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Resume - Cet article presen:c une revue des methodes pour le traitment des
modes acoustigues dans les s3imulations numeriques de le combustion
subsonique.

Abstract - A review is given of the methods for treating the acoustic mnde
in numerical calculations of subsonic combustion.

1. INTRODUCTION

In numerical calculations of subsonic combustion, treatment of the acoustic
mode has been a problem for many researchers. 1t is widelvy believed that Mach
nurmbher and acoustic wave effects are nepgligible In many subsoni:~ combustion
problems. Yet, the equations that are often solved contain the acoustic mode,
and many numerical techniques for solving these equations are incfficient when
the Mach number is much smaller than onc.

This paper reviews two gen»ral approaches to ameliosratine this problerms  In
the first approach, equations are solved that ipnore acoustic waves aad Mach
number eflects.  Section 11 of this paper yives two such formulations which are
called the Rlliptic Primitive and the Stream and Potentiatl Funetion formula-
tions. We tell how these formulations are obtained and prive sorwe advantaces and
disadvantapes of solving them nemericall s,

In the gecond approiach to the problem of caleulating subsonic combustion,
the fully compressible cquations are selved by numerical methods that are of fi-
clent, but treat the acoustie node inaccurately, in low Mach mumber calcula-
tionks Scction T11 of this paper introduces two ot these numerical methods in
the context of an analysis of thelr stability properties when appliced to the
acoust {e wave equations.  These are ~alled the 1CET and acoustic subeyeling
methods. 1t 18 shown that even thouyh these methods are more efticient than
tradditional methods for golving subsonic combustion problems, they still can be
fnefffefent when the Mach number I8 very smalle  Finally, a methad called
Prossure Gradient h‘ann,',J 18 deseribed that, when used in conjunction with el-=
ther the ICE or acoustice subey - ling methods, allows for very efficient numericeal
solution of subsonice combustion problems.

e THE EQUATIONS OF SUBSONIC COMBUSTION

We tirat give the primitive equations of motlon for a laminar flow ol

chemtenlly reactive tdeal znnvs.“ The continuity cquation of specles k is
\ } ) ]
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where pk 1s the mass density of species k, u is the mixture mass-average veloci-

ty, !k is the velocity of species k relative to u, W is the molecular weight of

k

L} 1
2 is the reaction rate of reaction £, and vk,l and vk,l are the

backward and forward stoichiometric coeffisients of species k in reaction %.

species k, w

The specific forms of !k and &ﬂ will not concern us in this paper,

The mixture momentum equation is

dpu

30t Ur(ouw) + Up = Teg + pg ()

The mixture density p is obtained from
= _ }
p =10 (h

In Eq. (2) p is the static pressure., g is the visrans streec reno-r, and , is
= -

the body acceleration on the fluid. The specific form of g will not concern us,

The mixture internal energy equation 1s

dpc . e Peq - TJT . .
3 * Je(pue) + p¥eu = g:i¥u - Veq - ¥ (.k AN I (4)

In Eq. (4), e is the internal enerpy (thermal plus chemical), q the heat flux
vector (exclusive of enthalpy diffusion), an! hk is the enthalpy ol species K.

The temperature T, pressure, and densities are related throuvh the einn-
tiony of state

po= ] (p /WORT ('
k
and
po = E pk[hk(T) - R”T/Nk] . ()

whure R0 is the unlversal pas constant.

The primitive Egs. (1)=(6) applv to physficeal reyimes that are not of {nter—
est in macy combustion problemss  They apply to tlows of arbitrary Mach number,
and their solutions have acoustic waves.  In many combustion problems, the Mach
numhers are small compared to unity, and it ix widely believed that acoustic
wave effects are nepligible. The following question then arfses: can we {ind a
formulation of the equations that 18 specialized to low Mach number flows with-
vut acoustic wiaves and that {s simpler and easier to solve numericallv?  This s
really two questions. The answer to the first 18 that special formulations have
becen obtained for subsonic combustion problems. The answer to the second 1s
that one can usually solve numerically the primjtive cquations as easily and (n-
expensively a. any apecialized formulation. The remainder of Section 1l will



give two subsonic formulations; In Section IIT we give reasons for our answer to
the second question above.

