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Resume - Cet article presen’:c une revue des methodes pol;r le traitmenr I.h”s
modt-sacoustiaues clans les simulations numeriques de 1~ combustion
subsunique.

Ahstrart - A review is given of thr IIWLhlltlSfor trL’flt~nl: th~’ a~.:)uscicnv~ri~’
in numerical calculations 0[ subsonic comhustirm.

1. ISTKL)L)~CllU:;

In nu~rrici~l calculations of sub~(mic cnmhustion, trsatmcnc of the acnllscir
mndl’ has been a problt!n for many rrsearrkrs. lt is w~drly bclievrd that Marl}

nur+wr and acouscic wave effects are ncK]lKihlr in many suhsonir corrbustion
problems. Yet, the equatirm that are ofLt’n snlved conLain the acoustir mod(’,

and many numerical techniques for sulvin~: th~’srequaLio:ls arc’ inc’ffici~:ntWII1’-l
tl)(’NaclInumber Is much smnllcr than one.

Il. ‘1’111{FJ/[IATl(INSoh”SIIIISONI[;[X!bltlll};’1’10N

(1)



where pk Is the mass density of species k, -u is the mixture mass-average veloci-

ty, L& is the velocity of species k relative to ~, Wk is the molecular weight of

species k, ~~ is the reaction rate of reaction E, and v~’l and v’k,l
are the

backward and forward stoichiometric coefficients of spec;es k in reaction 1.

The specific forms of ~k and fiflwill not concern us in this paper.

The mixture momentum equation is

The mixture density p is obtained from

P=IPk=
k

(2)

(!)

In M. (2) p IS the static pressure. g is th~.visrn,,c ~tr(,~~ crnc;r, a;;J~, ;S

the body acceleratic]llon the fluid. The specific form of ~ will not ronct,rn IIS.

The mixture internal energy equation is

(J)

In Eq. (4), ● is the inL~,rnil]encrj:y (tllcrmnl pl~lsrlIcIIi,sal), q tll(,l;(I;II l’~IIX

vector (cxclusivc of enthalpy diffusion), anl!II~ is LIILI~lntll:l]p}’LIIsll~,[’i(,sk.

m’ = ~ Pk[hk(’l’) - R ‘Ivwk] ,
k

()

wlltlrtlR. 1S tll[7\llll\fL)tS/ll}[;ISCol)!ililllL.



give two Suhsonjc formulating; Jn Section 11? we give reasons for our anawer to
the second questicm above.

Am The Elliptic Primitive Forrnulatjon—-.

The filac low Mach nunher furmlllatlun w(*call the Elliptic Primjtive (El’)
formulation. Ue first give the equations and then indicate how they a=ob-
taincd. In this formul~tion, thl’morncntum equation iR slightly mldified:

(7)

ldjy-lr~.,l.-—--— ,:ml + :-- :.All (“1”)+ ‘“
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From Eq. (9), the divergence ~0~ can & non-zero because of changes in the mean

pressure ~, because of local heat addition due to chemical reactions or heat and
mass diffusion, or because of changes in the local mean molecular weight.

To determine how the mean pressure ~ changes, we must know the boundary
conditions in our particular problem. In mny cases combustion occurs in an
open atmosphere, and we can assume

~ = constant . (15a)

When combustion occurs in an enclosure whose volume V is changing in tim~, then

an eq~jation for ~ is obtained by integrating Eq. (9) over the volume V:

(15h;

In the EP formulation, Eqs. (l), (7), (8), (9), and (15) are used.

