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UNAVAILABILITY MODELING AND ANALYSIS
OF REDUNDANT SAFETY SYSTEMS

by

Jussi K. Vaurio and Dominic Sciaudone

ABSTRACT

Analytical expressions have been developed to estimate
the average unavailability of an m-out-of-n (m/n, 1 s m < n < 4)
standby safety system of anuclear power plant. The expressions
take into account contributions made by testing, repair, equip-
ment failure, human error, and different testing schemes. A
computer code, ICARUS, has been written to incorporate these
analytical equations. The code is capable of calculating the
average unavailability, optimum test interval, and relative con-
tributions of testing, repair, and random failures for any of three
testing schemes, '

After verification of the methodology and coding in
"ICARUS, a typical auxiliary feedwater system of a nuclear power
plant was analyzed. The results show that the failure modes
associated with testing and true-demands contribute considerably
to the unawvailability and that Diesel generators are the most
critical components contributing to the overall unévailability of
the system.

I. INTRODUCTION
A. Foreword

The developn’1ent of nuclear power as a viable energy source has put
added emphasis on making reactor systems as safe as possible. Reactor
designers bear the responsibility of designing systems in which accidents are
rare and of developing special systems to mitigate the consequences of an
accident if vne should occur. As a result, redundant standby safety systems
are built into nuclear power plants. These systems do not operate under
normal conditions, but should be ready to respond if some emergency situa-
tion develops. The emergency core cooling system (ECCS) and the auxiliary
feedwater system (AFWS) are two examples of this type of standby safety
system. These systems are periodically tested to ensure prompt availability
 upon demand. ' :
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Due to the nature of mechanical components and the human inter-
actions with them, there is a finite probability that the standby system may
fail to function once it has been called upon. The factors contributing to this
unavailability may range from the random failure of a component in the system,
to simply taking the component out of service to test its operability. A method
capable of estimating the unavailability of a system as a function of various
types of failure modes would greatly aid in determining which factors con-
tribute most to the unavailability and may lead to modifications to the system
or maintenance schedules that would reduce the probability of failing to
start upon demand.

B. Terminology

Before discussing some of the previous work done on this subject,
we will present some basic background and terminology.

J. m/n Systems

A system is designated as being m-out-of-n (m/n) when it is made
up of n redundancies, m of which must be available for the system to be
available. Clearly, m must be less than or equal to n. For example, an
emergency power system may consist of three separate devices, any one of
which can supply the demand. This system is designated as be1ng a
1/3 system. :

Each redundancy and system may be composed of single components
in parallel (Fig. 1) or a series of components in parallel (Fig. 2). For sim-
plicity, further references will be to single- rather than multicomponent
redundancies where each redundancy will be referred to as a component.

- Fig. 1. Single-component Redundancies Fig. 2. Multicomponent Redundancies
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Each component in the system is tested periodically, and the
following definitions are used: test interval, test period, repair period, and
operational standby period. :

2. Time Periods

The test period is the time when the component is checked to see
if it is operational. If necessary, the component then goes into a repair period.
Here, all repairs are done and the component is retested to make sure the
repair was successful. Finally, the tested and repaired component goes on
operational standby until the next test period. A test interval is the time
between the start of successive test periods. These periods are shown
schematically in Fig. 3.

Component ), A test interval can be
Test Interval identified for an individual
Test Repair l ‘ Operational component within a system or
Period | Period Standby Period for the system itself. In either
> Time case, the test interval will be

determined by the testing
scheme, which may be uniformly -
staggered, simultaneous, or
random. In the uniformly stag-
gered testing scheme, the testing of the components is performed at equally
spaced times throughout the test interval as indicated in Fig. 4. In the si-
multaneous testing scheme, all n components are tested at the beginning of
the test interval, as shown in Fig. 5. No two components are voluntarily taken
out of service exactly simultaneously, but one after another. Finally, in the
random testing scheme, each component is tested at randomly shifted times
during the test interval,

Fig. 3. Testing, Repair, and Operational Standby
Periods of Component Test Interval

System
(13 Test Interval
Fig, 4
Component 1 Component 2 Component 3
Uniformly Staggered Testing Scheme Test Test Test
' - & & &
gThree component system, 720-h test epaid - Pepai: epaix
interval) [ T -
0 240 480 720
Time, h
System
Test Interval .
Fig. 5

Components 1, 2, & 3
Simultaneous Testing Scheme

(Three-component system, 720-h
N T - I test interval)

0 240 A 480 720
Time. h
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3. Unavailability Rates

If a component has only random mechanical failures, then its
availability or reliability is simply a function of its random failure rate, A.
If R(s) is the availability at some time s, then the availability at any time
s + ds can be written as

“R(s + ds) = R(s)(1 - A ds), (1)

where \ ds is the probability of the component failing during time ds.