A. The Elliptic Primitive Formulation

The fiist low Mach number formulation we call the Elliptic Primitive (EP)
formulation, We first give the equations and then indicate how they are ob-
tained. In this formulation, the momentum equation is slightly mdified:

Jpu

50 * Y-(puu) + ¥p' = Trg 4+ of . 7

The quantity p' is the pressure fluciuatinn  hout a mean va]uv'F, w'ich 1o epia-
tially vnitorm. Solution for p' is an elliptic problen whose explicit form woe
will give later. An important feature of the EP forrmulatior is that p' i< un-
coupled from the ecquation of state pressure:

P = E (pk/wk)ko'r . (v

Another important reature ot the FP formulation is that an cquation tor the
diveryence of the velocity tield Is used.
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From Eq. (9), the divergence V-.u can be non-zero because of changes in the mean

pressure p, because of local heat addition due to chemical reactions or heat and
mass diffusion, or because of changes in the local mean molecular weight.

To determine how the mean pressure F'changes, we must know tha boundary
conditions in our particular problem., In many cases combustion occurs in an
open atmosphere, and we can assume

P = constant . (15a)

When rombustion occurs in an enclosure whose volume V is changing in time, then
an equation for p 1s obtained by integrating Eq. (9) over the volume V:

& 0

< |-

dv B w . -
dx = - =+ JIJ{=[ 1 o, =y ) =] Se{p Vv /W]
dt voP k:l £ k,R ) " k=k’ "k}
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In the EP formulation, Eqs. (1), (7), (8), (9), and (15) are used.

To obtain the EP equations from the primitive equations, two assumptions
are needed. First, we assume that the pressure solution p of the primitive
equations can be decomposed into the sum of mean and fluctuating parts:

p = p(t) +p''(x,t) ,

where 'p"' << p. The fiuctuation p'' differs from p' because acoustic pressurc
fluctuations are contained in it. Second, we assume that the solution chanpes
negligibly when those terms 1in Egs, (1)=-(6) of relative order (p'' /p are negp-
lected. Tiese are the p''Veu term in the encrgy equation (4) and the p'' term
in Eq. (5). To obtain Eq. (9), oncv first derives the temperature equation from
Eq. (4) using Eqs. (1) and (6), and then climinates the suhstantial derivative
of the temperature, DT/Dt, from this equation using kgqe. (8). 1In this deriva-
tion, the viscous dissipation term g:Vu in Eq. (4) {¢ neglected because 1t 1
negligibly small in subsonic combustior. problems.

The assumption that 'p"l < p is usually valid for subsonic ccmbustion
since we usually have

e 5 o

where M is the Mach number.“ The validity of the second assemption, that we can
neglect terms of relative order 'p" /F} Is problem—dependent, By neplecting

these terms, we eliminate the acoustic mode from the equations. In miny combus-
tion problems, it iy widely believed that acoustic waves are unimportant, but {in
some problems it 1is known that they are responsible for ignition or enhanred
combustion rates.



An EP formuletion was; first used by Ramshaw and Trapp5 in a two-phase flow
application. An EP formulation for combustion was given, though not numerically
solved, in Ref. 6. Paoluceil and Chenoweth’ have solved the EP equations numeri-
cally in two-dimensional combustion problems.

The biggest advantage to solving the EP equations occurs in one-dimensional
prcblems. Here one usually knows the velocity at one or both boundaries, and
the complete velocity field can be found from Eq. (9), which is easy to solve in
one-dimension. Additional advantages of the EP formulation are that Eq. (6)
need not be solved and that one nerd not account for the viscous dissipation
terms.

