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This paper presents an evaluation of the impact of drywell failure during
potential degraded core accidents in a typical 1000-MWe boiling water reactor
(BWR) plant with a MARK III containment. The MARK III containment design con-
sists of a pressure barrier (the drywell) and a fission barrier (the contain-
ment), which are interconnected through the suppression pool. T[he reactor
vessel and its coolant system are locatea in the drywell region. During a de-
graded core accident initiated by a loss-of-coolant through a break in the
primary system, a large amount of hydrogen could accumulate in the drywell
region. A potential hydrogen detonation could threaten the drywell integrity.

The potential for hydrogen accumulation and detonation are best illustra-
ted by considering'a typical degraded core accident sequence, such as a small
pipe break with a failure of the Emergency Core Cooling Injection System (des-
ignated as S;E in the Reactor Safety StudyEl]). The S;E (equivalent '
break diameter=3 inches) sequence was analyzed by using the mARcHL2] comput- .
er code, Starting from the initiation of the accident, steam released from
the reactor vessel gradually pushes all of the air from the drywell into the .
containment. The drywell is saturated with steam prior to the release of

hydrogen. As hydrogen is released from the vessel, it is accumulated in

*This work was performed under the auspices of the U.S.Nuclear Regulatory
Commission.
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large concentrations in the drywell without burning >ecause of oxygen defi-
ciency. For example, at 86 minutes, the mole concentrations of hydrogen and
steam in the drywell are 45% and 55%, respectively. Meanwhile, a portion of
the hydrogen has been transported through the suppression pool into the con-
tainment region. At 86 minutes, the mole concentration of hydrogen in the
containment has reached 8% (the flammability limit assumed in this study) and
ignition of hydrogen is assumed to occur in the containment. The pressure
rise due to the hydrogen ignition in the containment causes air to reenter the
drywell. The reentry of air reduces the concentrations of steam and hydrogen
but increases the oxygen concentration in the drywell. Shortly after the hy-
drogen burn in containment, tha concentrations of steam, hydrogen and air in
the drywell are 33%, 27% and 20%, recpectively, These cancentrations are
close to the detonation region as defined in the Shapiro and Moffette dia-
gram[3] reproduced in Figure 1. There is uncertainty in applying the
Shapiro and Moffette diagram (which is developed for atmospheric pressure and
low temperature) to high pressures and temperatures, but nevertheless the po-
tential for a hydrogen detonation in the dryﬁel] cannot be excluded. The
shock wave generated by the postulated detonation may be much stronger than
the MARCH computed peak pressure. The shock wave could threaten the drywell
integrity. Other scenarios assuming different primary system break areas ex-
hibit a simi]ar (Figura 1) potential for Hs detonations, which may induce
failure of the drywe}] wall,

For the purpose of estimating the consequences of hydrogen detonation in

the drywell, the.MARCH code was modified to model the postulated failure of
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the drywell boundary. It is assumed that the hydrogen detonation causes loss
of integrity of the drywell wall above the suppression pool surface.

The consequence of this failure is calculated by making a modification to
the MARCH logic and computation procedure. In the modification, an initially
two-volume model (drywell and containment) is changed into a one-volume model
at a specific time when the postulated hydrogen detonation occurs. It is as-
sumed that the suppression pool can be completely bypassed and the atmosphere
in the drywell is directly mixed with the atmosphere in the containment. The
results of computed containment pressure for the $SjE (U=3) scenario are
shown in ‘Figure 2 ana may be compared with the base case (no drywell faiiure}.
The first pressure spike (in both graphs) represents a hydrogen burn in tne
containment followed immediately by a hydrogen burn of large concentration in
tne drywell, If no hydrogen detonation is assumed, the MARCH modzl predicts a
peak pressure of 44 psia (Figure 2a). Another hydrogen ignition is predicted
immediately after the ECCS is restored at 94 minutes. The integrity of the
drywell is maintained during the transient. However, if a detonation in the
drywell is assumed (in Figure 2b) rather than a deflagration, it could result
in drywell failure. The Tailure of the drywell results in a direct redistri-
bution of all gases between the drywell and containment without passing
through the suppression pool. A second hydrogen burn is predicted 5 minutes
latef in the combined volume of containment and drywell as the nydrogen con-
centration reaches 8% (the flammability limit assumed in this study). Both

cases assume that the ECC systems are restored at 94 minutes prior to



core slurping in order to prevent a full core meltdown accident. The con-
tinued ECC injection after core recovery results in a continuous flow of steam
from the pipe break location. The break flow from the pressurized vessel {at
about 900 psia) flashes into steam and is added directly to the drywell and
containment atmospheres without being condensed in the suppression pool.
Hence, a continuous increase in containment pressure is predicted if the dry-
well wall is assumed to fail {compared with no pressure incrzase if the wall
remains intact). A peak pressure of 56 psia is predicted at 152 minutes. The
peax containment pressure is above the design pressure (30 psia) but is witnain
the estimated failure pressure (110 psia) for a steel-lined containment wall.
MARCH results show that steam condensation in the contaimment and continuous
cooling in the pressure vessel eventually reduces the containment pressure,

In summary, the potential for a hydrogen detonation due to the accumula-
tion of a large amount of hydrogen in the drywell region of a BUR MARK III
containment is analyzed., Loss of integrity of the drywell wall causes a com-
plete bypass of the suppression pool and leads to pressurization of the con-
tainment building. However, the predicted peak containment pressure do.s not

exceed the estimates of containment failure pressure.
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Figure 1 Aotential for hydrogen detonation in drywell.
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Figure 2 Effect of drywell failure on containment pressure
for MHm (D=3) sequence.
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