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ABSTRACT

We have refinedva three-dimensional (3D) volume integral equation
solution, and have adapted it to magnetotelluric (MT) modeling. The
refinement, incorporating an integro-difference scheme, increases the accuracy
somewhat without increasing the computer time. Utilizing the two symmetry
planes for a plane wave source decreases the computer storage by a factor of 3

and greatly reduces the computer time.

Convergence checks and comparisons with other solutions show that our
results are valid. Because of space charges at resistivity boundaries,
Tow-frequency 3D responses are much different from 1D and 2 D responses.
Hence 3D models are required for interpreting MT data in the complex

geothermal environment.




INTRODUCTION

Electrical geophysical techniques are essential in geothermal exploration
and assessment. Because a convective hydrothermal system modifies the
electrical conduction properties of rocks, surface electrical methods provide

a picture of the subsurface --- if the data can be interpreted accurately.

The magnetotelluric (MT) method is one of the most widely used electrical
brospecting techniques in geothermal work due to its capability for deep
exploration. In spite of its promise, however, the MT method has been
severely hampered by a lack of interpretation capability. Inappropriate
one-dimensional (1D) and two-dimensional (2D) interpretation models are used
because the necessary three-dimensional (3D) models are not available. These
simple interpretation algorithms are useful for exploration in large
sedimentary basins where 1D and 2D models apply. However, the results can be
quite misleading in most geothermal exploration where the earth is

three-dimensional and the TE and TM modes do not separate.

- There are two basic approaches to numerical modeling: (1) differential
equation (DE) and (2) integral equation (IE). Both methods are useful and
necessary. Differential equation solutions are easier to set up, and they
result in large banded matrices. Because the entire earth is modeled on a
grid, DE methods are preferable for modeling complex geology. Integral

equation formulations involve more difficult mathematics, but their advantage

is that unknown fields must be found only in anomalous regions. Thus,

integral equation solutions are less expensive for simulating the response of

one or a few small bodies and hence are more useful for evaluating field




techniques, for designing surveys, and for generating catalogs of

interpretation curves.

We have refined and adapted an integral equation solution (Hohmann, 1975)
SO that it can be used to simulate the MT response of a 3D body in the earth.
The body is replaced by polarization currents which depend on the difference
between the conductivity of the body and that of the surroundjng earth. The
resulting volume integral equation is reduced to a matrix equation by the
method of moments (Harrington, 1968). After the matrix equation is solved for
the polarization current, the electric and magnetic fields at the surface of

the earth can be calculated using half-space dyadic Green's functions.

In this work we have re-formulated the integral equation solution using
the vector-scalar potential approacﬁ with derivatives approximated by
differences (Harrington, 1968) to improve convergence. Magnetotelluric
modeling is easier than our previous controllied-source EM modeling (Hohmann,
1975) because there are two symmetry planes for a prismatic body. Hence the
computer time is greatly reduced. The change to a plane wave source is

trivial.

This report documents the theoretical solution and discusses results for
initial models. Most of our effort thus far has been to improve the accuracy
of the 3D solution and to verify the results. We have emphasized convergence
checks and comparisons with 2D modeis'dnd have made a few calculations on a

surface grid.
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INTEGRAL EQUATION FORMULATION

Consider the configuration shown in Figure 1. The earth is taken to be a
halt-space of conductivity 0,, except for a rectangular inhomogeneity having
conductivity 0}. Relevant dimensions are depth D, width W, strike 1eng§h L,

and depth extent DE. The earth is excited by impressed magnetic or electric

currents, which are denoted by ﬁi and 31, respectively.

Maxwell's equations (in mks units) in the frequency domain (e1wl time

dependence) can be written:

~VUXE = cwm H + M (1)

oxfd = (@+iwe)E + I (2)

For the purposes of this report, we assume that the magnetic permeability in
the earth is that of tfree space and neglect displacement currents in the
earth. The source current is far removed so that it generates an incident

plane wave at the earth's surface.