To obtain the EP equations from the primitive equations, two assumptions

are needed. First , we assume that Lhe pressure solution p of the primitlvr

equations can be decomposed Into the sum of mean and fluctuating parts:

p -;(t) + p“(IJ,t! ,

Iwhere F’‘
I
<< ~. Tile fluctuation p“ differs from p’ bvca(lse acoilstic press(lrl’

fluctuations sre contained in it. Second , we assum~ that the solution chan~es

negligibly when those terms in Eqs. (1)-(6) of relative order p“ /~ arc ne}:-

lected. Tiwse are the ~~!Vou t~,rmillthe ent’rgy equation (4) and tllllp“
To obtain liq.-(~), orl(Ifirst rlrrivt’s

term

in Eq. (5). the temperature equation from
ECI.(4) usln};Kqs. (1) nnd (b), anclth[’nclirninates the substantial clerlvatlv(’
of tllctemperature, DT/Dl , from this (?ql’illionusing I;q.(8). 111this (l(’I”ivil-

tion, the viscous cli~slpation term O:VU in Eq. (4) is ne~lllcturlIwrausc It Is. -—
negli}:ibly small in Nuhsunic cf)mh(lstiur.problems.

The assumption that p“ << ~ is usually valid for mlbsonlc combustion
since wr usually Ilnv(’

b
where M IR the Mnrh numhr. Thr viI]{(liLy 01 tll(iHPCOlld aSSUmlltiOll, tt):llW(I (“:111

neglect term~ of relative ordrr I>*’/~, Ih prnbl~m-c!rpcndcnto By INI~lL*cLiII}:

the~e terms, wr plimlnate tileacou~tic rnr)Aufrom the equations. In mnllycr)ml]lls-
tion problems, it iN widely heli~ived tllnl ~)~’~~llstl(’ wav(,h are unirnportnnt, hut {II
some problem~ IL iK known that Lhry arr r(’~l)on~ihlefor ignition or enllnnrcd
combustion rates.



An EP formulation was first used by Ramshaw and Trapp5 in a t~o-phaee flow
application. An EP formulation for combustion was given, though not numerically

solved, in Ref. 6. Paolucci and Chenoweth have solved the EP equations numeri-
cally in two-dimensional combustion probleme.

The biggest advantage to solving the EP equations occurs in one-dimensional
prcblems. Here one usually knows the velocity at one or both boundaries, and
the complete velocity field can be found from Eq. (9), which is easy to solve in
one-dimension. Additional advantages of the EP formulation are that Eq. (6)
need not be Eolved and that one nerd not account for the viscous dissipation
termt3.

It is sometimes fallaciously stated that the EP equations are to be pre-
ferred to the primitive equations for subsonic combustion problems, because nu-
merical solutions of the primitive equations, in contrast to those for t}]eEP
equations, must satisfy the ~ourant sound speed restriction on the magnitude of

the computational time step. This restriction is that

(16)

where c is the isentropic speed oI sound a[ldtL ~IILI:X dl~ L]IV uUml]ULiiLionai

time step and cell size. In subsonic combustion problems, Eq. (16) resLricts dt
to be intolerably small in comparison to problem tim(,sof interest. The fact
is, howeber, that there are nl”.mericalmethods for solvin~ the primitive eq~la-
tions for which the restriction Eq. (16) is not necessary. This will be shown
later.

In addition to the previously stated disadvantage that it ignores aco~lstic
wave and compressibility effects, the El’formulation has two other disadvan-
tages. The energy equation in the primi&ive equations can be formulated and
finite-rlifferenced in conservative form. Because the EP formulation does not
have an energy equation, this possibility is forsaken. Conserving energv in
numerical calculations of combustion is important because it helps ensur~l that
correct flame temperature., and Ilenceaccurate chemical reaction rates, are cal-
culated. The second disadvanta~:c is that sollltion for p’ is an clli,ptic prob-
lem, and finite difference a,>proximations to elliptic equation: mllst usllal]~”be
solved by time.-cnnsuminK iterative procedures. AS WP shall see in Section ~11,
th~’use of iterative procedures is also necessary for solvin~ tiledifference ap-
proximatlonb of one numerical mrtllod for tllcprimitive equaLions.