The availability at any time s is found by rearranging Eq. 1 and
by the calculus to yield

R(s) = exp(—'fs A ds),
Yy
where it is assumed that R(0) is unity.
If X is constant during the time interval of interest,
R(s) = exp(-As). (2)
Another way to use this result is to note that, if the availability
falls off exponentially, then the failure rate is a constant and can be interpreted
as being equal to the reciprocal of the mean time to component failure.!
The unavailability of the component is defined as the complement
of the availability and is given the symbol u(s). Thus, for a constant failure

rate,

u(s) = 1 - exp(-As). ' - (3)

- The unavailability of a component at the end of a test interval due to random

failures only during the test interval T, is given by
u(T) = 1 - exp(-AT). (4)

However, at the end of an arbitrary test interval, we would expect the un-
availability to be at some different value than this, since the component may
have been taken out of service during testing or underwent some repair during
the test interval. An asymptotic state is defined when the value of u(T) no
longer changes so that the unavailability at any time is then equal to the
unavailability at that same time in any subsequent test interval. This ideal-
ization is 'a sensible approximation, especially after two or three test intervals,
when the initial system faults have been worked out.
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The average unavailability U is defined as

‘f“T u(s)ds

il (5)
fOT ds

G(T) =

In the asymptotic state, u is a function of only the test interval,
T, not of the absolute time from the beginning of the plant operation. There
exists an optimum value for the test interval such that the lowest average
asymptotic unavailability for the system will be achieved. This value, Ty, is
defined by

dg : -
aT 0. | (6)

If a system undergoes only random failures, then the average un-
availability can be determined by Eqs. 3 and 5 to be

G(T) = 1 - 1/AT + (1/AT)exp(-AT).
Using Eq. 6, we find the optimum test interval T, to be
T, = 0.

This result means that, as long as the component is continually
tested, the system is always available. Although this is not realistic since,
for example, downtime during testing has been neglected, Eqs. 5 and 6 can be
applied to more rigorously derived unavailability equations and more meaning-
ful values of the average unavailability and optimum test intervals can be
determined. These topics are covered in Chapter II of this report.

C. Literature Review

Several researchers have addressed the subject of unavailability
analysis and optimum testing intervals. Dressler and Spindler? have analyt-
ically calculated the time-dependent and average unavailabilities for all
periodically tested safety systems with m/n (1 S'm < n < 4) redundancy for
both staggered and simultaneous testing schemes. The methodology assumes
constant failure rate, repair time, and test intervals, along with a test-period
duration of zero. Testing is assumed not to take the component "off-line,"
thus allowing no errors during testing.

The results for a 1/1 system give rise to a sawtooth-shaped curve
shown in Fig. 6. Since the failure of the component is due only to random
causes, the optimum test interval is zero. Although many realistic failure



modes are missing in this model, it contains perhaps the most comprehensive - B

analytical equations currently available for the unavailability of m/n standby
systems. :

1.0 4

U(s)

Unavallabitlivy

g

0 —_— T.0 —_—>
2

Time

Fig. 6. 1/1 System Unavailability Curve from Dressler and Spindler2

Signoret® attempts to analyze the contributions made to component
failure not only from random failures, but from other sources as well. As
in the previous reference, the failure rate and test interval are assumed to
be constant and the test duration is zero. The repairperiod, however, is
presented in the form of a constant repair rate or mean time to repair. Also
included is the probability of failing to start due tn a test-caused failure and.
the probability of failing to start due to a true demand. These results give
rise to the curve in Fig. 7.

The discontinuity of the curve at s = 0, T, 2T, etc., is due to the
probability that a test tails the component. The curve then drops off exponen-
tially as a result of the constant repair rate before increasing again due to
the constant failure rate. Analytical expressions are not derived for the other
m/n (m,n > 1) systems. Instead, 1/1 curves such as is found in Fig. 7 for
various components are multiplied or added together to get numerical rcsults
for multicomponent systems.

A further step toward a more realistic assessment of safety-system
unavailability has been taken by Apostolakis and Bansal.®* An attempt is made
to recognize the contributions of human errors and common-cause errors to
system unavailability where a finite probability is given for leaving a tested
component in a failed state. The probability of failure due to a real demand
is also taken into account.



Unavailability

0 _.s__) '1", 0 T_) ) lr

Time

Fig. 7. 1/1 System Unavailability Curve from Signoret3
Other assumptions made by Apostolakis and Bansal are the use of

constant failure rates, constant test interval, and constant test duration.
Furthermore, it is assumed that the component is down throughout the test
period and that this period includes all the repair time needed to bring the
component on line. The unavailability as a function of time for this method
is found in Fig. 8. Note that the component is completely unavailable [u(s) =
-1.0] throughout the test (0 < s < Tt)‘ Another feature of this curve is the
linearization of the random-failure contribution to the operational standby-phase
unavailability. This assumption is discussed further in Appendix A.

1.0

u(s)

Unavailability

Time

Fig. 8. 1/1 System Unavailability Curve from Apostolakis and Bansal
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Vesely and Goldberg5’6 have developed the FRANTIC computer code,
which calculates time-dependent and average unavailabilities due to the effects
of test downtime, repair time, test-caused failures, and test staggering. The .
failure rate, test interval, test time, and repair time are constant, and all
detectable failures are assumed to be detected and repaired. A typical un-
availability curve for the FRANTIC code methodology is shown in Fig. 9.

Note that the unavailability is constant during testing (0 < s < 1) ‘and repair
(t¢ < s = 7¢+ 7,) and that the linearization for the random-failure contribution
is used. The FRANTIC code is discussed further in Chapter IV.