We define homogeneous-earth (incident) fields described in the earth by

~T X Bl T lwao He + M (3)

——

T x H,= @GE;+J¢ . | (4)
Subtracting (3) from (1) anqr(4) from (2) yields

v x(E-E; )= -eowmlA-H)

—_
(&)
~—

Yx\H-H{)= ¢E- CE. . (s




Figure 1.
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Note that @ is the actual value of conductivity: it is equal to G, in the

inhomogeneity and @, elsewhere in the earth.

We now rewrite (6) as:
7 x(H-H )= G(E-E; ) HO-C)E

If the difference (secondary) fields are denoted by subscript "s", (5) and (7)

become:

7 x Eg = —cwuHy "
and J X HJ: C’“/ EJ +JJ/ (9)
where

5’5 = (g-0,) E = ACE (10)

is the polarization or scattering current, which exists only in the

inhomogeneity.

Hence the electromagnetic field has been split into two components,
denoted as incident and scattered fields. The incident, or primary, field is
the field that would be present if the earth were homogeneous. It is obtained
by solving (3) and (4): for the MT problem it is the field of a vertically

propagating plane wave impinging on the surface of the earth.

The secondary field is due to the polarization current 3}1n the

inhomogeneity. It can be found by treating <, as a source current,




converting (8) and (9) to an integral equation, and solving numerically. The

secondary electric field is given by

EJ: —(.W/l,(o v(p (11)
where A and qﬁ are vector and scalar potentials (Harrington, 1968), given in
the earth by

- — -1 - - o~
ACF) = j J, &) G, 7)) dv (12)
and v _

- { oy = =y

QPr)= = == J s (r /éq/r)Jt// (13)
T Yy
where G is a scalar Green's function, which for a whole space is given by
—(.'Al’;_;’/
- -y <
Gu,,rj = - (14)
4T (r-r'{

For a body in a half space, an additional term must be added to (14) to

account for image currents in the air. The additional term is different for
(12) and (13). The secondary field is due to currents and charges, as defined

by (11), (12), and (13). The charges occur at discontinuities in dJ, = &cE.

Adding the incident and secondary fields, we obtain an integral eguation

P

for J.:

5 -

bl
]

| S
B Ee - comA- 99, (15)

which can be written symbolically as
~Q)U) E(’/ +fGU’ ') JU)O(V (16)
where G is the half-space dyadic Green's function (Tai, 1971) which accounts

for the earth-air interface.

For a numerical solution, Hohmann (1975), Weidelt (1975), and Meyer




(1976) divided the body into N cubic cells as shown in Figure 2, and used
pulse subsectional basis functions to represent the unknown polarization
current in the body. This amounts to assuming that the current is constant
throughout each cell. The integration over the dyadic Green's function can be
“carried out numerically (Meyer, 1976) or analytically over the volumes and
surfaces of the cells (Hohmann, 1975) to obtain the equation
—_ - N = —_
e RGN NG NOE RN PN
=, _

——

In
where :L is the polarization current in cell n, and /7 is the dyadic Green's
function for a finite cube of current, unlike E, which applies to an
infinitesimal current element. Care must be taken in deriving [, because G

is singular at r = r'.

We have derived (17) in a manner similar to that described by Hohmann
(1975), except that, following Harrington (1968), we approximate the
derivatives of the scalar potential in (11) with differences. Also instead of
concentrating the charge (the V-i’, term in (13)) at the boundaries between
cells, we distribute it uniformly over a volume extending from the center of

one cell to the center of the next cell.

As various authors have indicated, approximating derivatives with
differences provides accuracy similar to that of smooth basis functions but is
much easier to implement on a computer. See, e.g., Miller and Deadrick

(1974), and Butler and Wilton (1975).

Figure 3 111ustrates:the ca]tu1ation of the x component of secondary

electric field at the center of cell m due to the x component of current in
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Figure 3. Illustration of geometry for calculating the matrix element r?Q.
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cell n. If we denote the center of cell m as Fﬁ, (12) becomes

A:n: AXUT..,) = J)‘" jé(;,”;'/ dt// (18)

which is the volume current contribution.

