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COMPUTATIONAL BENCHMARK FOR 

DEEP PENETRATION IN IRON 

L. L. Carter and J. S. Hendricks 

Neutron transport through thick regions of iron is important in many 

fast reactor and fusion applications. The resonance structure of the iron 

cross sections from 20 keV to about 2 MeV introduces considerable com-

plexity into calculations of the transport. To compound the problem the 

shiel~ designer may be under severe time constraints including the use of 

computer codes and cross section sets with which he is not intimately 

familiar. 

Ideally, comparisons should be made between relevant experimental 

measurements and calculations (using the same cross section sets and 

transport codes that will be used in design studies) before making the 

calculations for the shield design. Even if there is time to do t~is, the 

relevant experimental measurements often introduce two-. or three-dimensional 
'\ 

; 

effects requiring computer codes for the analysis that would not otherwise 

be needed. 

Consider~ for example, a measurement of neutron penetration through 

iron slabs made at Oak Ridge National Laboratory. The geometry shown on 

slide #1 is relatively· simple, but does require a two-dimensional calcula­

tion for a good analysis. The resonance structure of the iron cross 

sections makes it highly desirable to utilize a two-dimensional Monte Carlo 

calculation with a pointwise treatment of the cross sections. Such an 

analysis has been done by Guy Estes and Johri Hendricks and will be 



... 

summarized in the first paper in the 11 Nuclear Data for Shielding Applica­

tions11 session tomorrow afternoon. The time required to do this type of 

analysis confirms the need for a simpler calculational benchmark.. . 

In this paper we are describing a benchmark calculation of neutron 

transport through a thick slab of iron. The calculation utilizes the same 

Monte Carlo code (MCNP) along with the ENDF/B-IV and V based cross section 

sets that were used to make comparisons with the Dak Ridge experiment. 

This one-dimensional calculational benchmark has been documented in a 

Los Alamos Scientific Laboratory report. 

The geometry for the benchmark problem is shown on slide #2 .. Mono­

energetic neutron sources of 2, 14, and 40 MeV are normally incident upon 

a three meter thick iron s 1 ab. The resu 1t ing neutron currents, flux, and 

radiation dose are tabulated in a standard energy group structure at 

various distances through the slab. 

The principal advantage of the MCNP Monte Carlo code for this appli­

cation is that the multigroup approximation is not required and hence 

resonance self-shielding is accounted for automatically. The only signi­

ficant difference between the cross section data in the MCNP library and 

the ENDF/B data base from which it is derived via the NJOY processing 

code is that resonance data are represented in MCNP as linearly inter­

polated pointwise data Doppler broadened to a specific temperature. This 

representation is shown on slide.#3 for the ENDF/B-IV total cross section 

of iron between 10 keV and about 300 keV. Over 1300 energy points were 

used to describe the cross section within this energy interval. 



We will now display some figures summarizing the benchmark calcula­

tions. The benchmark not only provides tabulated data for confirming the 

accuracy of multigroup calculations, but it also provides the necessary . 
numerical data for obtaining insights into the spectral and spatial 

distribution of the neutrons as they penetrate into iron. 

The spatial distribution of the total flux is shown on slide #4 for 

the three monoenergetic sources. Cross sections based upon both ENDF/B-IV 

and ENDF/B-V were used for the 2 and 14 MeV sources. The library based 

upon ENDF/B-IV was extended above .20 MeV for the calculations witW the 

40 MeV source. 

Focusing upon the 14 MeV source curves, we observe that the total· 

flux calculated from the two data bases is in good agreement out to about 

one meter. Beyond one meter the curves diverge until at 2.5 meters the 

total flux calculated with the ENDF/B-V data is about a factor of two 

greater than that obtained from the ENDF/B-IV data. Similar results are 

obtained for the 2 MeV source. 

We also note that the total flux within the slab increases as the 

energy of the incident neutron is increased. This is apparently due to 

two effects: (1) A higher energy neutron penetrates further into the 

slab before significant moderation occurs and this decreases the prob-

ability of leakage back out of the source face. '(2) The higher energy 

neutrons produce additional neutrons from (n,2n) reactions. 

Curves are shown on slide #5 for the radiation dose through the slab 

for the same sources and cross section sets. 

/ 



The energy dependent flux, calculated with the ENDF/B-V data, is 

shown on slide #6 at one meter into the slab for the 2 and 14 MeV sources. 

The flux due to the 2 MeV source is uniformly lower than that due to the 

14 MeV source for energies less than 500 keV. Above 500 keV some changes 

occur due to the proximity to the 2 MeV monoenergetic source energy. 

Spectral comparisons are similar at two meters into the slab as 

shown on slide #7. 

There is a gra9ual downward shift in neutron energy with penetration 

distance into the slab as shown on slide #8 for the 14 MeV source. Most 

of the neutrons suffer inelastic. collisions within the first few centi­

meters of penetration which degrades their energy below the lowest 

inelasti~ threshold. Then the spectral shift is entirely by elastic 

scattering with the heavy iron nuclei. 

The percentage difference between spectra calculated with ENDF/B-IV 

and ENDF/B-V data are shown on slide #9 at a penetration distance of one 

meter. There is a definite change in the sign of the difference at about 

500 keV. These percentage differences increase with penetration distance 

into the slab. 

The percentage difference is shown on slide #10 at a penetration 

distance of two meters. Some of the points on these last two slides are 

not valid comparison points due to the associated statistical errors. 

These have been set to zero and flagged with an arrow on the slides. 