1.0

Unavailability

u(s)

T
o —_— 1,0 _— T

Time

Fig, 9. 1/l system Unavailability Curve trom Vesely and Gnldhergs
A comprehensive unavailability model has been developed by Vaurio’
for a single standby component and for a series system consisting of several
components. Reference 7 can be viewed as a theoretical framework and basis
tor many assumptions made in this work.

D. Scope and Objectives

The scope of the present work is to identify as many types of failure
modes as possible and to include them in the development of analytical ex-
pressions for éstimating the unavailability of redundant safety systems. (The
word "type" is used in this context to distinguish between human, random,
and mechanical failures.) To achieve this, the basic equations from FRANTIC®
are modified and new variables incorporated to represent new types of failures.
Average unavailabilities are then calculated for all m/n systems (1 S m < n < 4)
for uniformly staggered, nearly simultaneous, and random-testing schemes.

In addition to this, the optimum test interval and fractional-unavailabilities due
to testing, repair, and random failure are evaluated.
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A computer code, ICARUS, has been written to incorporate the new
equations. Since the exact integrals and derivatives indicated in Eqgs. 5 and 6
have been analytically programmed, no time-consuming numerical methods
are used in arriving at the average unavailabilities and optimum test intervals.
Consequently, the running time is short, and coupling with the probabilistic
response-surface code PROSA® to do sensitivity analysis of the input data is
facilitated. Several sets of simple systems have been analyzed with ICARUS
to test the efficacy of the new equations and programming.

A final objective of this work is to apply the ICARUS code to an actual
standby safety system. Using data collected from various sources, we analyzed

an auxiliary feedwater system of a pressurized water reactor (PWR).

E. Presentation of Material .

Chapter II describes the basic equations for treating a single-component
(1/1) system. Each parameter is defined, and the unavailability equations for
testing, repair, and operational standby periods are developed.

The system average unavailability equations are derived in Chapter IIl
for m/n systems where 1 < m < n < 4. Included are the system unavailability
equations for the random, uniformly staggered, and nearly simultaneous testing
schemes that have been programmed into the ICARUS computer code.

Chapter IV compares the ICARUS and the FRANTIC computer codes.
A short description of FRANTIC is followed by a comparison of results be-
tween the two codes for single- and multicomponent redundancy systems.
Details of the ICARUS computer code including flow charts, listing, and a
users' manual are given in the appendices.

An auxiliary feedwater system is described and analyzed using the
ICARUS code in Chapter V. An analysis is performed to determine the sen-
sitivity of selected output variables to the input data.

Finally, in Chapter VI, the conclusions drawn from this research are
presented along with recommendations for future work.
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II. UNAVAILABILITY EQUATIONS FOR SINGLE-COMPONENT SYSTEM

In this chapter, the terms used in the development of the unavailability
equations are defined and discussed. Also, the unavailability equations for the
test, repair, and operational-standby periods are developed leading to the
average unavailability and optimum test interval of a 1/1 system.

A. Definition of Terms

Although some of the methods and ideas developed by the authors of
previous works were the same, different symbols were used in many cases to
represent the same concept. The most commonly used symbols will be used
in this wark.

<
1., Time Periods

The test interval, T, is defined as the time between the starts of
two consecutive tests for any one component. The variable s is the time
since the beginning of the interval. The interval, therefore, starts at s = 0
and ends at s = T. The test interval is typically one month (720 h) long.

'I'ne beginning of a test interval is marked by a component test,.
The length of this period, T;, depends on the component undergoing testing.
Immediately after the test, a repair period is begun and lasts for a period 7,.
Again the length of T, is dictated by the component. The sum of the test and
repair times is given the symbol §. At time s = @, the component is ready
to go into operational standby for the remainder of the test interval.

2. TFailure Probabilities

During the test period, a component may be taken "off-line" for a
certain amount of time to perform the test. The variable, qg, is defined as
the fraction of the test period that the component is unavailable to answer a
real demand.

There is a finite probability that when the satety system is tested,
the very act of operating the component may cause it to fail. This can occur
in two ways in the testing period. With a probability of v, (per test), a failure
is caused that is detected and the component is repaired and ready to go into
operational standby at s = §. With a probability of p, (per test), a failure is
caused that is not repaired after the test. This nonrepair could be due to
human negligence or some type of hidden failure not detected by testing.

The component breaks down on the initiation of a real or true
demand with a probability of y,. (per true demand). The distinction between
Ye and vy, is the initiating event. Human errors may play a larger role in v,

-and p, than in v_.



This work assumes that true demands are rare events compared
to the testing frequency. With this assumption, the unavailability (= the
~ probability that tbe component does not perform its function if needed at
time s) can be written as’

u(s) = vy + (1 = vp)uls|y, = 0),

where u(s |‘Yr = 0) contains contributions from all fallures other tha.n those
caused by true demands.

A component may go into a test in a failed state due to the failure-
rate contribution )\, or any of the test-related failures. This probability is
designated u. It may, however, not be detected as being failed, or, if detected,
not properly repaired. This may be due to human testing error, repair error,
or some kind of detection error. This is defined as occurring with a proba-
bility of ps (per test).

The terms and their meanings relative to this work are summa-
rized in Table I.