It is sometimes fallaciously stated that the EP equations are to be pre-
ferred to the primitive equations for subsonic combustion problems, because nu-
merical solutions of the primitive ejuations, In contrast to those for the EP
equations, must satisfy the Courant sound speed restriction on the magnitude of
the computational time step.B This restriction 1s that

cft
3;-‘3 1, (16)

where c 1s the isentropic speed of sound and 6L and &x ate Lhie computarional
time step and cell size. In subsonic comhustion problems, Eq. (16) restricts 6t
to be intolerably small in comparison to problem times of interest. The fact
1s, however, that there are nimerical methods for solving the primitive equa-
tions for which the restriction Eq. (16) is not necessary. This will be shown
later,

In addition to the previously stated disadvantage that it ignores acoustic
wave and compressibility effects, the EP formulation has two other disadvan-
tages. The energy equation in the primitive equations can be formulated and
finite-differenced in conservative form. Because the EP formulation does not
have an energy equation, this possibility is forsaken. Conserving energy in
numerical calculations of combustion is important because it helps ensure that
correct flame temperature, and hence accurate chemical reaction rates, are cal-
culated. The second disadvantage 1is that solution for p' is an elliptic proh-
lem, and finite difference approximations to elliptic equation: must usually he
solved by time-consuming itorative procedures. As we shall see in Section ITI,
the use of iterative procedures is also necessary for solving the difference ap-
proximations of one numerical method for the primitive equations.

B. Stream aqinfotential Functi(ul Formulation

In the second low Mach number formulation, the stream function and vortici-
ty equations for constant density flows, 8 are generalized to apply to subsonic
combustion. Since Veu is non-zero in romnuqtion problems, there 1s not a stream
function y such that V x ¢ = u. The velocity u can nevertheless be expressed as
the sum of a solenoidal part V x ¢ and an irrotational part Y?, where ¢ and ¥

are called stream and potential functions. Thus we call the second low Mach
number formulation the :3)}3H[JUELJy)lvnliql (SAP) function formulation.

In the SAP formulation, Eqs. (1), (8), (9), and (15) are retaired, but the
right-hand side of Eq. (9) is set equal to a scalar Do The velocity field is
obtained from

u=W+Txy , (17)

where the potential function ¢ and st roam function y are ootained by solving



V¢ =D (18)

and

Vx(Uxyp) =uw , (19)

where w is the vorticity. The vorticity equation is obtained by taking the

du
vector curl of the equation for T3 derived from Eq. (7):
Jw
4 Teuu) 4V (S Up') = Telwn) 4+ 9 x (L 5e0) . ()
ot - - - p - - - p — =/

Finally, we must have an equation for p'. This is obtained bv takiny the

au
divergence of the equation for 3?:
1 sl T rl
T3 ') = - gp - ue - TurTun 4 Be(o Teg) (21

where the superscript T denotes the transpose. Equation (21) is the elliptic
ecuation for p' to which w¢ have referred earlier,

The SAP equations have beon used by Jones and Boris in thelr "slow flow”
method.? It is the object of discrete vortex methodsi0 11 ¢t solve the SAP
equations in the hiph Reyvnolds nunber limit, althou;l these discrete methnds are
not vet usable for practical combustion problems because they Ipnore the tore

¢l Vs . .
¥ x = ¥p') in the vorticity equation.
- D —

The advantajye »f the SAP formulation is that a vorticity equation iy
solvede In many prohlems, vorticlty {s contined to thin sheots or small sub-
revions of the flow fields, and thus partiecle methods for solvineg Eqe (20) he-
coe very altractive beecause these have very Hitle numerieal diffuston and can
provide high resolution where It is necded. 0 n A disadvantape of the SAY
cquations Is that In general three elliptic equations must be solved — s,

(18), (19), and (21).

