 CONTINU
225=0,
Do 21 JJ=2,NSP1
2=JJ-1
22S=22S+Zx2ZxRNS2(JJ 1 |
21 CONT I NUE
Z2M=(22H/4. +220/16. +Z¢S/28 )x6.02E23 -
IF (Y(29,J) .LT. 36.2) A=1.
IF (Y(29,J) .GE. 36.2) A 36. 2/Y(29,J)

. XLAM: COULOMB LOGARI THM
XLAM=1 . SOE10xAXSGRTIY (29, J)xx3/RNE2)

.PEQEIl: ELECTRON-1GN ENERGY EXCHANGE
PEQEI =-RNE2x7.95E-33%xALOG (XLAM) x22M*x (Y (30,J)-Y(29,J))/Y(29,J)*%1.5
IF (I .GT. 29) GA TO 22

DG 23 JJ=1,NH

HION(JJ)=1.E-S*SART (Y (29, J)/EHIJJ+1)) JEH(IJ+1)xx1.5/(6.+Y(29, J)
1/EH(JJ+1))xEXP(-BH(JIJ+1)/Y(29,J))

23 CONT I NUE
DG 24 JJ=1,
Ol1ON(JJ) =1, E S*kSORT(V ( 9,J)/EO(JJ+1));EO(JJ+1)**1 5/7(6.+Y(29,J)
1/EO(JJ+1) )XEXP(-BEB(JJ+1)/Y(29,J))

24 CONT I NUE
DG 25 JJ=1,
SIOGN(JJ)=1. E S*SART(Y (29, J) FESIJJI+1))/ES(JIJI+1)%%x1.5/(6.+Y(29,J)
1/ES(JJ+1)I*EXP(-ES(JJ+1) /Y (29, J))

25 CONTINUE

.PIONH: POWER LOST TG IONIZATIOGN OF HELIUM
.PIONO: POWER LOST TO IONIZATION OF OXYGEN
.PIONS: POWER LOST TG [ONIZATIGN GF SILICON
PIGNH=0.
DG 26 JJ=1,NH
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26

27

28

29

30

31

c...
c...
cC...

32

5
PIONH=P{ONH+EH(JJ+1) *RNH2(JJ)*HION(JJ)
CONT I NUE
PI1ONH=RNE2xP 1 ONH
P1ONG=0.
DO 27 JJ=1,NO .
PIONG=PIONG+EQ(JJ+1) xRNO2(JJ) xG1EN(JJ)
CONT I NUE
PI1ONO=RNE2xP 1 GNO
PIGNS=0.
DG 28 JJ=1,NS i
PIONS=PIONS+ES(JJ+1)=RNS2(JJ)*SION(JJ)
CONT I NUE
PIONS=RNE2xP I ONS

.PADDE: PHENOMENGLGGICAL ELECTRON POGWER LOSS

PADDE=1.5xRNE2xY (29,J)/1.E-3

.PCDIFF: POWER LOST DUE TGO CLASS!CAL TRANSPORT

PCDIFF=1.5%xRNE2%Y (2S5 J)/1.E-3

.PTDIFF: SGWER LOEST DUE TO TURBULENT TRANSPORT

PTDIFF=0.
(JFULCTIME .8T. T2) .AND. (TIME .LE. TS)) PTDIFF=1.5xRNE2xY(29,J)

.PBREM: BREMSSTRAHLUNG RADIATION

PBREM=1.06E-13%xRNE2x (Z2H+226+22S)*SQRT(Y (29, J))

DG 29 L=2, NHP1
Z2=L-1 ,
RADREC=5. 2E-14x

1+.469%(Y(29,J)/
TREC=1.4E-3{x((

1XEXP(EH(L) /Y (29,
HREC (L) =RADREC +
CONT | NUE
chs? L=2, NoP1
RADREc=5.2E-14xéé (29, J))x(.43+.5XALOG(EG(L) /Y (29,J))

2+
J

Hé%%{Y(gS,J))*(.43+.S*ALOG(EH(L)/Y(ZQ,J))
x6x (EH(L)/Y(29,J))xx2

)/ (Z+2))

REC

1+.469%(Y(29,J)/
TREC=1.4E-31x(( /Y (29,J) ) xx2
1*¥EXP(EO(L) /Y (29,
OREC(L)=RADREC +
CONTINUE
gGLS} L=2, NSP1
RADREC=E Zx Y/Y(29,J))x(.43+.SxALOG(ES(L)/Y(29,J))
1+.469%(Y(29,J)/ES 3)

2+ (ES(L)/Y(29,J))*xx2

J Z2+2))

TREC=1.4E-31x((
1*EXP(ES(L) /Y (29,
SREC(L) =RADREC +
CONT I NUE

PRECH: POWER LOST DUE TO RECOMBINATION OF HELIUM
PRECG: POWER LOGST DUE TG RECOMEINATION OF OXYGEN
PRECS: POWER LOST DUE TO RECOMBINATION OF SILICON

PRECH=0.

DO 32 JJ=2,NHP1

PRECH=PRECH+HREC(JJ) *RNH2(JJ)

CONT I NUE ‘

~
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33

34

35

36

PRECH=RNE2%PRECH*1.5xY(29, J)
PRECG=

b6 59 J=

PRECS=PRESGIOREC! JJIXRNB2(JJ)
CGNT I NUE
PRECO=RNE2xPRECOX1.5xY (29, J)
PRECS=

Db 54 Ji= P1

PRECS=PRESS S SREC JJ) xRNS2(JJ)
CONT I NUE B
PRECS=RNE2XPRECSx1.5xY (29, J)

CﬂgEUTE PLASMA Z-EFFECTIVE
DOJ351JJ =2, NHP1
ZEFFH=ZEFFH+ZxRNH2(JJ)
CONTINUE
ZEFFO=0
DG 36 JJ= 2, NoP1
2=JJ-1
ZEFFG=2EFFO+ZxRNG2(JJ)
CONTINUE
ZEFFS=0.

DG 37 JJ=2,NSP1

2=JJ-1
ZEFFS=ZEFFS+2ZxRNS2(JJ)

CONTI NUE

ZEFF=(Z2EFFH +ZEFFO+2ZEFFS)/RN

.COMPUTE PLASMA RESISTIVITY, CURRENT AND OHMIC POMER
EMAN S 2oES

IF ((Y(1,J) .GT. T21 ,AND, (Y(i,Jy LT, -5)) GO TO 38
RESIST=ZEFF*ALOG(ALAM)/2920 /Y1 ég JIxx1,

IF ((Y(1,J) .GT._TS1 .OR. (Y(1,J) .GT -1)) CURRENT=CMIN

IF (Y(1,3) .LT. T1) CURRENT= CMIN*Y(1 J/Ti

GO TO 39

CURRENT=5.5SE?7

IF (Y(1,J) .LT. T3) CURRENT=CM:iN + CMAXx1Y¥( )/(T3-T2)

IF (Y(1,J) .GT. T4) CURRENT=CMiN+CMAX-CMAX.x l, “T4)/7(T5-T49)
RESIST=CURRENT/1.E3/ (CMAX+CNIN}
POHM=6.25E12*xRESIST*CURRENTxCURRENT

. .COMPUTE POWER LOST DUE TGO LINE RADIATION OF HELIUM (HPLR),
. .OXYGEN (GPLR) AND SILINGN (SPLR). NOTE THAT THE TRANSITI&N
..Egsﬁ?:gﬁsAND OSCILLATERR STRENGTHS ARE INCORFORATED INTG THE

HPLR=RNH2(1)x.2762%EXP(-21.213/Y(29,J)) +
1RNH2(2) % . 41 62%EXP¢ - 40, 785/Y(29 J))
OPLR=RNG2(1)x. 105¢EXP(-10. 7/Y(29,J)) +

1RNG2(2) % . SS1XEXP(-15.91/Y(2S,J)) +

2RNG2(3) %, 628xEXP(-16.03/Y(2S,J)) +
3RNOZ(4)*.657*EXP(-14.65/Y(29,J)) +

4ARNO2(S) x . S3*EXP(-¥2.58/Y(29,J)) +

SRNO2(6)x, 196xEXP(-11.99/Y(29,J)) +
6RNO2(7) %, 813%xEXP(-561./Y(29,J1) +

7RNB2(8) x. 4162%EXP [ -653, /Y (29, J})

SPLR=RNS2( 1) %.624ExEXP( -4, 93/Y(29,J)) +

1RNS2(2) x3.62%EXP (-9. 8/Y(29,J))+RN S2(3)%x3.96*xEXP(-9.6/Y(29,J))+

01¢



2RNS2(4)x1.61xEXP(-8.9/Y(29,J))+RNS2(5)x. 21 *xEXP(-105./Y(29,J))+
3RNS2(6) x . 33XEXP(-49.9/Y(29,J))+RNS2(7)*.74%EXP(-44.9/Y(29,J))+
4ARNS2(8) x . 443*EXP(-39. /Y (29, J) )+RNS2(9) *x . 34%xEXP(-36./Y(28,J) )+
SRNSZ(10)*.54*EXP(-48./Y(29,J))+RN82(11)*.4*EXP(-33.7/Y(2§,J))+
6RNS2(12)x2. xEXP(-281./Y(29,J))
PLR=3.16E-6xRNE2/SQRT(Y (29, J) ) x (HPLR+OPLR+SPLR)
F=2./3./RNEZx (PGHM-PEQE] -PBREM-PIOGNH-PIONS-P 1 ONG
1-PRECH-PRECC-PRECS-PCDIFF-PTDIFF-PADDE-PLR) -
2Y (29, J)/RNEZx (RNE2-RNE1) /DT
RETURN

C...PADDI: PHENOMENGLOGICAL 10N POGWER LOGSS TERM
PADDI=1.5%RNI2%Y(30,J)/1.E-3

C...PWAVE: 10N WAVE HEATING TERM

PWAVE=0.
IF ((TIME .GT. T2) .AND. (TIME .LT. T5))
1PWAVE=1.65E-3%Z2EFFxY (29, J)xSQRT(RNI2)

g;%oég./Rle*(PEOEI-PADDI)-Y(ao,J)/RNlZ*(RNIZ-RNIl)/DT*PWAVE

END
*CHATR [=ZEROGD,LIB=(T’,F’),X=CONTROGZ, D=SYMBOL , GO
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CONOUDWN =

PROGRAM NAME: ONE-DIMENSIONAL MHD CODE (W/ INERTIA)

c

c WRITTEN BY: H.C. LUE

c MOGDIFIED BY: R. 1226

Cc LANGUAGE: FORTRAN

(o COMPILATION DEVICE: CDC 7600

cC..... THE FULL SET OF RESESTIVE MHD EQUATIONS FOR A SINGLE FLUID ARE
c..... SOLVED NUMERICALLY WITH DNLY A RADIAL SPATIAL CEPENDENCE. THIS
C..... CODE 1S VERY USEFUL IN CARRYING GUT NUMERICAL EXPERIMENTS
C..... TG TEST FOR PROPER MODELING OF TRANSPORT PARAMETERS, ETC,..
C..... VARIABLES ARE DEFINED AS THEY ARE ENCOUNTERED IN THE CODE.

CRXKKKKKKKKKXXKKKKKKXKMAIN PROGRAM® x % 5% % % X 1 3% K % % 3 o 3K % K X %

DIMENSION W(3,51,2),86(51,2),CN(51,2),R(381),AA(150,9)
1,BB(3,3:,P(6,51),F(3,51,2),FrS1(51,2),X1(51,2) .
2,B2(51,2),BC(51,2),C2(51,2),€C(51,2),6A(E1),6B(51),6C(51)
3,GD(S51),E(S1),RO(51),BXJI(S1)>,GRADP(S51>,CC2(51)

COMMON SG, R, AA, CN,BB, COE, DOE,BZ,BC,CZ,CC,GA,GB,GC,GD

C..... FK: RATIO OF SPEZIFIC HZATS

C..... C:  SPEED OF LIGHT IN VACUUM

C..... FR: HELIUM GAS CGONSTANT

C..... CV: SPECIFIC HEAT AT CONSTANT VOLUME
c..... MS: STOP AFTER THiIS MANY TIME STEPS
C..... MW: WRITE AFTER THIS MAMNY TIME STEPS
cC..... K: TIME INDEX

DATA FK,C/1.66666c, 2. 998E+10/
FR=0.6231E+08

CV=FR/(FK=-1.)

K=1

MS=4

MW=250

CALL DREGPFILE(O)

CALL OPEN(S, "INPUT",D,0)
CALL CREATE(S, "OUTPUT",3_ -11
CALL KEEP80(1,2)

CALL DDEOID(6HTORUS2, 1)

C..... SET UP THE RADIAL GRID

Z1e



.....

....

DX: SPACE INCREMENT

Je=2

JE=50

JS=JB-1

JD=JE+1

JP=JE-JS

DX=2./JE

Do 3 J=JS,JD

SJ=J

R(J)=(SJ-1.)*DX +15,/7.5
WRITE (6,101) J,R(J)
CONTINUE

FORMAT (1H ,"J=",13,"RADIUS=",E14.7)

RBIG: MAJOR RADIUS IN CM :
RSM: COMPUTATIONAL VESSEL HALF-WIDTH

..SMALL: ANY NUMBER SMALLER THAN THIS WILL BE SET TO® ZERO

BTOR: CHARACTERISTIC MAGNETIC FIlELD

. .EMASS: MASS OF ELECTRON
. CHARGE : CHARGE OF I1ON
.DN: INITIAL FILL DENSITY

BMIN: INITIAL (Bl1AS) TOROIDAL FIELD OGUTSIDE PLASMA

.BVI, BVO: [INITIAL VERTICAL COMPONENTS OF MAGNETIC FIELD TG THE

INSIDE AND OUTSIDE OF PLASMA REGION

.CCT: INITIAL TOROIDAL CURRENT DENSITY

EMIN1: BIAS TOROIDAL FIELD INSIDE PLASMA

.BVT: EXTERNAL VERTICAL FIELD IN HOLE OF TORUS

UN: CHARACTERISTIC ALFVEN VELOCITY
RB1G=22.5

SMALL=0.10E-16

RSM=7.5 \
Q=RSM/RBIG

BTOR=4000.

EMASS=9.1E-28
CHARGE=2.x%x4.8E-10
DN=0,24E-08
BMIN=-1333./BTOR
BVI=-1750./BTOR
BvVO=+1750./BTOR
CCT=(BVOG-BVI)/(R(39)-R(13))
BMIN1=-2500./BTOR
BVT=600./BTOR
UN=BTOR/SQRT(4.x3.14159*DN)

DT: NORMAL1ZED TIME STEP
TPO,1,2,3,PETIME: IMPORTANT TIMES DURING START-UP

FLUXH, Z: NORMAL!ZED POLOIDAL FLUX FUNCTIGN THROUGH HOLE AFTER

HEATING AND Z-PINCH

SGO: . CHARACTERISTIC ANOMALOUS CONDUCTIVITY
XJM: MAXIMUM TORUS-11 CURRENT DENSITY (NORMALIZED)
CNO: CHARACTERISTIC THERMAL CONDUCTIVITY

.CMIN: CUTOFF CURRENT TO AVOID INFINITE CONDUCTIVITY REG!ONS

€12



124
125
126
127
128
129
130
131
132 C
133
134

.SOME OUTPUT

102

M: ITERATION COUNTER
DT=0.10E-08xUN/RSHM
TPO=4.0E-06*xUN/RSHM

TP1=4, 7E-06xUN/RSHM
TP3=6.0E-06xUN/RSHM
TP2=18.0E-06%xUN/RSM
PETIME=1.70E-06xUN/RSM
FLUXH=5.0E+05/BTOR/RSM/RSM
FLUXZ=2.0E+0S/BTOR/RSM/RSM

SGO=8.0E+12

XJM=1.5E+13x4.x3. 1416xRSM/BTOR/C
CNO=0.28E+07
CMIN=XJM/166.

M=0

WRITE (6,102)

FORMAT ("

THESE ARE NORMALIZED RESULTS. TO DIMENSIGNALIZE

1DG THE FOLLOWING: ™)
WRITE (6,103) :
103 FORMAT (1H ,"DENSITY=W(1)xDN VELOCITY=W(2)xUN/W(1) TEMP=W(3)xUNx

1UN/CV

98

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

.....

JTOR=CC*BTCR*C/A/4/Pi JPOL=CZxBTOR*C/A/4/P1")

WRITE (€,98)

FORMAT (1H

;" TORB=BCxBTOR POLB=BZ*BTOR")

FLEAK: FRACTION OF RETURN LEAKAGE INTG VESSEL

FLEAK=0,

INITIAL CONDITIONS (ALL VARIABLES ARE NORMALIZED)

Wel,J,K):
X1

W(3,J,K):
DB 5 K=1,2

DENSITY AT GRID POINT J AND TIME K
POLOIDAL CURRENT FUNCTIOGN
ELECTREICAL CONDUCTIVITY
THERMAL CONDUCTIVITY

TOROIDAAL MAGNETIC FIELD
Z-COMPONENT OF MAGNETIC FIELD
POLOIDAL FLUX FUNCTION

TOROI DAL CURRENT DENSITY
Z-COMPONENT OF CURRENT DENSITY
RADIAL VELOCITY

TEMPERATURE

DO 210 J=JS§, 13
We1,J,K)=.05
X1(J,K)=BMIN/Q
SG(J,K)=166.

CN(J,K)=1,

BC(J,K)=XI1(J,K)/R¢J)

BZ(J,K)=BV!

PSI(J,K)=(FLUXZ+BZ(J,K)*x(R(JI*R(J)-R(JS)I*xR(JIS))/2.)%x(1.-FLEAK}

CC(J,K)=0.
CZ(J,K)=0.

W(3,J,K)=10000. /UM/UNxCV
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210

W(2,J,K)=0.
CONTINUE

DG 211 J=14,39

X1(J,K)=BMIN1/Q

CN(J,K)=1,
BC(J,K)=XI(J,K

Y/R(J)

BZ(J,K)=BZ(13,K)+CCTx(R(J)-R(13))

PSI(J,K)=(PSI(

13,K)+(R(J)IxR(J) - R(13)¥R(13))/2 xBZ(13,K)+

1CCT*(R(J)xx3/3, +R(13)x%3/6. -R(JI*x*2xR(13)/2.))* (1. -FLEAK)

211

212
S

6

22(J,K)=0.
W(2,J,K)=0.
CC(J,K)=-CCT
SG(J,K)=166.
IF (J .LE. 26)
IF (J .GT. 26)
IF (J .LE. 26)
IF (J .GT. 26)
CONTINUE

DO 212 J=40,J4D
W(1,J,K)=.05
X1(J,K)=BMIN/Q
SG(J,K)=166.
CN(J,K)=1,
BC(J,K)=XI1(J,K
BZ(J,K)=+BVO
PS1(J,K)=(PSI(
CC(J,K)=0.
CzZ(J,K)=0.

W(3, J K)=10000.
We2,J,K)=0.
CONTlNUE

CONTINUE
TIME: REAL TI

HU: MINIMUM
COE: OFTEN U

COE=CxCxDT/ (4.

DESE=CNOxDT/ (DN
TX=DT/DX
K=1

FLUXJD=PSI (JD,

M=M+1
TIME=TIME+DT

SPECIFICATION OF BOUNDARY VALUES FOR THE POLOGIDAL FLUX AND CURRENT

W(1,J,K)=W(1,13,K)+5,9*x(R(J)-R(13))
W(1,J,K)=W(1,26,K)-5,9x(R(J)-R(26))
W(3,J,K)=W(3,13,K)+1.E+04%CV/UN/UNx (R(J)-R(13))
W(3,J,K)=W(3,26,K)-1,E+D4xCV/UN/UNx (R(J)-R(26))

Y/R(J)

39,K)+(R(J)*R(J)-R(39)xR(39))xBZ(J,K)/2.)%(1, ~-FLEAK)

/UN/UNxCV

ME

PLASMA DENSITY

SED NUMERICAL FACTOR
DITTO

DITTO

x3. 14159*UN*RSM*SGU)
*CV*UNxXRSM)

K)

s1c



43

42

.....

60

.....

15

14

FUNCTION

IF (TIME .GT. PETIME) GO TO 43
XI1(JS,K+1)=(BMIN+TIME/PETIME)/Q
X1(JD,K+1)=(BMIN+TIME/PETIME) /Q

IF (TIME .GT. TP1) GO TO 42
PS1(JS,K+1)=FLUXZ+(FLUXH+BVT*R(JS)*x2/2, ~-FLUXZ)xTIME/TP1
PS1(JD,K+1)=FLUXJD+(FLUXH+BVT*R(JD)xx2/2, ~-FLUXJD)«TIME/TPI
PS1JS=PS1(JS,K+1) )

PS1JD=PSI (JD,K+1)

GO TG 44

PS1(JS,K+1)=PSIJS-(TIME-TP1)/TP2xFLUXH/S.
PSI1(JD,K+1)=PSI1JD-(TIME-TP1)/TP2xFLUXH/S.

SGLVE FER NEW VALUES OF DENSITY, VELOCITY, TEMPERATURE AND MAGNETIC
FIELD. _
CALL IMPL(K,TX,DT,DX,CV,FK,JB,JE, JP,UN, SGOB,CNO, #,F,PSI, X1 M)

FORMAT (1H ,2(110))

CHECK FOR NEGATIVE TEMPERATURE AND SMALL VELOCITY.
SET-UP THE ELECTRICAL CONDUCTIVITY. IS 1T ANOMOLOUS, CLASSICAL
SWITCHING BETWEEN THE TWe, ETC,.?

DO 12 J=JB,JE

IF (W(3,J,K+1) .LT. 0.) WRITE (6,118) J,M

IF (W(3,J,K+1) .LT. 0.) GO TO 34

IF (ABS(W(2,J,K+1)) .LT. SMALL) W(2,J,K+1)=0.

IF (ABS(PSI(J,K+11) .LT. _SMALL) PSI(J,K+11)=0.

IF (TIME .GT. TPO} GO TO 60
CT=SQRT(CZ(J,K+1)xCZ(J,K+1)+CC(J,K+1)*CC(J,K+1))
IF (CT .LE. CMIN) SG{J,KI1=166.

IF (CT .GT. CMIN) SG{(J,K)=XJM/CT .

GO TO 12
SG(J,K)=1.3E+13x(UN*UN/CUxW(3,J,K+1)/1160D.)xx1 .5/SG0
IF (TIME .GT. TP3] GO TO 12
SGR=((TIME-TPO)/(TP3-TPOJ)) xx3
CT=SQRT(CZ(J,K+1)*C2(J,K141)+CC(J,K+1I*CCIJ,K+1)1
IF (CT .LE. CMIN) SGA=16€.

IF (CT .GT. CMIN) SGA=XJM/CT
SG(J,K)=8SCRxSG(J,K)+(1.-EGR)*xSGA

CONTINUE

EXTRAPOLATE DENSITY AT TEE BOUNDARY
W(1,JS,K+1)=W(1,JE,K+1)
W(1,JD,K+1)=W(1,JE,K+1)

SET "NEW’' VALUES 1O ‘OLD’ VALUES.
DO 14 J=JS,JD

DO 15 L=1,3

WL,J,K)=W(L,J,K+1)
PSI(J,K)=PSI(J,K+1)
X1(J,K)=X1(J,K+1)

CONTINUE
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299

318

LOW DENSITY TREATMENT

Jep=JB+1

JEE=JE-1

Do 2 J=JBB, JEE

IF (J .EQ. JBB) GO TO 208

IF (J .EQ. JEE) GO TO 208
RO(J)=(W(1,J,K)+W(1,J+1 ,K)+W(1,J-1, K)+W(1 J-2,K)+

2w(1,J+2, K)+W(l J+3, K)+w(1 J-3, K))/7

208
209

13

28

104

105

204

32

GO TO 209

RO(JII=(W(1,J,K)+W(1,J+1 ,K)+W(1,J+2,K)+W(1,J-1,K)+W(1,J-2,K)) /S5,

IF (RO(J) .LE. 0.2) SG(J,K)=1,
CONT I NUE

RO(IBI=(W(1,JS,KI+W(1,JB,K)+W(1,JB+1 ,K)+W(1,JB+2,K))/4,
RB(JE)=(W(1,JE-2,K)Y+W(1,JE-1,K)+W(1,JE,K)+W(1,JD,K)) /4,

IF (RO(JB) .LE. 0.2) SG(JB,K)=1,
IF (RO(JE) .LE. 0.2) SG(JE,K)=1,

DG 13 J=JB,JE

IF (ABS(W(2,J,K)) .LT. SMALL) Wi2,J,K)=0.
IF (ABS(PSI(J,K)) .LT. SMALL) PSI1(J,K)=0.
IF (W(1,J,K) .LT. HU) W(1,J,K)=HU
CONTINUE

SG(JS,K)=8G(JB,K)
SG(JD,K)=S8G(JZ,K)
W(1,J8,K)=W(1,JB,K)
W(1,JD,K)=W(1,JE,K)

IF (MOD(M,MW) .EQ. 1) GO TO 28

GO TO 29

CONTINUE

SIME=TIMExRSM/UN

WRITE (6,104) M,SIME,DT,FR,CV, COE, UN

FORMAT (1HO, "CYCLE=",14,"TIME=",E14.7,"DT=",E14.7,

WRITE (6,105)

" FR= n .

FORMAT (1HO,2X,"1",4X,"TOROIDAL B", 4X, "POLOIDAL B2Z", 4X,
1" TEMPERATURE", 4X, "DENSITY",5X, "VELOCITY", 6X, “POLOIDAL CZ*", 8X
2"PS1",9X,"TOROID CC")

4E15.7)

MORE LOW DENSITY TREATMENT. SMOOGTHEN THE FIELD QUANTITIES.