B. Stream FindPuL’cJnLia]Function Formulation...———.—.-— ----- _ -

In the second low Mach IIUMbE}r form{l~:;tion,the sLreflm f(lnction and vortici-
Ly equatif)nk for Constanl dttnslly flows, ~rc ~ent~rollz~!dto npp]y to Hllbsonic
comlmfition. Slnrr V*U is nnn-z(’ro iIlcombustion problems, there is not a stream
fllnction~ such tha; ~ x ~ _ Il. The velocity g can ncvcrthrlcss tw expressed as
the sum of a no]enoidn] part V x ~ amt :111~rr(}tatl~nal part v~, w]lere $ and @

arc called str[lam and prJLeIILi~IlfllllrtII)IIS.Thllswu call thr-second lGW Mach
nllmhrr formil]ation tllcstrcanl;IIIIIpot[Intinl (SAI})f~lnct.il)llf(]rmlllaticjll.—- ------.--.-.—___

u - V(J+V x IJ ,—- (17)



V2(#- D (18)

and

vlK(vxy) -g, (19)

whzre w is the vorticlty. The vortlcity equation is obtained by taking th?
a!

vector curl of the equation for ~ derived from Eq. (7):

Finally, we must have an equation for p’. This is obtained by tskini’,tllc
ail

divergence of the equation for $:

(2 )

where tile superscript T denotes tllutranspose. Equ~tirm (21) is tht’ ellfpLfc

equation for p’ tclwhicl] WL, l~i~~p rt,furr~~dl’,~rlfer.

111. NUMEKICAI, MLTII[)IIS Foli Till: PRIF!l Tl\’I l;I!IIATIII?::<



Eqs. (l)-(6) have the acoustic nmde, is exploited in an efficient method that is
not available for the EP or SAP formulations.

Consider a one-dimensional disturbance’ to an otherwise uniform fluid that
is inviscid and non-reactive. Then Eqs. (1)-(6) have snlllcions that approxi-
mately satisfy the acoustic equations

apf au

r+~03;=0

and (22)

(;{)

[

,I+B ik(s-t’ t) ,1
- 1{

ik(x+t-~)t)
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+

n

(1 - e)
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(d

&x
+ (1 - 0)

6X
J

(25)

=0.

The parameters 6 and O, which can have values between (Jand 1, are used to vary

the level of time-advancement of the finite differt=ncw approximations to the

spatisl derivatives. Wheri 0 and fi are both zero, the numerical scheme is purel:~

, n+l n+]
exFlicit - that is, (P )

~
and II

j+il?
are known explicitly in tt!rm~of cal,.il-

lated values of p’ and u at tim~’n{l. h%en 9 and 4 artihocl’unity, till’sclI~.-t.
, n+]

is impllcit, and (p )
n+]

j and “j+l/~ must he solved for implicitly fron equation+

that couple their value., at neighhorinl: ~paci~l points.

Numerical solutions of Eqs. (25) can a~aln he found for the Fourier
components. Substitutin~: the values

(P’); = A“Fo exp [ikjbx]

and

“;+ 1/2
= llnco exp [ik(.j+ l/2)tx]

into Eqs. (“’5)and su]vin}; for A
n+] n+]

a:ltiH j..f\~(,*

(:, )

kitv)r~t

a-- ZiC tiin$/2 ,

(#t

C=6X

is thr CouranL numh~lr, and

a

] + A(I -.—- - -—

1 .-i?ef)

An

Iin



$ = k6x

IS the dimensionless wavenumber. The
only If hth eiqenvalue E of the above
unity.

numerical solutions will b stable if and
matrix have magnitudes less than or equal

We exanine the question of stability for three different cases. Case I is
the fully-explicit scheme Ir,which 5 = @ = 0. For this case we find that lmth

cig.envalues have magnitudes equal to (1 + 4C2 sin2 w/2)J’2, and thus all wave-

lengths aie unstable. Case II is the fully-implicit scheme in whicl, e = 0 = 1.

Here we find that both eigenvalues have magnitudes (1 + LC2 sin2 @/~)-J12, and

thus this scheme is unconditionally stable-- that is, it is stable for all values
of c. case III is the numerical scheme with 9 = 1 and 0 = O (or 9 = O and
0= 1). In this case we find that if C sin $/2 < 1 then both eigenvalues ha~’e
magnitudes equal to l~nity, but if C > 1 then the-wavelength L = Z&x is unsta-
ble. This is the shortest wavelength resolvable ny the computational mesh.
Thus in Case III we have an example of scheme for which tileCourant rondicion

must be satisfied for stability.