I[11. NUMERICAL METHODS FOR THE. PRIMITIVE EOQUATIONA

This section 1s devoted to elaborating the statement of Secetion 11 that the
primitive equationr can usually b solved numericeally as easily and inexpensive-
ly as the subsonic flow formulations, First, we perform a lnear stabhility
analysis of some common finlte difference approximations to the acoustic wave
equations. The analysis i done In order to {ntroduce numerical methods for
salving Eqs. (1)=(0) tha: allow one to clreumvent the GCourant sound speed re-
striction Eq., (16). We next show that these methods can become more {netficient
as the Mach number is reduced, and we deseribe a method enlled Pressure Gradiont
Scaling (PGS) for {wproviae the elttictency of low Mach namber caleulations,  The
main idea of the PGS method 1x vhat the Mach number can be increared in very low
Mach number problems. improvine comoutational efficlency without echancine anin-



Eqs. (1)=(6) have the acoustic mode, is exploited in an efficient method that is
not available for the EP or SAP formula:ions.

A. A Class of Numerical Methods for the Acoustic Equations

Consider a one-dimensional disturbance to an otherwise uniform fluid that
is inviscid and non-reactive. Then Eqs. (1)-(6) have solutions that approxi-
mately satisfy the acoustic equations

dp' du
— — =
at po IK 0
and (22)
au+ 3_3_'\_'__()
a3t T % T ’

where p = p + p'

2 R
and ¢~ =y =T , p and T beins the density and temperatar:
0 o — 0 0 0 ; : '

W
of the undisturbed fluide For the initial conditions

ikx
' (x,n) = Ap ¢
(_3%)
Ikx
u(x,0) = Be e "
0
, . 2n
of a disturbance of wavelenpth L= i—, the solucion to BEg. (22) is
[ ik{x=c t) ik{x+
' A+ B (() A= R k(xte )
o' (x,t) = by |7 ¢ + —
L - - J
(.02)
[ 1k(x-c t) ik(x+c t)]
- x+¢
A+ B 0 A =B <
u(x,t) =rc —_0 - o .
0 2 2
L -

The general solution ot the linear svstem Eqs. (22) is found hy surming solo-

tions of the form Eqs. (24) over all wavenumbers k. The solutjons Eqgs. (24)

have the property that they have constant amplitudes and speeds ¢« In con=
o

trast, we shall see that in finite difference solutions to Eqs. (22), waves are
both damped and travel with wavelength=dependent speeds (dispersion).

To {mplement numerical solution of Egse (22), we subdivide the computation-
al repion into a mesh of cells of unitorm size §x. 1In the class of methods we
consider, we employ a stappered mesh in which the densities and velocities arce

. . n 1
located a distance §x/2 apart. Thus we let (p')_ and u{+]/q denate the computed
J -

approximations to p'(jéx,ndét) and u((j + 1/2)6x.ﬁ61], where €t 1s the computa-

tional time step.  To calculate the valuaes of (p')'_‘-H and “r.1+l .

i j+l1/2
values at time nét, we use the following finfte difference approximations to
Eq. (22):

from known



(p')n+l _ (p')n un+l - un+l e - "
'y o, o [e Ti41/2 j=1/2 j+1/2 1—1/2] -0

5t &x a-e &=
(25)
n+l n 2 n+l n+1 n n
u -u c (p").. ., = (p"). (o")... = (p")
“i+1/2 j+l/2 | "o j+1] ' _ j+1 11,
5t o, [a % + Q-9 8% ] 0 .

The parameters 6 and @, which can have values between (1 and 1, are used to vary
the level of time-advancement of the finite difference approximations to the
spatial derivatives. Wher 8 and # are both zero, the numerical scheme is purely
- W+l n+l
explicit that is, (p )j and "j+1/2
lated values of p'" aad u at time nét. Wwhen 8 and ¥ are both unitv, the schens

n+] n+l . .
is implacit, and (p')J and uj+1/2 must be solved for implicitly from equatinns

are known explicitly in terms of calcen-

that couple their value.. at neighhorinyg spatial points.