DO 204 J=JB,JE

IF (RO(J) .GT. 0.2) GO TO 204
PS1(J,K)=(PSI(J-1,K)+PSI(J,K)+PSI(J+1,K))/3.
XI(J,K)=(XT(J-1,K)+XI (J,K)+XI(J+1,K))/3.
CONTINUE

D6 32 J=JB,JE

BC(J,K)=XI1(J,K)/R(J)

CZ(J,K)=(XT(J+1 ,K)-XI1(J-1,K))/(R(J)x2, xDX)
BZ(J,K)=(PSI(J+1,K)-PSI(J-1,K))/(2.*DXxR(J))
CONTINUE

BC(JS,K)=XI(JS,K)/R(JS)
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319
320
321
322
323

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346 -

347

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
.371

BC(JD,K)=XI1(JD,K)/R(JD)

BZ(JS,K)=(PSI1(JS+1,K)-PSI1(JS,K?))/(R(JS)*DX)
BZ2(JD,K)=(PSI(JD,K)-PSI(JD-1,K})/(R(JD)*DX)

Do 203 J=JB, JE

IF (RO(J) .6T. 0.2) GO TS5 203
BZ(J,K)=(BZ(J-1,Ki+BZ2(J,K)+32(J+1,K)) /3.

203 CONTINUE

D6 27 J=JB,JE

CC(J,K)=-(BZ(J+1,KX)-BZ2(J-1,K]))/ (2, xDX?¥

27 CONTINUE

Do 31 J=JS,JD
BC(J,K)=BC(J,K)
B2(J,K)=BZ(J,K)
FO1,J,K+1)=W(1,J,i)
F(3,J,K+1)=W(3,J,K)

F(2,J,K+1)=W(2,J,K)/W(1, J,K)
WRITE (6,106) J,B2(J,K),B2(J,K),F(3,J,K+1),
1FC1,J,K+1),F(2,J,K+1),C2(J,K),PSI(J,K],CC(J,K)

31 CONTINUE
106 FORMAT (1H ,13,8E15.7)

..... SET UP DATA FOR PLOTTING.
DG 11 J=JS,JD
P(2,J)=F(1,J,K+1)+DN

P(1,J)=F(3,J,K+1)»UNxUN/CV

P(6,J)=P(1,J)*xP(2,J)*FR
. P(5,4)=BC(J,K)*xBTCR
P(4,J)=BZ(J,K)*xBTER

P(3,J)=CC(J,K)xCxBTOR/(4.%x3.1413%xRSM)
CC2(J)=CZ2(J,K)*CxBTOR/(4.%3.1416%xRSM)

11 CONTINUE
CALL PLOT1(P,R,JD,M)

29 CONTINUE
IF (M .GT. MS) GO TG 34
GO TO 6

34 CONTINUE

...CHECK 6N GRAD P AND J X B
DR=2,xRSM /JE
DO 10 J=JB,JE

BXJ(J)=ABS((P(6,J1xP{5,J:-CCZ(J)xP(4,+))/C)
GRADP(J)=ABS((P(3,J+1)-P13,J-1))/(2.xDR))
E(J)=(GRADP(J) -BXJ(J))/ (GRADP(J)+BXJ(J))

WRITE (6,107) R{J}, ECJ),BXJUI),GRADP(J),SB(J,K)

10 CONTINUE

107 FORMAT (1H ,"RADIUS=" E13.6," EQUILIBRIUM =",

1" GRAD P =",E13.6,"
CALL PLOTE
CALL EXIT(2)

J X B =",2(E13.6))

Ei3.6,
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END

..... THIS SUBROUTINE SOLVES FOR THE NEW VALUES OF DENSITY, VELGCITY,
..... TEMPERATURE, POLOIDAL FLUX FUNCTIGN AND POLOIDAL CURRENT FUNCTION.
..... THE EQUATIONS ARE WRITTEN IN THE FOGRM AX(J-1) + BX(J) +CX(J+1) =D
..... WHERE EVERYTHING ON THE LEFT SIDE (X) 1S AT THE NEW TIME AND THE
..... RIGHT SIDE (D) IS AT THE OLD TIME. |IF WE SET FAC AND FFAC EQUAL TO
..... TO ONE, THE SCHEMES ARE FULLY IMPLICIT. A SETTING OF ZERO 1S FULLY
..... EXPLICIT. CAUTION: THE CODE HAS NEVER SUCCESSFULLY OPERATED AT A
..... SETTING OF LESS THAN .9 i

SUBROUTINE IMPL(K, TX,DT,DX,CV,FK, JB, JE, JP,UN, SG8, CNO,W,F,PS1,

141, M)

DIMENSION W(3,51,2),S6(51,2),CNI51,2),R(51),AA(150,09)
1,BB(3,3),F(3,51,2),PSI1(51,2),X1[51,2),TYY(51), TXY(S1)
2,B2(51,2),BC(51,2),C2(51,2),CC(51,2),6A(51),6B(51),6C(51),6D(51)

CEMMEN SG, R, AA, CN, BB, COE, DOE,BZ,BC, CZ, CC, GA, GB, GC, GD

FAC=1.
FFAC=FAC
JD=JE+1
JS=JB-1

..... SET UP NUMERICAL DISSIPATION (LAPIDUS TYPE)

DO 1 J=JS,JD
TYY(J)=0.4
TXY(J)=0.0
CONTINUE

..... SET UP PSI EQUATION IN FORMAT DZSCRIBED ABOVE AND IN DISSERTATION.

Do 19 J=JB,JE
BC(J)=FFACXCOExXR(J)/(SG(J,K) xDXxDXx(R(J-1)+R(J))/2.)
1+FFACXDTxW(2,J,K)/W(1,J,K) /(2. xDX)

GA(J)=FFACxCOExR(J)/(SG(J,K) xDXxDXx(R(J+1)+R(J))/2.,)
1-FFACXDT*xW(2,J,K)/W(1,J,K)/ (2. xDX)

GB(J)=1.+FFACXxCOEXR(J)/(SG(J,K)*DXxDX)

1%(2,. /(R(J+1)+R(J))+2. /(R(J-1)+R(J)))

GD(J)I=PSI (J,K)*(1.-(COExR(J)x(1.-FFAC)/DX/DX/SG(J,K))x*
1(2.7(R(J+1)+R(J))+2. /(R(JI)I)+R(J-1)))) )
2+PS1(J-1,K)x (1. -FFAC)x(W(2,J,K)*DT/2./DX/W(1,J,K)+
SCOEXR(J)/DX/DX/SG(J,K)/(.Sx(R(J)+R(J~1))))+
APSI(J+1,K)x (1. -FFAC)x(-W(2,J,K)*DT/2./DX/W(1,J,K)+
SCOEXR(J) /DX/DX/SG(J,K) /(. 5% (R(J+1)+R(J))))
6+0.5/74 . xTXXxTXY(J)*x(ABS(W(2,J+1 ,K)/W(1,J+1,K)-W(2,J,K)
7/WC1,J,K))x(PST (J+1,K)-PSI(J,K))-ABS(W(2,J,K)/W(1,J,K)
8-W(2,J-1,K)/W(1,J-1,K))*(PSI(J,K)-PSI(J-1,K)))

19 COGNTINUE
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22

32

27

.SOLVE TRI-DIAGONAL MATRIX.
CALL CROUT(M,K,JB,JE,JP,JD,GA, GB GC,GD,PSI)

.SET UP EOUATIGN FOR POLO!DAL CURRENT FUNCTION.

be 22 J=JB,JE

GC(J)=FFACXCOExR(J)/ (DX*DXx(SG(J~-1,K)+

1SG(J,K)) /2. x(R(J-1)+R(J))/2.)+FFACXDT*R(J)
1*¥W(2,J-1,K)/W(T1,J-1,K)/ (2. xDXxR(J~1)) )
GA(J)=FFACXxCOExXR(J)/ (DX*DX*x(SG(J+1,K)+

1SG(J,K)) /2. x(R(J+1)3+R(J))/2.)-FFACXxDTxR(J)

2xW(2,J+1 ,KY/W(1,J+1,K)/ (2. xDX*R(J+1))
GB(J)=1,+FFACXCOEXR(J)/DX/DXx(1./((SG(J+1,K)

14SG(J,K))/2. x(R(J+1)+R(J))/2.)+
21./7((SG(J-1,K)+SG(J,K))/2.x(R(J-1)+R(J))/2.))
GD(J)=XI1(J,K)x(1, + COEx*R(J)Ix(1.-FFAC)/DX/DXx(-4./{(SG(J+1,K)
1+SG(J,K))x(R(J+1)+R(J)))-4./((SG(J,K)+SG(J~1,K))Ix(R(JI+R(J-1))>1))
2+X1(J-1,K)x( (1, -FFAC)x(R(J)xDTxW(2,J-1,K)/2./DX/R(J~1)+
3COEXR(J)/DX/DX/ (.25%x(SG(J ,K)+SG(J-1,K))Ix(R(J)+R(J=-1)))))
4-X1(J+1,K)x(1.-FFAC)Y*x(W(2,J+1,K)xR(JIxTX/2./R(J+1)/W(1,J+1,K)
S-COEXR(J)/DX/DX/ (.25%x(SG(J+1,K)+SG(J,K))I*x(R(J)+R(J+1))))
6+0.5/74. xTXxTXY (J)x (ABS(W(2,J+1,K)/W(1,J+1,K)-W(2,J,K)
7/WC1,J, K x(XT(J+1,K)-XI1(J,K))-ABS(W(2,J,K)/W(1,J,K)
8-W(2,J-1,K)/W(1,J-1,K))x(XI(J,K)-XI(J-1,K)))

CONTINUE

CALL CROUT(M,K,JB,JE,JP,JD,GA,GB,GC,GD,X!)
CONTINUE

.CALCULATE NEW FIELDS AND CURRENTS FROCM NEWLY OBTAINED VALUES OF
.PS1 AND XI.

DO 32 J=JB,JE

BC(J,K+1)=XI(J,K+1}/R(J)
CZ(J,K+1)=+(XI(J+1,K+1)-X1(J-1,K+1))/(R(JIx2, xDX)
BZ2(J,K+1)=+(PST(J+1,K+1)-PS1(J-1,K+1))/(2.*DXxR(J)
CONTINUE

BC(JS,K+1)=X1(JS,K+1)/R(JS)
BC(JD,K+1)=X1(JD,K+1)/R(JD)
BZ(JS,K+1)=(PSI(JS+1,K+1)-PSI(JS, K+1))/(R(JS)*DX)
BZ(JD,K+1)=(PSI (JD, K+1) PS1(JD-1,K+1))/{(R(JD)xDX)
be 27 J=JB,JE '
CC(J,K+1)= -(BZ(J+1 K+1) B2(J-1,K+1))/ (2. %xDX)
CONTINUE

.SET UP MATRIX TG SOLVE FOR NEW W-VECTOR. NOTE THAT THIS MATRIX

.WILL ALSCG BE TRI-DIAGONAL, HOWEVER, EACH ELEMENT IS A 3 X 3 MATRIX,.

DG 107 J=1,JP

IF (J .EQ. 1) GO TG 415

AA(3xJ-2,1)=0.

AA(3xJ-2,2)=-0.5xFACXTXXxR(J)/R(J+1)

AA(3xJ-2,3)=0.

AA(3%xJ-1,1)=+0.5xTXxR(J)/R(J+1)x(
H(W(2,J,K)/W(1,J,K)Ixx2)-0. 5% (FK-1.)xFACXxTXxW(3, J,K}

oce



AA(3%J-1,2)=-TXxR(J)/R(J+1)x(W(2,J,K)I/W(1,J,K))
AA(3%xJ-1,3)=-0.5%x(FK~-1,)xFACXxTXxW(1,J,K)
AA(3%J,1)=0.5%x(FK-1.)*TXxR(JI/RIJ+1)xW(2,J,K)x
IW(3,J+1,K)/W(1,J,K)%xx2
AA(3%J,2)=-(FK-1 /) XxTX*R(J)/R(J+1)xW(3,J+1,K)/W(1,J,K)
AA(3x%xJ,3)=-0.5xFACXTXxW(2,J+1,K)/W(1,J+1,K)

1-FACxDOE/ (R(J+1)*DX*DX) *x0. 25*(CN(J+1)+CN(J K))*x(R(J+1)+R(J))/
2W(1,J+1,K)

415 CONTINUE

IF (J .EQ. JP) GO TO 416

AA(3xJ-2,7)=0.
AA(3%xJ-2,8)=+0.5xFACxTX*R(J+2)/R(J+1)
AA(3xJ-2,9)=0.

AA(3%J=-1,7)=-0.5xTXxR(J+2) /R(J+1)x(
1(W(2,J+2,K)/W(1,J+2,K)) %xx2)
2+0.5%x (FK-1.)XFACxTX*W(3,J+2,K) .
AA(3xJ-1,8)=+TX*xR(J+2)/R(J+1)x(
1W(2,J+2,K)/W(1,J+2,K))
AA(3xJ-1,9)=+0.5x(FK-1.)xFACXTXxW(1,J+2,K)
AA(3%xJ,7)=-0.5%x(FK-1.)xTXXR(J+23/R(J+1)xW(2,J+2,K) *
TW(E3,J+1,KI/W(T,J+2,K) xx2
AA(3xJ,8)=(FK-1.)xTXxR(J+2)/R(J+1)x
T1W(3,J+1,K)I/W(1,J+2,K)
AA(3%J,9)=0.5xFACXTX*xW(2,J+1,K)/W(1,J+1,K)
1-FACxDOE/ (R(J+1)xDXxDX)*0. 25*(CN(J+1 K)+CN(J+2 K))x(R(J+1)+R(J+2))
2/W01,J+1,K)

416 CONTINUE

AA(3xJ-2,4)=1.

AA(3xJ-2,5)=0.

AA(3xJ-2,6)=0,

AA(3xJ-1,4)=0.

AA(3xJ-1,5)=1,

AA(3%xJ-1,6)=0,.

AA(3xJ,4)=0,

AA(3%xJ,5)=0.

AA(3xJ,6)=1, +FACXDOE/ (R(J+1)xDXxDX) *0.25x( (CN(J+1 ,K)+CN(J+2,K) ) x
1(R(J+1)I+R(J+2))I+(CN(J+1,KI+CN(J,KI}I* (R(J+1)+R(JI)I)I/W(1,J+1,K)

107 CONTINUE .

DO 108 J=JB,JE

FC1,J,K)=W(1,J,K)=(1. -FAC)*(R(J+1)*xW(2,J+1,K)-R(J-1)xW(2,J-1,K))
1+0. 5/4 *TX*TYY(J)*(ABS(W(Z J+1,K)/W(1,J+1, K) -W2,J,K)
2/W01,J,K))x(W(1,J4+1,K)-W(1,J, K)) ABS(N(Z J K)/W(1,3,K)
G-W(Z,J-I.K)/W(I,J-l,K))*(W(1,J.K)-W(l,J-l,K)))
F(2,J,K)=W(2,J,K)+FACXDT*x(CC(J ,K+1)*xBZ(J,K+1)-C2(J ,K+1)xBC(J,K+1))
1+0.5%x (2. *FAC-1. ) *xTXX(FK~-1.)x(W(1,J+1,K)xW(3,J+1,K)
2-W(1,J-1,K)*W(3,J-1,K))+0.5/74. xTXxTYY(J)x (ABS(W(2,J+1,K)/W(1,J+1 .
2,K)-W(2,J,K)/W(1,J,K)NIx(W(2,J+1,K)-W(2,J,K))-ABS(W(2,J,K)/W(1,J,K)
3-W(2,J-1,K)/W(1,J-1,K))x(W(2,J,K)-W(2,J-1,K)))
4+(1.-FAC)xDTx(CC(J,K)*BZ(J,K)-C2(J,K)*xBC(J,K))
F(3,J,K)=W(3,J,K)+COE/SG(J ,KI/W(1,J,K)*x(1,-FAC)x
1(CC(J,K)*x2+CZ2(J,K)xx2)-(1, ~-FACI*W(2,J,K)/W(1,J,K)x*
2(W(3,J+1,K)-W(3,J-1,K))xTX/2. +DOEx(1.-FAC)/W(1,J,K)/RtJ)

3/DX/DXx (. 25% (R(J) +R(J+1) )X (CN(J,K)+CN(J+1,K))Ix(W(3, J+1,K)
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108

e

101

102
112

122

103

113

4-W(3,J,K))-(.25x(R(J)+R(J-11)I%(CN(J,KI+CN(J-1,K) ) *

S(W(3,J,K)-W(3,J-1,K))))+0.5/4. xTXxTYY(J)*(ABS(W(2,J+1 ,K)/W(1,J+t
2,K)-W(2,J,K)/N(I.J,K))x(W(S,J+1,K)-N(S,J,K))-ABS(W(Z.J.K)/N(1,J,K)

3-W(2,J-1,K)/W(1,J-1,K))Ix(W(3,J,K)-W(3,J-1,K)))
4+FACXxCOEX(CZ(J,K+1)*x2+CC(J,K+1)xx2)/86G{J,K)I/W(},J,K)
CONTINUE

JPP=3xJP

AA(3-1,4)=AA(3-1,4)-0,.5xFAC*TXx(FK-1,)xW(3,JS,K)
F(2,JB,K)=F(2,JB,K)+0 . 5% (FK-1.)%W(1,JS,K)XFACXTX*W(3,JS,K+1)
F(3,JB,K)=F(3,JB,K)+FACxDOE«0.25%x((CN(JS,K)+CN(JB,K) )% (R(JS) +
IR(JIB)IxW(3,JS, K+113)/(W(1,JB, K)ER(JB)xDX*»DX)

2+ . SxFACXTXxW(3,JS, K+1)xW(2,.JB,K)/W(1,JB,K)
AA(JPP=-1,4)=AA(JPP-1,4)+0.5+FACXTXx(FK-1.)xW(3,JD,K)
F(2,JE,K)=F(2,JE,K)=0.S5x{FK-1.)xW(1,JD,K)*FACXTX*xW(3,JD,K+1)
F(3,JE,K)=F(3,JE,K) HFACxDOE®O0. 25% ( (CN(JL,K)+CN(JE,K))x(R(JD) +
TROJEII*W(3,ID,K+11)/7(W(1,JE,K)XR(JE) *DX*%DX)
2-.O%FACxTXxW(3,JD,K+1)xW(2, JE,K)/W(1,JE,K)

.SOLVE THE MATRIX EQUATIONS FOR THE W-VECTOR.
CALL CRO(K,TX,DT,DX,FK,JB,JE,JP,UN, SGG,CNO,W,F)
RETURN

END

.THIS SUBROUTINE ALLOWS US TO SOLVE FOR THE W-VECTOR, 1.E, DENSITY,

.RADIAL VELOCITY AND TEMPERATURE.

SUBROUTINE CRO(K, TX, JT,DX,FK,JB, JE, JP,UN, SGO,CNO,N,F)
DIMENSIAGN W(3,51,2),56(51,21,CN(51,2),R(51),AA(150,09),BB(3, 3)
1,F(3,851,2),B2(51,2),3C(51,21,C2Z2(51,2),CC(51,2),6A(51),GB(51)
2,6C(51),6D(S51)

COMMON SG,R, AA,CN,BB, COE, DOE,BZ,BC,CZ,CC,GA,GB, GC,GD
JPP=3xJP

‘TMALL=0.10E-29

Do 101 L=5,09

AAC1,L)=AA(1,L)/AAC(1,4)

F(1,2,K)=F(1,2,K). AAL, 4)

DO 102 J=2,3

AA(J,5)=AA(J,5)-AA(J,4)*AA(1,5)

DO 112 J=4,06

AA(J,2)=AA(J,2)-AA(J 1)%AA(1,S5)

DG 122 L=6,09
AA(2,L)=(AA(2,L)-AA(2,4)xAA(1,L))/AA(2,5)
F(2,2,K)=(F(2,2,Ki~AA(2,4)*xF(1,2,K))/AA(2,5)

DG 103 J=3,3

AA(J,B6)=AA(J,6)-AA(J_ 4)xAA(1,6)-AA(J,S)xAA(2,6)

DG 113 J=4,06
AA(J,3)=AA(J,3)-AA(J_1)xAA(1,6)-AA(J,2)%xAA(2,6)

DO 123 L=7,09
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123 AA(3,L)=(AA(3,L)-AA(3,4)xAA(1,L)~-AA(3,5)xAA(2,L))/AA(3,6)
F(3,2,K)=(F(3,2,K)-AA(3,4)*xF(1,2,K)-AA(3,5)%F(2,2,K))/AA(3,6)
D& 1v7 J=4,JPP,3
Do 188 L=1,3
DO 189 LL=1,3
BB(L,LL)=0.
D6 121 LLL=1,3 .
IF (ABS(AA(J+L-1,LLL)) .LT. TMALL) AA(J+L-1,LLL)=0.
IF (ABS(AA(J+LLL-4,06+LL)) .LT. TMALL) AA(J+LLL-4,06+LL)=0,.
121 BB(L,LL)=BB(L,LL)+AA(J+L-1,LLL) xAA(J+LLL-4,06+LL)
189 CONTINUE

188 CONTINUE

Do 22 L=1,3
22 AA(J-1+L,4)=AA(J-1+L,4)-BB(L, 1)
DO 23 L=1,2
23 AA(J,4+L)=(AA(J,4+L)-BB(1,L+1))/AA(J, 4)
IF (J .EQ. (JPP-2)) GO TO 924
Do 24 L=1,3
24 AA(J,06+L)=AA(J,06+L)/AA(J, 4)
924 CONTINUE
Do 25 L=1,2
25 AA(J+L,S)=AA(J+L,5)-BB(L+1,2) -AA(J+L, 4)xAA(J,S)
D6 26 L=1,1
26 AA(J*1,5+L)=(AA(J+1,5+L) -BB(2,24L) -AA(J+1,4) AA(J, S+L))/AA(J+1,5)
IF (J .EQ. (JPP-2)) GO TO 127
Do 128 L=1,3
AA(JHL+2,2) =AA(J4L+2,2) -AA(J+L+2, 1) %AA(J, 5)
AA(J+1,06+L)=(AA(J+1,06+L) -AA(J+1,4) xAA(J,06+L) ) /AA(J+1,5)
128 CONTINUE
127 CONTINUE
AA(J+2,06)=AA(J+2,06) -BB(3,3) ~AA(J+2, 4)xAA(J,06) -AA(J+2,5) %
1AA(J+1,06)
IF (J .EQ. (JPP-2)) GO TO 133
DG 134 L=1,3
D8 135 LL=1,2
AA(J+L+2,3)=AA(J+L+2,3) -AA(J+L+2,LL) xAA(J+LL~1,06)
AA(J+2,06+L)=AA(J+2,06+L) -AA(J+2,3+LL) xAA(J+LL-1,06+L)
135 CONTINUE
AA(J+2,06+L)=AA(J+2,06+L) /AA(J+2,06)
134 CONTINUE
133 CONTINUE
D6 136 L=1,3
DO 137 LL=1,3
137 F(L, (J+5)/3,K)=F(L, (J+5)/3,K) -AA(J+L-1,LL)XF(LL, (J+5)/3-1,K)
LE=L-1
IF (L .EQ. 1) GO TO 148
DG 147 LL=1,LE
F(L, (J+5)/3,K)=F (L, (J+5)/3,K) -AA(J+L-1,3+LL)xF(LL, (J+5)/3,K)
147 CONTINUE
148 CONTINUE -
F(L, (J+5)/3,K1=F(L, (J+5)/3,K)/AR(I+L-1,4+L-1)
136 CONTINUE
117 CONTINUE
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941
139
1

1
138

24
25

26

27
22

W(3,JE,K+1)=F (3, JE,K) .
W(2,JE,K+1)=F(2,JE,K)-AA(JPP-1,06)xW(3,JE, <+1)
W(1,JE,K+1)=F(1,JE,K)~-AA(JPP-2,06)*W(3,JE,<+1)
~AA(JPP-2,5)xW(2,JE,K+1)

Do 138 L=4,JPP,3

JJ=JPP+4-J-3

DO 139 L=1,3

BB(1,L)=0.

DO 941 LiL=1,3

BB(1,L)=BB(1,L)Y+AA(JJI+1~L,06+LL)xW(LL, (JJ+3)/3+1,K=1)
CONTINUE

W(3, (JJ+3)/3,K+1)=F(3, (JJ+3)/3,K)-BB(1,1)
W(2,(JJ+3)/3,K+1)=F(2,(JJ+3)/3,K)-BB(1,2)
~AA(JJ~1,06)xW(3, (JJ+3)/3,K+1)

W1, (JJ+3)/3,K+1)=F(1,(JJ+3)/3,K)-BB(1,3)
~AA(JJ-2,06)xW(3, (JJ+3)/3,K+1)-AA(JJ-2,5)%xA(2, (JJ+3)/3,K+1)
CONTINUE

RETURN

END

CROUT REDUCTION OF A TRI-DIAGONAL MATRIX. USED TO OBTAIN THE NEW
VALUES OF PS! AND XI.