The charge contribution to the electric field is derived from the scalar
potential in (13). The derivative at the current discontinuity between cell n
and cell n+l is approximated by

ntl "
aJx - J-x - JK
Ix & ’

and is distributed uniformly in a cubic cell, denoted n* in Fig. 3, extending

(19)

from the center of cell n to the center of cell n+l. The charge at the other

. mn
end of cell n is similarly distributed over cell n-. Then the potentials (I>x-r

mn
and (Y at points rp +2x and r, - 2 x due to 3. are given by (13), which
becomes
I
™mn = a A - - = A -/ -
Cpx-'. = Jx QJG( m* 32 J P‘)dv"f G(r"*%xjr) d\/ (20)
0~,A - +
n n
and
n
mn J 3 _,A’\ ot - a =1
Q" - x[_[@(rﬁ\ -z.xjr)dv-ffe(r»‘-%x/r)dvj (21)
. G, & - "t .

Finally, Ey is given by (11), which becomes
mn . mn mn Ny M
Exs = - (_UJ/(AQAX - (CP,,+ - pr-) (22)
In terms of the method of moments, this solution is equivalent to using
pulse tunctions for both current and charge'and'approximating the operator.

To obtain [ in (17), we need to evaluate the integrals in (18), (20), and

11




(21) for each cartesian component of current. The integrals all are of the
same form: the scalar Green's function integrated over a cubic cell.
We can write f’as the sum of two components representing current and

charge sources:

pavsy

Moo= [ + f_'@) | (23)

where, for illustration, the x component of secondary electric field at the

center of cell m due to the x component of polarization current in cell n is
mn mA N
mn _ I——’,”‘ Fxx
E: xs I: A + @ ;Jj‘

From‘(l8) and (22),

given by

mn | _ .- e aa -
I ?;7[‘5,,-6<m-§x,r/4v G722,

~ | G(Fmm 25,7 )dv -f-f?(fm%?‘,;’)dfv] (26)

The other elements of the dyadic Green's function can be derived by analogy.
For our half-space problem, another term, which is given by Hohmann (1975)

must be added to G.

Because the electric field due to the volume current is in the same

12




direction as the current, the off-diagonal elements of the dyadic Green's
function contain only the charge term. Thus, for example the y component of
secondary electric field at the center of cell m due to the x component of

polarization current in cell n is given by
' mn

F™" = [7y“ - T

S @ X
In more concise notation, (17) becomes
j_m . _ AN = __
s _ m /’7 ) n
=E-+ =2 [.. 3/, (28)
ag Nn<i

- m iy . . . .
where ;J; and :T‘eare the polarization currents in cells m and n, respectively.

Rearranging (28) yields

N - e — —
= il T = - E!
Z[an“ At jmn] I E . y (29)

in which

() , m#Fn ,

where 1 is the unit dyadic and 6 is the null dyadic.

Writing (29) for each for the N values of m yields a partitioned matrix

1. -[6] .

to solve for the polarizétion current in the body. The elements of the

equation

impedance matrix are themselves 3x3 matrices, given by

13




where ?i describes the geometry, frequency, and background conductivity, while

-—
-

mrer—

P mn AN Jﬁw\n\ . (31)

— —

Note that (30) also can be written as

(2. 2.1 [30--[&]

/ (32)

22 is a diagonal matrix which depends on the conductivity of the body.

5

) n

N
2- [I-,MJ_..

In Cartesian coordinates, (30) becomes

[(r-

b x

J‘M”)J.xn 4 [—,":"J; . r;x':n J;} - E&: 33)

FAq

—mn J;”\ n mn n —.' m
+(l‘/7 - ecr) y T PYZ Jz]: Eiy(

34)

é[r’;‘;;y;+ 3y 4 (- sf:a);r] S o)

(

The matrix i

r-

(
xx A¢)

"‘1“3/ +

X x

22 Ny

s formed by arranging the equations as follows:

/ T 1" ‘ — N N
J?,‘ u r;w JY + e dy o+ J
+ F'NJN_ F’NJ—N"-—E'-

xy “Y Tl e¥2 < x ¢

X

’ w4 / 4 It r N Y
(r'”— ”> I, + [, I+ + 17 T,
L —y N W .