Numerical solutions of Egqs. (25) can again be found for the Fourier
components. Substituting the values

0 _ o
(p )j A g, EXP [ikjéx]
and
= Bnc0 exp [1k(j + 1/2)¢x] (o)

'n
44172

into Eqs. (75) and solving for A"+1 and Hn+] flves

9
An+l 1 +a 9(‘1! - M a : A"
1 - a“oe¢ 1 = a“6p
= (27
9
_ - n
Bn+l a . l_+ “ w(}____l Hn
1 - a“o0¢ 1 - a“ep

wl]ll rLl

a = - 21C sin /2 ,

15 the Courant number, and



Vv = kéx

is the dimensionless wavenumber. The numerical solutions will be stable if and
only if both eigenvalues of the above matrix have magnitudes less than or equal
unity.

We examine the question of stability for three different cases. Case I is
the fully-explicit scheme in which 6 = § = 0, For this case we find that both

elgenvalues have magnitudes equal to (1 + bCz sin2 ¢/2)1/2, and thus all wave-

lengths are unstable. Case II is the fully-implicit scheme in whieh 8 = ¢ = 1,

Here we find that both eigenvalues have magnitudes (1 + 4C2 sin2 ¢/2)_1/2, and

thus this scheme is unconditionally stable—~that 1s, it is stable for all values
of C. Case III is the numerical scheme with 8 =] and @ = 0 (or 6 = 0 and

@ = 1), In this case we find that if C sin ¢/2 < ] then both eigenvalues have
magnitudes equal to unity, but if C > 1 then the_wavelength L = 2&x is unsta-
ble. This is the shortest wavelength resolvable oy the computational mesh,

Thus in Case III we have an example of scheme for which tlie Courant rondition
must be satisfied for stability.

Case 1II corresponds to the ICE method.! 1In this method fully=-implicit dii-
ferencing is used fcr the pressure gradient term in Eq. (2) and the terms asso-
ciated with dilatation of the velocity field in Eqs. (1) and (4). The result is
a scheme for which the Courant condition [Eq. (16)] need not be observed. As
can be seen from the magnitudes of the eigenvalues in Case II, acoustic waves
are stronglv damped, especiallvy when C is large. This is not of concern to us
in subsonic cuombustion prohlems. however, if tlie aconstic wavcs dou not attect
combustion. A disadvantage of the 1CE method is that the implicit finite dif-
ference approximations must usually be solved bv a time-consuming iterative pro-
cedure, and manv commonly-used iterative procedures have the undesirahle proper-
ty that for the ICE equations they converge more slowly as the Mach number tends
to zero. This will be shown subsequentlyv,

The numerical scheme of Case IIIl is used in the acoustic subecvcling method
of Haselman. In this method :he terms responsible for acoustic wave propaga-
tion are differenced using a subcycle time step G:S that satisfies Gtg < &t and

cit
6&5 < 1, and their calculation is repeated %%—-times (subcvcles) each large
’ s

time step 8§t. The remaining terms in the equatinns use the larger time step
ét. Usually 6t 1s governed by the constraint

Computational efficiency is gained in the acoustic subcycling method because
only a small number of terms are differenced using the smaller time step th and
+ + '
because (p'); 1 and u§+i/2 are explicitly caiculable. This method is also neu-
trally stable and thus has less numerical damping than the ICE method, although
this can be a disadva tage since we prefer a method that damps the short wave-
length, unresolvable - omponents of the numerical s2lution. The acoustic suhcy-
cling method also has the disadvantage that it becomes more inefficient as M



goes to zero since, according to Eq. (28), the number of subcycles 1s approxi-
mately 1/M.