Case II corresponds to the ICE method.l In this method fullv-implicit dif-
ferencing is used fcr the pressure grddient term in Eq. (~) and the terms asso-

ciated with dilatation of the velocity field in Eqs. (1) and (4). The result is
a scheme for which the Courant condition [Eq. (16)] need not be observed. As
can be seen from the rwgnitudes of the eigen~;alues in Case 11, acoustic waves
are strongly damped, especially when C is large. This is not of concern to us
in subsonic combustion prnhlems. however, if tlieacnllstic waves Jv not affect
combustion. A disadvantage of the lC’Emethod is that the implicit finite dif-
ference approximations must usually be solved by a time-consuming iterative pro-
cedure, and manv commonly-used iterative procedures have the undesirable proper-
ty that for the ICE equations they converge more slowly as the Mach number tends
to zero. This will be shown subsequently.

The numjrical scheme of Case 111 is used in the acoustic subcyclinfl method
of Haselman. In this method :he terms responsible for acoustic wa\,e propaga-
tion are difference usin~ a subcycle time stell6ts that satisfies dts < Et and
C&t

—

6t
-#-: 1, and their calculation is repeated ~ times (subcycles) each large

time step 6t. The
&L. Usually dt is

and thus we have

dt
$<M. .

s
remaining terms In the eqllations u;e the lar~er time stc’p
governed by the constraint

Computational efficiency is gained in the acoustic suhcyclin~ method because

only a small number of terms are difference using Lbe smaller time step 6C< and
n+l n+ 1 .“

because (p’). and ‘j+l/2
are explicitly calculable. This method is also ne\l-

J
trally stable and thus has less numerical damping than the ICE method, althn{lgl,

this can be a disadva tage 6ince we prefer n nwthod that damps the short wave-
length, unresolvable omponents of the numerical salution. The acoustic Guhcy-
cling mthod also has the disadvantage that it &comes nmre inefficient as M



goes to zero since, according to Eq. (28), the number of subcycles is approxi-

mately l/M.

B. Pressure Gradient Scaling and Some Feint Relaxation Iter.tion Procedures

The Pressure Gradient Scaling (PGS) method3 was develop~d to improva the
efficiency at low M of the ICE and acoustic subcycling methads. The basic idea

of the PGS method is to improve computational efficiency by increasing M while
still keeping it small In an absolute sense (M << 1). Solution features of in-

terest in many combustion problems are unaltered when M is varied below some
small upper bound. This idea was fii-stused in O’Rourke and Bracco. The PGS

method is implemented by sol~’inga revised primitive equation system in which
Eq. (2) is replaced by

(2~)

where a > 1. By an examination of the acoustic eqllations of this reviscjclsvs-

ter,
2.

it is easily seen that the effect of the l/a tact.or beforr the pressllri:
gradient term, is to lower the sound speed by a factor a and thus to increasl: ::
by the same factor. For details roncernin}~ thl~method, th(lreader is r(,ferrr.1
to Ref. 3.

It is ob\Tioushow the PCS method makes mnre efficirnt the acolls?ic slibcy-
cling method since the number cf suhcycles is approximately 1/!1. k’(’now show

how the PGS methot, accelerates converl:ence of some iteration proced~;rllst]l;lL;II-,,
often used in con,junctim with tlw ICF.n~’thoc!. Consider the iullv-implirit al)-
proximation to the P(;Sacoustic equntions:

(P’);+l - (P’);
n+] n+]

11,
1+1/2-—- —. +p

- l’!-]/:! ~,

6L
—- .———- .-—— .

() Lx

11+1 n
II . 2 (P’);:; - ((’’)’;+’

P
]+1/2 - “j+ll~ + :()

—..———-— — --—------ - —-—-A
() &L ,1 Lx

—=(1,

a’”

( ‘{:,:. “)

p (’)1
11

+ —;:,- ((1,
II

)=(),
,]+1/? - “.)-1/:!

