

F
O
S
S
I
L

E
N
E
R
G
Y

295
2-15-80

DR. 820

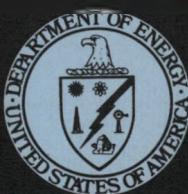
FE-2645-03

DEASPHALTING, DEASHING, AND UPGRADE OF COAL LIQUIDS

Quarterly Technical Progress Report for April-June 1979

By
Fredrick J. Riedl
Armand J. deRosset

July 1979
Date Published


Work Performed Under Contract No. ET-78-C-01-2645

UOP Incorporated
Corporate Research Center
Des Plaines, Illinois

MASTER

REPRODUCTION OF THIS DOCUMENT IS UNLAWFUL

U. S. DEPARTMENT OF ENERGY

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

5.50
Price: Paper Copy \$5.25
Microfiche \$3.00 3.50

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DEASPHALTING, DEASHING, AND UPGRADING OF COAL LIQUIDS

Quarterly Technical Progress Report
for
The Period April-June, 1979

Fredrick J. Riedl and Armand J. deRosset

UOP Inc.
Corporate Research Center
Ten UOP Plaza
Des Plaines, IL 60016

MASTER

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

rb
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Date Published - July, 1979

PREPARED FOR THE UNITED STATES
DEPARTMENT OF ENERGY

Under Contract No. ET-78-C-01-2645

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Inspections of Liquefied Coal Product 3777-39	6
2	Deashing Liquefied Coal Product 3777-39 Plant 633, Run 90	7
3	Inspections of Deasher Solids 3810-37 Plant 633, Run 90	8
4	Deashing Liquefied Coal Product 3777-39 Plant 633, Run 96	9
5	Inspections of Deasher Solids 3810-39 Plant 633, Run 96	10
6	Inspections of Deashed Oil 3776-8	11
7	Product Hydrogen Content Hydrotreating Deashed Oil 3776-8 Plant 638A, Run 36	12
8	Inspections of Hydrotreated Deashed Oil 3776-9	13
9	Inspections of Illinois No. 6 Coal	14
10	Blend and Inspections of Illinois No. 6 Coal and Coal Liquefaction Solvent 3776-9	15
11	Coal Liquefaction Plant 666, Run 44	16
12	Coal Liquefaction Plant 666, Run 44, Operating Conditions, Product Inspections, Coal Conversions	17

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1	UOP Deashing Unit	18
2	Gas Oil Hydrotreating Plant	19
3	Work Plan and Progress	20
4	Modified Work Plan and Progress	21

ABSTRACT

Deashing of UOP coal liquefaction product, using the UOP Demex process, has been completed. Three rejection levels of 17, 30 and 26 wt-% were attained. Ash content of the composite product was < 20 ppm.

Fixed bed hydrotreating of the deashed oil was completed. A 0.75 wt-% increase in hydrogen content was obtained under relatively mild operating conditions.

A second coal liquefaction operation was completed, using the hydrotreated deashed oil as solvent. A 90-93 wt-% (MAF basis) coal conversion was achieved.

Demex deashing of this second liquefied coal product is to be started in July.

Task 1.2

Work Accomplished

The Demex deashing of UOP coal liquefaction product has been completed. The deashing work was done on the UOP Demex deashing Plant 633, (Figure 1) and comprises 10 separate runs over a 4-month period of time. Two of the runs, 90 and 96, were of sufficient duration to provide dependable data.

In general, Demex deashing proceeds as follows: liquefied coal product and solvent are combined at operating pressure upstream of the deasher and then passed downflow through the in-line mixer into the deasher. Separation takes place in the deasher. The oil-rich upper phase flows to a stripper for removal of the solvent, while the solid-rich bottom phase containing the ash is removed through the lock-hopper system on the bottom of the deasher.

The liquefied coal product (3779-39) used for the deashing runs is described in Table 1. The analysis was calculated by averaging analytical data for stream samples taken at the beginning, in the middle and at the end of the liquefaction run. The liquefied coal product contained 85.4 wt-% toluene soluble oil. This oil contained 11 wt-% C₇ insoluble. The insoluble portion contained 56.7 wt-% ash.