B. Pressure Gradient Scaling and Some Foint Relaxation Iter.tion Procedures

The Pressure Gradient Scaling (PGS) method? was developerd to improve the
efficiency at low M of the ICE and acoustic subcycling methods., The basic idea
of the PGS method 1s to improve computational efficiency by increasing M while
still keeping it small in an absolute sense (M << l). Solution features of in-
terest in many combustion problems are unaltered when M is varied below some
small upper bound. This idea was first used in O'Rourke and Bracco.® The PGS
method is implemented by solving a revised primitive equation system in which
Eq. (2) 1is replaced by

dpu

s+ Te(puy) + 3 Tp = T
7

ot (29)

=]

+0p
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where a > 1. By an examination of the acoustic equations of this revised svs-

S . . 2 .
tem, it is easilv seen that the effect of the 1/a” factor before the pressure
gradient term, is to lower the sound speed by a factor a and thus to increasc
by the same factor. For details concerning the method, the reader is referreld
to Ref. 3.

It is obvious how the PGS method makes more efficient the acoustic subcv-
cling method since the number of subcvcles is approximately 1/M. We now show
how the PGS metho« accelerates convergence of some iteration procedures that are
often used in conjunction with the ICE method. Conszider the jullv=implicit ap-
proximation to the PGS acoustic equations:

+
(™ - (on)" W
] g A2 RSN bl S04 = () (300
St 0 &x
n+l n 2 BN ANt
Yier/2 T Yierr2 o (P~ ey I
=L L SLALS VR ., S S T (30
0 6t a.f X
. + -
by using Eq. (30h) to eliminate u‘;+:/2 and "'11-.-:/2 from Eq. (30a), we i that

we must solve the fmplicil system ol cquations

n+l n 2 n+1 n+l n+1
D, = ' - ' - C ' - 2%p + '
y = eh) o e Yia] (o' (p >j_l]
p Ot :
0 ‘ n
4 o— - =0 '
o M~ o) ' i)
('”61
where C“ Tt The matrix assoclated with Ege (31) 1s a tridiaponal matrix

for which very efficient direct solution methods are avaflableo  For mult idimen-
sional prchlems, however, these ddrect solution methods are very ineft{cient.
Thus we consider a class of methods, called point relaxation methods, tor the



To define these point relaxation methods, we first introduce some nota-

v n+l

tion. Let p; and D_1 be the approximate values of (p')J and Dj after v itera-

tions. The first point relaxation method is called Jacobi iteration. In this
v+l

]

method we calculate p from

v

pv+1 -V - i (32)

TR
apj

o

oD en

wheru 3 J = ;!H'l
°i  aeM)
J
Equation (32) would solve D = 0 if lJ_.| just ¢ pended on (p')':-"l anil not on
(o')n-..l and (p‘)'.“l. In Jacohi ilurn.tinn, the I\\_, in Lge (32) are piven hv
i-1 i+l i
ah o
v -1 i \V v=-1 . v-1
D, =D,  +|z=—)p, , - + (= -
l (Bn _1> -1 7 Py-1) (op]> “1 TP )

0!}
+<_J_>;" S Ca)
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). . . WV, .

I'his corresponds to calealating lirst all the 7 in one pass throusa the corpu-
1

tational mesh from Ege (31 usimg the py and then coaculatine chanees in dersi-

ty trom B (A2) in a second passes The ll\,', we use in Lege (120 do not vepesd o
v+

any censities tor the next 1terate level==that is, on thee p e A sccont paint

relazation procedonre, called Gauss=Seidel fteration, ditters tror dacohi {tor -
v vkl

tion In that I)i depend: on the n‘ l:

an ab
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) ., v-1 l
N RN (R A ¢
("“'JO-I) j41 |'l

. |
I'hls corresponds to calealatng both Il\" al |)‘; - p\‘, on the kime pass throush

the computat lonal mesh I order ol ascending 3, and adding the chan o deas ity

\Y

to pl betore polny to the next computat fonal eell. A thivd fterative procease,



called Successive Over-relaxation (SOR) uses Eq. (34) for the DY but calculates

changes in dengity from b
\"
. AD
oy = o) - Tapy - (35)
(=)
apj

where 1 < A < 2. 1In the past, Gauss-Seidel and SOR iteration have bcen more
popular than Jacohi iteration because they converge in fewer arithmetic opera-
tiors. Jacobi iteration is better suited to modern vector computers becausc the
calculation of p, or D, need not be performed in sequence. In a code using

h| h|
Jacobi iteration on a vector computer, morv operations arc performed per unit of
conputer time.