SUBREBUTINE CROUT (N,K,JB,JE,JP,JD,A,B,C,D, V)
DIMENSION AA(S51,3),E(51),%(51),A(51),B(51),C(51),D151),V(S1,2)
SMALL=0. 10E-32

Js=1

DB 22 J=JS,JP

E(J)=D(J+1)

AA(J,2)=B(J+1)

IF (J .EQ. JP) GO T3 24

AA(J,3)=-A(J+1)

GO TG 25

E(JP)=D(JP+1)+A(JP+1)xV(JP+2,K+1)

CONTINUE

IF (J .EQ. JS) GO T3 26

AA(J,1)=-C(J+1)

GO To 27

CONTINUE

E(JS)=D(JS+1)+C(JS+1)xV(JIES,K+1)

CONT I NUE :

CONT I NUE

AA(JS, 3)=AA(JS, 3) /AA(JS, 2)
E(JS)=E(JS)/AA(JS, 2)

DO 30 J=JB,JP

IF (ABS(AA(J,1)) .LS. SMALL) AA(J,1)=0.

IF (ABS(AA(J-1,3)) .LE. SMALL) AA(J-1,3)=0.
AA(J, 2)=AA(J, 2) ~AALT, 1) XAA(J-1,3)
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30

33

28

IF (ABS(E(J-1)) .LE. SMALL) E(J-1)=0.
E(J)=(E(J)-AA(JI, 1)XE(J-1))/AA(J, 2)

IF (J .EQ. JP) GO TO 30
AA(J,3)=AA(J,3)/AA(J,2)

CONT I NUE

X(JP)=E(JP)

JQ=JP-1

Do 33 J=JS,Ja

KK=JQ+JS-J

IF (ABS(AA(KK,3)) .LE. SMALL) AA(KK,3)=0.
X(KK)=E(KK) -AA (KK, 3) xX(KK+1)

CONTINUE

DS 28 J=JS,JP

V(J+1,K+1)=X(J)

IF (ABS(V(J+1,K+1)) .LT. SMALL) V(J+1,K+1)=0,
CONT I NUE

RETURN

END

..... PLOTTING SUBROUTINE

SUBRGUTINE PLOTI1(P,SR,JD,M) .
DIMENSION P(6,51),S8SR(51),PP(51),P1(12),P2(12),P4(12)
DATA P1/"TEMPERAT", "URE", "DENSITY"," ", "CURRENT ",

1"DENSITY", “POLOIDAL", " FIELD",“TOROIDAL"," FIELD", "PRESSURE",
2" “/,P2/"KELVIN"," ", "NGRMALIZ","ED", "STATAMPS","/CMxx2",

3"GAUSS" . w o . “"BAUSS" . “"wow s “DYNES/CM", “xx2"/

DATA P4/"0.5 USEC","“1.0 USEC","1.5 USEC","2.0 USEC","2.5 USEC",
1"3.0 USEC","3.5 USEC","4.0 USEC","4.5 USEC","5.0 USEC","5.5 USEC",

2"6.0 USEC"/

1001 FORMAT(2A8)

DO 1 1=1,6

AMAX=0.

AMIN=0.

D6 2 J=1,JD

PP(J)=P(1,J)

AMAX=AMAX1 (PP (J) , AMAX)

AMIN=AMIN1 (PP(J), AMIN)

CONT I NUE

CALL MAPS(2.,4.,AMIN,AMAX,.1,1.,.3,1.)
CALL TRACE(SR,PP,JD)

CALL SETCH(20.,5.,0,0,3,0)

CALL CRTBCD("NORMALIZED RADIUS")

CALL SETCH(2.,20.,0,0,83,1)

WOT 100,1001,P1(2xI-1),P1(2x1)

CALL SETCH(2.,1.,0,0,2,0)

CALL CRTBCD("2=0; VESSEL HALF-WIDTH=7.5 CM")
CALL SETCH(2.,3.,0,0,2,0)

CALL CRTBCD("UNITS=")

CALL SETCH(10.,3.,0,0,2,0)

N
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743
744
745
746
747
748

750
751
752
753

WOT 100,1001,P2(2x1-1),P2(2x1)
CALL SETCH(2.,2.,0,0,2,0)
CALL CRTBCD("TIME=")

CALL SETCH(10.,2.,0,0,2,0)

IF (M .LT. 250) CALL CRTBID("INITIAL CENDITIONS")
IF (M .LT. 250) GO Ta 3

WOT 100,1001,P4(M/25Q)

CALL FRAME

COGNTINUE

RETURN

END :
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. .PROGRAM NAME: TWO-DIMENSIONAL MHD CODE (W/ INERTIA)
.WRITTEN BY: H.C. LUI

.:.MGDIFIED BY: R. 1220
. LANGUAGE : FORTRAN

..CGMPILATIGN DEVICE: CDC 7600

..RESISTIVE MHD EQUATIONS FOR A SINGLE FLUID ARE SOLVED NUMERICALLY
... 1N TWO DIMENSIONS. ENERGY LOSS DUE TO RADIATION IS INCLUDED.

. .REALISTIC MODELING OF BOUNDARIES IS POSSIBLE IN TWO DIMENSIONS.
..THE CODE IS USEFUL IN SIMULATING THE PLASMA HEATING PHASE.
.VARIABLES ARE DEFINED AS THEY ARE ENCOUNTERED.

CREKKXKKKKKKKKKKKKKKRKKKKKXKMATN PROGRAMX X % X 3 5 % % % % 3% 3K X X %K %K % K K KK X K XX

[sNeNoRoNoNoNeNe)

\

DIMENSION PS1(21,22,2),B1(21,22,2),B2(21,22,2),X1(21,22,2),
1c1(21,22,2),C02(21,22,2),C3(21,22,2),T(21,22,2),BIAS(21),
2W(4,21,22,3),F(4,21,22,3),E1(21,22,2),B3(21,22,2),SR(21),
4dGA(21,22),6B(21,22),6C(21,22),6D(21,22),CN(21,22,2),RO(21,22),
S5AA(100,12),BB(4,4),82(22),FF(2,22),P(6,21),CRS(2,21,22),
6PS11(21),GRADPR(21,22),GRADPZ(21,22) ,BXJR(21,22),
7BXJO(21,22),8XJ2(21,22),P812(22),PS13(22),1X(60),JY(60)

LCM (T2) :
COMMON/T2/ PSI1,B1,B2,B3,XI1,C1,C2,C3,T,W,F, SR, PERO,PERS, TO1, TO2
1,6A,6GB,GC,GD,CN,El ,AA,BB, TG3,TO04,TS1,TS2,TS3

CALL DROPFILE(O)

CALL OPEN(S, "INPUT",0,0)
CALL CREATE(S, "OUTPUT",3,-1)
CALL GFSIZE(3,75000)

CALL KEEP80(1,3)

CALL FR8OID(BHTORUS-I11,1)
. .MS: STOP AFTER THIS MANY TIME STEPS
. MW WRITE AND PLOT AFTER THIS MANY TIME STEPS
. .FR: GAS CONSTANT FOR HELIUM (SINGLY OR DOUBLY 1ONIZED)
. .FK: RATIO OF SPECIFIC HEATS
..SMALL: ROUND-OFF TO ZERO IF A NUMBER 1S SMALLER THAN THIS
.. TMALL: DITTO
..CV: SPECIFIC HEAT AT CONSTANT VOLUME
.C: * SPEED OF LIGHT IN VACUUM
MS=2501
MW=250

FR2=0.6231E+08 .
FR1=2./3.%0.6231E£+08
FR=FR2

FK=1.666666
SMALL=0.10E-16
TMALL=SMALLxx2
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CV=FR2/(FK-1.)
C=2.9980E+10

.SET TIME (K), RADIAL GRID :1) AND VERTICAL GRID (J) PARAMETERS.

K=1

IB=2
IE=20
JB=2
JE=21
1s=1B-1
ID=1E+1
Js=JB-1
JD=JE+1
JP=JE-JS
IP=1E-IS

. .BTOR: CHARACTERISTC FIELD ‘

. .BMIN: BIAS TOROIDAL FIELD OUTSIDE PLASMA

..BMIN1: BIAS TOROIDAL FIELD WITHIN PLASMA
.BV1,BVv0:Z-COMPONENT OF MAGHETIC FIELD ON INNER AND GUTER WALL

..RB: MAJOR RADIUS OF DEVICE
...RSMA: COMPUTATIONAL VESSEL HALF-WIDTH
. .HU: PLASMA CUTOFF DENSITY

. .RORAD: LOW DENSITY RADIATION TREATMENT
. .DN: INITIAL FILL DENSITY

.UN: CHARACTERISTIC ALFVEN WVELOCITY

BTOR=5000.
BMIN=-1333./BTOR
BMIN1=-2500. /BTOR
BVI=-1500. /BTOR
BvO=1500. /BTOR

.COMPUTE NEW F-VECTOR. £J X B TERMS)

RB=22.5

RSMA=7.S5

Q=RSMA/R3

HU=.07S

RORAD=.5

DN=0.239=-08
UN=BTOR/SQRT(4.%x3.1416xDh)

.SOME RADIATION PARAMETERS
. TG, TS! IMPORTANT TEMPERATURES WHEN MAKING POLYNGOMIAL FIT TO

OXYGEN AND SILICON RADIATED POWER £0SS CURVES

. .PERO,PERS: PERCENTAGE OF GXYGEN AND SILICON

TO1=5.%x11600. xCV/UN/UN
T02=20.x11600, xCV/UN/UN
TO3=200.x11600, xCV/UN/UN
TO4=2000.x11600. xCY//UN/UN
TS1=20.%11600, xCV/UN/UN
TS2=200.%x11600. xCV/UN/UN
TS3=2000.%11600. xCV/UN/UN
PERO=. 01
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.SOME IMPORTANT TIMES DURING HEATING PHASE

nT,OPT: TIMES oTEPRC
TPO=4.00E-06 xUN/RSMA
TP1=4.70E-06*xUN/RSMA
TP2=1.70E-06 xUN/RSMA
TP3=18.0E-06%xUN/RSMA
TP4=6.00E-06 xUN/RSMA
DT=0.20E-08 xUN/RSMA
DDT=0.1E-10 xUN/RSMA

. .SOME PARAMETERS TO BE USED IN SPECIFICATION OF POLOIDAL FLUX AT
.. THE BOUNDARY.. '
.FLUXH, FLUXZ: POLOIDAL FLUX FUNBCTION AT HORIZONTAL MIDPLANE

AND INNER WALL AFTER HEATING AND Z-PINCH.

.:FLUXHT,FLUXZTJ POLOIDAL FLUX FUNCTIGN AT TOP OF VESSEL AND INNER

WALL AFTER HEATEING AND Z-PINCH.

..BVT: EXTERNAL VERTICAL FIELD THROUGH HOLE IN TGRUS
.BSLOPE: LINEAR RAMP IN EXTERNAL VERTICAL FIELD THRGUGH VESSEL

FLUXH=1.5E+J35/BTOR/RSMA/RSMA
FLUXZ=.S5xFLUXH
FLUXZT=FLUXZx .90
FLUXHT=FLUXHx. 90
BVT=150./BTOR

BSL.OPE=300. /BTOR

. .SGO: BUNEMAN CONDUCTIVITY
CRIM: MAXTIMUM CURRENT DENSITY
.CMIN: MINIMUM CURRENT DENSITY

M=0
SGO=8.E+12

XJM=1.5E+13%x4. x3. 1416xRSMA/BTCR/C
CMIN=XJM/166.

. .SET UP GRID.
N o) & NORMAL I 2ED RADIAL INCREMENT
LGY: NORMALIZED Z-INCREMENT (NORMALIZATION IN BOTH DIRECTIONS

IS 7.5 CM).
DY=0.1
DX=0.1
DG 3 I=1S,ID
Si=l
SR(1)=(S1-1.)xDX+15./7.5
WRITE (6,101) [,SR(I)
3 CONTINUE

101 FORMAT(IH ,"1=",14,"RADIUS=",E14.7)

Do 991 J=1,JD
SJ=J
SZ2(J)=(8J-2,)xDY

991 CONTINUE

.SET UP INITIAL COGNDITIONS

6Zc



160 C...CCT:
161 C...NVAR:

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212

O00000D0OOOOOOO0

10

CCT=(BVG-BVI)/(SR(16)-SR15))
NVAR=8 :

DO S5 K=1,2

bo S J=JS,JD
ZVAR1=(ABS(SZ(J))/SZ(JD) » xxNVAR
ZVAR=1.-ZVAR1
ZVAR2=(ABS(SZ(J))r,SZ(11) 1 xxWAR
2ZVAR3=1. -ZVAR2

THERMAL CONBUCTIVITY
TEMPERATURE

1): DENSITY

2): RADIAL MOMENTUM

3): TOROIDAL MOMENTUM

4): VERTICAL MOGMENTUM

: POLOIDAL CURRENT FUNCTION
ELECTRICAL COGNDUCTIVITY
RADIAL MAGNETIC FIELD
Z-COMPONENT OF MAGHETIC FIELD
TOROIDAL FIELD

I: POLOIDAL FLUX FUNCTION
RADIAL CURRENT DENSITY
Z-COMPONENT OF CURRENT DENSITY

H TOROIDAL CURRENT DENS:ITY

Do 10 1=18,5

CN(Il,J,K)=.3E+07/ (DN*RSMAXUNXCV)

EI(1,J,K)=10000. xCV/UN/UN

Wel,1,J,K+1)=0.1

Wel,1,J,K)=0.1

X1(1,J,K)=BMIN/Q

TC1,J,K)=166.

B1(l1,J,K)=0.

B2(1,J,K)=BVI*x2ZVAR

B3(I,J,K)=X1(1,J,K)/SR(1)

PSI(1,J,K)

ci(1,J,K)=0.

ca(l,J,K)=0.

C3(1,J,K)=0.

Wwez2,1,J,K+1)=0.

W(3,1,J,K+1)=0,

Ww4,1,J,K+1)=0.

we2,1,J,K)=0,

W3,1,J,K)=0,

We4,1,J,Kr=0.

CONTINUE

DO 11 1=6,16

CMC(Il,J,K)=,3E+07/1DNxRSMAXUNXCV)
EIC(],J,K)=10000. xCV/UN/UN
IF (J .GT. 11) GO TEC 666

IF (1 .LE. 11) W(1,1,J,K+1)=0.1 + 3.8x(SR(1)-SR(5))*x2ZVAR3

INITIAL TORGOIDAL CURRENT DENSITY
POLYNOMIAL DEPENDENCE ALONG Z

(PEAXK)
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666

667

1

16

IF (1 .GT. 11) Wd1,1,J,K+1)=W(1, 11 J,K+1)-3,.8x(SR(1)-SR(11))x2VARS3
IF (1 .LE. 11) W(1,1,J,K)=0.1 + 8*(SR(I) SR(S))*x2VAR3

IF (1 .GT. 11) Wi1,1,J,K)=W(1,11, J K)-3.8%(SR(1)-SR(11))x2VAR3

GO TO 667

Wet,1,J,K)=.1

Wel,1,J,K+1)=,

Xr¢i,J, K)-(BMIN*;VARI +BMINI*ZVAR)/Q
B1(1,J,K)=0.
B2(1,J,K)=(BVI+CCTx(SR(1)-SR(51}))x2ZVAR
BS(l,J,K)=Xl(l,J.K)/SR(l)
PSI1(1,J,K)=PSI(S5,J,K)+ZVAR*(BVI*(SR(]}xx2-SR(S5)xx%x2)/2,
1+CCTx(SR(1)xx3/3. +SR(5)%%x3/6. -SR(1)xx2xSR($)/2.))
cicl,J,K)=0.

cacl,J,K)=0.

C3(1,J,K)=-CCTxZVAR

CT=ABS(C3(1,J,K) 1}

IF (CT .GE. CMIN! T(1,J,K)=XJM/CT

IF (CT .LT. CMIN} T(1,J,K)=166.
We2,1,J,K+1)=0.

W(3,1,J,K+1)=0.

W(4,1,J,K+1)=0.

wez,1,J,K)=0.

W(3,1,J,K)=0.

We4,1,J,K)=0.

CONTINUE

Do 12 1=17,1D

CN(I1,J,K)=. 3E+07;(DN#RSMAxUNxCV)
E1(1,J,K)=10000. xCV/UN/UN

W(1,I,J,K+1)=0.l
wel,1,J,K)=0.1
X1(1,J,K)=BMIN/G
T(1,J,K)=166,
B1(1,J,K)=0.
B2(1,J,K)=BVOxZVAR
B3(1,J,K)=XI(1,J,K)/SR(I])
PSI(1,J,K)=PSI(16,J,K)+2VAR*BVOX*(SR(1)x*2-SR(16)x%2)/2,
cicl,J,K)=0.

ca2(1,J,K)=0.

C3(1,J,K)=0.
wez2,1,J,K+1)=0.
W(3,1,J,K+1)=0.
Wwi4,1,J,K+1)=0,.
wez,1,J,K)=0.
W(3,1,J,K)=0.
Wwe4,1,J,K)=0.

CONTINUE

CONTINUE .

D6 16 1=1S,ID
BIAS(1)=X1(1,JD,1)
CONT I NUE

DG 222 J=Js,J0
FF(1,J)=PS1(1S,J,1)
FF(2,J)=PSI(ID,J, 1)
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266
267
268
269
270
271
272
273
274
275
276
277
278
279
‘280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
3186
317
318

222

cC...

8

14

15

17

350
19
13

. .SET UP BOUNDARY VALUES FOR THZ
.FUNCTIONS.

CONTINUE
TIME=0.

SOME FREQUENTLY USED TERMS.
BATA=DT/ (2. xDX)
BATB=DT/ (2. xDY)
COE= CxCxDT/(4.x3.1416xRSMAXUNXSGO)

.BEGIN THE CALCLATIGN.

6 M=M+1
TIME=TIME+DT
K=1

IF (TIME .GE. TP2) 60 TG 7
DG 8 1=1S,1D

XI1(1,JD,K+1)=BIAS(1) + (1.»TIME/TP2)}/9Q

CONTINUE

D6 9 J=JS,JD

X1(ID,J,K+1)=X1(ID,JdD,K11)

X1(1S,Jd,K+1)=X1(ES,ID,K+1)

CONTINUE
7 CONTINUE

IF (TIME .GE. TP1) GO TG 17

DO 14 1=1S,1D

PSI(I,JD,K+1)=(FLUXHT-FLUXZT)*TIME/TPI + FLUXZT

PSI1(1)=PSI(],JD,K+1)

CONTINUZ ’

D6 15 J=JS,JD

ZVAR1=(ABS(SZ2(J) »/SZ(JD))xxNVAR

ZVAR=1. - ZVARI1 '

PSI(IS,J,K+1)=FF(1,J)+(FLUXH*ZVAR+FLUXHT*2VAR1-FF(1,J))xTIME/TP1

PSI(ID, J,K+1)=FF(2,J)+(2VARx [FLUXH+BVT* (SR(ID)xx2-SR(IS)xx2)
1+BSLOPE«(SR(ID)*x%x3/3. +SR(1S1x%x3/6. -SRI IS)1=SR(ID)»x2/2.))
2+FLUXHT «ZVAR1 -FF (2, J) )xTIME/TPI

PSI12(J)=PSI(1S,J,K+1)

PS13(J)=PSI(ID,J,K+1)

CONTINUE

"GO T6 19

CONTINUE

DO 18 1=1S,I1D

PSI(I,JD,K+1)=PSI11(1)

CONTINUE

DG 350 J=JS,JD

PSI (IS, J,K+1)=PSI12(J)

PSI(ID,J,K+1)=PSI3(J)

CONTINUE

CONT I NUE

- CONTINUE

POLOIDAL FLUX AND CURRENT

C...PRESCRIBE DENSITY AND VELOGCITY AT BOUNDARY.

DO 28 J=JS,JD : :

(4 X4



319 D6 29 L=1,4

320 WL, I1D,J,K)= W(L,IE,J,K)
321 WL, I1S8,J,K)= W(L,IB,J,K):
322 28 CONTINUE

323 we2,10,J,K)=0.

324 w(2,18,J4,K)=0.

325 28 CONTINUE

326 DO 53 1=1S,1D

327 DO 54 L=1,4

328 W(L,!,JD,K)= W(L,1,JE,K)
329 WL, 1,JS8,K)= W(L,1,JB+1,K)
330 54 CONTINUE ’
331 W(3,1,JD,K)=0.

332 W(3,1,J8,K)=-W(3,1,JB+1,K)
333 We4,1,J8,K)=-w(4,1,JB+1,K)
334 53 CONTINUE

335

336 K=1

337 K2=1

338 K3=1

339 K4=1

340 KS=1

341

342 C...6BTAIN PREDICTOR VALUES FOR W-VECTOR USING AN EXPLICIT LAX-
343 C...FRIEDRICHS SCHEME. .

344 DO 433 J=JB,JE

345 DO 434 1=18B, IE

346 F(1,1,J,K)=0.

347 WO, 1,J,K+1)=0.25x(W(1,1+1,J,K)+W(1,1-1,J,K)+W(1,1,J+1,K)+
348 WO, 1,J-1,K))-0.50%DT/DX/SR(I)*(SR(I+1)xW(2,1+1,J,K)-

349 2SR(I-1)xW(2,1-1,J,K))-0.50%xDT/DY*(W(3,1,J+1,K)-W(3,1,J-1,K))
350 3+2.xF(1,1,J,K)

351 F(2,1,J,K)=(W(4,1,J,K)*x2/(W(1,1,J,K)xSR(I))+(FK-1.,)xW(1,1,J,K)x
352 1E1(1,J,K)/SR(I)+(C3(1,J,K)xB2(1,J,K)-Cc2(1,J,K)*xB3(1,J,K)))*DT/2.
353 W(2,1,J,K+1)=0.25x(W(2,1+1,J,K)+W(2,1-1,J,K)+W(2,1,J+1,K)+
354 1W2,1,J-1,K))-0.5S0xDT/DX/SR(II*(SR(I+1)x(W(2,1+1,J,K)xx2
355 2/MC1, 1T+, J, K)+(FK=-1.)xW(1,1+1,J,K)XEI(1+1,J,K))~-

356 BSROI=1)%x(W(2,1-1,J,K)xx2/W(1,1-1,J,K) +(FK-1.)xW(1,1-1,J,K)
357 4xEI1(1-1,J,K)))-0.50xDT/DY*(W(2,1,J+1,K)*W(3,1,J+1,K)

358 S/WCT, 1,J+1,K)-W(2,1,J-1,K)xW(3,1,J-1,K)/W(1,1,J-1,K))

359 6+2.xF(2,1,J,K)

360 F(3,1,J,K)=((C1(1,J,K)xB3(I,J,K)~-C3(1,J,K)xB1(1,J,K)))*DT/2.
361 W(3,1,J,K+1)=0.25%x(W(3,1+1,J,K)+W(3,1-1,J,K)+W(3,1,J+1,K)+
362 IWe3,1,J-1,K))-0.50xDT/DX/SR(I)I*x(SR(I+1)xW(2,1+1,J,K)x

363 2W(B,1+1,J,K)/WC1,1+41,J,K)=-SR(I-1)xW(2,1-1,J,K)*W(3,1-1,J,K)
364 3/WC1,1-1,J,K))-0.50%xDT/7DY*x((W(3,1,J+1,K)*xx2/W(1,1,J+1,K)+
365 AFK=1.)xW (1, 1,J+1 ,K)XET(1,J+1,K))=(W(3,1,J-1,K)xx%x2/

366 SW(1,1,J-1,K)+(FK-1,)xW(1,1,J-1,K)XEI(],J-1,K)))

367 6+2.xF(3,1,J,K) ’

368 Fe4,1,J,K)=0(ca2cl,Jd,K)xB1(1,J,K)-C1(1,J,K)*xB2(1,J,K))

369 1-W(2,1,3,K)yxW(4,1,3,K)Y/(W(Y,1,J,K)XSR(1)))xDT/2.

370 W(4,1,J,K+1)=0.25%x(W(4,1+1,J,K)+W(4,1-1,J,K)+W(4,1,J+1,K)+
371 1W(4,1,J-1,K))-0.50%xDT/DX/SR(1)*(SR(I1+1)xW(2,1+1,J,K)

1 3 X4



372

o0

[sEoNoNoNoN o]

2xW(4,1+1,J,K)Y/W01, 141, J,K)-SRCI~1)xW(2,[-1,J,K)xW(4,1-1,J,K)
B/WC1,1-1,J,K))-0.50%xDT/DY*(W(3,1,J+1,K)*xW(4,1,J+1,K)
AW, 1,41 K)-W(3, 1,J-1,K)xH(4,1,J-1,K)/W(1,1,J-1,K))
5+2.%xF(4,1,J,K)
DO 435 L=1,4

IF (ABS(W(L,!1,J,K+1)) . LT. SMALL) W(L,[1,J,K+1)=0,

435 CONTINUE
. 434 CONTINUE
433 CONTINUE

bé 208 J=Js,JD

DO 209 L=1,4

W(L,ID,J,K+1)= W(L,I1E,J,K+1)
W(L,1S,J,K+1)= W(L,I13,J,K+1)

209 CONTINUE

W2,1D,J,K+1)=0.
w2,1s8,J,K+1)=0.

208 CONTINUE

301

DO 300 1=1S,1D

Do 30t L=1,4

WL, ! ,JD,K+1)= W(L,1 ,JE,K+1)
WL, 1,J8,K+1)= W(L,1,JB+1,K+1)
CANTINUE

W(3,1,JD,K+1)=0.
W(3,1,JS8,K+1)=-W(3,1,JB+1,K+1)
W(4,1,J8,K+1)=-W(4,1,JB+1,K+i)

300 CONTINUE

1M

60

. .USING THE PREDICTGR ALUES OBTAINED ABGVE IN THE HNOM-LINEAR
.TERMS, WE SOLVE THE FIELD AND ENERGY EQUATIONS USING AN AD! SCHEME,

CALL ADI (K,M,DT,DX,DY,CV,FK, COE, DOE, UN,BATA,BATB, SGA,
11s,1B,1E,1D,JS,JB,JE, JD,C, 1P, JP,DN,RSMA, HU, RORAD)

. .FOR THE NEW TEMPERATURES AND FIELDS, WE KNOW:

.. TEST FOR NEGATIVE TEMPERATURES.