Plant 633, Run 90

A summary of the deashing, Run 90, is presented in Table 2. Just after establishing a lined-out condition, a temperature upset occurred requiring an additional 30 hours of operation. The final 50 hours gave a resultant 17.3 wt-% rejection of solids and a 82.7 wt-% recovery of deashed oil which showed an ash content of less than 0.001 wt-% (10 wt-ppm).

Deasher solids from Run 90 representative of lined-out conditions were blended and analyzed. These data are shown in Table 3. The solids were also Soxhlet extracted with toluene in liquid phase, and both the toluene soluble oil and insoluble portions were submitted for analysis. Results are also shown on Table 3. The toluene soluble oil contained 6.79 wt-% hydrogen, compared to the original coal hydrogen content of 6.12 wt-% (Table 9). The insoluble portion would be a source of fuel for the coal plant.

Plant 693, Run 96

A second operation, Plant 633, Run 96, was begun using the same operating conditions as in Run 90. The liquefied coal product and solvent entered the deasher separately. The results of this run are presented in Table 4. A rejection of about 30 wt-% was obtained at base temperature and 26 wt-% at 4°C above base temperature.

A sample of the deasher solids (at the 30 wt-% rejection level) was analyzed. These data are presented on Table 5. These solids were Soxhlet extracted with toluene. The toluene soluble and insoluble portions were submitted for analysis. Results are also shown in Table 5. The amount of toluene soluble oil is slightly more than twice that observed in the previous operation at 17 wt-% rejection. The toluene soluble oil also has the expected higher hydrogen content. The insoluble portion is of poor quality, containing only 4.01 wt-% hydrogen. It could be used as a plant fuel.

From the results of these operations, it is concluded that it will be necessary to mix the solvent and liquefied coal product prior to entry to the deasher. It also appears that an in-line mixer is satisfactory.

The stripper bottoms, deashed oil (3776-8), is a blend of all stripper bottom products. This product was analyzed and the inspections are shown on Table 6. The ash content amounted to 0.002 wt-%, which is satisfactory for processing over a fixed-bed catalyst.

Task 1.3

Work Accomplished

The feedstock for hydrotreating is the deashed oil 3776-8, Table 6. The hydrotreating of this material was done in UOP Research Pilot Plant 638H, Run 36. A flow diagram is shown in Figure 2. The deashed oil along with fresh make up and recycle hydrogen are pumped downflow over a 300 cc fixed-bed black oil conversion catalyst. Water is injected into the reactor effluent line to pick up ammonia. The water is removed in the 3-phase separator and the hydrotreated deashed oil is sent to a debutanizer column for removal of light gases.

Plant 638H, Run 36

The deashed oil was processed at 40°C below base temperature, 240 psig below base pressure, and 2.0 LHSV relative to base, for a period of 8.8 days. A summary of the operation is given in Table 7. Periodically, samples from the plant were sent for hydrogen and carbon analyses. As noted, the hydrogen content lined out at about 10.3 wt-% with no indication of catalyst deactivation during the run. Normally a product distribution, hydrogen consumption and hydrogen distribution would be presented for the operation. However, analytical data on the oxygen content of the hydrotreated deashed oil is delayed and the above data will be reported in the next quarterly report.

Task 1.4
Work Accomplished

The inspections of the hydrotreated deashed oil 3776-9, Illinois No. 6, coal, and the blend charged for coal liquefaction to UOP Research Pilot Plant 666, Run 44, are shown on Tables 8, 9, 10. The inspection of the deashed oil blend was determined from a sample separated in the laboratory.

Coal oil slurry was pumped concurrently upflow under hydrogen pressure through an empty stainless steel tube at elevated temperature. Gas was separated for recycle or venting. The product, comprising liquefied coal, unconverted coal, water, and ash was collected and the water removed.

Plant 666, Run 44

Product distributions will be calculated and presented in the next quarterly report, for two periods of operation, midway and near the end of the run. Operating conditions during these periods along with the net hydrogen consumptions are all shown on Table 11. The net hydrogen consumption amounted to 960-1010 SCF/bbl. This represents formation of water, ammonia, hydrogen sulfide, solubility losses as well as uptake by coal during liquefaction. The hydrogen consumption is based on the difference of measured hydrogen input and output to and from the plant.

At the operating conditions employed, conversion of coal (MAF basis) was 90-93 wt-%. Samples to determine these conversions were selected during periods at the beginning and middle of the liquefaction run. These stream samples were drawn over short 20 to 30 minute intervals during the test period and separated in the laboratory into a liquid product, solids, and water. The results are shown on Table 12 along with the calculated conversions.