+ - -
[’;ﬁf ;]iy + [—TYE 'ETé - E;y'(

- Fzﬂxe/+ F';;J; +_((‘;’;‘ L) o w

)T 1T

» X A
— IN N IN N PR |

2 (
14




i T, +F“J’+F,:’Jz'+(lﬂxzx’-—j)J,‘2+-:‘
Men I0+ 0 T) = - Exe

NI - ) ' |
f? érl Ml ey vy { L AN w
2Xx X + f;y, éTY -+ [LE ;Ti -+ + [727 Q‘]—)«

1‘(/.7::_ ‘;‘G)J:_: _e”

a C ’

The next step is to compute the elements of the dyadic Green's function

for a cube of current:

mn mn

F;Vn = [_‘;" + [—1(‘40*' | (37)

)

where uv stands for permutations of the cartesian coordinates x, y, z. We

o——
———

divide fz‘and fi; into primary and secondary parts, where the secondary parts

.

account for the earth-air interface, as described by Hohmann (1975). Thus

mn mn mna
: - 1
/-7/:" = F::o + | as , (38)
and
mn mn mn
Mue = g+ [Mg% (39)
mn

With the exception of , which is illustrated in (26), the dyadic

wv
PP
Green's function elements are as described by Hohmann (1975). The integrals
in (25) and (26) only need to be evaluated for the primary parts of the
Green's function, and they all have the same'fofm:

._(_)x‘f~rl

dv (40)
:[ J{~Lfn'/ro“r / B

15




The shape of the cell is not important for this volume integration, so we
replace the cube by a sphere of the same volume and integrate analytically as

described by Hohmann (1975). When the field point, r is at the center of

(O
the sphere we can integrate through the singularity to obtain

cl(a+l)‘(ka I]

/ (41)
where a is the radius of the sphere.
When Fo is outside the sphere, we have
-k, R
T=-= n (k koa Costk, )
= 3 sinlkia)- K ’ (42)
k, R /

where - -

with v the center of the sphere.

16




‘With

MAGNETOTELLURIC SPECIALIZATION

The MT source field is a vertically propagating plane wave impinging on
the surface of the earth., If the electric field of the incident wave is in
the y direction, and if we denote its amplitude by E,» then the total electric
field at the surface of the earth in the absence of the inhomogeneity is

(Hohmann, 1971)

‘ k
< .
= F z 2 B == (43)

Y ° kot k, ° ok,

/
ko = (wz/(‘lof" ) "

iy

k, = G OWmT)

for the low frequencies of interest here.

In the earth we have
' k —ck, 2

C o t

- 2 E - , (44)
Ey [+ }(/ K— J

which is the incident, or primary, field for our integral equation solution.

The primary magnetic field at the earth's surface is

¢ - ke L _ £ )% 5)
f* x = -2 E, ZQ;I; = -2 £, K/J./} 14

For the simple model which we consider in this report (Fig. 1), there are
two vertical planes of symmetry passing through -the center of the body. Hence

it is only necessary to solve for one-fourth of the total number of unknowns.

Consider the 96-cube model numbered as showh'in Fig. 4. The incident

electric field is oriented in the x direction. "It is easy to see that the

17
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polarization currents in the various cells are interelated as follows:

I = I70 =I5 =TS0
? s 32
J\/I :—JY = ‘Jy = g_)’

( . 32
J = J? —_J;S = -Ja

¥l

Y

2!