TABLE I. Variable Symbols and Definitions

T Test interval

s - Time since beginning of test interval

T Test-period duration

T Repair-period duration

S Sum of T¢ and T,

9o Fraction of 7 that eomponent is down

Ye Probability of failure due to a test demand that

is repaired

Pu ‘ Probability of failure due to a test demand that
is not repaired

Y, Prebability of failure due to a true demand

s Probability that a failed component is not detected
by a test or not repaired

A Failure rate of component

a . Probability that a component enters the test failed

8 Pf = Py
o "1 - o, where ¢ is any of the previously defined

probabilities

19
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B. Derivation of Unavailability Equations

1. Unavailability during Testing

A component may be unavailable in its test period because it
came into the test failed, it failed during the test, or it may be down a fraction
of the test time to perform the test. These events are mutually exclusive, and
by using the definitions in Table I, the unavailability during testing, uT, can be
written as '

0<s =Ty, uT(s) = Qo * dovYe T aOTY.eTY—r + ao?évrpu T QoYY P uu
+ Qu¥eTrhulh s, | (7)
whete

As = linearized probability of random component fallure (See
Appendix A for further discussions.)

If Yo, ¥, and p, are small (¢<1),* Eq. 7 can be written as
0<s < Te uT(s) = qp t (1 - qo)[ye +yp + Py + 4+ (1 - ﬁ))\s]‘ (8)

2. Unavailability during Repair

A component in its repair period may be unavailable duc to a
failure occurring before or during the repair period. Again these are mutu-
ally exclusive, and the unavailability can be written as

: 3 e L
T, <s =6, uR(s) = Ye t Ye¥r T Ye¥Yrpy T YeVrPu® t Ye YyPyur s. (9)
Again note that, if v, Yy, and py are small (<<1), Eq. 9 becomes.

;rt<s <0, uR(s) = Ye +YT,‘+ pu+ﬁ+ (1 —ﬁ))\s. . (]0)'

3. Unavailability during Operational Standby

In this period, a component may be failed because of a previous
event; or may fail duw Lo @ real demand or randow lailure, The uhavailability
during this time can be written as '

- 0 <s=<T,uls) = vp +7V,(dpg +Tpy) + ¥, [1 - (@pg + Bpy) s, (11) -

The term Gpg + ﬁpu evolves from the fact that the probability of a
failure not being detected prior to testing can only be valid if the component
is failed before the test (@), and if it was not failed (i), the p, probability is
valid. .

*Ye Y, and p, are usually on the order of 1073,



Neglecting second- and higher-order terms gives
0<ss<Tyuls) = vy +py +(pg-pu)li +1s. (12)

Using Eq. 12, we can develop an expression for u. It was previ-
ously said that 4 was the probability of entering the test period in a failed
state. This would correspond to u(T), given that there were no true demand
failures (‘Yr = 0). This line of thought is used since true demands are few
(i.e., rare events), and if a failure during a true demand should occur, steps
would be taken to repair the component immediately. Thus,

-~

a = u(T|’Yr = 0),orq = Py AT +ﬁ(pf - pu)s
and » | T (13)
. py T AT
BT T | J
where | |
6 = pg - Py

Equation 13 can be inserted into Eq. 8, giving

A 1
0<s < T, uT(S) = qo+ (1 - qO)[Ye Tyt pu(l * 1 - 5)

%As(l +1pfa)+ lx.Ts(.l -xs)]. | (14)

Since A T is usually orders of magnitude less than p,;, Eq. 14 can be written
as

| | 2-8 AT .
0<SSTt’uT(s) = Qo"'(l -qo)('ye+yr+pu1 T8 +7\s+1 -6)' (15)

Using the same method and approximations, we can rewrite Eq. 10
as '

) 2 -
T, <s<0, ug(s) = Yo T Vr * 0y (16)

1 -8 1 -5§"

Finally, Ed. 12 can be written as

. Pu. 8T
e<ssT,u(s)—yr+1_6+}\(s+l-_6). (17)

1
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4. Simplification of Eqﬁations

To derive the unavailability formulas for the various systems, the
basic unavailability equations must be simplified. Equation 15 can be written
as ' ‘

0<ssm, uT(;s) = A+.aT, o . (18)

where

>
I

2 -8
9o + (1 - qO)(Ye + Yr + pul _ 6)
and
a = (1 -qgeh.

The As term was dropped since the AT, contribution to uT(s) is
small compared to the rest of the terms. This can also be interpreted as if
random failures are immediately repaired during the testing and repair
periods. Also, since § << 1, the (1 - goA /(1 - §) term was simplified to

(I - qoA in the expression for a.

Using the same logic, we can write Eq. 16 as

T, <s <0, ug(s) = B +bT, ‘ a9
where |
and

L -"A

For the.operational standby phase, the unavailability is

A<ssT,u(s) = C+cT + D'As, (20)
where |

C =y 1p116’

1 -8’

and
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Equation 20 can be further simplified by setting ¢ = 0 and redefining the D'
terms to account for the loss. At s = T/2,

u(T/2) = C+<T +DAT/2 = C + DAT/2,

which leads to

So,
<s<T,u(s) = C+Dars. - (21)

This preserves the average unavailability in the interval and makes the term
easier to work with. ’

C. Average Unava-il'abili_ty

A 1/1 system has one component that must always be available for the
system to be available. For this system, the average unavailability is given

by

al

= —,;: _/(;Tt uT(s)ds +% fTetuR(s)ds +—1- feT u(s)ds. (22)

Integrating and Arearranging terms yield

a+T b+C+ (1/TNT? - 8%)Dr /2, (23)

U = (1/T) 1A' + 7 B') + 1,

‘where
A' = A-CandB' = B -C.
Since 8 << T, T? - 82 = T? and Eq. 23 can be written
T = (1/T)rA' + 7.B') + 1,a + T,b +.C + DAT/2. o (24).