.. TEST FOR LOW DENSITY REGION.

. .SPECIFY THE ELECTRICAL CONDUCTIVITY TO BE USED DEFENDI!NG UPON
.. POSITION AND TIME,1.E, LOW DENSITY VS, HIGH DENSITY REGION
.AND TURBULENT PHASE V¥S. CLASSICAL PHASE.

8 FORMAT (1HO,3112)

DO 86 J=JB,JE

DO 86 I=1B,IE

IF (EIC 1,J,K+1) .LT. 0.) WRITE (6,1183 1,J,M

IF (EI(1,J,K+1) LT, D.) 60 TO 94

ROCI,J)=0.2%x (W1, 1,J,K+1)+WCT1,1+1,J, K+1)+W(1,1-1,J,K+1)+
WO, T, I+, K41 MY, 1, )1 ,E+1))

IF (TIME .GT. TPO) GO TG &0
CT=SART(CI(I,J,K+1)1xx2+C2:1,J K+1)*x2+C3([,J,K+1)xx2)
IF (CT .GE. CMIN) T(I,J,K-1)=XJM/CT

IF (CT .LT. CMIN) T(1,J,K=1)=166.

GO TG 61

TOI,J,K+1)=1.05E+6x (UNXUN/CV>ZI1(],J,K+1))xx1,5/560

IF (TIME .GT. TP4) GO TO €1

SGR=((TIME - TPO)Y/(TP4 - TPO>»)*x10

vee



00000

c

CT=SQRT(CI1(1,J,K+1)xx2+C2(1,J,K+1)xx2+C3(1,J, K+1)%x2)
IF (CT .GE. CMIN) SGA=XJM/CT
IF (CT .LT. CMIN) SGA=166. ’ :
TOI,J,K+1)=SGR*xT(I,J,K+1) + (1.-SGR)x*SGA
61 - IF (ROC1,J) .LT. 0.25) T(I1,J,K=1)=1,
IF (J .GT. 17) T(I,J,K+1)=1,
IF (1 .LE. 6) .OR. (1 .GE. 17:) T(1,J,K+1)=1,
86 CONTINUE .
Do 87 1=IB,I1E
T(1,JS,K+1)=T(1,JB+1,K+1)
T(1,JD,K+1)=T(],JE,K+1)
87 CONTINUE
DG 84 J=JS,JD
TCIS,J,K+1)=T(IB,J,K+1)
TCID,J,K+1)=T(IE,J,K+1)
B4 CONTINUE
K2=2

.USING THE NEWLY OBTAINED FIELD QUANTITIES, COMPUTE THE NEW F-

..VECTOR (J X B TERMS).

.IF M 1S EVEN, WE WILL SOLVE THE CONTINUITY AND MOMENTUM

..EQUATIGNS IMPLICIT INR. [IF M IS 6DD, '

.WE WILL SOLVE THESE SAME EQUATIONS IMPLICIT IN 2Z.
D6 33 J=JB,JE
DO 34 1=1B,IE
F(1,1,J,K2)=0.
F(2,1,J,K2)=(W(4,1,J,K2)xx2/W(1,1,J,K2)/SR(1)+(FK-1.)*W(1,1,J,K2)
1xEI(L,J,K2)/SR(1)+(C3(1,J,K2)YxB2(1,J,K2)-C2(1,J,K2)xB3(1,J,K2)))x%
énvrs2,
F(3,1,J,K2)=((C1(1,J,K2)xB3(1,J,K2)-C3(1,J,K2)xB1(1,J,K2)))*DT/2.
F(4,1,J,K2)=0(C2(1,J,K2)*xB1(1,J,K2)-C1(1,J,K2)*xB2(1,J,K2))
1-W(2,1,J,K2)xW(4,1,J,K2)/7(W(1,1,J,K2)%SR(1)))xDT/2.

34 CONTINUE

33 CONTINUE
IF (MOD(M,2) .EQ. 1) GO TO 55

GO TO 52
55 CALL YIMCRO(K,M, DT, DX, DY, CV, FK, COE, DOE, UN,BATA,BATB, SGO,
11s,18,1E,1D,JS,J8,JE,JD,C, IP,JP, TMALL)
GO TO 253
62 CALL XIMCROG(K,M,DT,DX,DY,CV,FK, COE, DOE, UN,BATA,BATB, SGO,

11s,18B,1E,1D,JS8,JB,JE,JD,C, IP, JP, TMALL)
253 CONTINUE :

.. .OUTPUT THE RESULTS.
IF (MOD(M,MW) .EQ. 1) GO TO 89
GO TO 91

89 CONTINUE
SIME=TIMExRSMA/UN
WRITE (6,104) M,SIME,DT, UN, COE
104 FORMAT(1H1, “CYCLE=",14,"TIME=",E14.7,"DT=",E14.7,
1"UN=",E14.7,E16.7)
WRITE (6,105) .
105 FORMAT -(1HO,2X,"I",2X,"J",2X, "PILOID FLUX", 4X,"TOROID FLUX", 4X,

SEe



478 1“RADIAL MAGNET",3X,"Z-- MAGNZT",d4X,"TOROID MAGNET", 2X,

479 2"RADIAL CURRENT",2X,"Z-- ZURRENT",3X,“"TORGID CURRENT")
480 Do 92 1=1S8,1D

481 DO 92 J=JS,JD

482 X1 (1,J,K)=X1 (1,J,K+1)*BTOR xRSMA

483 PSI(1,J,K)=PS1(1,J,K+1)*BTOR»RSMAxx2

484 B1 (1,J,K)=B1 (1,J,K+1)*BTOR

485 B2 (1,J,K)=B2 (1,J,K+1)*BTOR

486 B3 (1,J,K)=B3 (1,J,K+1)xBTOR

487 “C1 (1,J,K)=C1 (I,J,K+1)xCxBTIR/(4.%x3.141E61RSMA)

488 c2 (1,J,K)=C2 (1,J,K+1)*xCxBTIR/(4.%x3.14161RSMA)

489 C3 (1,J,K)=C3 (1,J,K+1)*xCxBTIR/(4,.x3.14164RSMA)

490 WRITE (6,106) I,J,PSI(I,J,K ), XI(1,J,K 1,B1(I,J,K ),
491 iB2u1,J,K ),B3(1,J,K ), C1(1,J,K r,c2i1,d,K ),C3(i1,J,K )

492 92 CONTINUE
493 106 FORMAT (1H ,213,8E15.7)

484 WRITE (6,107) .
495 107 FORMAT (1HO,2X,"1" 2X,"J",2X,"DENSITY", 9X,"RADLAL VELOGCITY",1X,
496 1"Z-- VELOCITY",3X, "TAROID VELGCITY", 1X, "1NTERNAL ENERGY", 1X,
497 2"CONDUCTIVITY", 4X, *TEMPERATURE")

498 DG 1 J=JS,JD

499 W(l,ID,J,K+2)=W(1,1E,J,K+2)

S00 W(i,18,J,K+2)=W(1,1B,J,K+2)

501 1 CONTINUE

502 DO 2 1=1S,1D

503 Wa1,1,JD,K+2)=W(1,1,JE,K+2)

504 We1,1,Jd8,K+2)=W(1,1,JB+1,K+2:

505 2 CONTINUE

506 DG 93 1=18B,IE

507 Do 93 J=JB,JE

508 F(2,1,J,K+1)=W(2,1,J,K+2)/W(1,1,J,K+2)2UN

509 F(3,1,J,K+1)=W(3,1,J,K+2)/W(1,1,J,K+2)3UN

510 F(4,1,J,K+1)=W(4,1,J,K+2)/W(i,!1,J,K+2)3xUN

511 FC1,1,J,K+1)=E1(1,J,K+1) /ACVXUNXUN

512 T (1,J,K)=T (1,3,K+1)xSGO

513 : WRITE (6,108) 1,J,W(1,1,J,K+2),F(2,1,J,K+1),F(3,1,J,K+1),
514 1F(4,1,J,K+1),EIC 1,J,K+1),TC(1,J,K ) ,FC1,1,J,K+1)

515 93 CONTINUE :

516 108 FORMAT (1H ,213,8E16.7)

517 DO 40 J=JB,JE ’

518 DO 40 1=1IB,IE

519 IF (ROCI,J) .GT. Q0.25) GO Ta 40

520 PSTCI,J,K)=.2x(PSI[I,J,K)Y+PSI(I+1,J,K)+PSI(1-1,J,K)

521 1+PSI(1,J+1 ,K)+PSI(I,J-1,K))

522 XIOH,J,K)=.2%x(XT (1, J,KY+X1(1=1,J,K)+XIC1-79,J,K)+X]I(],J+1,K)
523 1+X1(1,J-1,K))

524 40 CONTINUE

525

526 C...SET UP VALUES FOR PLOTTING.

527 DO 70 1=1S,1D

528 PC1,1)=F(1,1,JB,K+1)

529 P(2,1)=W(1,1,JB,K+2)

530 P(S,1)=XI(1,JB,K)/SR(1)/RSMA

9€T



70

77

78

7

P(6,1)=P(1,1)xP(2,1)xFR%DN

CONT INUE

Do 77 1=IB,I1E
P(4,1)=(PSI(1+1,JB,K)-PSI(1-1,J6,K))/SR(1)/2./DX/RSMAxx2
P(4,18)=(PSI1(IB,JB,K)-PSI(IS, JB K))/SR(1S)/DX/RSMAxx2
P(4,10)=(PSI(ID,JB,K)~-PSI(IE,JB,K))/SR(ID)/DX/RSMA*x2
Do 78 1=IB,IE
P(3,1)=0((B1(]1,JB+1,K)-B1(1,JS,K))/2./DY/RSMA -
l(P(4,l+1)-P(4,l-l))/2./0X/RSMA)*C/4./3.1416

CONTINUE

P(3,18)=((B1(1S,JB+1,K)-B1(1S,JS,K))/2./DY -
1(P(4,1B)-P(4,18))/DX)*C/4./3.1416/RSMA
P(3,ID)=((B1CID,JB+1,K)-B1(ID,JS,K))/2./DY -
1(P(4,1D)-P(4,1E))/DX)*C/4./3.1416/RSMA

Do 71 1=1,1D

Do 71 J=1,JD

CRs(1,1,J)=PSI1(1,J,K)

CRS(2,1,J)=C3(1,J,K)

CONT I NUE

CALL PLOT1(P,CRS,SR,1D,JD,M,RO)

CONTINUE
IF (M .GT. MS) GO TO 94

. TAKE ALL NEW VALUES AND STORE THEM AS OLD VALUES.

97

96

94

DO 96 1=1S,ID
DG 96 J=JS,JD

T (1,J,K)=T (1,J,K+1)
EIc(l,J,K) = EI(1,J,K+1)
PSI(1,J,K)=PSI(1,J,K+1)
B3(1,J,K)= B3(I,J,K+1)
B1 (1,J,K)=Bt (1,J,K+1) |
B2 (1,J,K)=B2 (1,J,K+1)
Xl (1,J,K)=X1 (1,J,K+1)
Ci (1I,J,K)=C1 (1,J,K+1)
cz2 (1,J,K)=c2 (1,J,K+1)
C3 (1,J,K)=C3 (1,J,K+1)

WL, 1,J,K)= W(L,I,J,K+2)

IF (ABS(W(L 1,J,K)) .LT. SMALL) W(L,!,J,K)=0,
CONTINUE!

IF (W(C1,1,J,K) .LT. HU) W(1,1,J,K)=HU
CONTINUE

GO TO &
CONTINUE

.COMPUTE J X B VS. GRAD P IN ALL DIRECTIONS.

WRITE (6,111)

Do 600 I=1B,IE

DO 600 J=JB,JE

GRADPR(I1,J)= FR*DN*UN*UN/CV*(EI(I+1 JoK+1)xW(1,1+1,J,K+2)
1ENCI-1,J0,K+ 1) xW(1,1-1,J,K+2)) /2, /DX/RSMA

LET



594
[e -1 ]
596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

615
616
617
618

620
621
622
623
624
625
626
627
628
629
630

632
633
634
635
636

600

v

111

C...COMPUTE THE FINAL TOROIDAL PLASMA CURRENT.

1RSMAxx2

601 CONTINUZ -
CPLASMA=CPLASMAxZ. x.3333E-9
WRITE (3,602) CPLASMA

602 FORMAT ("THE TORCGIDAL PLASMA CURRENT
WRITE (5,109) DT,M,1,J

109 FORMAT(IH ," TORUS 11 IMPLOSION", 4X,“DF¥=",E14.7," CYCLE=

C...COMPUTE THE VALUES FOR SAFETY FACTOR AS A FUNCTIGN OF POLOIDAL

C...FLUX. PRINT OQUT Q(R) ALONG THE HORIZONTAL MIDPLANE.

700

E RS

- CONTINUE

rurrial (IH,2138,0810.7)

FORMAT (1HO,2X,"1",2X,"J",2X, "SRAD P (RADIAL)" 11X,
1"J X B (RADIAL)",2X,"J » B(TORJIDAL)",1X,"GRAD P (2)",8X,
2"J X B (2)")

CPLASMA=0.

D& 601 J=JB,JE

Do 601 1=18,1E

IF (RO(1,J) .LT. .295) G€ TA 601

CPLASMA=CPLASMA + C3(1,J,K+1)xCxBTOR/4../3.1416/REMAxDXxDY x

1,15,1X,213)

IEND=1E/2
11=0
DO 700 I=1B, IEND

IF (W1, 1-1,JB,K+2]1 .LE. 0.4) .AND.

1 (Wi, 1,JB,K+2) .GE. 0.43) 11=1
CONTINUE

IF (11 .EQ. 0) GO T8 701
11P4=11+4

DG 709 [2=11,11P4

MM=1 .
IX(MM)=(2

JY(MM)=JB
FLUXITJ=PSI(12,JB,K+1)
D1=1.0E+20

I2M1=12-1

12P1=12+1

JBP1=JB+1

QPS1=0.

DG 702 L=12M1, 12P

DO 702 N=JB, JBP1

1S AMPS)

8te



637
638
639
640
641

642
643
644
645
646
647
648
649
650
651

652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687
688

702
704

715

703
705
709
701
708
71

707

iF ((N .EQ. JY(MM)) .AND. (L .EQ. IX(MM))) GO TO 702
D=ABS(FLUX1J-PSI(L,N,K+1))

1IF (D-.6GT. DY) GO TO 702

LL=L

NN=N

D1=D

CONTINUE

MM=MM+1

IX(MM)=LL

JY (MM) =NN

DL=SQRT((DX*x (IX(MM) -IX(MM-1)) ) *x2+(DY*(JY(MM) -JY(MM-1)))xx%x2)
R2=( (SRIIX(MM))+SROIX(MM-1)))/2.)%xx%x2

B11=(B1TCIX(MM) ,JY(MM) ,K+1)+B1C(IX(MM-1),JY(MM-1) ,K+1))/2,
B22=(B2(IX(MM) ,JY(MM) ,K+1)+B2(IX(MM~1) ,JY(MM-1) ,K+1)) /2.
BPOL=SQRT(B11xx2 + B22xx2)

XI1=ABS(XI (IX(MM),JY(MM) K+ 1)+ X1 (IX(MM=-1),JY(MM-1) ,K+1))/2.
QAPSI=QPSI +XI1 I xDL/BPOL/R2/3. 1416

WRITE (6,711) IX(MM),JY(MM),QPSI

IF (JY(MM) .EQ. JB) GO TO 705

LM1=1X(MM)

LPI=IX(MM)+1

JM1=JY (MM) -1

JP1=JY(MM) +1

D1=1.0E+20

DO 703 L=LM1,LP1

DG 703 N=JM1, JPI

DG 715 M3=1,MM i :

IF ((L .EQ. [X(M3)) .AND. (N .EQ. JY(M3))) GO TO 703
CONTINUE

D=ABS(FLUXIJ - PSI(L,N,K+1))

IF (D .GT. D1) GO TO 703

LL=L
NN=N
D1=D
CONTINUE
GG TGO 704

WRITE (6,706% MM,SR(12),SR(IX(MM)), QPSl

FORMAT (1H,14,4X,3(E12.5,4X))

CONTINUE

GO TG 707

WRITE (6,708}

FORMAT (1H, "COULD NOT FIND HIGH DENSITY REGION")
FORMAT(1H,214,E12.5)

CALL PLOTE
CALL EXIT(2)
END

689 C...THIS SUBROUTINE SOLVES THE FIELD AND ENERGY EQUATIONS USING
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690 C..
691 C..
692 C..
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713 C..
714
715

.AN AD! SCHEME AS OUTLINED IN DISSERTATION,
.IF M IS EVEN, THE EQUATIONS ARE WRITTEN IMPLICIT IN R.
.IF M IS GDD, THE EQUATIONS ARE WRITTEN IMPLICIT IN Z.

SUBROUTINE ADI(K,M“DT.DX.DY,CV,FK,COE,DOE;UN,BATA,BATB,SGO,
11s,1B,1E,1D,JS,JB, JE, JD,C, 1P, JP, DN, RSMA, HU, RORAD)

DIMENSION PSI{(21,22,2),B1:121,22,2),B2(21,22,2),X1(21,22,2),
1C1(21,22,2),C2(21,22,2),C3(21,22,2),T(21,22,2),
2Ww(4,21,22,3),F(4,21,22,3) EI(21,22,2),B3(21,22,2),SR(21),
4GA(21,22),6B(21,22),62(21_22),6D(21,22),CN(21,22,2),
SAA(100,12),BB(4,4),PR(21,22),PAS(6,21,22),PAG(6,21,22)

LCM (T2)

COMMON/TZ/ PSI,B1,B2,33,Xi,C1,C2,C3,7T,W,F,SR, PERG, PERS, TO1, TO2
1,6GA,GB,GC,GD,CN,EIl ,AA,BB,TO3,T04,TS1,TS2,TS3

K=1 :
IF (MOD(M,2) .EQ. 1) 50 T6 11
Go TO 12

.PSI EQUATION IMPLICIT IN Z.
11 CONTINUE
Do 14 J=JB,JE
Do 13 1=1IB,IE
GC(1,J)=COE/(T(1,J,K+1)xDY*DY)
1+DTxW(3,1,J,K+1)/WE1, 1,J,K+1)/(2. xDY)
GA(1,J)=COE/(T(1,J,K+1)xD¥xDY)
1-DT*W(3,1,J,K+1)/We1,1,J,K+1)/(2, xDY)
GB(1,J)=1.+2.xCOE/4T(1,J,K+1)xDYxDY)
GD(1,J)=PSI(1,J,K)+CAEXSR(1)/(T(1l,J,K)xDX*xDX)
1% C(PST(1+1,J,K)-PS1(1,J,K))/C(SR(1+1)+SR(1))/2.)
- 2-(PSI1(1,J,K)Y-PSI(1-1,J,K))/((SR(I-1)+SR(1))/2.))
4-DTxW(2,1,J,K)/W(T1,1,J,K)®(PSI(1+1,J,Ki-PSI(1-1,J,K))/(2.xDX)
13 CONTINUE
14 CONTINUE

. .REDUCE THE RESULTING TRI-DIAGONAL MATRIX USING A CRGUT METHOD.

CALL CROUT(M,K, IB, IE,JB,JE,IP,JP.GA,GB,GC,GD,PS!,JD, D)
GG TO 17

..PSI EQUATION IMPLICIT EN R.

12 CONTINUE
Do 19 J=JB,JE
DE 18 I=1B,IE
GC(1,J)=COExSR(1)
V7(TC1,J,K+1) *xDXXxDXx (SER(1~1)+SR(1))/2.)
2+DTxW(2, 1 ,J,K+1) /M1, 1,J,K+15/(2. xDX)
GA(]l,J)=COE*SR(!1)
W/(TCL,J,K+1)xDXxDXx(SR(1+1)+SR(1))/2,)
2-DT*W(2,1,J,K+1)/WIT1,.1,J,K+13/7(2.%xDX)

ove



GB(1,J)=1.+COE/(T(1,J,K+1)*xDX*DX)
1xSR(1)%(2./(SR(I+1)+SR(1))+2./{SR(I1-1)+SR(1)))
GD(1,J)=PSI(1,J,K)+COE/(T(1,J,K)*DY*DY)
1xC(PSI1(1,J+1,K)-PSI(I,J,K))
2-(PS1(1,J,K)-PSI(1,J-1,K))
3)-DT*W(3,1,J,K)/W(1,1,J,K)/(2.%DY)*(PSI(1,J+1,K)-
4PSI1(1,J-1,K))

18 CONTINUE

19 CENTINUE

. .REDUCE THE RESULTING TRI-DIAGONAL MATRIX USING A CROUT METHOD.

CALL CROUTIM,K, IB,IE,JB,JE, IP,JP,BGA,GB,GC,GD,PS1, JD, ID)

...COMPUTE THE NEW RADIAL AND Z-COMPONENTS OF MAGNETIC FIELD.

17 CONTINUE

" Do 25 I1=1S,1D
PSI(1,JB-1,K+1)=PSI(1,JB+1,K+1)

25 CONTINUE
DG 32 J=JB,JE
Do 31 1=IB, IE
B1(1,J,K+1)=-(PSI(1,J+1,K+1)=-PSI1(1,J-1,K+1))/(2.%SR(1)x%DY)
B2(1,J,K+1)= (PSI(1+1,J,K+1)-PSI1(1-1,J,K+1))/(2.xSR(1)*DX)

31 CONTINUE :

32 CONTINUE
DG 3 J=JS,JD
B2(ID,J,K+1)=(PSI1(ID,J,K+1)-PSI(IE, J,K+1))/SR(ID)/DX
B2(1S,J,K+1)=(PS1(IB,J,K+1)-PSI (IS, J,K+1))/SR(1S)/DX
CONTINUE
DO 4 1=1S,1D
B1(1,JS,K+1)=-(PSI1(1,JB,K+1)-PSI(
B1(1,JD,K+1)=-(PSI(1,JD,K+1)-P5I1
CONTINUE
DG S 1=IB,IE
B1(1,JS,K+1)=-(PSI1(1,JS+1,K+1)-PSI(1,JS,K+1))/(SR(1)%DY)
B1(1,JD,K+1)=-(PSI1(1,JD,K+1)-PSI(1,JD-1,K+1))/(SR(1)*DY)
CONTINUE e
DG 6 J=JB,JE
B2(1S,J,K+1)=(PSI(IB,J,K+1)}-PSI(1S,J,K+1))/SR(IS)/DX
B2(ID,J,K+1)=(PSI(ID,J,K+1)-PSI(IE,J,K+1))/SR(ID)/DX
CONT I NUE :

1,J8,K+1))/SR(1)/DY
(1,JE,K+1))/SR(1)/DY

C...COMPUTE THE NEW TOROIDAL CURRENT DENSITY.

DG 8 J=JB,JE

DO 7 1=I1B,1E :
C3(1,J,K+1)=(B1(I,J+1,K+1)-B1(Il,J-1,K+1))/2./DY -
1(B2(1+1,J,K+1)-B2(1-1,J,K+1))/2,. /DX

CONTINUE
C3(IS,J,K+1)=(B1(1S,J+1,K+1)-B1(1S,J-1,K+1))/2,./DY -
1(B2(1IB,J,K+1)-B2(1S,J,K+1))/DX
C3(ID,J,K+1)=(B1(ID,J+1,K+1)-B1(1ID,J-1,K+1))/72./DY
1-(B2(1D,J,K+1)-B2(1E,J,K+1))/DX

CONT I NUE

Do 9 1=1B,1E

ve



796 C3(1,JS,K+1)=(B1(1,JB,K+1)-B1(1,JS,K+1))/DY =~

797 1(B2(1+1,JS,K+1)-B2(i-1,J8,K+1))/2./DX

798 C3(1,JD,K+1)=(B1(1,JD,K+1)-B1(1,JE,K+1))/DY -
799 1(B2(1+1,JD,K+1)-B2(:~-1,:iD,K+1))/2./DX

800 9 CONTINUE

801 C3(1S,JS,K+1)=(B1(IS,JB,K+1)-B1(1S,JS,K+11))/DY -
802 1(B2(1B,JS,K+1)-B2(1S,JS,K+1))/DX

803 C3(ID,JS,K+1)=(B1(1D,JB,K+1)-B1(1D,JS,K*1))/DY -
804 1(B2(1D,JS,K+1)-B2(1E,JS,K+1)) /DX

805 C3(1S,JD,K+1)=(B1(1S,JD,K+1)-B1(1S,JE,K+11)/DY -
806 1(B2(1B,JD,K+1)-B2(18,JD,K+1)) /DX

807 C3(ID,JD,K+1)=(BI(IS,JD,K+1)-BI1(IS,JE,K+1))/DY -
808 1(B2(I1D,JD,K+1)-B2(1E, JD,K+1)) /DX

809

810 IF (MOD(M,2) .EQ. 1! GO TO 311

811 GO TOo 312

812

813 C...XI EQUATION IMPLICIT IN Z.
814 311 CONTINUE

815 DO 16 J=JB,JE

816 Do 15 1=1B,IE

817 HON=0.5

818 IF (WC1,1,J,K) .GE. 0.5) HON=0,

819 - IF (W(1,1,J,K) .LT. 0.3) HON=2.S5 \
820 GC(I1,J)=COE/(DY*DYx(T(1,J-1,K+1)+T(1,J,K=1))/2.)