Task 2.0
Work Accomplished

To prevent excessive feed usage and/or loss, Synthoil centrifugate is being used as an off test feedstock to establish operating conditions and to work out mechanical problems on the Demex-deashing unit.

The work plan and progress, Figure 3, has been modified in regard to the DOE liquids. The new work plan and progress is shown in Figure 4.

ERRATA

Report FE-2645-02, Table 4, page 7. Read for line 2 under "Operating Conditions":

T - T (base) °C 5 5

Table 1

Inspections of Liquefied Coal Product 3777-39

<u>Total Product Analysis</u>	<u>Wt-%</u>
Oil	85.42
Insoluble in Toluene	4.33
Water	<u>10.25</u>
Total	100.00

Oil Portion

C ₇ Insoluble	11.08
--------------------------	-------

Insoluble Portion

Ash	56.74
% H	2.16
% C	33.34

Table 2

Deashing Liquefied Coal Product 3777-39

Plant 633, Run 90

P-P (base) = 480 psi, Solvent/Oil ratio = base

<u>Hrs. on Stream</u>	<u>T-T (base), °C</u>	<u>% Rejection (Deasher Botts), wt-%</u>	<u>Deashed Oil, wt-%</u>	<u>Ash in Deashed Oil, wt-%</u>
0-30	4	12.3	87.7	<0.001
30-45	33	23.0	77.0	
45-60	6	10.8	89.2	<0.001
60-85	3	17.2	82.8	<0.001
85-110	3	17.3	82.7	<0.001

Table 3

Inspection of Deasher Solids 3810-37

Plant 633, Run 90

	<u>wt-%</u>
Hydrogen	5.06
Carbon	71.55
C ₇ Insoluble	92.2
Coal Ash	15.28

Soxhlet Extraction with Toluene (Liquid Phase)

	<u>wt-%</u>
Oil (Toluene soluble)	
Yield	35.67
Hydrogen	6.79
Carbon	87.50

Insoluble portion	
Yield	64.33
Hydrogen	4.52
Carbon	65.05
Ash	23.49

Table 4

Deashing Liquefied Coal Product 3777-39

Plant 633, Run 96

P-P base = 480 psi, Solvent/Oil ratio = base

Hrs. on Stream	T-T (base), °C	Rejection		Deashed Oil, wt-%	Ash in Oil, wt-%
		(Deasher Botts), wt-%			
0-9	0	28.4		71.6	
9-21	-3	30.5		69.5	
21-37	0	30.8		69.2	
37-71	4	26.0		74.0	<0.001

Table 5

Inspections of Deasher Solids 3810-39

Plant 633, Run 96

	<u>wt-%</u>
Hydrogen	7.52
Carbon	82.10
C ₇ Insoluble	53.2
Coal Ash	6.85

Soxhlet Extraction with Toluene

	<u>wt-%</u>
Oil Toluene Soluble	
Yield	74.00
Hydrogen	8.17
Carbon	88.67
Insoluble portion	
Yield	24.35
Hydrogen	4.01
Carbon	60.44
Ash	26.50

Table 6

Inspections of Deashed Oil 3776-8

°API @ 60°F	8.2
Sp. Gr. @ 60°F	1.0129
Distillation, ASTM D 86	
IBP, °F	384
5%	468
10%	495
20%	545
30%	583
40%	629
50%	680
60%	740
70%	810
80%	932
90%	
95%	
EP	
% Over	80.0
% Bottoms	20.0
Hydrogen, wt-%	9.52
Carbon, wt-%	88.62
Sulfur, wt-ppm	1500
Nitrogen, wt-ppm	4010
Oxygen, wt-ppm	7550
Ash, wt-%	0.002
Toluene Insoluble, wt-%	0.16
C ₇ Insoluble, wt-%	3.21
Viscosity: cSt @ 210°F	4.563
SUS @ 210°F	41.3
Molecular weight	257

Table 7

Product Hydrogen ContentHydrotreating Deashed Oil 3776-8Plant 638H, Run 36

LHSV/LHSV base = 2.0, P-P (base) = -240 psi

Period No	Hrs on Stream	T-T (base), °C	Product Analysis, wt-%	
			H	C
1	22-32	-39	10.14	88.55
5	62-72	-40	10.08	89.06
8	92-102	-41	10.12	88.90
11	122-132	-40	10.36	89.52
12	132-142	-40	10.38	89.48
13	142-152	-38	10.38	88.94
15	162-172	-39	10.22	89.11
17	182-192	-38	10.31	89.20
19	202-212	-39	10.24	88.79