D. Optimum Test Interval

The optimum test interval is the solution of dU/dT = 0 for T, or
-(1/T¥)(r, A" + T, B') + DA /2 = 0,

so that

Ty = ,\/D—Z)\('rtA' + 'rrB'). . (25)




24

: These results follow directly from the concepts developed in Chapter I,
Eqs. 5 and 6. : '

E. Summary

The terms used in this work were discussed in Sec. II.LA. They were
then used to develop the basic unavailability equations for a component in each
of its three test-interval periods. From these equations, the average unavail-
ability equation for a 1/1 systém was calculated. This also allowed the calcu-
lation of the optimum test interval.

The 1/1 system equations form the cornerstone on which more compli-
cated system equations can be built. The unavailability equations derived for
a component in its three phases of operation are summarized in Table IT.

TABLE II. Unavailability Equations during Testing;
Repair, and Operational-standby Periods

Period Time Unavailability Equation
Testing O<ss T A+ aT
Repair 'rt.< s <0 B +bT
Standby B <s=<sT "C + Das
where

A = qgo+ (1 - go){vet+vr+agul(2-5)/(1-3)}

a = (l - qo)}\)

B = vo + vy tp,l2 - 8)/(1-6)]

b = A,

C = ¥ +p,/ (L - 8),
and

D= (1+s)/(1-8)
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III. SYSTEM UNAVAILABILITY EQUATIONS

A. Introduction

This chapter will introduce and develop the average unavailability
equations for all m/n single-component redundancy systems with 1 € m <
n < 4, for the random, uniformly staggered, and nearly simultaneous test-

ing schemes.

B. Random.Testing Scheme

In the random testing scheme, the components are tested at randomly
shifted times throughout the interval. The average unavailability for any
m/n system can be given by the expression

O /n = Z (2)ok(1 - D)oK, (26)

k=n-m+1

n

k) is the binomial coefficient n!/[(n - k)!'k!].

where U is the U of Eq. 24 and (

All systems tested in this random scheme have the same optimum
test interval. This interval, Ty, is defined by Eq. 25 and is thought of as being
the optimum average test interval.

The equations for the average unavailability of any m/n (1 Sm s<n <4)
system tested using the random testing scheme are listed in Table III.

TABLE III. Average Unavailébility Equations for
m/n Systems with Random Testing Scheme

m/n 6m/n m/n ﬁm/n

1/2 02 1/4 U4

2/2 20 - U2 2/4 40 - 30

1/3 [iE : 3/4 6U2 - 8U° + 3U*

2/3 302 - 20° 4/4 4T - 6U% + 4T° - U*
3/3 30 -30%2+0°

where

U= (1/T)[7¢(A - C)+ To(B-C)]+ Tta+ T,b+ C+DAT/2. (Eq. 24)

C. Uniformly Staggered Testing Scheme

In the uniformly staggered testing scheme, the components are tested
at times s = 0, T/n, ZT/n, ..i, (n - 1)T/n. The average unavailability equa-
tions for a 1/1 system are equivalent, no matter which testing scheme is used.
Thus, the equations for systems with two or more redundancies will be

presented.



26

1. Two-component Systems

- If two components are in the system, it can be either a 1/2 system
(only one need be available) or a 2/2 system (both available).

a. One-out-of-two (1/2) System. For a 1/2 system, the unavail-
ability is the probability that one component is unavailable times the prob-
ability that the second component is also unavailable. This product is simply
U(s)U(s + T/2) for each of the three periods or

0 <s =< T, Us) = (A+aT)(C+ DAT/2), | o (27)

Tt <s <06, U(s) = (B+bT)C + DAT/2), (28)
and |

8 <s < T/2, U(s) = (C + Drs)[C + DA(s + T/2)]. , (29)

Since the durations of both the test (T¢) and the repair (Ty) are
short compared to T, the unavailability of the component that is on operational
standby is held constant while the first component is undergoing test and repair.

The average unavailability for this system is

—_ [‘T/Z

[V % J, U(s)U(s + T/2)ds. (30)

Note that the integration is performed over only half the interval since, when"
the first component reaches time s = T/2, the second component begins
testing. :

Integrating Eq. 30 and gathering terms yields

Uy = (2C/T)(T A" + T, B') +'2C(Tra + T,b + C/2) + DA(T{A' + 7_B')
™~N
+ DAT(Tia + Tpb) + (2/T)2CDN + D*\XT/2)(T*/4 - 82)

+ (2DA/3T)(T3/8 - ©%). . | (31)

_ If T=720h, 74, = 2h, and T = 15 h, Tables IV-VI show
the errors incurred by making various approximations. For n > 1 and
k = 2, 3, 4, approximating (T/k)® - 6™ by (T/k)™ gives rise to an error of less
thanh 1% in each case. These approximations will be used in the applicable
system unavailability equations.
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TABLE IV. Errors in (T/2)® - 80 = (T/2)? Approximition

Per‘cent

n (T/2)" pn Error?
1 360 17 4.96
2 1.30 x 10° 2.89 x 102 0.22
3 4.67 x 107 . 4.91 x 103 0.01:
4 1.68 x 10 8.35 x 10* 4.97 x 1074
5 6.05 x 102 1.42 x 10° 2.35 x 1073
a n

S s l00%.