All three methods become more incificicnt when the Mach number is reduced.
We now show this for Gauss=Seidel iteration. Using Eq. (3!) to eliminate the

b b,
density changes in Eq. (34), and then using KEq. (31) to evaluatc 5?1' 30 ] , ant
i -1
oD . .
-aTJ—. gives
i+l
C2 C2 vel
pY - —%—D L S S (40)
] 1 + ’¢c” 1 +2C -
(31
Apain we examine the behavior of the Fourier components of D:. letting “T =
34
Avt-i'“‘ where ¢ = kéx and substituting this into Nao (3 glves
A S
- o
AY SRR AP T
a
For small values of ¢ (lony wavelenpths) and larpe values of (a‘, we have
v+l . " / 2
‘Q———| C I T R Y S B <¢', |/ﬁ4, 5;;) . (v
AV (43 a (:.

From Eq. (7)) we can draw several conclusfonss Flrst we show the inettfe-
cleney of Gauss=8Scidel fteratton when M ois reduceds 1M s reduced tor a tixed

ud 61
value ol {'J'n then the Courant nurmher };:— P fnereaseds The quant iy ¢ is the
. 1

Courant number when the PGS method s not in uses When (Tl fnereases, the 1atio
4

in Eqe (37) increases, thus slowing the converpence rate sinee the errors Il\ e

then damped more alowly.  This situatfon wornens when we ret fne the mesh and
therechy Introduee Toneer waveloneth (smaller o) errors.



Wnen the PGS method is used, however, and we lower the Mach number for a

fixed value of EEE, we can increase a to keep the value of C. constant.’ Thus

the convergence rate is not worsened., Further the ratio in Eq. (37) does not
increase above an upper bound as the mesh is refined.

Ack nowledpment
The author wishes to thark J. D, Ramshaw and T. D. Butler for many helpful

discussions.

References

1. F. H. Harlow and A. A. Amsden, J. Comput. Phys. 8, 197 (1971).

2. L. C. Haselman, Lawrence Livermore Laboratorvy Report UCRL-52931 (198u).

3. J. D. Ramshaw, P. J, 0'Rourke, amd L. K. Stein, “Pressurc Gradient Scaline
Method four Fluid Flow with Mearly linitorm Pressure,™ to be published in J.
Comput. Phys.

4. F. A, Williams, Combustion Theorv (Addison-=Wusley, Reading, Mass., 1Yu)).

5. Jo D. Ramshaw and J. A. Trapp, J. Comput. Phys. 211, 438 (197v).

6. P. Jo U'Rourke and F, V. Brdcco, J. Cowpul. Plvs, 33, 16> (1979).

7. 5, Paolucci and D. R. Chenweth i".EﬂmﬂﬂiﬁiLiﬁiHﬂﬂii_iﬂ.kﬂ“i“”ﬁ.iﬂ'
Turbulent Flow, eds. C. Taylor and b oa. denircticr (Flueridg e Proans,
Swansea, 19d81), p. lU45.

S Pe Jo Roache, Computational Fluld Dvnanics (uersosa arlisioers,
Albrquerque, Nel., 190.).

9. We ke Jones and Jo Po Boris, NKL slemorandunm Report 3970, Saval Kescarch
Laboratory, washington, D.C. (1979).

lie  Ae Majda and Jo Sethinp, Lawrence Berkelevy Laboratory Preprint LEL-17200
(1984).

Ile Wa Ta Ashurst and P, K. Barr, Comb. Sci. Tech, Juy U7 (1983),