Table 8

Inspections of Hydrotreated Deashed Oil 3776-9

^o API @ 60°F	11.8
Sp. Gr. @ 60°F	0.9874
Distillation, ASTM D 86	
IBP, °F	340
5%	438
10%	489
20%	538
30%	570
40%	610
50%	651
60%	701
70%	769
80%	859
86%	930
95%	
EP	
% Over	86.0
% Bottoms	14.0
Hydrogen, wt-%	10.27
Carbon, wt-%	87.92
Sulfur, wt-ppm	177
Nitrogen, wt-ppm	2155
Oxygen, wt-ppm	
C ₇ Insoluble, wt-%	0.26
Viscosity: cSt @ 210°F	3.534
SUS @ 210°F	37.9

Table 9

Inspections of Illinois No. 6 Coal

Sample No. 3776-7

Analyses, wt-%

Moisture	14.90
Ash (ASTM D 3174)	6.54
Sulfur	2.46
Nitrogen	1.01
Carbon	59.72
Hydrogen	6.12
Oxygen	9.60

Table 10

Blends and Inspection of
Illinois No. 6 Coal and Coal Liquefaction Solvent 3776-9

Blend Data

Blend Identification No. 3776-10

Blend Composition

Solvent, gm	61517
Coal, gm (moisture free)	36144

Inspections

Coal in Blend, moisture free, wt-%	36.83
Solvent in Blend, wt-%	55.09
Water in Blend, wt-%	8.08

Table 11

Coal Liquefaction, Plant 666, Run 44

Test No. 44-8 44-14

Operating Conditions

P-P (base), psig	740	840
T-T (base), °C	55	55
LHSV/LHSV (base)	1.26	1.23

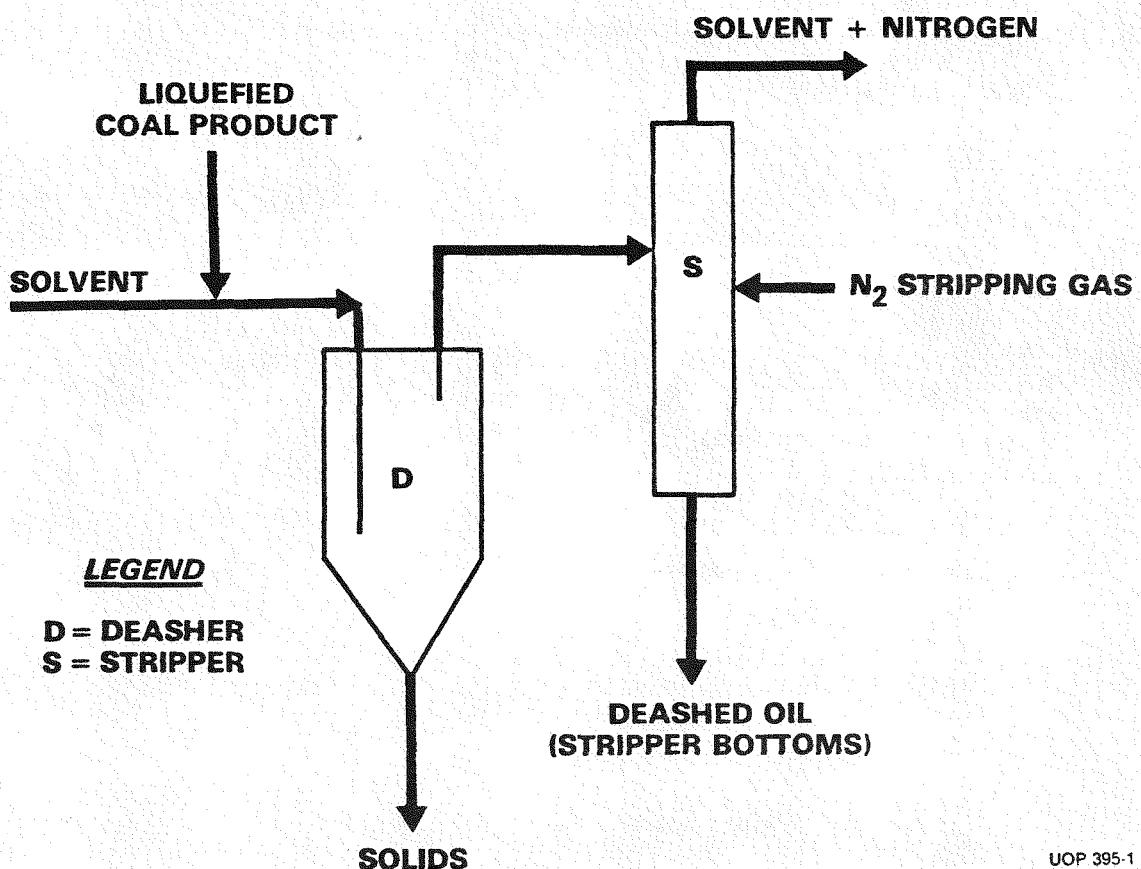
Net Hydrogen Consumption, SCF/Bbl 958 1011