The one standard deviation relative statistical error is shown on 

slide #11 at two meters into the slab. These fluxes were generated with 



multi-hour runs on the CDC-7600 computer and so have small statistical 

errors. Two computer runs were made for each source energy, one to 

generate the dominant flux profile and the other to optimize the calcula­

tion for obtaining the flux above 0.743 MeV. This explains the dramatic 

improvement in the statistical error at group 28. The dominant flux 

profile was calculated using importances that varied from unity at the 

source face to 4096 at maximum penetration, while the high energy component 

was calculated with an importance change of more than 10 9
• 

An example of the tabulated flux and dose data at one meter into the 

slab is given on slide #12 for the 2 ~eV source. The tabulation is given 

for both ENDF/8-IV and ENDF/8-V data bases as a function of energy group. 

The PCNT. ERROR columns are the corresponding statistical errors expressed 

in percent for one standard deviation. 

In summary, a_ calculational benchmark of neutron transport through 

iron is now available based upon a rigorous Monte Carlo treatment of 

ENDF/8-IV and ENDF/8-V cross sections. The currents, flux, and dose 

(from monoenergetic 2, 14, and 40 MeV sources) have been tabulated at 

various distances through the slab using a standard energy group structure. 

This tabulation is available in a Las· Alamos Scientific Laboratory report. 

The benchmark is simple to model and should be useful for verifying 

the adequucy of onc~dimensional transport cndP.s and multigroup libraries 

for iron. This benchmark also provides useful insights regarding 

neutron penetration through iron and displays differences in fluxes 

calculated with ENDF/8-IV and ENDF/8-V data bases. We are finding many 

uses for the benchmark and trust that others will also. 



IRON SlAB 

152.4 

NOTE: DIMENSIONS IN CM 

IRQ~ COllA.R 54.0 

I 
56.5 

----------
J' 'II I ..!.L -··--~ 

=-WATER --=--=Jli,THIATED PARAFFIN 
jj, BRICKS : 1 

- ' ,• -- -- I• I - --=- '• 'IJ I' -- --- .~ ' ,I 
-~ -_- ~ --__ ~~~··--~·~--~-r~~l 

•, ,, 
'I ., ., 
1,,, 

1': 

-~---=Iii~ ·I· '·I... ·I 
--·~ 

10.8 4 .... [------- 172.7 

37.8 

10.8 j_ 
l 

t 

S' 

H ED L 791 0-141 • 1 

(/) __, .... 
0. 
m 
__, 



N c;· tvt-Ot6L 103H 
Q) 

"'0 .,... 
....-
Vl 

OGZ OlZ OSZ 

W:J 00£ 

S3NVld AllVl Xnlj 
ooz 

SVlS NO~ I 

-· 

Ol 0~ 0\? Ot OZ 01 

I j 
l 

1N3GIJNI 
A llVW~ON 



(V
) 

O
J 

"'0
 

.,.... 
.....-
V

)
 

d
i.! 

0 e:e 
-~
 

0 ?
Z

 
0 ..,..... 
&

-
(..,) 
t.W

 
(I') 

en 
.en 
0 c:: 
u ....J 
=z: 
c
-

0 E
-

~
 

I 

O
t:l 

............ 
'N

 
~
 

0 

0 
..-I 

c·Z 
W

.J 

-
-

-
-

-
1"""TT'··=~;:::;::c:t 

::::U 

I 
1

.-&
L

S
 ''=:..~;:: .-:::: .:::=-..::::::--==r.~--

-
-
-
-
-
-
-

===;:::;:> 
=c;:;:=;,--~:c: ;;;:: -

-
-
-
-
-
-

=-
-
-
,
.
.
.
.
~
 

-
==-=--=----==--= =

--=
-----------

-
-
-
-
-
-

_
_

 -::-w
--

. 
. 

~
-
=
=
=
~
~
~
~
=
=
=
-
~
~
~
 

._
?
 

-
-
-
-
-
7

-
:=

»' 

-
-

·
-
-
~
 

---
-
-
-
-

-
~~~~~=:=::====--=-~ .. -~............_..~~ -""""" 
-
-

--. 
-
-
-

____ _.... _
_

_
 .,.a

c
--_

----
-
-
~
 '5

 

..-I 
0 ..-I 

-------/ 
...----

(S
U

Je
q

) N
O

I1J3S 
S
S
O
~
J
 T

vlO
l 

0 0 ..-I 

........ 
I 0 ........ ........ I 0 ..-I 

N
 I 0 ..-I ->

 <
J.) 

:2: 

>-0 0:::: 
w

 
z w

 
z 0 0:::: 
1

-
:::J 
w

 
z 

(V
) 

...... 
"<

t 
...... I 
0 ...... 
()-. 
I'-
_

.I 

0 w
 

:r: 



Slide 4 

TOTAL r~EUTROr~ FLUX ~viTHif~ SLAB 
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Slide 5 

DOSE VJI1lH f~ SlAB 
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Slide 6 

FLUX AT 100 CPJl H~TO I RON SLAB 
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FLUX AT 200 C~1 If~ TO I ROr~ SLAB 
ErWF/B-5 CROSS SECTIONS 
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Slide 8 

~~Ot1Pv~AliZED f-LUX SPECT~A 
Ef-JDF/ B-5 CROSS SECTIONS 
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Slide 9 

FLUX OF (v · iv I v) X 100 
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Slide 10 

FlUX AT 200 cr"q H~TO H~Of~ SlAB 
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Slide 11 

flUX AT 200 Cfti H~TO I ROf~ StAB 
ENDF/B-5 CROSS SECTIONS 
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