821 14DTxW(3,1,J-1,K+1 /W (1,1,J-1,K+1)/(2.3DY:

822 GA(1,J)=COE/(DY*xDYx(T(! ,J+1 ,K+1)+T(1,J,K+1))/2.)

823 1-DT*W(3,1,J+1,K+1 /W (1,1,J+1,K+1) /(2. 2DY!

824 GB(I1,J)=1,+COE/ (DYxLY)

825 1x(2,. /(T4E,J+1 , K+1)+7(1, J,K+1))

826 2+2./(T(1,J-1,K+1)+T(1,J,K+1)))

827 GD(1,J)=X1(1,J,K)+CCEXSR(1)/(DX%xDX)x(

828 TXTCL+1,J,K)=XT(L, J,K))/C(TCI+1,J,K)+T(1,J,K))r2.

829 2% (SR(I+1)+SR(1)) /2.y ~(XIC(],J,K)-XI(1-1,d,K))

830 B/70(TC1-1,J,K)Y+T(1,J,K))/2.x{SR(I1-1)+SR(11)/2.))

831 4 -DTxSRID)x((W(2,1+1,J,K)/WCT,1+1,J,K)x

832 SXI(1+1,J,K)/SR(1+")-W(2,1-1,J,K)/

833 6W(1,1-1,J,KIxXI(1-1,J,K)/SR(I-1))/(2.=xDN)1)»+ DT*SR(1)x(

834 7 (B1CI+3,J,K)xW(4,1+1,J,<)/W01,1+1,J,K)

835 8 -B1(I-1,J,K)xW(4,1-1,J,0/401,1-1,J,K) )2 (2, %DX)

836 9+(B2(1,J+1 , K+1)xWt4,1,J+1 , K+1)/W(1,1,J+1,K+1)

837 1 -B2(1,J-1,K+1)xWt4,1,J-1,K&¥)/W1,1,J-1,K+1))/(2.xDY))

838 GD(1,J)=6GD(1,J)

839 6+0.5/4. *HON*DT/DX* (ABS(W(2,1+1,J,K)/W¢1,1+1,J,K)-W(2,1,J,K)
840 Z/WAL, T, KM% (XL G+, J,KY=XT(1,J,K))-ABS(M(2,1,J,K)/W(1,1,J,K}
841 8-W(2,1-1,J,K)/W1,1-1,J,K))X(XIC],J,KI=-XI(]-1,4,K)))

842 6+0.5/4. *HONxDT/DY* (ABS(WI(3,[,J+1,K)/Wet1,1,J+1,K)-W(3,1,J,K)
843 7/0C1, T, J, K x(XT(F,J+1,K)-XI(],J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
844 8-W(3,1,J-1,K)Y/WC1,1,J-1,K))x(XI(1,J,KI=-XIC(],J-1,K)))

845 15 CONTINUE

846 16 CONTINUE

847

848 C...REDUCE THE RESULTING TRI-DIAGONAL MATRIX USING A CROUT METHOD.

'4 44



849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

867

868
869
870
871
872
873
874
875
876
877
878
879
880

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

c...X
312

21
22

c...R

317
c...C
cC...cC

325

CALL CROUT(M,K, IB, IE,JB,JE,IP,JP,BGA,GB,GC,GD, X1,JD,1D)
GO TO 317 :

I EQUATION IMPLICIT IN R.
" CONTINUE )

Do 22 J=JB,JE

DB 21 1=1B,IE

HON=0.5

IF (W(1,1,J,K) .GE. 0.5) HON=O0.

IF (W(1,1,J,K) .LT. 0.3) HON=2.5
GC(1,J)=COEXSR(1)/(DXxDXx(T(I-0,J,K+1)+
1TC1,J,K+1)) /2. x(SR(I1-1)+SR(1))/2.) +DTxSR(I)x
2W(2,1-1,J,K+1) /W01, 1-1,J,K+1) /(2. xSR(1-1)xDX)
GA(],J)=COExSR(1)/(DXxDXx(T(1+1,J,K+1)+
1T(1,J,K+1)) /2. x(SR(1+1)+SR(1))/2,) -DTxSR(I)x
2W(2,1+1,J,K+1) /W01, 1+1,J,K+1) /(2. xSR(] +1) *xDX)
GB(1,J)=1,+COExSR(1)/(DXxDX)x(2./(T(1+1,J,K+1)
1+#TC1,J,K+1))%x2. /(SR(1+1)+SR(1)) + .
22./(T(1-1,J , K+1)+T(1,J,K+1))x2, /(SR(]1-1)+SR(1)))
GD(1,Jd)=X1(1,J,K)+COE/ (DYXDY)x{ (X1 (1l,J+1,K)-XI1(1,J,K))/
1((T(L,J+1,K)+T(1,J,K))/2.)
2-(X1C1H,J,K)=XIC],Jd=-1,K))}/Z7C(TC1,J-1,K)+T(1,J,K))/2.)
3) -DT/(2.xDY)x(W(3,1,J+1,K)
A/W01,1,J+1 , K)xXTE(],J+1,K) -
SW(3,1,J-1,KY/W(1,1,J-1,K)xX1(1,J-1,K)) )
7+DTXSRO)x((B1(1+1,J,K+1)xW(4,1+1,J,K+1)/W(1,1+1,J,K+1)
8 -BI(I-1,J,K+1)xW(4,1-1,J,K+1)/W(C1,1-1,J,K+1))/(2.xDX)}
9+ (B2(1,J+1,K)xW(4,1,J+1,K)/WC1,1,J+1,K)
1 -B2(1,J-1,K)xW(4,1,J-1,K)/W(1,1,J-1,K))/(2,.%DY))
GD(1,J)=GD(I1,J)
6+0.5/4. xHONXxDT/DXx (ABS(W(2,1+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)
Z/WMC1, 1,0, K x(XTCT+1,J,K)=-XTI(1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,K)/W(1,1-1,J,K))%(XI(],J,K)-XI(1-1,J,K)))
6+0.5/4. xHON*DT/DY* (ABS(W(3, 1, F+1,K)/W(1,1,J+1,K)-W(3,1,J,K)
7/WMC1, 1,3, K x(XTCL,J+1,K)-XI(1,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
8-W(3,1,J-1,K)/W(Y,1,J-1,K)Ix(XI(1,J,K)-XI(1,J-1,K)))

CONTINUE

CONTINUE

EDUCE THE RESULTING TRI-DIAGONAL MATRIX USING A CROUT METHGD.
CALL 'CROUT(M,K,18B,!E,JB,JE,IP,JP,BA,GB,GC,GD, XI,JD,ID)
CONTINUE

OMPUTE THE NEW TORGIDAL FIELD, AND RADIAL AND Z-COMPOGNENTS OF
URRENT DENSITY.
D6 325 1=1S, 1D
XIECL,JB=1,K+1)= XI(1,JB+1,K+1)
CONTINUE
D& 331 J=JB,JE
D& 331 1=18B,1E
B3(1,J,K+1)=XI1(1,J,K+1)/SR(1)
C1(1,J,K+1)=-(XI(1,J+1,K+1)-X1(1,J-1,K+1))/(SR(1)x
12. xDY)

£Eve



902
903
904
905
906
907
908
909
910
911

912
213
914
815
916
917
918
919
920
921

922
923
924
925
926
927
928
829
930
931

932
933

935
936
937
938
939
940
941

943
844
945
946
947
948
949
950
951
952
953
954

OOO0

331

133

134

A0

a1

az

A3

R1

R2

c2(1,J,K=1)= (XI1(1+1,J,K+1)=-X1(1-1,J,K=1¥)/(SR(I)x

12.%DX)

CONTINUE

DO 133 1=1S,1D

B3(1,JD,K+1)=X1(1,JD,K+1)/SR(1)
B3(1,JS,K+1)=XI1(I,JS,K+1)/SR(1)

CONTINUE

DG 134 J=JS,JD

B3(ID,J,K+1)=X1(1D,J,K+1)/SRLID]
B3(IS,J,K+1)=X1(1S,J,K+1)/SR(IS]

CONTINUE

DO 40 1=1S,I1D
Cl1(],JD,K+1)=-(XI1(02,JD,K+8)-X%1(1,JE,K+1))/SR(1) /DY
Cr(1,JS,K+1)=-(XI(2,JB,K+1)-XKI(F,JS,K+1))}/SR(1)/DY
CONTINUE

DO 41 J=JS,JD
C2(1S,J,K+1)=(XI(IE,J,K+1D-X1(1E,J,K+1]1)/SR(1S)/DX
C2(ID,J,K+1)=(X1 (1D, J,K+1Dd-XI(IE,J,K+11)/SR(ID) /DX
CONTINUE

DO 42 1=1B,IE ~

C2(1,JD,K+1)=(XI(1#1,JD,K*1)-X1(1-1,JD,K#+1))/2./SR(1)/DX
C2(1,JS,K+1)=(X1(141,JS,Kr1)-XICI-1,JS,K+1))/2./SR(1)/DX

"CONTINUE

DO 43 J=.B,JE

C1(1S,J,K+1)==(XI(LS,J+1 ,K+1)-=-XI(IS,J-1,K+1))/SR(IS)/2./DY
CIUID,J,k+1)==(XI(ID,J+1,K+13-XI1(ID,J-1,K+1))/SR(ID)/2./DY

CONTINUE

. .COMPUTE THE POWER LOES DUE TO OXYGEN AND SILICON RADIATION.
. .WARNING: THE ACCURACY OR VALIDITY OF “"CORONAL EQUILIBRIUM®"
. .DURING THE HEATING PHASE IS SUSPECT.

.HERE WE EMPLOY THE "FOST" AVERAGE 10N MOGOEL.

DG R J=J&,JE
DO R I=1E,IE
IF ((E1(L,J,K) .GE. T31) AND. (EI(I

IF ((E1(L,J,K) .GT. T33) AND. (EI(I
IF (E1(1,J,K) .LT. TO1) GO TG R4

IF (EI(1,J,K) .GT. TO4) CaLL EXIT(1)
PAG(1,1,J)=652.374
PAO(2,1,J)=1835.499
PAC(3,1,J)=1984.266
PAG(4,1,J)=1059. 846
PAG(S5,1,J)=280.0476
PAOG(6,1,J)=29.33792

GO TO R

PAG(1,1,J)=-55.15118
PACG(2,1,J)=-154.3956
PAG(3,1,J)=-248.992
PAG(4,1,J)=-180.8154
PAG(S5,1,J)=-57.64175
PAG(6,1,J)=-6.149181

GO TO R

X

) ,J,K» .LE. T32)) GO TO
IF ((E1CI,J,K) .GT. T32) AND. (EI(I,J,K) .LE. T33)) GO TO
,J,K) LE. T34») GO TO

R1

R3

vve



955 RS PAG(1,1,J)=-20.68316

956 PAO(2,1,J)=-,7482238

957 PAGI(3,1,J)=. 7390959

958 PAG(4,1,J)=-.672159

959 PAGI(5,1,J)=1.,338345

960" ' PAG(6,1,J)=3.734628

961 GG TG R :

962 R4 PAG(1,1,J)=1, -

963 PAGI(2,1,J)=1.

964 PAG(3,1,J)=1.

965 PAG(4,1,J)=1.

966 PAGI(5,1,J)=1.

967 PAGI(6,1,J)=1.

968 ‘R - CONTINUE

969 08 RA J=JB, JE

970 D6 RA 1=1B,IE

a7 IF ((EI(1,J,K) .BGE. TS1) .AND. (EI(I,J,K) .LE. TS2)) GO TO RA1l
972 IF ((EI1(1,J,K) .GT. TS2) .AND. (EI(I,J,K) .LE. TS$3)) GO TO RA2
973 GG TO RA3

974 RAl1 PAS(1,1,J)=-52,75519

975 PAS(2,1,J)=-134.613

976 PAS(3,1,J)=-208.2753

977 PAS(4,1,J)=-159.1874

978" PAS(5,1,J)=-59.89162

979 PAS(6,1,J)=-8.684849

980 GO TG RA

981 RA2 PAS(1,1,J)=-19.54323

982 PAS(2,1,J)=,0499481

983 PAS(3,1,J)=-5.726766

284 PAS(4,1,J)=-2.710884

985 PAS(5,1,J)=30.75145

986 " PAS(6,1,J)=26.89966

as7 GO TO RA

988 RA3 PAS(1,1,J)=1.

989 PAS(2,1,J)=1.

990 PAS(3,1,J)=1.

991 PAS(4,1,J)=1.

992 PAS(5,1,J)=1,

993 PAS(6,1,J)=1,

994 RA CONTINUE

895 DB RAD J=JB, JE

996 DO RAD [=IB,IE

997 XLZOG=PAG(1,1,J)

998 XLZS=PAS(1,1,J)

999" XLOG=ALOG10(EI (1, J,K)*xUN*UN/CV/11600./1000.)
1000 - DB RADI KK=1,S '

1001 XLOGK = (ABS (XLOG) ) xxKK

1002 IF ((XLOG .LT. 0.1 .AND. (MOD(KK,2) .EQ. 1)) XLOGK=-XLOGK
1003 XLZ26=XLZO + PAG(KK+1,1,J)*xXLOGK
1004 XL.ZS=XLZS + PAS(KK+1,1,J)xXLBGK
1005 RADI CONTINUE

1006 XXLZ26=10. x*xXLZ20

1007 XXLZS=10. xxXLZS

1) L4



1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

000

RAD

RAD
RAD

IF (EI1(1,J,K) .LT. TO1) XXLZ0=0.
IF (EI1(1,J,K) .LT. TS1) XXLZS=0.
RO=(W(1,1+1,J,K)+p (Y, 1-1,J,K)+W(1,1,0.K)+
WO, 1,J=-1,K)+W(1,1,J+1,K)) /5.
IF (RO .LT. HU) RO=+U -
IF (RO .LE. RORAD! GO TO RAD1
PRO=PEROXXXL2Z0
PRS=PERS*XXLZS
GO TO RAD2
1 PRO=(.5-(.5-PERO)=( (RO-HU)/(RORAD-HU) ») xXx|.Z0
- PRS=(.5-(.5-PERS)* ( (RO-HU)/C(RORAD-HU) ») »»XxL2ZS
2 PR(1,J)=(PRO+PRS)*4,5E46%xW(1,1,J,K)*xDNxRSMA/UN*DT/UN/UN
CONTINUE

..FOR A ZERO-DIMENSIONAL LOSS CONSTANT, TaAU,
...FORMULATION; WE SIMPLY PUT A TERM DT/TAU IN THE EXPRESSION
..FOR "GB"” BELOW. TAU IS A NORMALIZED LOSS TIME.

IF (MOD(M,2) .EQ. 1) GO TO 211
GO TO 212

C...ENERGY EQUATION IMPLICIT IN 2.

21

1 CONTINUE
DO 214 J=JB,JE
Do 213 [=1B,IE
HON=0.5 .
IF (W(1,1,J,K) .GE. 0.5) HON=O0.
GC(I,J)=DTx(CN(I,J,K+1)+
1CNCT,J=-1,K+1)) /(2. %xW(1,1,J,K+1)x
2DYxDY) +DTxW(3,1,J,K+1)/
SW(1,1,J,K+1)/7(2.xDY)
GA(l,J)=DTx(CN(I, J,K+1)+
TICNCTL,J+1 ,K+1)) /(2. xW(1,1,J,K+1)x
2DYxDY) -DTxW(3,1,J,K+1)/
W, 1,J,K+1)/7(2. %xDY)
GB(I,J)=1.+DT/(W(1,1,J,K*1) DYDY ) x( *
1 (CN(I,J,K+1)+CN(1,J+1,K#1)2/2,
2+(CN(I1,J,K+1)+CN(3,3-9,K+1))/2,)
4+DT*(FK-1.)/2. x((SROI+1)%W(Z, 141, J,K+1)/WC1,1+1,J,K+1)
S-SROI-1)*W(2,1-1, ,K+1)/%(1,1-1,J,K+11)/(2, *xSR(1)*DX)
7+HW(3,1,J+1 , K+1) /01,1 ,J¢1 ,K+1) -
8W(3,1,J-1,K+1)/W(l,1,J-1,K+1))/(2.xDY])
GD(1,J)=EI(I,J,KY+DT/(W(),1,J,K)xSR(]]1*DXxDX)*(0.5x(SR{I+1)+SR(I))
2% 0.Sx(CN(I,J,K)+SNCI+1,J,K))*(ETC(1+1,J,K)-EI(1,J,K))-0.5%x(SR(1-1)
4+SR(1))% O.Sx(CN(E,J,K)+ON(1-1,J KN x¢EICT,J,K)-EI(]I-1,J,K)))
S5-DT*W(2,1,J,K)/W(iH,1,J,KD
6x(EI(I1+1,J,K)-EI(E-1,J,KD)/[2.%DX)-0.5%DTx(FK-1,)«EI1(},J,K)*
AC(SRII+1)*xW(2,1+1,J,K)/WI1,1+41,J,K)
S -SRUI-1)xW(2,1-1,J,K)/W1,1-1,J,K)
6)/(2.xSR(1)xDX)
7+H(W(3,1,J+1,K)/W(D3,1,J+1,K)~
8W(3,1,J-1,K)/WC1,E,J-1,K¥)/I
92.xDY))
8+COEX(CI1(],J,K+1)#x24C2(1,J, K+1)xx2+C3(],J,K+1)x%x2)/

9ve



1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

213
214

c...R

C...E
212

(T, J,K IxW(1,1,J,K+1))

GD(1,J)=GD(1,J) - PR(I,J)

6+0.5/4. xHON*xDT/DXx (ABS(W(2,1+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)
7/, 1,3, K))x(ETCT+1,J,K)-EI(1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,K)/W(1,1-1,J,K))x(ElI(],J,K)-E1(1-1,J,K)))

6+0.5/4. xHONXDT/DY* (ABS(W(3,1,J+1,K)/W(1,1,J+1,K)-W(3,1,J,K)
7/M01,1,J, K x(EL(T,J+1,K)-EI(],J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
8-W(3,1,J-1,K)/W(1,1,J-1,K))x(E1(C],J,K)-El1(]1,J-1,K)))

CONTINUE

CONTINUE

EDUCE THE RESULTING TRI-DIAGONAL MATRIX USING A CROUT METHOD.
CALL CROUT(M,K, IB,IE,JB,JZ,IP,JP,GA,GB,GC,GD, EI,JD,ID)
GO TO 217 ’

NERGY EQUATION IMPLICIT IN R.

CONTINUE

DO 235 J=JB, JE

DB 234 1=1B, IE

HON=0.5 :

1F (W(1,1,J,K) .GE. 0.5) HON=0,
SC(1,J)=DT*x0.5x(CN(1,J,K+1)+CN(I-1,J,K+1))%0.Sx(SR(I-1)+SR(1))/
2(W(1,1,J,K+1)%xSR(1)*xDX*DX) +DT*xW(2,1,J,K+1)/
3Wl1,1,J,K+1)/(2.%xDX)

BA(1,J)=DT*0.5x(CN(1,J,K+1)+CN(I1+1,J,K+1))%0.5%x(SR(I1+1)+SR(1))/
2(W(1,1,J,K+1)%SR(1)*DX*DX) -DT*W(2,1,J,K+1)/

W1, 1,J,K+1)/(2. xDX)

SB(1,J)=1.+DT/(W(1,1,J,K+1)xSR(1)*xDX*DX) % (
10.5%(CNCI,J,K+1)+CN(1+1,J,K+1))%0.5x(SR(1)+SR(1+1))+
30.5%x(CN(I,J,K+1)+CN(I-1,J,K+1))%0.5x(SR(1)+SR(1-1)))
4+DT*(FK-1.)/2. x((SR(I+1)xW(2,1+1,J,K+1)/
SW(1,1+1,J,K+1)-SR(I-1)*xW(2,1-1,J,
GK+1)/W(1,1-1,J,K+1))/(2.xSR(1)xDX) +
ZW(3, 1,J+1,K+1) /W1, 1,041 ,Ke1) -
BW(3,1,J-1,K+1)/W(1,1,J-1,K+1))/
9(2.%DY))

GD(I,J)=EI(1,J,K)  +DT/(W(1,1,J,K)*DY*DY)x*(
10.5%x(CNCI,J,K)+CNCT,J+1,K)IX(EI(1,J+1,K)~-
2E1(1,J,K))-0.5%(CN(I,J,K)+
3CNCI,Jd-1,K)*(EIC(],J,K)-EI(I,J=1,K)))
4-DTXW(3,1,J,K)/W(1,1,J,K)X(EI(],J+1,K)-
SEICI,J-1,K))/(2.xDY)-DT*(FK-1.)*EI1(1,J,K)*0.5x%
AC(SROT+1)xW(2, 1+1,J,K)/W(1,1+1,J,K)

5 -SROI-1I%W(2,1-1,J,K)/W(Y,1-1,J,K)

6)/(2.%xSR(1)xDX) +(

WIS, 1, J+1,K) /W, 1,J+1,K)-
BW(3,1,J-1,K)/W(1,1,d-1,K))/¢

92.xDY))
8+COEX(C1(1,J,K+1)%x%x2+C2(1,J,K+1)%xx2+C3(1,J,K+1)%xx2)/
O(T(I,J,K IxW(1,1,J,K+1))

GD(1,J)=6D(1,J) - PR(I,J) '
6+0.5/4. xHONXDT/DX* (ABS(W(2, 1+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)
Z/WC1, 1, J,K)IX(ELCT+1,J0,K)-E1C1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)

Lye



1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

c.

8-W(2,1-1,J,K)/W(1,1-1,J,K)Ix(EL1,J,K)-EI(1-1,J,K)))
6+0.574. xHONxDT/DY* {ABS(W(3,1,J+1 ,K)/W(1,1,J+1,K)¥-W(3,1,J,K)
7/MC1, 1L, I, KD x(ET(L,J+1,K)-E1(],J,K))-ABS(W(3,1,4,K)/W(1,1,J,K)
8-W(3,1,J-1,K)/W(1,3,J-1,K))IxtE1:1,J,K)-ELl(I,J-1,K)))

234 CONTINUE

235 CONTINUE

. .REDUCE THE RESULTING TRI-DIAGOMAL MATRIX USING A CROUT METHOD.
CALL CROUT(M,K, IB, IE,JB,JE,IP,JP,GA,GB,GC,GD, EI,JD,ID)
217 CONTINUE
DO 225 1=18,1ID
EICI,JB-1,K+1)= EI4],JB+1,K+1)

. 225 CONTINUE

C.
C.

1150

1151
1182
1163
1154
1155
1156
1157

OO0

’

RETURN
END

.. THIS SUBROUTINE SOLVES THE CONTINUITY AND MOMENTUM EQUATIOGNS
..IMPLICIT IN 2Z.

\

SUBROUTINE YIMCRO(K,M,DT,DX,DY,CV,FK, CAE, DOE, UN,BATA,BATB, SGO,
11s8,18,1E,1D,J8,J8,JE,JD,C, IP,JP, TMALL)

DIMENSION PSI(21,22,2),B1121,22,2),B2(21,22,2),XI1(21,22,2),
1C1(21,22,2),C2(21,22,2),C3(21,22,2),T(21,22,2),
2W(4,21,22,3),F(4,21,22,3) ,EI1(21,22,2),B3(21,22,2),SR(21),
4GA(21,22),GB(21,22],6C(21,22),6D(21,22),CN(21,22,21,
SAA(100,12),BB(4,4)

LCM (T2)

COMMON/T2/ PSI1,B1,B2,B3,X01,C1,C2,C3,T,W,F,SR
1,GA,6B,GC,GD,CN,EIl ,aA,BB

. .USING NEW VALUES OF FIELDS, CURRENTS AND TEMPERATURE WE AGAIN
.SOLVE THE MOMENTUM AND CONTINUITY EQUATION FULLY EXPLICITLY TO
..OBTAIN PREDICTOR VALUES FOR W-VECTOR. THESE VALUES ARE THEN USED
.IN THE NON-LINEAR TERMS WHEN SOLVING THE AD! SCHEME,

K1=1

K2=3

K3=1

K=1

DO 38 J=JUB, JE

DG 39 1=18,IE .

FO1,1,J,K2)=W(1,1,3.K1)

1-BATA/SRU1)*(SR(I+12xW(2,1+1,J,K3)-
2SROI-1)xWi2,1-1,J,K3))+F(1,1,J,Ki+F(1,1,Jd,K+1)

6+0.5/4. x0.5xDT/DX*x (ABS(W(Z, [+1,J,K)/W(T1,1+1,J,K)-W(2,1,J,K)

8ve .