~
'}
&
X ~
Vi
4
X. N

o
]
a
X

J

x

¢
N2
b
a
Moy
|
|
Q
N
g
3]
|
¢
%

H
1y
a
ol
)td_‘_
, -
.l

23 40 §7 €«
Jx = - J = J-,\

2 2 z

I =3 =77 = -9,

Thus, when there are two symmetry planes, the system of equations (36)

becomes:
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1,3

-7 4/ I IJE { 25 i3 1,25
(I Xx-z_d‘ + {—'Xx X x F )J +( /_77(7/ x), {—7/ Fxr
11 I)S'
1—( 7 2 Y 1,32 | 4
lxe+FXE S Ja+-..+(--~)€};

P ()T e +(’—--‘)J;’ (TR - L

¥ 28"

i Ly Las 1,32 / Lo _ — 3
(r_' Yx+l~‘yx +/-7)/x J)ﬂ +([777—:5'-/F;7 /’17*/,,7)

(Mg M- p ) JL v e (0T + )T

Y%

e (m )T e )T = E)

It is necessary to solve for the unknown current only in cells 1-4, 9-12,

33-36, 41-44, 65-68, and 73-76, i.e., one-fourth of the total unknowns.

Untortunately the new matrix, defined by equations (46), is not symmetric
as in the general case (36) for equal-conductivity and equal-size.cells. Even
so, the computer storage and computation time are reduced considerably for the
MT problem. Without symmetry planes 3N(3N+1)/2.2'9N2/2 storage locations are

required, where N is the number of cells. With two symmetry‘p1anes, the

20
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3

N
Sfad 37: b -~-less by a factor of 8.

storage requirement is — X <
/

lf

Figure 5 illustrates the reduction in computer time for a two-symmetry-
plane problem compared to one with no symmetry. In each case, forming and
factoring (LU decomposition) the matrix account for most of the computer time.
Matrix factorization time is less by a factor of about 35 when symmetry is
invoked. The time required to form the matrix is less for the symmetric

problem, because only one-fourth of the matrix elements need to be computed.

In the general tase a maximum of 120 cells can be used on the University
of Utah Univac 1108 computer, but for the symmetric problem the limitation is
340 cells. This increase in the number of cells permits the use of smaller

cells for more accuracy, or, alternatively, the modeling of larger bodies.
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CONVERGENCE CHECKS

Because of the many possibilities for theoretical and programming errors,
it is important to verify the accuracy of any numerical solution. The best
check is with results from another type of numerical solution. Unfortunately,
the only other published 3D MT results are those of Jones (1974), Weidelt
(1975), and Reddy et al., (1977), all for outcropping bodies which we cannot
model accurately. However, comparisons with Pridmore (1978) for
controlled-source EM, comparisons with other solutions for zero frequency
(Hohmann, 1975), and comparisons with 2D models discussed later in this report
lend credence to our results. A]so‘the general behavior of the 3D MT results

is as expected.

An important self—check is convergence: as the cells are made smaller,
the results should converge to some value. The body that we have used to
check convergence is shown in Figure 6. [t is a 1l km x 2 km x 2 km conductive
prism at 1 km depth and is elongated in the y direction. We have checked
convergence at points A, B, and C at four frequencies and at three different
discretizations: 1x2x2 = 4 cells, 2x4x4 = 32 cells, and 4x8x8 = 256 cells.

The cell sizes for these three cases are 1 km, 0.5 km, and 0.25 km,
respectively. The two excitation modes - Ejj and E, - are illustrated in

Fig. 6a. For E;, excitation the incident electric field is parallel to the

Tong axis of the body, while for £E; excitation the incident electric field is

perpendicular to the long axis.

Figures 7-9 show the cohvergence as a funttion of frequency at points A,

B, and C, respectively, for the Eqy mode. Results are givenvin terms of

23
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Figure 6. (a) Three dimensional model for convergence checks.

(b) Plan view showing the three observation points on the surface
of the earth.
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Figure 7. Convergence at point A for E]] excitation.
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Figure 8. Convergence at point B for E]] excitation.
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Convergence at point C for E]] excitation.
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apparent resistivity ( fyx) and phase (Ey phase - H, phase). The solution is
convergent, and, as expected, smaller cells are required to represent the

current at the higher frequencies.