(T/2)™ - 67

TABLE V. Errors in (T/3)® - 8% ~ (T/3)™ Approximation

] Percent
n (T/3)™ en Error?
1 240 17 7.62
2 5.76 x 10* 2.89 x 102 0:504
3 1.38 x 107 4.91 x 103 3.56 x 1072
4 3.32 x 10° 8.35 x 10* 2.52 x 1073
5 7.96 x 10! 1.42 x 10° 1.78 x 107*
a ‘
en
— x 100%.
(T/3)" - 8"

TABLE VI.: Errors in (T/‘l)r-1 - 81 =~ (T/4)™ Approximation

Percent
n (T/4)" pn Errord
1 100 17 10.43
2 3.24 x 10* 2.89 x 10? 0.90
3 5,83 x 108 4.91 x 10? 0.084
4 1.05 x 10° 8.35 x 10* 7.96 x 1073
5 1.89 x 101 1.42 x 10° 7.51 x 107*
a
on x 100%.

(T/4)" - 67

27
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Equation 31 can be simplified to -

U,/s = (2C/T)(1¢A" +.7,B') + 2C(T¢a + Tpb + C/2) + DA(T(A' + TB')
+ DAT(Tea + Tpb + C) + (5/24)D3\2T2. | (32)
b. Two-out-of-two (2/2) System. In the 2/2 system, it is easier

to think in terms of the availability of the system, (1 - U,z,). In this case, the
system is available only if both components are available:

(1 - U1 - Up)

i

1 - Uz/z
or

-(L=-Ull-u,) (33)

Uzrz

So for this system,

0<s s T, Uls) = 1-[1-(A+aT)][l - (C+ DrT/2)], (34)

Ty < s < 8, U(s) = L -[L -(B+bT)[L - (C+ D)\T/Z)]‘, (35)

and
6 < s < T/2,U(s) = 1 -[1-(C+ Drs)]{l - [C + Dr(s + T/2)1}. (36)A

The average unavailability is then given by

Uy = M(QA' + T.B'Y) + 1+ 2(1 - C)(Tqa + T,b)

- DA(TtA' + 'rrB") -(C -1)> - DAT(T4a + T,b+ C - 1)

- (5/24)D*\*T?, | (z})
2. THree-component Systems

If there are three components in the system, it can be a 1/3, 2/3,
or 3/3 system. The averagc unavailability is given by

U =

3 T/3

= fo U(s)ds. o (38)
a. One-out-of-three (1/3) System. For a 1/3 system, the un-

availability is the product of the unavailability of the three components: °

0 <s s T, Uls) = (A+aT)(C + DAT/3)(C + 2DAT/3), (39)
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T < s sA 8, U(s) = (B + bT)(C + DAT/3)(C + 2DXT/3), | (.40)‘
and
6 <s < T/3, U(s) = (C+ DAs)[C + DA(s + T/3)][C + DA(s + 2T/3A)']. (41)
Again, since the durations of the test and repair periods are
much shorter than T/3, the unavailabilities of the components on operational
standby can be treated as being constant.
The average unavailability fof a.l/3 éystgm is
51/3 = (3C%/T)(T¢A' + T,.B') + 3C%(Tia + T,.b) + 3CD7\(TtA" + T,.B')
+ C?® + DAT[3C(T¢a + T.b) + (2/3)DA(T¢A' + TB') + (3/2)C?]
+ (2/3)D2\%T (Tta + Tpb+ C) + (1/12) D3>\3T3 (42)

b. Two-out-of-three (2/3) System. A 2/3 system is unavailable
when any two components are unavailable:

Uy = U U(L - U;) + U U(1 - Up) + U,Us(L - Uy) + U U,U;

UIUZ + U1U3 + U2U3 - 2U1U2U3. (43)

The unavailabilities in each of the periods in the test
interval are

0 <s < T, U(s) = (A+aT)(C + DAT/3) + (A + aT)(C + 2DAT/3)

+ (C + DAT/3)(C + 2DAT/3) - 2(A + aT)(C + DAT/3)(C + 2DAT/3), (44)
T, <s =0, U(s) = (B+ bT)(c + DAT/3) + (B + bT)(C + 2DAT/3)

+(C + DkT/_3)(¢ + zmAT/s) - 2(B +-bT)(C + DAT/3)(C + 2DAT/3), (45)
and |
6 <s = T/3, U(s) = (C + DAs)[C + DA(s + T/3)] + (C + DAs)

- [c ¥ DA(s + 2T/3)] + [C + DA(s + T/3)][C + DA(s + 2T/3)]
- 2(C + DAs)[C + DA(s + T/3)][C + DA(s + 2T/3)]. (46)

Integrating and rearranging terms give the dverage unavail-
ability of the system
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U, = (6C/T)(1 - C)(T¢A' + TeB') + 6C(L - C)(Tta + T4b)
+3DA(1 - 2C)(T¢A' + T.B') + 3C2 -'12c3 |
+ DAT{3(1 - 2C)(Tta + T.b) - (4/3)DA(TAY + TI;B') + 3C(1 - C)}
2/3 )DA2T?[2(T4a + T¢b + C) - 1] - 1/6 D3T3, | (47)

c. Three- out of-three (3/3) System. For a 3/3 system, it agam
becomes more practical to think in terms of avaxlablhty:

