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Chromium surfaces and Cr monolayers atop Fe have greatly 
enhanced magnetizations relative to bulk. The Cr (100) surface 
is ferromagnetic w U h a spin polarization of 3-00; the (110) 
surface is antiferromagnetic. A Cr monolayer is ferromagnetic 
atop either the (100) or (110) Fe surfaces; the former has a 
large polarization of 3-63-
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In transition metals the itinerant nature of 
the d electrons makes magnetism sensitive to the 
local environment. Consequently the presence of a 
dissimilar neighbor, as found in an interface, or 
the absence of some neighbors, as found at a 
surface, may cause considerable changes in the 
local magnetic properties. Bulk chromium has an 
antiferromagnetic (AF) ground state modulated by an 
incommensurable spin-density wave (SDW). The SOW 
is in one of the <100> directions with a wavelength 
of approximately 21 lattice spacings (1). The 
magnetization at the maximum is 0.59 tig (2). It ia 
found that the addition of snail amounts of 
impurities produces a simple AF structure (3) with 
a magnetic moment of approximately 0.67 ug. This 
structure demands that <100> planes contain atoms 
of only one spin direction. Consequently the (100) 
surface is expected to possess ferromagnetic 
order. Evidence of this planar ferromagnetlsa Is 
found In electron-capture spectroscopy (*) and in 
angl«-ir*soIwed photoealssfton experiments C5-73-
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encountered. The (110) surface should therefore be 
AF. There have been two photoemission experiments 
on the Cr (110) surface (12,13). Here we present 
results of calculations for the magnetic and 
electronic properties of the (100) and (110) 
surfaces of Cr, and for the systems consisting of a 
monolayer of Cr deposited on the Fe (100) and (110) 
surfaces. We use a Slater-Koster parametrized 
tight-binding scheme in which the one- and 
two-center integrals are fitted to the bulk band 
structure. The single-site electron-electron 
interaction is treated self-consistently in a 
Hartree-Foek approxiaation. This scheme has been 
previously used and has produced excellent 
agreement with both experimental data and 
state-of-the-art calculations (10). 

THE CHROMIUM (100) SURFACE 

Me obtain a surface spin polarization of 3.00, 
an enhanceaent by i S.l factor fro* the bulk SOW 
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unpolarized holes, experience smaller changes in 
the same local environment. Most d-hole3 occur in 
the minority subband, which is essentially 
concentrated in a single peak structure entirely 
above the Fermi level. The spin polarization of 
the second layer is opposite to that of the surface 
layer, in agreement with the AF of chromium. Its 
spin polarization is (-1.56). Those of the third 
through sixth layers are t.00, (-0.93), 0.86, and 
(-0.85) respectively. A similar deep penetration 
of the enhanced surface magnetization was found In 
the Fe (100) surface (11), although there the 
effect Is much snailer. Each Cr atoa feels the 
larger exchange splitting of its neighbor towards 
the surface and responds by increasing its own; 
this Is, in the case of Cr, an energetically very 
inexpensive process. 

THE CHROMIUM (310) SURFACE 

We obtain, as the ground-state configuration, a 
two-ato* 5*iit surface cell with IF oraering. , Hlfte 
surface spin poiariiation is 2.3". This value is 
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The spin polarization in the second layer 
agrees in direction with the perfect AF structure 
but its spin polarization of 1.00 is considerably 
smaller than that of a second-layer (100) atom, 
1.56. 

CHROMIUM MONOLAYERS ON IRON 

We have calculated the spin polarization of a 
Cr monolayer atop the Fe (100) surface to be 3.63. 
with a ferromagnetic arrangement pointing 
oppositely to the underlying Fe substrate. This 
value is the largest spin polarization we have ever 
calculated, or found in the literature, for a 
transition-metal system. 

Insight Into this result may be gained by 
comparing it with the dilute FeCr alloy. Neutron 
scattering (16) results show that the isolated Cr 
atom spins point oppositely to the surrounding Fe 
bulk and have a polarisation of 1.2 electrons. 
This latter result presumably stems from the 
stronger electron-electron interaction in Fe, and a 
stronger eitcftant* splitting tfhlcfi Helps Cr increase 
its own apnttlm? ana MancMtation. 
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is the element intermediate between Fe and Cr. 
Figure 1 shows the DOS projected on the Cr 

monolayer and on the underlying Fe layer. The most 
obvious feature is the enormous minority DOS at the 
Cr monolayer. It is a consequence not only of the 
surface band narrowing, but also of the absence of 
Fe majority holes to which the Cr minority holes 
(3ame spin) may be coupled. These two facts leave 
a subband with essentially no effective nearest 
neighbors, and therefore very narrow. 

He find, for the (110) configuration, that the 
ground state consists of a ferromagnetic Cr 
monolayer with its spins oriented in the direction 
opposite to the F» substrate, slallar to the Cr on 
Fe (100) arrangeatnt. The spin polarization of the 
Cr is 2.25 electrons, saaller than the pure Cr 
surface. 
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FIGURE 
Fig. 1: The d-orbital component of the projected density of 
states, (a) The chromium (100) monolayer, (b) The iron 
(100) interface layer. Solid lines are states with the spin 
orientation of the minority bulk iron states; dashed lines 
correspond to the majority states. 
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