At 10 Hz the cell sizes represented in Figures 7-9 are 2.8, 1.4, and (.7
skin depths in the body. At 1 Hz, where the solution has ctherged to the
final result by the middle cell size, the cell sizes are 0.89, 0.44, 0.22 skin
depths in the body. Thus it appears that the minimum cell size for accurate
results in this case is about 0.5 skin depths. O0f course larger cells may be
adequate for particular interpretation problems and computations would be less
expensive. Another cell-size criterion, which depends mainly on conductivity
contrast and depth, is that the cells must be small enough to accurately
represent the current even at very low frequencies where the skin depth is
large. As a rule of thumb, we require the cells to be no larger than the

depth. As a result, computations for shallow bodies are expensive.

Convergence for E, excitation is a Tittle faster, as illustrated in

Figures 10-12.

The significance of these results is thatvwe have been able to halve the
cell size two times and demonstrate ;qnvergence_fok this pafticu]ar integral
equation solution. In.our previous controlled-sodrce modé]ing there were no
symmétry planes, so that only two discretization levels were possible, and it
was impossible to determine whether the solution is convergent except in the
simple zero-frequeﬁcy case. Higheréqrder bésisvfunctions would yield the same

accuracy with tewer unknowns, but they would be difficult to implement.
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COMPARISON WITH 2D MODELS

Another useful check, and one which is enlightening for MT
interpretation, is comparison with 2D models. As the length of the 3D body
increases, the fields should approach those of a 2D model. Figures 13 and 14
show comparisons between our 3D results and 2D results computed with Rijo's
(1977) finite element algorithm. The model is that of Figure 6 with variable

strike length (2, 4, 8,02 km).

Figure 13 shows the comparison for E,, excitation which corresponds to
the 20 TE mode. Only Ey, Hx, and Hz components are present for the 2D model,
but all five components - E,, Ey, Hy, H, - are present in the 3D case.
Apparent resistivity (Q,) and phase (Ey phase - Hy phase) are plotted against
distance from the center of the body for the three strike lengths and for the

2D body.

Because there are no boundaries normal to current flow to generate space
charges in the 2D TE case, whereas there are in the 3D model, the results are
quite different. The difference is particularly great at 0.03 Hz. The
secondary electric field due to polarization charge at the ends of the body is
present even at zero frequency while that due to volume polarization current
(the only source of secondary field in the 2D case) decreases with decreasing
frequency. The secondary magnetic field, which is due only to volume

polarization current, a]éo has a frequency-independent component.

At 1 Hz and above, apparent resistivities for the.8 km-long 3D body are

very close to those of the 2D model. Phasé seems to converge to 2D values as
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“the Tength is increased, but a body longer than 8 km would be required for

good agreement.

Comparisons between our 3D Ey results and Rijo's 2D TM results are shown
in Figure 14. Space charges are included implicitly in the 20 TM fofmulation,
so that the two solutions do not diverge at low frequencies as they do for Ell
excitation. However, except at the highest frequency, the 3D solution seems
to converge to values slightly different from those of the 2D solution as the
length of the body increases. For example, the apparent resistivity

amplitudes differ by as much as 15 percent at 1 Hz.

This discrepancy in the £ results could be due either to the 2D or 3D
solution. .While the accuracy of the 2D finite element TE results has been
verified by cross checks with other numerical solutions (Hohmann, 1971; Swift,
1971), we noted some discrepancies in comparing the TM finite element reults
with those of Swift. This discrepancy is being investigated, but the

comparison in Figure 14 is adequate to give us confidence in our 3D results.

The comparisons in Figures 13 and 14 are useful for two reasons: (1) They
confirm the validity of the 3D solution, and (2) they point out the problems
in interpreting data with 2D models. Because there are lateral conductivity
boundaries in all directions. for a ﬁypicaligéothermal appiication éf MT, there
really is no TE mode. As deducéd by Wannamaker (1978), standard mode

identification is invalid, and 3D models are'fequired for interpretation.
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COMPARISON WITH A LAYERED MODEL

To examine the validity of 1D interpretation over a 3D body, we compared
theoretical apparent resistivity for a layered model with results for 3D slabs
of different lateral extents. The comparison is shown in Figure 15 for square
slabs 200, 400, 800, and 1200 meters on a side, 100 meters deep, and 200
meters thick. The slab resistivity is 3 ohm-m compared to a background

resistivity of 100 ohm-m.