1 -Usp ‘ (1" Uy)(1 "Uz)(l - Us)
or

Uspp = 1 - (1 - U1 - U1 - Uy). o (48)
The unavailability is given by

0 <s =< T U(s) = 1-[1 —(A+ aT))[1 - (C + DAT/3)][1 -(c + 2DAT/3)], (49)

1-[1-(B+ bT)][1-(C+ DAT/3)][1-(C + 2DAT/3)], (50),

Tt <s < 8, U(s)
and
8 <s < T/3,1(s) = 1-[1-(C+ Drs)]{1-[C+ Dr(s +'1/3)]}
- {1-[C + DA(s + 2T/3)]}. | (51)
And the averagé unavaila.hi]i;'q of the oydtem 13
Uszs = (3/T)(C - 1)A(TtA' + TeB') + 3(C - 1)¥(T4a + ’r.rb)
F1+(C - 1')8 + 3(C - 1)DN(T¢A' + T,.B') |
+ 3D>\T[(2/9)D>\(TtA' + TB') + (C - 1)(Tga + T.b) + (1/2)(C - 1)?]
+ (2/3)D*A\2T*(T4a + T.b + C - 1) (1/12 D3T3, ‘(52.')

3. Four-component Systems

When four components are in a system, the system can be either
1/4, 2/4, 3/4, or 4/4. The average unavailability is given by

U = %fOT/q’ U(s)ds. | - o (53)
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a. One-out-of-four (1/4) System. For a 1/4 system, the un-
availabilities during testing, repair and standby are given by

0 <s =7, U(s) = (A+aT)(C+ DxT/4)(c + DAT/2)(C + 3DAT/4), (54)
¢ <s <0, U(s) = (B+bT)C + DAT/4)(C + DAT/2)(C + 3DAT/4), (55)
and

8 <s < T/4, U(s) = (C + DAs)[C + DA(s + T/4))[C + DA(s + T/2)]
- [C + DA(s + 3T/4)]. | ' (56)
The average unavailability for this system is
U,/ = (4C3/T)(T¢A' + TB') + C* + 4C*(Tta + Trb) + 6C’DA(T{A' + T,.B')
+ CDAT[6C(Tta + Trb) + (11/4)DA(T¢A' + ToB') + 2C?]
+ (1/8)D*A\2T%22C(T¢a + T b) + 3DA(TLA' + TpR') + 11C?]
| +(3/8)D*A\3T3(1ia + Tob + C) + (251/7680)D*A*T*. (57)

b. Two-out-of-four (2/4) System. In a 2/4 system, any three of
the components being down causes the system to be unavailable:

Uy = U, G,Us(1 - U4) + U U, U (L - Uj) + U U U1 - Uy)
"i‘ U2U3U4(1 - Ul) + U1U2U3U4
= U,U,U; + U,U,U, + U, U,U, + U,U3U, - 3U,U,U;U,. (58)

Thus, the unavailability equations for the three periods in the test interval
are

0 <s <1, U(s) = (A+aT)(C + DAT/4)(C + DAT/2) + (A + aT){(C + D\T/4)

- (C + 3DAT/4) + (A + aT)(C + DAT/2)(C + 3DAT/4) + (C + DAT/4)

- (C'+ DAT/2)(C + 3DAT/4) - 3(A + aT)(C + DAT/4)(C + DAT/2)

- (C + 3DAT/4), - . (59)
T+ <s =86, U(s) = (B+bT)(C+ DxT/4)(c + D)\‘T/Z) + (B + bT)(C + DAT/4)

. (é + DAT/Z) + (B + bT)(C + DAT/4)(C + 5D>\T/4) + (C + DAT/4)

- (C + DAT/2)(C + 3DAT/4) - 3(B + bT)(C + DAT/4)(C + DMj/z)

. (C + 3DAT/4), | 4 (60)
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and
® <s < T/4, U(s) = (C + DAs)[C + DA(s + T/4)][C + DA(s + T/2)]
+' (C + DAs)[C + DA(s + T/4)][C + DA(s + 3T/4)] + (C + DAs)
- [C + DX(s + T/2)])[C + DA(s + 3T/4)] + [C + DA(s + T/4)j
-[C + DA(s + T/2)][C + DA(s + 3T/4)] - 3(C + st)[c + DA(s + T/4)]
- [C + DA(s + T/2)]}[C + DA(s + 3T/4)]. | (61)

Intcgrating and reavvanging terms give the average unavail-
ability of a 2/4 aystem as

) Upse = (12C%/T)(1 - G)(T¢A' + 14B') + 6CDA(2 - 3C)(T¢A" +T,.B')
+12C%*1 - C)(Tia + Tb) - 3C* + 4C3
+ DAT{(11/4)(1 - 3C)DA(TtA' + T.B') + 6C[(2 - 3C)(Tia + Tpb)

+C(1 - C)} + (1/8)D*A2T?[22(1 - 3C)(T4a + T,b)

9DA(TtA' + T.B') + 11C(2 - 3C)]