N

1167

1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
118S
1186
1187
1188
1189
1190

1191

1192
1193
1194
1195

1196

1197
1198
1199
1200
1201
1202
1203
1204
1205

39
38

[ ' '

Z/WCT, LI, KD (WA, 1 +1,0,K)-W(1,5,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,KY/W(1,1-1,J,K))x(W(1,1,J,K)-W(1,1-1,J,K)))
6+0.5/4.%x0.5xDT/DY*(ABS(W(3,1,J+1,K)/W(1,1,J+1,K)-W(3,1,J,K)
Z/WC, 1,0, K (WO, T ,J41,K)=W(1,31,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
8-W(3,1,J-1,K)I/W(1,1,J-1,K)Ix(W(1,1,J,K)-W(1,1,J-1,K)))
F(2,1,J,K2)=W(2,1,J,K1)

1-BATA/SR(OII*(SRII+1)x(W(2,1+1,J,K3)%xx2

2/W(1, 141, J,K3)+(FK=1.)%xW(1,1+1,J,K3)*EI(1+1,J,K3))-SR(I-1)x
3(W(2,1-1,J,K3)%xx2/W(1,1-1,J,K3) +(FK-1.)xW(1,1-1,J,K3)
4%EI1(1-1,J,K3)))+F(2,1,J,K)+F(2,1,J,K+1)
6+0.5/4.x0.5xDT/DX*x(ABS(W(2,1+1,3,K)/W(1,1+1,J,K)-W(2,1,J,K)
7/WE1, 1,3, KN *x(W(2,1+1,J,K)-W(2,1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,K)/W(1,1-1,J,K))*x(W(2,1,J,K)-W(2,1-1,J,K)))
6+0.5/4.%0.5xDT/DY* (ABS(W(3,1,J+1,K)/W(1,1,J+1,K)-W(3,1,J,K)
Z/WCL, 1,3, KN x(W(2,1,J+1,K)-W(2,1,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
8-W(3,1,J-1,K)/W(1,1,J-1,K))x(W(2,1,J,K)-W(2,1,J-1,K)))
F(3,1,J,K2)=W(3,1,J,K1)

1-BATA/SRUI)*x(SRT+1)xW(2,1+1,J,K3)x
2W(3,1+1,J,K3)/W(1,1+1,J,K3)-SR(T1-1)xW(2,1-1,J,K3)xW(3,1-1,J,K3)
B/W1,1-1,J,K3))+F(3,1,J,K)+F(3,1,J,K+1)

6+0.5/4.%0.5xDT/DX*x (ABS(W(2,1+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)
7/WC, 1, I, K% (W(3,1+1,J,K)-W(3,1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,K)/W(1,1-1,J,K))*(W(8,1,J,K)-W(3,1-1,J,K)))
6+0.5/4.%0.5xDT/DY*x(ABS(W(3,1,J+1,K)/W(1,1,J+1,K)-W(3,1,J,K)
7/WC1, 1,3, K x(W(3,1,J+1,K)-W(3,[,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
8-W(3,1,J-1,K)/WC1,1,J-1,K))x(W(3,1,J,K)-W(3,1,J-1,K)))
Fea,1,J,K2)=W((4,1,J,K1)

1-BATA/SR(1)x(SR(1+1)xW(2,1+1,J,K3) .
2%W(4,1+1,J,K3)/W(1,1+1,J,K3)-SRI1-1)xW(2,1-1,J,K3)xW(4,1-1,J,K3)
1/WCY, 1-1,J,K3))+F(4,1,J,K)+F(4,1,J,K+1)
6+0.5/4.%0.5%DT/DXx(ABS(W(2,1+1,3,K)/W(1,1+1,J,K)-W(2,1,J,K)
7/WC, 1,J, K *x(W(4,1+1,J,K)-W(4,1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,K)/WC1,1-1,J,K))x(WC4,1,J,K)-W(4,1-1,J,K)))
6+0.5/4.%0.5*%xDT/DYX(ABS(W(3,1,J+1,K)/W(1,1,J+1,K)-W(3,1,J,K)
7/WC, 1,0, K))I%x(W(4,1,J+1,K)-W(4,1,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
8-W(3,1,J-1,K)/W(1,1,J-1,K))*(W(3,1,J,K)-W(4,1,J-1,K)))

CONTINUE

CONTINUE

1206 C...SET UP THE MATRIX FORM OF THE CONTINUITY AND MOGMENTUM EQUATIGNS.
1207 C...REDUCE THE MATRIX USING A CROUT METHOD THEREBY OBTAINING THE NEW

1208
1209
1210
1211
1212

1213

1214
1215
1216
1217
1218
1219

C...DENSITY AND VELOCITY.

DO 113 1=1IB,IE
F(3,1,JE,K2)=F(3,1,JE,K2)=(FK-1.)xW(1,1,JD,K+1)xEI(1,JD,K+1)*BATB
D0 114 J=JS,JP
IF (J .EQ. JS) GO TO 115
AA(4xJ-3,1)=0. )
AA(4xJ-3,2)=0.
AA(4xJ-3,3)=~-BATB
AA(4%J-3,4)=0,
AA(4xJ-2,1)= BATBx(W(2,1 J,K+1)xW(3,1,J,K+1)/W(1,1,J,K+1)
Tx%x2) )
AA(4xJ-2,2)=-BATBx(W(3,1,J,K+1)/W(1,1,J,K+1))

(344



1220
1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272

AA(4xJ-2,3)=-BATBX(W(2,1,J,K+1)/W(1,1,J,K+1))
AA(4xJ-2,4)=0, :
AA(4%xJ=1,1)=-BATBXx((FK-1.9%xE1(1,J,K+1)-(W(3,1,J,K+1)
1/W1, 1, J,K+1) Y xx2)

AA(4xJ-1,2)=0. :
AA(4xJ=1,3)=-BATBX(2.xW(3,1,J,K+1)/W(1,1,J,K+1))
AA(4xJ-1,4)=0, :

AA(4AxJ  ,1)= BATBX(W(3,1,J,K+1)%xW(4,1,J,K+1)/W(1,1,J,K+1)
1%x%x2)

AA(4xJ ,2)=0,

AA(4xJ ,3)=-BATBXIW(4,1,J,K+1)/W(1,1,d,K+1
AA(4AxJ ,4)=-BATB*(W(3,[,J,K+1)/W(i,1,J,K+]
CONT I NUE

IF (J .EG. JP) GO TO 116
AA(4xJ-3,9)=0.

AA(4%xJ-3,10)=0.

AA(4xJ-3,11)=+BATB

AA(4xJ-3,12)=0,
AA(4%xJ-2,9)=-BATBXIW(2,1,J+42, K+1)xW(3,1,J+2,K+1)/Wi1,1,J+2,K+1)}
1xx2)

AA(4xJ-2,10)=+BATBX(W(3, | J+2,K+1)/W(1,1,J+2,K+1))
AA(AXJ-2,11)=+BATBx(W(2, [ J+2,K+1)/W(1,1,J+2,K+1))
AA(4xJ-2,12)=0,

AA(4xJ-1, 9)=+BATBx((FK-1 )XEI(I,J+2,K+1)-(W(3,1,J+2,K+1)
1/WC1, 1,J+2,K+1))xx2)

AA(4xJ-1,10)=0. ‘
AA(AXJ-1,11)=+BATBx(2. xW(3,1,J+2,K+1)/W(1,.1,J+2,K+1))
AA(4xJ-1,12)=0,

AA(4xJ , 9)=-BATBXIW(3,1,J+2, K+1)xW(4,1,J+2,K+1)/Wil1,1,J+2,K+1)
1%%2)

AA(4xJ , 10)=0,

AACAXJ ,11)=+BATBXiW(4,1,J+2,K+1)/W(1,1,J+2,K+1))

AA(AXJ ,12)=+BATBX(W(3,1,J+2,K+1)/W(1,1,J+2,K+1))

CONT I NUE

AA(4xJ-3,5)=1,

AA(4xJ-3,6)=0.

AA(4xJ-3,7)=0,

AA(4xJ-3,8)=0.

AA(4%xJ-2,5)=0.

AA(4xJ-2,6)=1,

AA(4xJ-2,7)=0,

AA(4xJ-2,8)=0,

AA(4xJ-1,5)=0.

AA(4xJ-1,86)=0.

AA(4XxJ-1,7)=1,

AA(4%xJ-1,8)=0.

AA(4xJ ,5)=0.

AA(4xJ ,6)=0.

AA(4xJ ,7)=0,

AA(4xJ ,8)=1,

CONT I NUE

DB 207 L=1,2

D8 208 LL=9,12

0se



1273 AA(L ,LL)= 2.xAA(L ,LL)
1274 AA(L+2,LL)=0.

1275 208 CONTINUE

1276 207 CONTINUE

1277 JPP=4xJP

1278 Do 117 J=5,JPP,4

1279 DO 188 L=1,4

1280 DG 189 LL=1,4

1281 BB(L,LL)=0.

1282 DO 121 LLL=1,4 )

1283 IF (ABS(AA(J+L-1,LLL)) .LT. TMALL) AA(J+L-1,LLL)=0.

1284 IF (ABS(AA(J+LLL-5,8+LL)) .LT. TMALL) AA(J+LLL-5,8+LL)=0.

1285 121 BB(L,LL)=BB(L,LL) + AA(J+L-1,LLL)xAA(J+LLL-5,8+LL)
1286 189 CONTINUE
1287 188 CONTINUE

1288 DG 122 L=1,4

1289 122 AA(J-1+L,5)=AA(J-1+L,5)-BB(L, 1)

1290 Do 123 L=1,3

1291 123 AA(J,S+L)=(AA(J,S5+L)-BB(1,L+1))/AA(J,S)
1292 IF (J .EQ. (JPP-3)) GO TO 924

1293 DO 124 L=1,4

1294 124 AA(J,8+L)=AA(J,8+L)/AA(J,D)

1295 924 CONTINUE

1296 DG 125 L=1,3

1297 125 AA(J+L,6)= AA(J+L 6)-BB(L+1,2)-AA(J+L,5)xAA(J,6)

1298 DO 126 L=1,2

1299 126‘AA(J+1.6+L)=(AA(J+1,6+L)-BB(2,2+L)-AA(J*I,5)*AA(J,6+L))/AA(J*1,6)

1300 IF (J .EQ. (JPP-3)) GO TO 127

. 1301 DG 128 L=1,4

1302 AA(J+L+3,2)=AA(J+L+3,2) -AA(J+L+3, 1) xAA(J, 6)

1303 AA(J+1,8+L)=(AA(J+1,8+L)-AA(J+1,5)%AA(J,8+L))/AA(J+1,6)

1304 128 CONTINUE

1305 127 CONTINUE

1306 DG 129 L=1,2

1307 129 AA(J+L+1,7)=AA(J+L+1,7)-BB(2+L,3) -AA(J+L+1,5)%xAA(J,7)~
1308 TAA(J+L+1,6)xAA(J+1,7)

1309 AA(J+2,8)=(AA(J+2,8)-BB(3,4) -AALJ+2,5)xAA(J, B) ~AA(J+2,6) xAA(J+1,8)
1310 2)/AA(J+2,7)

1311 IF (J .EQ. (JPP-3)) GO TO 130

1312 D6 131 L=1,4 ‘

1313 D6 132 LL=1,2

1314 AA(J+L+3,3) =AA(J+L+3,3) -AA(J+L+3,LL) ¥AA(J+LL-1,7)

1315 AA(J+2,8+L)=AA(J+2,8+L) -AA(J+2, A+LL) *AA(J+LL-1,84L)

1316 132 CONTINUE

1317 AA(J+2,8+L)=AA(J42, 8+L) /AA(J42,7)

1318 131 COGNTINUE
1319 130 CONTINUE

1320 AA(J+3,8)=AA(J+3,8)-BB(4,4)-AA(JI+3,5)xAA(J,8)-AA(J+3,6)xAA(J+1,8)
1321 1-AA(J+3,7)xAA(J+2,8)

1322 IF (J .EQ. (JPP-3)) GO TO 133

1323 DO 134 L=1,4

1324 DO 135 LL= 1 3

1325 AA(J+L+3 4)- AA(J+L+3 4) - AA(J*L+3 LL)*xAA(J+LL-1,8)

1814



1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

1372
1373
1374
1375
1376
1377
1378

000

AA(J+3,8+L)= AA(J+3,8+L1-AA(J+3,4+LL)xAA(J+LL~-1,8+L)
135 CONTINUE
AA(J+3,8+L)= AA(J+3,8+L1/AA(J+3,8)
134 CONTINUE
133 CONTINUE
Do 136 L=1,4
DO 137 LL=1,4
137 F(L,1,(J+7)/74,K+2)=F(L,i,(J+7)/4,K+2)-AA(J+L-1,LL)XF(LL,1,(J+7)/4
1-1,K+2)
LE=L-1
IF (L .EQ. 1) GO TO 148
DO 147 LL=1,LE
FIL,1,(J+7)/4,K+2)=F(L,1,(J+7)/74,K+2)-AA(J+L-1,4+LL)XF(LL,1, (J+7)
1/4,K+2) .
147 CONTINUE
148 CONTINUE
FIL,I,(J+7)/4,K+2)=F(L,1,(J+7)/74,K+2)/AA(J+L-1,5=L~1)
136 CONTINUE
117 CONTINUE
Wwi4,1,JE,K+2)=F(4,1,JE,K+2]
W(3,1,JE,K+2)=F(3,1,JE,K+2]1-AA(JPP-1,8)xW(4,1,JE,K+2)
we2,1,JE,K+2)=F(2,1,JE,K+2]-AA(JPP-2,8)xW(4,1,JE,K+2)
1-AA(JPP-2,7)xW(3,1,JE,K=2)
W, 1,JE,K+2)=F(1,1,JE,K+2]-AA(JPP-3,8)xW(4,1,.JE,K+2)
1-AA(IPP-3,7)*xW(3,1,JE,K=2)-AA(JPP~-3,6)xW(2,1,JE,K+2)
D6 138 J=5,JPP, 4
JJ=JPP+5-J~-4
DG 139 L=1,4
BB(1,L)=0.
DO 941 LL=1,4
941 BB(1,L)= BB(1 LY+AA(IJ+1-L,8+LL)xW(LL, 1, (JJ+4)/4+i ,K+2)
139 CGNTINUE
W(4,1,(JJ+4)/4,K+2)=F(4,1,€JJ+4)/4,K+2)-BB(1,1
W(3,1,(JJ+4)/4,K+2)=F(3,1,€¢JJ+4)/4,K+2)-BB(1,2)
1-AA(JJI-1,8)xW(4,1,(IJJ+4./4,K+2)
W(2,1,(JJ+4)/74,K+2)=F(2,1,(JJ+4)/4,K+2)-BB(1,3)
1-AA(JJ-2,8)xW(4,1,(IJJ+4:/74,K+2)-AA(JJI-2,7)xW(3,1,{JJ+4)/4,K+2)
WO1,1,(JJ+4)/4,K+2)=F(1,1,(JJ+4)/4,K+2)-BB(1,4)
1-AA(JJ-3,8)%xW(4,1,(IJJ+41/4,K+2)-AA(JI-3,7)xW(3,1,(JJ+4)/4,K+2)
2-AA(JJ-3,6)%W(2,1,(IJ+41/4,K+2)
138 CONTINUE
113 CONTINUE
RETURN
END

.. THIS SUBROUTINE SERVES THE EXACT SAME PURPOGSE AS YIMCRO EXCEPT
.. THAT WE NOW WRITE THE EQUATIENS IMPLICIT IN R.
. THEREFORE, WE FOREGY DOCUMENTING THIS SUBROUTINE
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1379

1380
1381 SUBROUTINE XIMCRO(K,M,DT,DX,DY,CV,FK, COE, DOE, UN, BATA, BATB, SGO,-
1382 11s, 18, 1E, 1D, JS,JB, JE, JD,C, 1P, JP, TMALL)

1383

1384 DIMENSION PSI(21,22,2),B1(21,22,2),B2(21,22,2),X1(21,22,2),

1385 1c1(21,22,2),C02(21,22,2),C3(21,22,2),T(21,22,2),

1386 2w(4,21,22,3),F(4,21,22,3),E1(21,22,2),B3(21,22,2),SR(21),

1387 4GA(21,22),6B(21,22),6C(21,22),ED(21,22),CN(21,22,2),

1388 SAA(100,12),BB(4,4)

1389 LCM (T2)

1390 CeGMMON/T2/ PS1,B1,B2,B3,X1,C1,C2,C3,T,W,F,SR

1391 1,6A,GB,GC,GD, CN,El, AA,BB

1392

1393 K=1

1394 K1=1

1395 K2=3

1396 K3=1

1897

1398 DO 41 J=JB,JE

1399 DO 42 1=1B,IE

1400 FC1,1,J,K2)=W(1,1,J,K1)

1401 2-BATBX(W(3,1,J+1,K3)-W(3,1,J-1,K3))

1402 3+(F(1,1,J3,K)+F(1,1,J,K+1))

1403 6+0.5/4. %x0.5xDT/DXXx (ABS(W(2, 1+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)

1404 /WO, T, J, K X (WO, 141, J,K)=W(1,1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
1405 8-W(2,1-1,J,K)/W(1,1-1,3,K)) % (W1, 1,J,K)-W(1,1-1,J,K)))

1406 6+0.5/4.%0.5xDT/DY* (ABS(W(3,1,J41,K)/W(1,1,J+1,K)-W(3,1,J,K)

1407 /WO, T, 3, KX (WO, 1, J+1,K)=W(1,1,Jd,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
1408 8-W(3,1,J-1,K)/W(1,1,J-1,K))x(WC1,1,J,K)=W(1,1,J-1,K)))

1409 F(2,1,J,K2)=W(2,1,J,K1) :

1410 4-BATBX(W(2,1,J+1,K3)xW(3,1,J+1,K3)

1411 S/W(1,1,J+1,K3)-W(2,1,J-1,K3)xW(3,1,J-1,K3)/W(1,1,J-1,K3))

1412 6+(F(2,1,J,K)+F(2,1,J,K+1))

1413 6+0.5/4.%0.5%xDT/DX* (ABS(W(2, [+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)

1414 T/MCE, 1,0, K x(W(2,141,J,K)-W(2,1,J,K))-ABS(W(2,1,J,K)/W(1,1,d,K)
1415 B8-W(2,1-1,J,K)/WC1,1-1,J,K))x(WE2,1,J,K)-W(2,1-1,J,K)))

1416 6+0.5/4.%0.5xDT/DY* (ABS(W(3, 1,J+1,K)/W(1,1,J+1,K)-W(3,1,J,K)

1417 Z/WA, 1,3, K% (W2, 1,d+1,K)-W(2,1,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
1418 8-W(3,1,J-1,K)/W(1,1,J-1,K))x(We2,1,J,K)-W(2,1,J-1,K)))

1419 F(3,1,J,K2)=W(3,1,J,K1)

1420 3-BATBX((W(3,1,J+1,K3)*xx2/W(1,1,J+1,K3)+

1421 ACFK-1.)%xW (1, 1,J41,K3)*EI(1,J+1,K ))-(W(3,1,J-1,K3)xx2/

1422 SW(1,1,J-1,K3)+(FK-1.)%xW(1,1,J-1,K3)*EL(1,J~1,K 1))

1423 6+(F(3,1,J,K)+F(3,1,J,K+1))

1424 6+0.5/4.%0.5xDT/DX*x (ABS(W(2, 1+1,J,K) /W1, 1+1,J,K)-W(2,1,J,K)

1425 Z/WOL, LI, K VX (W3, 141,J,K) -W(3,1,J,K))-ABS(W(2,1,J,K)/W(1,1,J,K)
1426 8-W(2,1-1,J,K)/W(1,1-1,J,K))*x(WI3,1,J,K)-W(3,1-1,J,K)))

1427 6+0.5/4.%0.5xDT/DY*(ABS(W(3,1,J+1,K)/W(1,1,J+1,K)~W(3,1,J,K)

1428 /WO, 1,3, K * (W3, 1,J+1,K)-W(3,1,J,K))-ABS(W(3,1,J,K)/W(1,1,J,K)
1429 8-W(3,1,J-1,K)/W(1,1,J-1,K))%x(WI3,1,J,K)-W(3,1,J-1,K)))

1430 F(4,1,J,K2)=W(4,1,J,K1)

1431 3-BATB*(W(3,1,J+1,K3)xW(4,1,J+1,K3)
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1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

1482
1483
1484

42
a1

155

4/WC1, 1,541 ,K3)-W(3,1,J-1,K3)xW(4,1,J-1,K3)/W(1,1,J-1,K3))
S+(F(4,1,J,K)+F(4,1,J,K+1))
6+0.5/4.x0.5xDT/DXx(ABS(W(2,1+1,J,K)/W(1,1+1,J,K)-W(2,1,J,K)
7/WC,1,J,K)Ix(W(4,1+1,J,K)-Wi{4,I,J,K))-ABS(M(2,1,J,K)/W(1,1,J,K)
8-W(2,1-1,J,KI/W(1,1-1,J,K))*IW(&,1,J,KI-W(4,1-1,J,K)))
6+0.5/4.x0.5xDT/DYx(ABS(W(3,1,J+1 , K)/W(1,1,Jd+1,K)-W(3,1,J,K)
T/WA,1L,J, KNI %(W(4,1,J+1,K)-Wi4,1,J,K))~ABS(W(3,1,J,K)}/W(1,1,J,K)
8-W(3,1,J-1,K)/W(1,),J-1,K))xW(<s,1,J,K)-W(4,1,J-1,K)))
CONTINUE

CONTINUE

. bo 183 J=JB,JE
F(2,2,J,K+2)=F(2,2,J,K+2)+(FK-1.)xW(1,0S,J,K+1)*EI[1S,J,K+1)
1*BATAXSR(1S)/SR(2)
F(2,1E,J,K+2)=F(2,IE,J,K+2)=-(FK=1.)xW(1,10,J,K+1)xEI(ID,J,K+1)
1*BATAXSR(ID)/SR(IE}

DO 154 1=1S,IP

IF (1 .EG. 18) GO TO 155

AA(4x1-3,1)=0.

AA(4x]1-3,2)=-BATAXSR(I)/SR(1-1)

AA(4x1-3,3)=0,.

AA(4x1-3,4)=0.
AA(4x[-2,1)=-BATAXSR(1)/SR(1+1)x((FK-1.)xEI(1,J,K+1)

1-(W(2, 1,3, K+1)/W01,1,J,K+1))xx2)
AA(4x]1-2,2)=-BATAxSR(LI)/SR(1=1)%x(2.xW{(Z,1,J,K+1)/

W, 1,J,K+1)) '

AA(4x]1-2,3)=0.

AA(4x1-2,4)=0.

AA(4x1-1,1)= BATAXSR(I)/SR(I+1)x(W(2,1,J,K+1)xW(3,7,J,K+1)
1/W0T1,1,J,K+1)xx2)

AA(4x]-1,2 )=-BATAXSRII)/SROI+1)x(W(3,1,J,K+1)/W(1.1,J,K+1))
AA(4x]1-1,3 )=-BATAXSRII1)/SR(i+1)x(W(2,1,J,K+1)/W(1,1,J,K+1))
AA(4x1-1,4 )=0,

AA(4x1 ,1)= BATAxSR(I1)/SR(1+1)x(W(2,1,J,K+1)xW(4,1,J,K+1)
1/W(ET1,1,J,K+1)%xx2)

AAC4x]  ,2)=-BATA*SRUI)/SR(I+1)x(W(4,!1 ,J,K+1)/W(1,1,J,K+1))
AA(4x] ,3)= O,

AA(4x] ,4)=-BATA*SR(I)/SR(I+1)x(W(2,1,J,K+1)/W(1,1,J,K+1))
CONTINUE

IF (1 .EQ. IP) GO TO 156

AA(4x1-3,9)=0.

AA(4x]1 -3, 10)=+BATAxXSR 1+2)/SR(1+1)

AA(4x1-3,11)=0.

AA(4x1-3,12)=0,.
AA(4%1-2,9)=+BATAXSR(:+2)/SRCI+1)Ix((FK-1.)xEI([+2,J,K+1)
1-(W(2,1+42,J,K+1)/We1, 1+2,J,Ke0))Ixx2) .
AA(4x1-2,10)=BATAXSR(I+2)/SRCE+1)x(2.2W(2,1+2,J,K+1)/

W1, 1+2,J,K+1))

AA(4x1-2,11)=0,

AA(4x1-2,12)=0.
AA(4x[-1,9)=-BATA*SR(I+2)/SRCI+1)%x(W(2,1+2,J,K+1)xW(3,§+2,J,K+1)
1/W(, 1+2,J,K+1)%xx%x2)
AA(4x1-1,10)=+BATAISRI1+2)/SRI1+1)x(W(3,1+2,J,K+1)/W(1,1+2,J,K+1))
AA(4x1-1,11)=+BATASSRV I +2}/SRIT+1)%x(W(2,1+2, J,K+1)/W(1,[+2,J,K+1))
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1485 AA(4x1-1,12)=0.

1486 AA(4x1 ,9)=-BATAXSR(1+2)/SR(I+1)%(W(2,1+2,J,K+1)xW(4,1+2,J,K+1)
1487 1/W01, 142, J,K+1)%x%2)

1488 AA(Ax] ,10)=+BATAXSR(I+2)/SR(I1+1)1%(W(4,1+2,J,K+1)/W(1,1+2,J,K+1))
1489 AA(4x] ,11)= 0.

1490 AA(4x] ,12)=+BATAXSR(I+2)/SR(I+1)x(W(2,1+42,J,K+1)/W(1,1+2,J,K+1))
1491 156 CONTINUE

1492 AA(4x1-3,5)=1,

1493 . AA(4x1-3,6)=0.

1494 AA(4x]-3,7)=0.

1495 AA(4%1-3,8)=0.

1496 AA(4x%]1-2,5)=0.

1497 AA(4x1-2,6)=1.

1498 AA(4x]1-2,7)=0.

1499 AA(4x]1-2,8)=0,

1500 AA(4x1-1,5)=0.

1501 AA(4%x1-1,6)=0.

1502 AA(4x]1-1,7)=1,

1503 AA(4x1-1,8)=0,

1504 AA(4x1 ,5)=0.

1505 AA(4x] ,6)=0.

1506 AA(4x] ,7)=0.

1507 AA(4x1 ,8)=1,

1508 154 CONTINUE

1509 1PP=4xIP

1510 Do 165 1=5,1PF, 4

1511 Do 166 L=1,4

1512 DO 167 LL=1,4

1513 BB(L,LL)=0.

1514 Do 168 LLL=1,4 .

1515 IF (ABS(AAC(I+L-1,LLL)) .LT. TMALL) AA(I+L-1,LLL)=0.

1516 1F (ABSC(AA(I1+LLL-5,8+LL)) .LT. TMALL) AA(I+LLL-5,8+LL)=0.