The 3D results may not be very accurate at 300 Hz because the cell size
of 100 meters is twice the skin depth in the slab. However, the cell size is
less than a skin depth at the other frequencies and, furthermore, is equal to
the depth to the top of the slab. Hence the 3D results should be accurate

except at 300 Hz.

Figure 15 illustrates the important point that, because of space charges
at its boundaries, a 3D slab must be very large for 10 interpretation to
apply. In this case the 1D and 3D responses are quite different, particularly
-at low frequencies, even for a 1200m x 1200m slab at 100 m depth. Results are
closer at the higher frequencies as volume currents become more important
relative to charge at the boundaries. It is obvious that layered-earth

interpretation would yield erroneous results.
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COMPUTATIONS ON A GRID

When the polarization current in an inhomogeneity has been found, the
secondary electric and maghetic fields anywhere can be calculated by applying
the appropriate dyadic Green's functions (Hohmaqn, 1975) and integrating over
the inhomogeneity. Figures 16-21 show MT results at .03, 1, 3, and 10 Hz on a
grid at the earth's surface over the 1 km x 2 km x 2 km conductive body
illustrated in Figure 6. The cell size was 250 m for these computations.
Because the problem has two ﬁlanes of symmetry, results are shown for one

quadrant only.

Figure 16 shows apparent resistivity, @, for £, excitation, while  xy

for E3 excitation is shown in Figure 17. Because the elongation of the body
is not great, resistivity values are similar for the two excitation modes,
with the E;q case exhibiting slightly lower values. Contours are elongated

normal to the incident electric field.

The phase of the impedance Zyx = Ey/Hyx is shown in Figure 18 for E;;>
while the phase of Zy, = Ex/Hy for Ey is shown in Figure 19. At low
frequencies the phase approaches -45 degrees for both incident field

orientations, which is the value for a homogeneous earth. The electric field
phase increasingly lags the magnetic field phase‘as the frequency increases,
with phase angles being slightly greater for Ell' Again, contours are

elongated normal to the incident field.

For a 2D model, where the TE and TM modes separate, the vertical magnetic

field is associated only with the TE,'or'Ell, mode. Thus it is common in MT
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interpretation to utilize the vertical magnetic field to determine which of
the two principal impedance axes is the strike direction, i.e., to identify
the modes. The strike direction is taken as normal to that for which the
horizontal magnetic field Hy, is most coherent with H,, the ertical magnetic

field.

With our solution, we can calculate H, at any point over a 3D body for
any incident field direction. Figures 20 and 21 shdw initial results for Ej;
and £, excitation, respectively. The values plotted in Figure 20 are the
ratios lHZl/lH;( in percent, while those in Figure 21 are for IHZI/IH;(. Here

IHxl and (Hyl are the amplitudes of the incident fields.

The vertical field is antisymmetric about the yz plane for £y excitation
and antisymmetric about the xz plane for E, excitation. Becausé the TM and
TE modes do not separate for a 3D body, Ej excitation results in large H, at
many points. This contrasts with the 2D case, where there is no vertical
magnetic field for the EA_(TM) mode. The vertical magnetic field is larger
for )y at the side of the body, while it is larger for E, off the end of the
body. Over part of the grid, then, the strike direction would be

misinterpreted using conventional procedures.
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DISCUSSION

In this report we have documented a new 3D numerical solution for MT
analysis and have demonstrated the validity of the results. These initial
results also show that 3D models are required for geothermal applications of

MT.

We now intend to systematically study MT parameters such as impedance
tensor, tipper, skew, etc., in 3D environments, and we will attempt to develop
new interpretation techniques. Also we will investigate modifications of the

numerical solution for greater accuracy and flexibility.
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