(’11)

(“ AI

wll[lr~, C = --!~. TIIIL III;Ilrlx:ISSII[’I;IIIIIIwfllI I;II. (’11) is ;I trldi:l}l,l]llill In:llrlx
n atx



To define these point relaxation methods, we first introduce some nota-

Let p; and D; be the approximate values of (p’)
n+]

tionm
~

and D after v itera-
~

tions m The first point relaxation mthnd is called Jacobi lterat~m. In this

method we calculate p‘+* from
~

a~i 2D
J– .

“’t’rur =
j a(d);+]

(“)
a1)

()
al’. ,

1); ;-1 + ~,= I) 1 v-l. v-l
~P” - P, ) + + :@j - P )

1-1 J-1 .!‘j-l .1

(32)

V .,
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LY !r(ml I; I;. ( 3.!) ill ;I SIII:[IIIII IXIS}:. “1’II!I I); ~11 llsII ill I.fl. ( ‘ll~~ (III IIIIL (1( ’pl’i:l! 1)’1

illly
\,+ I

c. II IIsi Ll (’G I or llIt, n~’xt 1[1’~;I[iI l~-VI’]---LIIiIl i:,, tIII!]’I p . ..\S(II.1111,! Ill,i::

rl,l;lX;lLi(lllprl~~,(,(lilr~,,Cill111{1[;;lllss-~(’i(lf’lIttlr;llillll,IliIIt’rs trtlr”,I;l(”lj!liit, !“:--

1 11)11Ill Ill;ll 11;(1,,111111(1!4 (Ill [Ill’ [1
\l+l

1-1:

1); ;-’ += [)

()
all

I
v- I

--”w; .,, -f Jill] 9
~~’,]i.l

( 1.’,)

v Ull‘I’lIls [v)rr{,sl)oll(lsIII {I; II I.11 liIl III}: IMII II II
v

1
illlll [1

1
-“ 11

I
III! 1111. li;lml’ ll;l! ;!; 1111”1111:’11-.. —

I11(1 I’IIITIIIII1;I[ [1)11;11 1111.!III Ill 111.111’1 lit il!~[’1’llillllj’, I . ~111(1 illltl ill}’, lllt” I’!:.111 ‘ 111 !I1.:1’.l I v

L(I f); h’f i)rig p,(Il II)’, III Ltlt’ IM’XI rl~m]~lll :11 ltIIIiI I rII I I . A 1111tit llIIriIl I VI” l)r,)!.1’,1’~!”,l,



called Successive Over-relaxation (SOR) uses Eq. (34) for the D“ but calculates
changes in density from ~

(35)

where 1 < A < 20 in the past, Gauss-Seidul and SOR iteration have tx?cn mnre

popular than Jacobi iteration because thry converge in fewer arfthmctfr opera-

ciorIs. Jacobi iteration i~ &tcer mitetl to mndern vector comptlters heCaIIRII tll~~

calculation of P or D need not Ix perf{)rml”d in Scqucncc. In H CCK!(’u~inl!
.l~

Jacobi iteration on a vector computer, moru operations ;Irr pvrformlvl per unit of

conpuLer time.

All three methods become mort’ inc’fijc~rnt when tli(’

We now show this for Gauss-Seidel iteration. Fsing Eq.

density chanxes in Eq. (34), and then using Eq. (31) to

c’ c’
l); a

- -—-y 1); - —-~ ., D“-’ .
~ + ;,(:- - 1 + X;

j+l

(I

(“{l,)

,,V
nf l):. l.(’tLill)! , =

J)+]

I—-”l- *:! _

Au “’[;+ +’} “(:J’:;) “

Fr(ml Vlfl. (’!/) wIi I.iIII {Irilw H1’vi’rill I’IJI1[.III!411111!:. IJ1l’sl W1’ F:l!llw 1111’ 1111’111’-



Wnen the PGS ❑ethod is used, however, and we lower the Mach number for a

constant.’ TtIum
u6t

fixed value of ~, we can increase a to keep the value of C
a

the convergence rate is not worsened. Further the ratio in Eq. (37) does not
increaae above an upper bound a6 the ❑esh IB refined.
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