1517 168 BB(L,LL)=BB(L,LL) + AA(I+L-1,LLL)*AA(T+LLL-5,8+LL)
1518 167 CONTINUE
1519 166 CONTINUE

1520 DG 169 L=1,4

1521 169 AA(I-1+L,S)=AA(I-1+L,5)-BB(L, 1)

1522 Do 170 L=1,3

1523 170 AA(],S5+L)=(AAC] ,S+L)-BB(1,L+1))/AA(],5)
1524 IF (1 .EQ. (IPP-3)) GO TO 971

1525 DG 171 L=1,4

1526 171 AA(1,8+L)=AA(1,8+L)/AA(1,5)

1527 971 CONTINUE

1528 Do 172 L=1,3

1529 172 AA(I+L,6)=AA(1+L,6)-BB(L+1,2)-AA(I+L,5)*AA(1,6)

1530 Do 173 L=1,2 -

1531 173 AA(I+1,6+L)=(AA(1+1,6+L)-BB(2,2H.)-AA(I+1,S)*AA(],6+L))/AA(I+1,86)

1532 IF (1 .EQ. (IPP-3)) GO TO 191

1533 DO 174 L=1,4

1534 AACT+L+3,2)=AA(1+L+3,2)-AA(1+L+3,1)xAA(],6)

1535 AA(L+1,8+L)=(AA(1+1,8+L)-AA(]+1,S5)xAA(],8+L))/AA(]+1,6)

1536 174 CONTINUE
1537 191 CONTINUE
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1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

1549

1550
1551

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

1582
1583
1584
1585
1586
1587
1588
1589
1590

DO 175 L=1,2
175 AACL+L+1,7)=AA(1+L+1,7)-BE(2+L,3)-AA(1+_+]1,5)xAA(],7)~
1AA(T+L+1,6)xAA(1+1,7)
AA(1+2, 8)-(AA(I+2 B) BB(3,4)-AA(1+2,5)x0A(1,8)-AA(1+2,6)*AA(1+1,8)
2)/AA(1+2,7)
IF (1 .EQ. (IPP-3)) GO TO 190
DG 176 L=1,4
DO 177 LL= 1 2
AA(T+L+3,3)=AA(1+L+3,3) -AA(I4L+3,LL)xAACT #+LL-1,7)
AACT+2,8+L)=AA(1+2,B+L)-AA(142,4+LL)*AALT+LL-1,8+L)
177 CONTINUE
AACT+2,8+L)=AA(1+2,8+L)/AL(1+2,7)
176 CONTINUE
180 CONTINUE
AA(1+3,8)=AA(1+3,8)1-BB(4,<)-AA(1+3,5)%AA([,8)-AA{1+3,6)xAA(]+1,8)
1-AAC(1+3,7)xAA(1+2,8)
IF (1 .EQ. (IPP-3)) GO TO 18C
DO 178 L=1,4
DG 179 LL=1,3
AA(T+L+3,4)= AA(I+L+3,4)-AA(1+L+3,LL)*AA(]+LL-1,8)
AA(1+3,8+L)= AA(I+C,8+L)-AA(1+3,4+LL)*AA(T+LL-1,8+L)
179 CONTINUE
AA(1+3,8+L)= AA(I+3,8+L)/AA(]1+3,38)
178 CONTINUE
180 COGNTINUE
DO 181 L=1,4
DO 182 LL=1,4
IF (ABSCAACI+L-1,LLY).LT.TMALL) AA(I+L-1,LL)=0.
IF (ABS(F(LL, (I1+7)/4-1,J,K+2)) .LT. TMALL}
1F(LL,(1+7)/4-1,J,K+2)=0.
182 F(L,(1+7)/4,J ,K+2)=F(L, (1+7)/4,J,K+2)-AAC]I +L-1,LL)*F(LL,(1+7)/4-1
1,J,K+2)
LE=L-1
IF (L .EQ. 1) GO TG 184
DO 183 LL=t,LE
FIL,(1+7)74,J,K+2)=F(L, (1+7)/4,J,K+2)-AA(]+L-1,4+LL)*F(LL,(1+7)/4
1,J,K+2)
183 CONTINUE
184 CONTINUE
FIL, (1+7)74,J,K+2)=F (L, (I1+7)/4,J,K+2)/AA(1 +L-1,5+L-1)
181 CONTINUE
165 CONTINUE
W(4,I1E,J,K+2)=F(4,1E, J, K+2)
W(3,I1E,J,K+2)=F(3, IE,J,K+2)-AA(IPP-1, 8)=Wl4 1E,J,K+2)
Wez2,1E,J,K+2)=F(2, 1E,J,K+2)-AA(IPP-2,8)=WI14,1E, J,K+2)
1-AA(IPP-2,7)*W(3,IE,J,K+2)
We1,1E,J,K+2)=F(1,1E,J,K+2) -AA(IPP-3,8)xW(4,1E,J K+2)
1-AACIPP-3,7)%W(3,1E,J,K+2)-AA(IPP-3,6)xW(2,1E,J,K+2)
DO 192 1=5,1PP,4

11=1PP+5-1-4
DG 193 L=1,4
BB(1,L)=0.

DO 194 LL=1,4
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1591 IF (ABS(AACII+1-L,8+LL)) .LT. TMALL) AA(II+1-L,8+LL)=0,
1592 IF (ABS(W(LL, (11+4)/4+1,J,K+2)) .LT. TMALL)

1593 TWILL, (11+4)/4+1,J,K+2)=0.

1594 194 BB(1,L)=BB(1,L)+AACTTI+1-L,8+LL)*W(LL, (1]1+4)/4+1,J,K+2)
1595 193 CONTINUE

1596 W4, (11+4)74,J,K+2)=F(4,(11+4)/4,J,K+2)-BB(1,1)

1597 W(3,(11+4)/4,J,K+2)=F(3,(11+4)74,J, K*Z)-BB(I 2)

1598 1-AACTTL-1, 8)*W(4 (11+4)/4,J,K+2)

1599 w2, (ll*4)/4 J,K+2)=F(2, (ll+4)/4 J,K+2) - BB(I 3)

1600 1-AAC(IT -2, 8)*W(4 (11+4)/74,J,K+2)~ AA(ll -2, 7)*w(3 (11+4)/4,J,K+2)
1601 W(I.(ll+4)/4,J,K+2)=F(1;(Il+4)/4,J,K+2)-BB(1,4)

1602 1-AACI1-3,8)*%W(4,(11+4)/4,J,K+2)-AA(11-3,7)xW(3,(11+4)/4,J,K+2)
1603 2-AA(I1-3,6)xW(2,(11+4)/4,J,K+2)

1604 192 CONTINUE
1605 153 CONTINUE
1606 RETURN
1607 END

1608

1609

1610

1611

1612

1613 C...THIS SUBROUTINE REDUCES A TRI-DIA3ONAL MATRIX USING THE CROUT
1614 C...METHOD.

1615

1616

1617

1618 SUBROUTINE CROGUT(M,K,IB,!IE,JB,JE,IP,JP,BA,GB,GC,GD,PS!,JD, ID)
1619

1620 LCM (CROUT)

1621 DIMENSION AA(21, 3),E(21),X(21),6A(21,22),6B(21,22),6C(21,22),
1622 16D(21,22),PSI(21,22,2)

1623

1624 SMALL=0.10E-22

1625 IF (MOD(M,2) .EQ. 1) GO TOo 3
1626 GO TO 2

1627 3 CONTINUE

1628 .JS8=1

1629 DO 123 I=1B,IE

1630 DO 122 J=JS,JP

1631 E(J)=GD(1,J+1)

1632 AA(J,2)=6B(1,J+1)

1633 IF (J (EQ. JP) GO TO 124
1634 IF (J .EQ. JS) GO TO 125
1635 AA(J,3 )=-6GA(l,J+1)

1636 GO TO 125

- 1637 124 E(JP)=GD(1,JP+1)+GA(1,JP+1)*PSI(],JP+2,2)
1638 125 CONTINUE

1639 IF (J .EQ. JS) GO TO 126
1640 AA(J, 1 ==-GC(1,J+1)
-1641 GO TO 127

1642 126 AA(JS,3)=-(GA(I1,JS+1)+GC(1,JS+1})
1643 127 CONTINUE :
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1644
1645
1646
1647
1648
1649
1650
1651

1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692
1693
1694
1695
1696

122

131
130

133

128
123

24
25

26

27

CONTINUE

AA(JS,Q )=AA(JS, S J/AA(JS,2 )
E(JS)=E(JS)/AA(JS,2 )

bo 130 J=JB,JP
IF (ABS(AA(J, 1
IF (ABS(AA(J-1,3

)) LLE. SMALL) AA(J, 1)=0.
)) .LE. SMALL ) AA(J-1,3)=0.

AA(J,2)=AA(J,2)-AALJ, 1 )xAA(J-1,3)

IF C(ABS(E(J-1))
E(J)=(E(J)-AA(J,

.LE. SMALL) E(J-1)=0.
PI»E(J-1))/AA(J,2)

IF (J .EQ. JP) GO TO 131

AA(J,3 1=AA(J,3
CONTINUE
CONT I NUE
X(JP)=E(JP)
Ja=JpP-1

DG 133 J=JS,JQ
KK=JQ+JS-J

IF (ABS(AA(KK,3
IF (ABS(X(KK+1))

V/AA(J,2)

)y .LE. SMALL) AA(KK,3 =0.
LE. SMALL) X(KK+i)=0.

X(KK)=E(KK) -AA(KK,3 )xX(KK+1)

CONTINUE
DG 128 J=JS,JP
PSIC(I,J+1,2)=X(J

IF (ABS(PSI(1,J+1,2)) .LT. SNALL) PSI(I,J+1,2)=0.

CONTINUE
CONTINUE

GO TO 4

CONTINUE

Is=1

D& 23 J=JB,JE

DO 22 1={S,IP
EC1)=GD(I+1,J)
AACL ,2)=GB(1+1,J

)

)

IF (I .EQ. IP) GO 7O 24
AALL,3 )=-GA(l+1,J)

GO TO 25

ECIP)=GD{IP+1,J)+GA(IP+1,J)xPSI(IP+2,J,2)

CONT I NUE

IF (1 .EQ. IS) GO 7O 26
AACL, 11=-GC(I1+1,J)

GO TG 27
CONTINUE

EC(IS)=CGD(IS+1,J)+GC(IS+1,J)xPSI(1S,J,2)

CONTINUE
CONTINUE

AA(IS,3 J=AA(I1S,3 J/AA(1S,2 )
EC(1S)=E(IS)/AA(]lS,2 )

Do 30 I1=IB,IP
IF (ABS(AAC(I, 1
IF (ABS(AA(I1-1,3

)) .LE. SMALL) AACI, 1)=0.
)) .LE. SMALL) AA(1-1,3)=0.

AACTL ,2)=AA(],2)-AAtLl, 1)%AA(I-1,3)

IF (ABS(E(I-1))
EC(I)=(E(I)-AACT,

.LE. SMAL.) E(i-1)=0,
1)*E(I-1))/7AA(1,2)
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1697 IF (1 .EQ. IP) GO TO 31

1698 © AACI,3 )=AA(1,3 )/AA(1,2)

1699 31 CONTINUE

1700 30 CONTINUE

1701, X(IP)=E(IP)

1702 IQ=1P-1

1703 Do 33 I=1S,1Q,

1704 KK=1Q+1S-~1 ~

1705 IF (ABS(AA(KK,3 )) .LE. SMALL) &A(KK,3 )=0.

1706 IF (ABS(X(KK+1)) .LE. SMALL) X(KKX+1)=0.

1707 . X(KKY=E(KK)-AA(KK,3 )*X(KK+1)

1708 33 CONTINUE

1709 DO 28 1=1S,1P

1710 PSI(I+1,J,2)=X(1)

1711 IF (ABS(PSI(1+1,J,2)) .LT. SMALL) PSI(1+1,J,2)=0.

1712 28 CONTINUE

1713 23 CONTINUE

1714 4 CONTINUE

1715 RETURN

1716 END

1217 ‘

1718

1719

1720 H

1721 C...PLOTTING SUBROUTINE.

1722 :

1723 :

1724 SUBRGUTINE PLGT1(P,CRS, SR, 1D, JD,H, RE)

1725 : '

1726 LCM (PLOT1)

1727 DIMENSION P(6,21),SR(21),PP(21),P1(12),P2(12),CRS(2, 21, 22)
1728 1,C(20),P3(4),F4(12),CRS1(21,22),RE(21,22), XX(21,22),YY (21, 22)
1729

1730 DATA P1/“TEMPERAT", “URE", "DENSITY"," “, "CURRENT.",

1731 1"DENSITY", "POLOIDAL", " FIELD", “TGROIDAL"," FIELD", "PRESSURE",
1732 2" “/,P2/"KELVIN"," ", "NOGRMAL|Z", "ED", "STATAMPS", “/CMxx2",
1733 3"GAUSS"," ", “GAUSS"," ", “DYNES/CH", "xx2"/

1734 DATA P3/"POLOIDAL"," FLUX","TOGRGIDAL","” CURRENT"/

1735 DATA P4/"0.5 USEC“,"”1.0 USEC","1.5 USEC",“2.0 USEC","2.5 USEC",
1736 1"3.0 USEC","3.5 USEC","4.0 USEC","4.5 USEC","5.0 USEC","5.5 USEC",
1737 2"6.0 USEC"/ .

1738 1001 FORMAT(2A8)

1739 DB 1 1=1,6

1740 AMAX=0.

1741 AMIN=0.

1742 DO 2 J=1,ID

1743 PP(J)=P(1,J)

1744 AMAX=AMAX1 (PP (J), AMAX)

1745 AMIN=AMIN1 (PP (J), AMIN) '

1746 2 CONT INUE

1747 CALL MAPS(2.,4.,AMIN,AMAX,.1,1.,.3,1.)

1748 CALL TRACE(SR,PP, ID)

1749 CALL SETCH(20.,5.,0,0,3,0)
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1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765

CALL CRTBCD(“NORMALIZED RADIUS")
CALL SETCH(2.,20.,0,0,3,1"
WeT 100,1001,P1(2xi-1),Pti12x])
CALL SETCH(2.,1.,0.0,2,0)
CALL CRTBCD("Z=0; VESSEL HALF-WIDTH=7.5 CM")
CALL SETCH(2.,3.,0.0,2,0)
CALL CRTBCD("UNITS=")
CALL SETCH(10.,3.,0,0,2,0:
WweT 100,1001,P2(2xi-1),P212x1)
CALL SETCH(2.,2.,0.0,2,0)
CALL CRTBCD("TIME=")
CALL SETCH(10.,2.,0,0,2,0:
IF (M .LT. 250) CALL CRTBCD("INITIAL CONBITIONS")
IF (M .LT. 250) GO TO 3
woT 100,1001,P4(M/250)
CALL FRAME
CONTINUE
DO 4 N=1,2
AMAX=0.
AMIN=0.
DO S 1=1,1D
Do S5 J=1,JD
AMAX=AMAX1(CRS(N, 1,J),AMAX)
AMIN=AMIN1(CRS(N, I,J),AMIN)
CRS1(1,J)=CRS(N,1,J)
CONT INUE
K1=-20
K2=0
C(1)=AMAX
C(2)=AMIN
CALL MAPS(1.,21.,1.,22.,.25,1.,.25,1.)
CALL ACONTR(K!,C,K2,CRS!,21,1,21,1,%1,22,1)
CALL SETCH(26.,3.,0,0,3,01
CALL CRTBCD("RADIAL GRID")
CALL SETCH(2.,2.,0,0,2,0)
WOT 100,1001,P3(2xN-1),P3¢2xN)
CALL SETCH(2.,1.,0,0,2,0)
CALL CRTBCD("TIME=")
CALL SETCH(10.,1.,0,0,2,0}
IF (M .LT. 250) CALL CRTBCD("INITIAL CONDITIONS")
IF (M .LT.250) GO T3 6
WOT 100,1001,P4(M/2350)
CALL SETCH(1.,20.,0,0,3,1)
CALL CRTBCD("VERTICAL GRIL *)
CALL FRAME
CONTINUE
NX=21
NXD=NX
NY=22

CALL PICTURE(RO,XX,¥Y, NX,NY,NXD,21.,22.,60. ,60.,60.,0.,5.,2.,

1-2,2,0,1,NX,1,NY,.1,1.,.2,1.)
CALL SETCH(3,2,0,0,3,0)
CALL CRTBCD(" DENSETY®)
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1803
1804
1805

CALL FRAME
RETURN
END :
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s NeNoXel

Q 000

..CODE: ONE-DIMENSIONAL DIF-USION
.WRITTEN BY: R. 12Z3 AND G. ERLEBACHER
.LANGUAGE: FORTRAN

.COMPILER: CDC 7600

.SINGLE-FLUID, RESISTIVE MHD EQUATIONS WITHOUT INERTIAL TERMS
..ARE SOLVED IN ONE DIMENSION. A CORONAL EQUILIBRIUM 1S ASSUMED
. .FOR RADIAVIVE LGSSES.

.VARIABLES ARE DEFINED AS W= ENCOUNTER TEEM IN THE CODE.

CRXKXKKERKKX AKX KXPROGRAM BEGINSEM XX % X% X XK KKK

*SELECT PRINTLOG=LOGGD
*FILE NAME=DIF

C..
cC..

COMMON/C2/AA(101),BB(101),CS(101),EE(10Y)
COMMON/PLT/P1(8),P5(12),P6(12),P7(12)
COMMGN/PL1/RLO,NB, TT1

DIMENSION P(101),X1(101),V(101),S(1013,D1€101),D2(101),D3(101),
1D5(101),D6(101),CHI(101),RS1(101),RS2(101),R1(101),Q1(¢101)
2,BT(101:,BP(101),RN(101),R(101),T(101,PSI(101),RS3(101),D4(101)

DIMENSION WR(101),2(2),RJT(101),RK(101), TCERIVZ(10D1),
1RN1(101},RJP(101),PR(4,1D1),PA(4,6,10i),XLZ2(4,101),PERC(2)

DATA P1/"TIME “,= SEC","RADIUS","TIME STEP"," NO ",
1"CHAR. *,"LENGTH = "," TM"/,P5/2x("CEAR. FI1","ELD = "),
2"CHAR. CU","RRENT = “,“CHAR, TE","MPER. = “,“CHAR. DE",
3“NSITY = ","CHAR. PR","ESSURE = “/,P6/2x(" GAUSS ," "y,
4" STAT/ ",“CM(2) ", KELVI" "N “, " CMC-3",") -,

5" DYNES®,"/CM(2)"/,P7/“P3LOIDAL"," FIELD “,"TEROIDAL",
6" FIELD “,"TORGIDAL"," CURRENT","TEMFERAT", “URE -,
7 DENSITY ", " “,"PRESSURE", " -

CALL DROPFILE(O)
CALL OPEN(10, "DATA",0,LEN)
CALL CREATE(12,"0UT1",3,-1)

.TTT: TOTAL TIME ELAPSED
.NB: CYCLE NUMBER

TTT=0.
NB=0

CALL KEEP80(1,2)

CALL DDBOID(QHDIFFUSION, 1)
CALL KEEP8O(8HDIFGBRAPH, 2)
CALL DDERS(0)
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C...N: NUMBER OF GRID SPACES
C...R(1): RADIUS OF INNER WALL (CM)
C...R(N+1): RADIUS OF GUTER WALL (CM)
C...TT1: TIME STEP
C...TMX: MAXIMUM SIMULATION TIME
C...ZZ: 16N MASS/HYDROGEN MASS
C...2(1): ATGMIC NUMBER OF IMPURITY I
C...TO: CHARACTERISTIC TEMPERATURE
C...RLO: CHARACTERISTIC LENGTH
C...BO: CHARACTERISTIC FIELD
C...RNO: CHARACTERISTIC NUMBER DENSITY
READ(10,430) N
READ(10,481) R(1),R(N+1),TT1,TM»,22,(2(1),1=1,2)
READ(10,482) T0,RLO,BO,RNO
C...IMPURITY 1 (OXYGEN) AS A PERCENTAGE OF HELIUM NUMBER DENSITY
C...IMPURITY 2 (SILICON) AS A PERCENTAGE OF HELIUM NUMBER DENSITY
PERC(1)=.005
PERC(2)=.005
480 FORMAT(13)
481 FORMAT(E13.6/E13.6/E13.6/E13.6/F6.4/F6.4/F6.4)
482 FORMAT(E13.6/E13.6/E13.6/E13.6)
483 FORMAT(1H1,“THE TEMPERATURE HAS EXCEEDED *,E13.6)
C...NN: NUMBER GF GRID POINTS
C...CLT: SPEED OF LIGHT IN VACUUM
C...BLZ: BOLTZMAN‘S CONSTANT
C...PO: CHARACTERISTIC PRESSURE
C...BETA: HALF THE STANDARD PLASMA BETA
C...RJO: CHARACTERISTIC CURRENT DENSITY
C...XLAMO: CHARACTERISTIC CouLOMB LOGGARITHM
C...RKO: CHARACTERISTIC THERMAL CONDUCTIVITY
C...ZEFF: PLASMA Z-EFFECTIVE
C...S0: CHARACTERISTIC ELECTRICAL COMDUCTIVITY
C...TBO: MAGNETIC DIFFUSION TIME
C...THO: CHARACTERISTIC THERMAL DIFFUSION TIME
C...RMGDIF: RATIO OF CHARACTERISTIC TIME TO MAGNETIC DIFFUSION TIME
C...TTO: CHARACTERISTIC TIME SCALE
C...V0: CHARACTERISTIC VELGCITY .
C...THDIF: RATIO OF CHARACTERISTIC TIME TGO THERMAL DIFFUSION TIME
C...GAM: RATIO OF SPECIFIC HEATS MINUS ONE
NN=N+1
P1=3.1415927
CLT=3.E10
BLZ=1.38E-16
PO=BLZXxRNOxTO
BETA=4%Pl *P0O/BOxx2
RJO=CLT*xBO/ (4xP1*RLO)
XLAMO=6.2E3xSQRT(TOXxTO*xT0/2, /RNO)
XLNLO=ALAG (XLAMO)
RKO=29.6E-18xXLNLO*RNOXRNO/BO/B0O/SQRT(TO)
ZEFF=2.
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OO0

105

S0=2.E7x(TOx*1.5)/2EFF/XLUNLO
TBO=4xP[ «SO*x (RLO/CLT: xx2
THO=1.5%xRNO*BLZ*RLOx»2/RKO
RMGDIF=1.

TTO=TBO

VO=RLO/TTO

THDIF=TTO/THO

GAM=2./3.
DELTA=GAMxRMGDIF/BETA

.SGME RADIATION PARAMETERS

. .PRO: NORMALIZATIGON FACTOR FOR RADiATED POWER LOSS.

...TO AND TS: TEMPERATWRE RANGES FOR DIFFERENT POLYNOMIAL FITS
. TG OXYGEN AND SILICON COOLING CURVES.

PRO=PO/TTQ/GAM
TO1=5.%11600./T0
Te2=20.%x11600./T0
Ta3=200.x11600./TC
TS1=20.%i1600./T0
TS2=200.x%x11600./TO
TS3=2000.%x11600./TD

..H: NORMALIZED GRID SPACING

... TAU: NORMALIZED TIME STEP

..TBT: DECAY TIME OF TORGIDA_ FIELD

..TBP1: DECAY TIME OF INNER TORCIDAL CURRENT
... TBPNN: DECAY TIME OF OUTER TOROIDAL CURRENT
.RLAM: A FREQUENTLY APPEARING AUMEER

H=(R(N+11-R(1))/(RLOxN)
TAU=TT1/TTO

TBT=2.E-1

TBP1=10.E-S
TBPNN=4.E-S
RLAM=2xH» %2/ TAU

.DISCRETIZING THE RADIAL COORDINATE

R(1)=R(1)>»/RLO
03 105 J=2,N+1
R(J)=R(J~-1)+H
CONTINUE

Cxuxknkxkkkkxkkk [NITIAL CONDI TIONS %X X %% X K % % X X KX KX

OO0OO0O00

PW: PLASMA WIDTH
. .RNPK: PEAK PLASMA NUMBZR DENSITY
..RLOW: CUTAGFF DENSITY TJd AVGID VACUUM REGION
. JIP INITIAL PEAK PLASMA GRID P3INT
.XRN: DENSITY SHAPE FACTOR t(LINMEAR)

PW=6./RLCQ
RNPK=1.,0E1S/RNO
RLOW=, 01

JP=59

JPW=PW/H

JPS=JP =~ JPW/2
JPE=JP + JPW/2
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cC..

0OO0OO0OOOO0OOO

XRN=1.