Table 12

Coal Liquefaction, Plant 666, Run 44

Operating Conditions, Product Inspections, Coal Conversions

Hours on Stream	12-24	96-108
-----------------	-------	--------


Operating Conditions

P-P (base), psi	785	800
T-T (base), °C	4	5
LHSV/LHSV, (base)	1.12	1.25

Product Analyses, wt-%

Sample No.	3810-45	3810-47
Liquid Product (coal oil)	86.46	88.27
Solids	5.09	7.13
Water	7.04	4.46
Loss	1.41	0.14
Total	100.00	100.00
C ₇ Insoluble in Coal Oil	8.95	8.32
Ash in Solids	52.98	55.20
Coal Conversion MAF (basis)	93.0	90.3

FIGURE 1
UOP DEASHING UNIT

UOP 395-1

FIGURE 2

GAS OIL HYDROTREATING PLANT

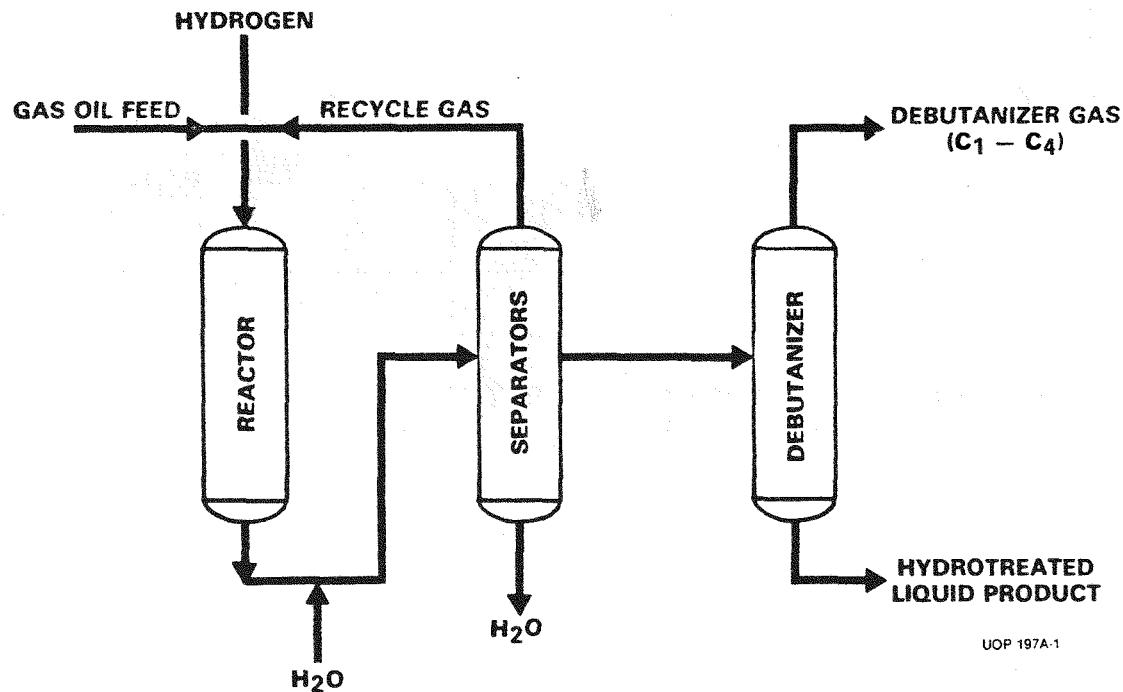


Figure 3

Work Plan and Progress

UOP Liquids

Scheduled

DOE Liquids

Completed

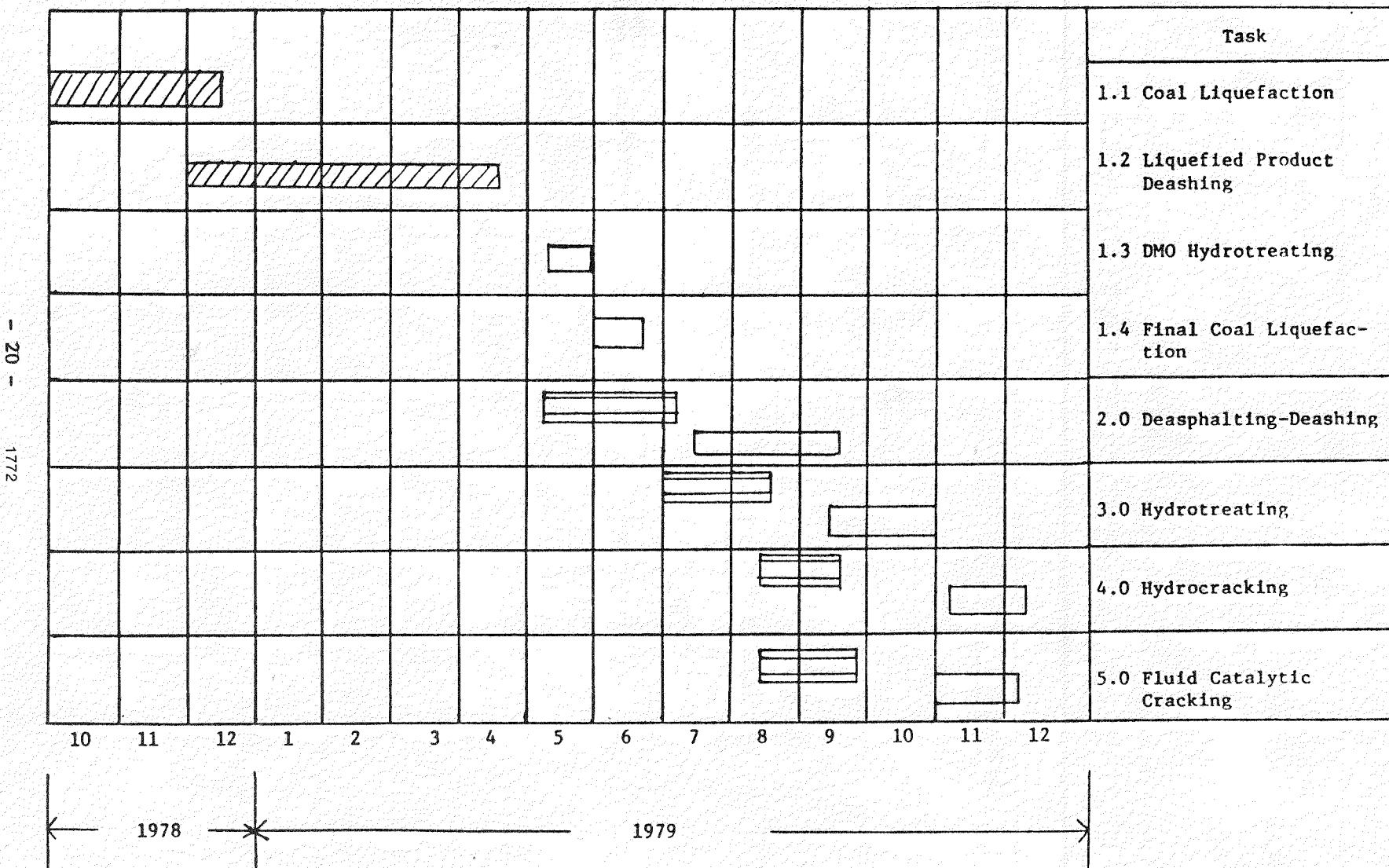
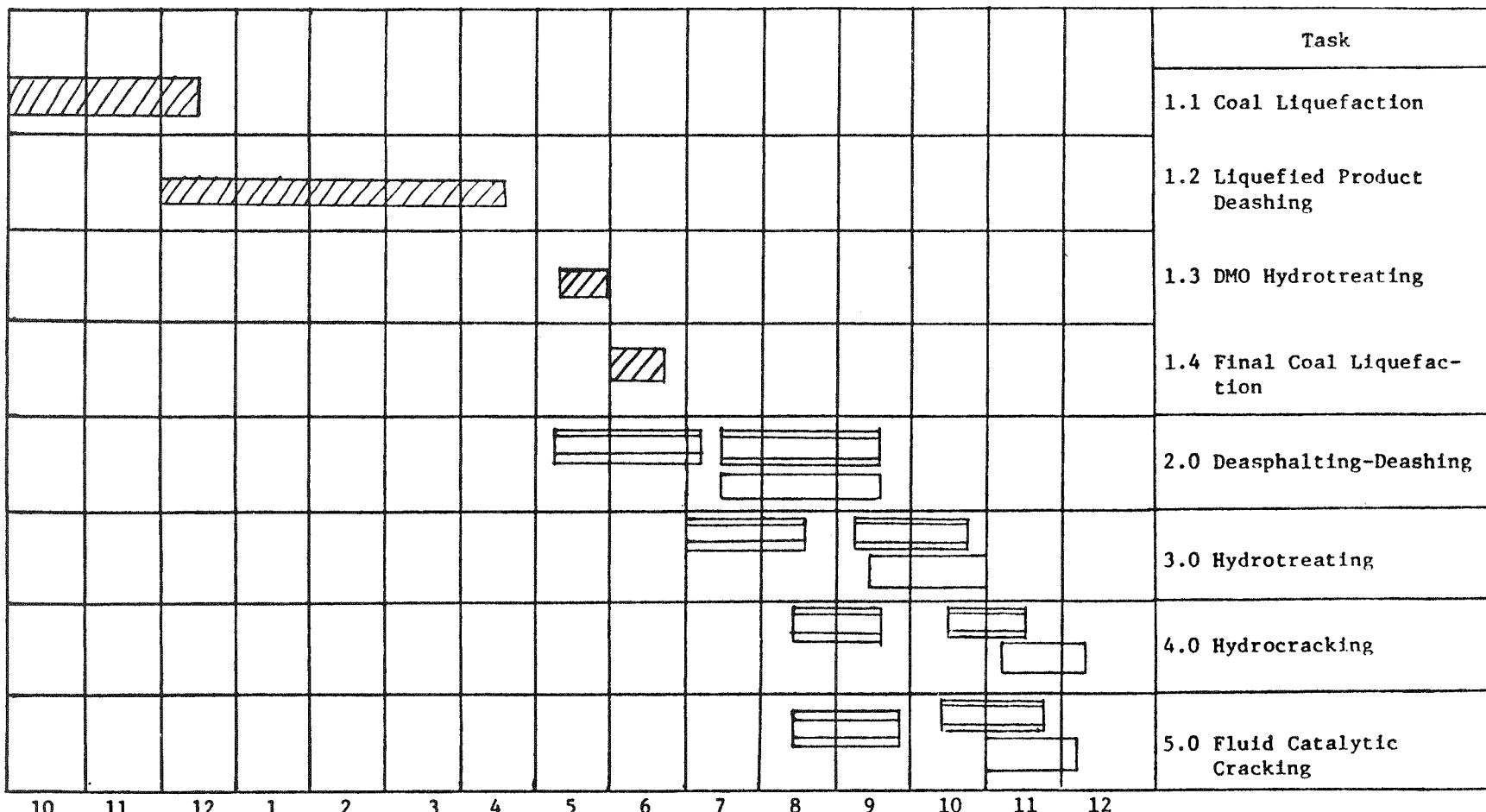
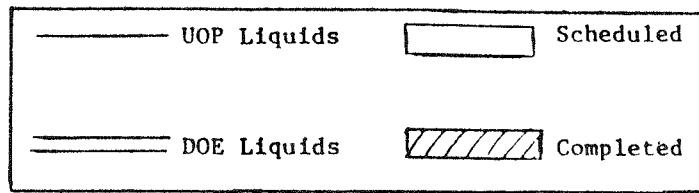




Figure 4

Work Plan and Progress