.TW: TEMPERATURE AT THE WALL

..TPK: PEAK PLASMA TEMPERATURE

..JT: GRID PGINT OF PEAK

...JTS: START OF NON-LINEAR TEMPERATURE PROFILE .o
...JTE: END OF NON-LINEAR TEMPERATIJRE PROFILE

.XTL AND XTR: TEMPERATURE SHAPE FACTORS

TPK=75.E4/TQ
TW=1.0E4/T0
JT=JP
JTS=JPS
JTE=JPE
XTL=2

XTR=2

.PCURR: PLASMA CURRENT

.PH: PLASMA HEIGHT

..JJ: LOCATION OF PEAK CURRENT DENSITY

..JJS AND JJE: BEGINNING AND END OF CURRENT DISTRIBUTIGN

.. XJL AND XJR: CURRENT DENSITY SHAPE FACTORS

...BP(NN): Z-COGMPGNENT OF MAGNETIC FIELD AT OUTER WALL

.PSI1: FLUX THROUGH HOLE OF TORUS

..X0: INITIAL VACUUM POLOIDAL CURRENT FUNCTION

..PWELL: DEPTH OF TOROIDAL FIELD WELL

..JBT,JBTS,JBTE: LOWEST POINT OF WELL, START AND END GF DEVIATIOGN
e FROM VACUUM BEHAVIOR FOR THE TOROIDAL FIELD
.XBTL,XBTR: TORXOIDAL FIELD SHAPE FACTORS

PCURR=-3.E9x25.E3
PH=12.

JJS=JPS-S

JJ=JP

JJE=JPE+S

XJL=1.5

XJR=1.5
BP(NN)=1500. /BO
PS1(1)=1,5E5/B0/RLO/RLO
PSI1=PSI(1)
X0=g2,5SE3/RLO/BO
PWELL=.10
JBTS=JPS

JBT=JP

JBTE=JPE

XBTL=1

XBTR=1

.CEMPUTE INITIAL PLASMA DENSITY PROFILE

b 106 J=1,NN

IF ((J .LT. JPS) .OR. (J .GT.JPE)) RN(J)=RLOW

IF ((J .GE. JPS) .AND. (J .LE. JPE)) RN(J)= RLOW +
ARNPKx (1. -(ABS((R(J)-R(JIP))I/(R(IPS)-R(JP))))IxxXRN)

106 CONTINUE
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298

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
.265

(W1 [ OV VN IR N -4
TNERIV2(J)I=TDERIVIX 1 (IR( DV -RIIATIV/(R(ITEY-ROITY I w2 MTR
108 CONTINUE
TC1)=TW
DO 109 J=2,NN
IF (J .LE. JTS) T(J3i=T(J-1) + TDERIV1xH
IF ((J .GT. JTS) .AND. (J .LE. JT)) T(J)=T(J-1) 3
1H/2.»(TDERIV2(J) + "DERIV2(J-1))
IF ((J .GT. JT) .AND. (J .LE. JTE)) T(J)=T(J-1} 1
1(TDERIV2(J) + TDERIW¥2(J-1))>xH/2.
IF (J .BT. JTE) T(Ji=T(.-1) ¢+ TDERIV3x*H
109 CONTINUE

C...COMPUTE TOROIDAL CURRENT DENSITY PRCGFILE A3 DESCRIEED IN THESIS
RJPK=PCURR/PH/RLO/RJO/(C(R(JJ)=R(JJIS))/(XJIL+1.) +
T(R(JJE) -R(JJ) I/ (XJIR+1.)}
DO 110 J=1,NN
IF ((J LE. JJS) .OR. (U .GE. JJE)) RJIT(JI=0.
IF ((J .GT. JJS) .AND. (J .LE. JJ)) RIT(JI=RIPKXxC(R(J)-R(JIJIS))
17(R(JJI)-R(JIIS)) ) xxXIL
IF ((J .GT. JJ) .AND. (J .LE. JJE)) RJIT(JI=RIPKx{(R(JJE)-R(J))
1/(R(JIE)-R(JJ) ) I xxXIR

110 CONTINUE

C...INTEGRATE TOROIDAL CURRENT DENSITY YO GET Z-COMPGNENT OF MAGNETIC
C...FIELD. :
DO 111 J=2,NN
K=NN+1-J .
BP(K)=BP(K+1)+H/2. xERJTIK+1)+RJIT(K))
111 CONTINUE
BP1=BP(1)
BPNN=BP (NN)

C...INTEGRATE FIELD T® GET POLOIDAL FLUX
DB 112 J=2,NN
PS1(J)=PS1(J-1)+Hx (R(JIxBP1J)+R(J-1)xBP(J-1))/2,
112 CONTINUE )
C...COMPUTE INITIAL TORGIJAL MAGNETIC FIELD
DO 113 J=1,NN
IF ((J .LE. JBTS) .9R. iJ .BE. JBTE)) BT(J)=XO/RiJ)
IF ((J .GT. JBTS) .AND. (J .LE. JBT)) BT(J)= :
1X0% (1. =((R(J)-R(IBT3))/iR(IBT)-R(JBTS) ) I**XBTL*PWELL)/R(J)
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276
£l 7/
278
279

281
282

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

312
313
314
315
316
317
318
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17500 FORMAT(//IH ,"CHARACTERISTIC VALUES OF lNlTlAL AND DIMENSIONIFSS“
i, " PARKAMETERS"//DH Bu= ,E11.4,° GAUSS"/BH 10= ,E11.4,
2" KELVIN"/SH RNO= ,E11.4," CM(-3)"/
35H RLO= ,E11.4," CM"/SH SO= ,EIl11.4," SEC(-1)"/SH RKO= ,
4E11.4," ERG/(CM SEC K)"/S5H PO= ,E11.4," DYNES/CM(2)"/SH RJO=
5E11.4," STATAMP/CM(2)"/6H VO= ,E11.4," CM/SEC"/7H BETA= ,
SE11.4/6H TTO= ,E11.4, "SEC")

27500 FORMAT(/6H TBO= ,E11.4," SEC"/5H THO= ,E11.4," SEC"/
18H RMGDIF= ,E11.4/8H THDIF= ,E11.4/6H GAM= ,E11.4/8H DELTA= ,
2E11.4/4H N= ,12/4H H= ,E11.4/6H TAU= ,E11.4/6H RLAM= ,EV1.4///)

3

C.. . MW: TIME STEPS BETWEEN OGUTPUT
MW=100
c SGA=(T(1))x%1.5
1 NB=TTT/TT1
M=NB+1
RNAVG=1.

. .CALCULATE INITIAL PRESSURE, ELECTRICAL CONDUCTIVITY, THERMAL
. .CONDUCTIVITY, POLOIDAL FLUX AND COULGMB LOGARITHM. ALSO,
. .COMPUTE  SOME GEGMETRIC FACTORS THAT ARE OFTEN USED IN LATERR
.CALCULATIONS.
DG 10 J=1,N+1 :
XLAM=6.2E3*SQRT((T(J)xTO)xx3/ (2. xRN(J) *RNO))
XLNL=ALOG (XLAM)
RK(J)= XLNL/XLNLO*RNAVG*RNAVG/SQRT(T(J))/(BT(J)*BT(J)+BP(J)*BP(J))
P(J)=RN(J)I*T(J)
S(J)=XLNLO/XLNLxT(J)=*xx%x1.5
CHI (J)=R(J)*BT(J)
D2(J)=(GAM+1)xBETAXP(J)+BP(J) xx2+BT(J)*x*2
RS1(J)=R(J)/S(J)
RS2(J)=1./(R(J)*S(J))
RS3(J)=R(J)I*S(J) .
C...SET RESISTIVITY HIGH IN LOW DENSITY REGIONS.
c IF ((J .EQ. 1) .GR. (J .EQ. NN)) GO TO 10
c RO=(RN(J=-1)+RN(J)+RN(J+1)) /3.
c IF (RO .LE. .25) S(J)=SGA
10 CANT I NUE
(v S(1)=SGA
Cc S(NN)=SGA

OO0

C EVALUATICON OF RADIATION PARAMETERS AS PER POST, ET AL,
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319 DG 11 J=1,N+)

320 IF ((T(J) .GE. TO1) .AND. (T(J) .LE. TO2)) GO T6 15
321 IF ((T(J) .GT. TG2) .AND. (T(J) .LE. TO3)) GO TO 16
322 IF (T(J) .LT. TG&') GO T6 11

323 IF (T(J) .GT. TO3) WRITE (12,483) TO3

324 GO TO 1995 '

325 15 PA(1,1,J)=652.374

326 PA(1,2,J)=1835.499

327 PA(1,3,J)=1984.266

328 PA(1,4,J)=1059.846

329 PA(1,5,J)=280.0476

330 PA(1,6,J)=29,33792

331 GG TO 11

332 16 PA(1,1,J)=-55.15118

333 PA(1,2,J)=-154.3956

334 PA(1,3,J)=-248.992

335 PA(1,4,J)=-180.8154

336 PA(1,5,J)=-57.64175

337 PA(1,6,J)=-6.149181

338 11  CONTINUE

339 DG 12 J=1,N+1

340 IF ((T(J) .GE. TS1) .ANC. (T(J) .LE. TS2)) GO TO 13
341 IF ((T(J) .GT. TS2) .ANC. (T(J) .LE. TS3): GO 7O 14
342 IF (T(J) .LT. TS1) GO TE 12

343 IF (T(J) .GT. TSE) WRITE (12,483) TS3

344 GO TG 1395

345 13 PA(2,1,J)=-52,75519

346 PA(2,2,J)=-134.613

347 PA(2,3,J)=-208.2753

348 PA(2,4,J)=-159,1874

349 PA(2,5,J)=-59.89162

350 PA(2,6,J)=-8.684849

351 GO TE 12

352 14 PA(2,1,J)=-19.54323

353 PA(2,2,J)=.0499481

354 PA(2,3,J)=-5.726766

355 PA(2,4,J)=-2.710884

356 PA(2,5,J)=30.75145

357 PA(2,6,J)=26.89966

358 12  CGNTINUE

359

360 C...COMPUTE THE POGWER RADIATED BY OXYGEN AT GRID POSITIGBN J (PR(1,J))
361 C...AND THAT RADIATED BY SILICIM AT THE SAME POGSITION (PR(2,J)),
362 DO 17 1=1,2

363 DO 18 J=1,N+1

364 XXLZ=PA(],1,J)

365 XLOBG=ALOG10(T(J)*TO/11603./1000.)

366 DO 19 K=1,5

367 XLBGK=(ABS (XLOG) ) % xK

368 IF ((XLGG .LT. 0. .AND. (MaD(K,2) .EQ. 1)) XL@GK=-XLOGK
369 XXLZ=XXL2+ PA(],K+1,J)*xX_OGK

370 19 CEANTINUE

371 XLZ(1,J1=10. xxXXLZ
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372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392

393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408

- 409

410
411

412
413
414
415
416
a7
418
419
420
421

422
423
424

20

40

C...WE NOW USE THE ABOVE COEFFICIENTS TO SET UP AN EQUATION OF THE

IF (T(J) .LT. TOV) XLZ(1,J)=0.

IF (T(J) .LT. TS1) XLZ(2,J)=0,. .

IF ((J .EQ. 1) .OR. (J .EQ. NN)) GO TO 181
RO=(RN(J-1)+RN(JI+RN(J+1)) /3,

IF (RG .LT. RLOW) RO =RLOW

IF (R .GT. .25) GO 7O 181
PR(1,J)=2.*RN(J)x.005/ROXRN{J) *XL.Z(1,J) *RNO*RNO/PRO
GO TO 18 -
PR(1,J)=2,*RMN(J)*PERC(1)*RN(J)xXLZ(],J)*RNOX*RNO/PRO
CONTINUE

CONTINUE

EVALUATIGN OF DIFFUSION SPEED
RJT,RJP: TORGIDAL AND POLGIDAL CURRENT DENSITY
D8 20 J=2,N
RIT(J)=-(BP(J+1)-BP(J-1))/(Hx2.)
RJP(J)I=(CHI (J+1)-CHI (J-1)) /(2. sHxR(J))
D1(J)=R(JI*(D2(J+1)/R(JI+1)-D2(I-1)/R(J-1))/(2.%xH)
D3(J)=-BT(J)x((BT(J+1)/R(JI+1))-(BT(J-1)/R(J-1)))/H
R1(J)=(RS1(J+1)+RST1(J)IXBP(J+1)1-(RS1(J+1)+2xRS1(J)+
1RS1(J-1))*BP J)+(RS1(J-1)+RS1(J))*BP(J-1)
R1(J)=R1(J)*RMGDIF/ (2. *R(J)xHx*2)
Q1(J)=(RS2(J+1)+RS2(J) ) *CHI (J+1) - (RS2(J+1)+2XxRS2(J) +
1RS2(J-1))%CHI (J)+(RS2(J-1)+RS2(J) ) xCHI (J-1)
Q1(J)=Q1(J)*RMGDIF/ (2. xHXx%2)
RKGRAD=R(J) % [RK(J+1)-RK(J-1)) /2.
RN1(J)=THDIF/2, /R(J)/H/HX (T(J+1) % (RK(J) X (R(J+1)+R(I))
i +RKGRAD) - T(J)*RK(JI*(R(J+1)+2.xR(JI+R(J-1)) +
3T(J-1I X (RK(JI*(R(JI+R(J-1)) - RKGRAD)) +
2DELTAX (RIP(J)xx2+RJT(J)%xx2)/S(J) -PR(1,J) -PR(2,J)
CONTINUE
D8 40 J=3,N-1 _
D6(J)=(BP(J+1)%R1(J+1)-BP(J-1)=R1(J-1))I*xR(J)/ (2, xH)
1+(Q1(J+1)*CHI (J+1)%R(J+1)-Q1(J-1)*xCHI (J-1)xR(J=1))
2/(R(J)*2. xH) +BETAXR(J) x (RN1(J+1) -RN1(J-1))/(2. xH)
CGNT I NUE
D6(2)=R(2)*(3P(3)*R1(3)-BP(2)xR1(2))/H
1+(Q1(3)*xCHI (3)xR(3)-Q1(2) *xCHI (2) *xR(2) )/ (R(2) xH)
2+BETAXR(2) *x (RN1(3) -RN1(2)) /H
D6 (N)=R(N)* (BP(N)*R1 (N) -BP(N-1)%R1(N-1))/H
1+0Q1 (NI XCHI (N) *xR(N) -Q1 (N-1)%CHI (N-1)*R(N=1))/(H*xR(N))
2+BETAXR(M) x (RN1(N)-RN1(N-1))/H

C...FORM AxX(J-1) + BxX(J) + CxX(J+1) = D

50

DO 50 J=2,N
AA(J)=2.xD2(J)-DI1(J)*H
BB(J)=2. xHxx2xD3(J) -4, xD2(J)
CC(J)=D1(J)xH+D2(J)x2
EE(J)=2.xD6(J) xHx*2
CONT I NUE

Xi(1)=0,

XI1(N+1)=0.

692



- 425
426 C...SOLVE THE SIMULTANEJUS- EQUATIONS AT ALL GRID POINTS BY A DOUBLESWEEP
427 C...METHOD. 93BTAIN THE VARIABLE (VE_OCITYxR) AT THE NEW TIME STEP.

428 CALL DBLSWP(XI,N)

429

430 C...COMPUTE THE DIFFUSIBN VELGCITY

431 DO S5 J=1,N+1

432 V(J)=X1 (J)/R(J)

433 55 CONT INUE

434

435 C...OUTPUT INITIAL COND:TIONS AND/GR NEW TIME STEP RESULTS

436 IF (MODiM,MW) .NE. 1) GO TO 95.

437 NBB=NBB +1

438 WRITE (12, 9000)NB

439 9000 FORMAT(iH1,"TIME STEP NUMBER “,14/)

440 WRITE(12, 10000) .

441 WRITE(12,20000) (R¢J),BT(J),BP(J),RIT(J),RIP(J),T(J),RNCJ),
442 WV(J),PSI(J),J=1,N+1) '

443 PPROL=0.

444 PPROH=0.

445 PPRSL=0.

446 PPRSH=0.

447 DO 56 J=1,N+|

448 IF (RN(J) .GT. 0.1) GO TG 57

449 PPROL=PFROL + PR(1,J)*R(J)

450 PPRSL=PPRSL + PR(2,J)*R(J)

451 GO TO 56 _

452 57 PPROH=PPROH + PR(1,J)xR(J)

453 PPRSH=PPRSH + PR(2,J)*R(J)

454 56  CONTINUE

455 PPROL=PPROL*PROX2. P | xRLOXRLO*PHXxHx1,E-13

456 PPRSL=PPRSL*PRO*2. %P1 *xRLOXRLO*PHxH»1 .E-13

457 PPROH=PPROHXPROX2 . %P [ xRLOXRLOXPHXH*1.E-13

458 PPRSH=PPRSH*PROX2.*P| xRLOXRLOXPH*Hx1 .E~13

459 WRITE (12,5600)PPRIL

460 WRITE (12,5601)PPROIH

461 WRITE (12,5602)PPRSL

462 WRITE (12,5603)PPR3H

463 5600 FORMAT(1H,"THE POWER RADIATED BY OXYGEN IN THE LOW DENSITY
464 1 REGION IS (MW) *,E11.4)

465 5601 FORMAT(1H,"THE POWER RADIATED BY OXYGEN IN THE HIGH DENSITY
466 1 REGIGN IS (MW) *,E11.4)

467 5602 FORMAT(1H,"THE POWER RADIATED BY SILICON IN THE LOW DENSITY
468 1 REGIOGN IS (MW) “,E11.4)

469 5603 FORMAT(1H,"THE POWER RADIATED BY SILICON IN THE HIGH DENSITY
470 1 REGIGN IS (MW) *,E11.4)

471 ,

472 © CALL PLOT(R,BP,BO,HNN, 1)

473 CALL PLOGT(R,BT,B0,HN,3)

474 CALL PLOGT(R,RJT,RJD,NN,5)

475 CALL PLOBT(R,T,TO,NN,7)

476 CALL PLOGT(R,RN,RNO,NN, 9)

477 CALL PLOT(R,P,PO,N¥,11)
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478
478
480
481

482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501

502
503
504
505
506
507
508
509
510

511

512
513

514 C

515
516
517

519
520
521
522
523
524
525
526
527
528
529
530

10000 FORMAT(//1H ,"R",13X,"BT", 12X, "BP", 12X, "RJT", 12X, "RJP", 12X,

PUT, 12X, UNY 12X, v 12X, PSS /)

20000 FORMAT(1H ,9(E11.4,3X))

95

60

61

75

80

TTT=TTT+TT]
IF(TTT.GT. TMX)GOTO 1995

EVALUATION OF PLASMA NUMBER DENSITY
Do 60 J=2,N
AA(JI==-XI1(J-1)%xH/R(J)

BB (J)=RLAM

CC(J)=X1(J+1)xH/R(J)
EE(J)=RLAM*RN(J)

CONTINUE

RN(1)=RN(2)

RN(N+1)=RN(N)

CALL DBLSWP(RN,N)

DO 61 J=1,N+1

IF (RN(J) .LT. RLOW) RN(J)=RLOW
CONTINUE

EVALUATION OF POLOIDAL FIELD BP

DO 70 J=2,N

AA(J)=-V(J)xH*R(J-1)/R(J) - RMGDIF/R(JI*(RS1(J)+RS1(J-1))
BB(J)=RLAM+H*(V(J+1)-V(J-1)) + RMGDIF/R(JI*(RS1(J+1)+2, xRS1(J)
1+RS1(J-1)) '
CC(J)I=V(JI*RI[J+1)*H/R(J) - RMGLDIF/R(JI*(RS1(J+1)+RS1(I))
EE(J)=BP(J)*xRLAM

CONT I NUE

BP(1)=BP1*EXP(-TTT/TBP1)

BP(1)=BP(2)

BP(N+1)=BPNNXEXP(-TTT/TBPNN)

BP (NN)=BP(N)

CALL DBLSWP(BP,N)

. .EVALUATION OF POLOIDAL FLUX FUNCTION PSI

DO 75 J=2,N
PS1(J)=PSI1(J-1)+Hx(R(J)XBP(J)+R(J-1)xBP(J-1))/2.
CONTINUE

EVALUATION OF TOROIDAL FIELD BT

DO 80 J=2,N
AA(J)=-HxV(J)-RMGDIF=*R(J-1)=x(RS2(J)+RS2(J-1))
BB(J)=RLAM +Hx(V(J+1)-V(J- 1))+RMGDIF*R(J)*(R82(J+1)+R82(J 1)
1+2,. xRS2(J))
CC(JI)=H*V(J)-RMGDIFXR(J+1)%x(RS2{(J+1)+RS2(J))
EE(J)=RLAM%BT(J)

CONTINUE

BT(1)=BTINXEXP(-TTT/TBT)
BT(N+1)=BTOUT*EXP(-TTT/TBT)

CALL DBLSWP(BT,N)

DG 84 J=1,NN
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531

532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551

552
553
554
555
556
557
558
559
560
561

562
563
564
565
566
567
568
569
570
571

572
573
574
575
576
577
578
579
580
581

582
583

84

85

0

1995

CHI (J)=R(J)*BT(J)
CONT I NUE

EVALUATIIJN OF NEW CURRENTS

Da 85 J=2,N
RIT(J)=-(BP(J+1)-BP(J-1))/(Hx2.)
RJP(J)=(CHI(J+1)-CHI(J-1))/(2. xH*R(J))
RO=(RN(J-1)+RM(J)+RN{J+1}) /3.

IF (RO .GT. .25) G3 TO 85

RJT(J) =0,

RJIP(J)=0.

CONTINUE

EVALUATION OF TEMPERATURE T

DG 90 J=2,N

RKGRAD=THDIFx(RK(J+1)-RK(J-1))/2. /RN(J)
AA(J)=-(R(J-1)+R(JI)I*THDIF*RK(J)/ (RN(J)*R(J)) -HxV(J) +RKBRAD
BB(J)=RLAM+4, xTHDIFxRK(J)}/RN(J) +HxGAM* (X[ (J+1)-X11J~1))/R(J)
CC(J)=H*V(J)-(R(J-1)+R(JII)xTHDIF*RK(J) Z(RN(J)*R(J: ) -RKGRAD
D6(J)=(RIP(J)x*x2+RIT(J)*xx2)xDELTA/ (RN(J) «S(J)}
1-PRC1,J)/RN(J)-PRC2,J)/RN(J)

EE(J)=RLAMxT(J) +2xD6(J) *Hxx2

CONTINUE

CALL DBLSWP(T,N)

GOTO 1

CALL PLOTE

CALL EXIT(2)

END

C...THIS SUBRGUTINE CONTAINS THE DOUBLESWEEP METHOD.

10

20

99
100

SUBRGUTINE DBLSWP(X,N)
COMMON/C2/AA(101),BB(101},CC(1C1),EE(101)
DIMENSION DSWL(101),DSWK(101),X(101)

J=2 :

IF(ABS(EB(2)).LT.1.E-20)60TQ 99
DSWL(J)=-CC(J)/BB(J)
DSWK(J)=(EE(J) -AACJIxX (1)) /BB(J)

DO 10 J=3,N

DEN=BB(J) +AA(J)xDSWL(J-1)

IF(ABS(DEN) .LT.1.E-20)GOTO s9
DSWL(J)=-CC(J)/DEN

DSWK (J)=(EE(J) -AA4J) *xDSWK(J-1))/DEN

DG 20 J=N, 2, -1
X(J)=DSWL(J)xX(J+1)+DSWK{J)

GOTO 10

WRITE(12,100)J,BB(J)

FORMAT('H ,"B(2) BR DEN [S LESS THAN 1.E-20",10X,

aLe



101

1"J= ",12,5X,/1H ,"THEREFORE THE DOUBLESWEEP METHOGD IS ",

2"NGT APPLICABLE"/8H BB(J)= ,E11.4)
RETURN
END

C...THIS SUBROUTINE CONTAINS PLGTTIN3 ROUTINES

1000
1001
1002
1003
1004
1005

SUBROUTINE PLOT(R,A,AO,NN,J1)
COMMON/PLT/P1(8),P5(i12),P6(12),P7(12)
COMMON/PL1/RLO,NB, TT1

DIMENSION R(101),A(101)

TIME9=NBx*TT1

AMX=A(1)

AMN=A(1)

DG 10 J=1,NN .

AMX=AMAX1 (A(J), AMX)

AMN=AMINI1 (A(J), AMN)

COGNTINUE

AMX=1.01xAMX

IFCAMN)1,2,2

AMN=AMNx 1. 01

GOTO 3

AMN=AMNX . 99

RR1=.99%R(1)

RRN=1.01xR(NN)

CALL MAP(O.,160.,0.,160.,0.,1.,0.,1.)
CALL SETLCH(15.,75.,1,0,3,1)

WOT 100, 1000,P7(J1),P7(J1+1)

CALL SETLCH(75.,148.,1,0,3,0)

W8T 100,1001,P1(1),TIMES,P1(2)

CALL SETLCH(70.,35.,1,0,3,0)

WOT 100,1002,P1(3)

CALL SETLCH(20.,23.,1,0,2,0)

WOT 100,1003,P1(4),P1(S),NB

WOeT 100,1004,P1(6),P1(7),RLO,P1(8)
WOT 100, 1005,P5(J1),PS(J1+1),A0,P6(J1),P6(J1+1)
FORMAT (2A8)

FORMAT(A6,E8.2,A4)

FORMAT (A6)

FORMAT(A9,A4,14)
FORMAT(A6,A10,E8.1,A3)
FOGRMAT(2A8,E8. 1, 2A6)

CALL MAPS(RR1,RRN, AMN,AMX, .2,.9,.3,.85)
CALL TRACE(R, A,NN)

CALL FRAME

KRETURN

ZND
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C...THIS FILE CONTAINS THE NECZSSARY INPUT DATA

xFILE NAME=DATA

1.E6,

10.,

1.E3,

1.E15,

xCHATR 1=DIF,LIB=(T’,F’),»=CONTREAL, D=SYMBAL, GO

b
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