(3/8)D°NT*[3(T¢a + Tyh + C) - 1] - (251/2560)D*A*T*. (62)

c. Threc-out-of-four (3/4) System. In a 3/4 system, if any .
two components are down, the system is down. In terms of the availability, -
this becomes '

L - Uyyy = (1 - Ul)(l - Uz)(l - Ua)U4 + (1 - Ul)(l - Uz)(l - U4)U3
(- UL - UL - UQU, + (L - UL - T)(1 - T,
+ (1 - U - U)(1 - Us)(L - Uy)
or
Uz = UIU; + U,U; + U Uy + U,U; + U,U,y + U304 - 2U,U,U,

- 2U,U,U, - 2U,U,U, - 2U,U,U, + 3U,U,U,U,, (63)



0 <s =T, Us) ‘= (A + aT)(C + DAT/4) + (A + aT)(C + DAT/2) + (A + aT)

. (C + 3DAT/4) + (C + DAT/4)(C + DAT/2) + (C + DAT/4)(C + 3DAT/4)

+ (C + DAT/2)(C + 3DAT/4) - 2(A + aT)(C + DAT/4)(C + D\T/2)

- 2(A + aT)(C + DAT/4)(C + 3DAT/4) - 2(A + aT)(C + DAT/2)(C + 3DAT/4)

- 2(C + DAT/4)(C + Dm/z)(c + 3DAT/4) +'3(A + aT)(C + DAT/4)

- (C + DAT/2)(C + 3DAT/4), . , (64)
T, <s =6, U(s) = (B+bT)C + DAT/4) + (B + bT)(C +DAT/2) + (B + bT)

- (C + 3DAT/4) + (C + DAT/4)(C + DAT/2) + (C + DAT/4)(C + 3DAT/4)

+ (c‘+ DAT/2)(C +'3D>\T/4) - Z(B + bT)(c + DAT/4)(C + Dx"g/z)

- 2(B + bT)(C + DAT/4)(C + 3DAT/4) - 2(B + bT)(C + DAT/2)(C + 3DAT/4)

- 2(C + DAT/4)(C + DAT/2)(C + 3DAT/4) + 3(B + bT)(C + D\T/4)

- (C + DAT/2)(C + 3D\AT/4), (65)
and
6 <s < T/4, U(s) = (C + DAs)[C + DA(s + T/4)] + (C + DAs)[C + m(g + T/2)]

+ (C + DAs)[C + DA(s + 3T/4)] + [C + DA(s + T/4)][C + DXA(s + T/2)]

+[C + DA(s + T/4)][C + DA(s + 3T/4)] + [C + D)\(s‘ + T/2)]

- [C + DA(s + 3T/4)] - 2(C + DAs)[C + DA(s + T/4)][C + DA(s + T/2)]

- ;(c + DAs)[C + DA(s + T/4)][C + DA(s + 3T/4)] - 2[C + DA(s + T/2)]

- [C + DA(s + 3T/4)](c + DAs) - 2[C + DA(s + T/4)][C + DA(s + T/2)]

- [C + DA(s + 3T/4)] + 3(C + DAs)[C + DA(s + T/4)][C + DA(s + T/2)].

- [C + DA(s + 3T/4)]. : : (66)

The average unavailability for this system then becomes"
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Uy = (12C/T)(C - 1)%(T¢A' + T.B') + 3C* - 8C> + 6C? + 12C(1 - 2C)
- (Tia + ’Trb) + 6DA(1 - 4c)(TtA' + T.B') + 18C?DA(T,A' +.T.B')
+ 12C*(74a + Tyb) + DAT[6(T¢a + }rb)(ac -1} (C -1)
+ (11/4)DX(3C - 2)(TiA' + ToB') + 6C(C - 1)?]
+ DEA2T2[(9/8)DA(T¢A' + T,.B') + (11/4)(3C - 2)(Tea + Tob)
+ (11/8)(3C - 1)(C - 1)] + D>A*>T?[(9/8)(T4a + Tob)
"+ (3/8)(3C - 2)] + (251/2560)D*A4TA, (67)
d. Four-out-of-four (4/4) System. -Finally, for a 4/4 system,

all the components must be available for the system to be up. In terms of
availability,

L - Uyy = (1 - UL - U1 - Us)(1 - Uy)

or

Uye = 1 - (1 - U)(1 - U)(1 - Gy)(1 - Uy), : (68)

0<s s, Uls)=1-[1-(A+aT)][L - (C+DrT/4)][1 - (C + DAT/2)]
- [1 - (C + 3DAT/4)], | (69)

Ty <5 56,U(s) = 1-[1-(B+bT))[L-(C+DAT/4)][1 - (C .+ DAT/2)]
. [1 - (C + 3DAT/4)], | | | ~ (70)

and

8 <s £ 1/4, U(s) = L -[L-(C+ Drs)]{L - [C+ DA(s +'1/4))}
. {1 -[C + DA(s + T/2)]}{1 - [C + DA(s + 3&/4)]}. | (71)
The average unavailability foﬁrA thie 4/4 system then becomes
Uys = (4/T)C - 1)3(TtA' + 7.B") + 1 - (C - 1)* - 4(C - 1)*[(C - 1)(T4a + T, b)
+ (3/2)DA(TeA + TeR)] - 2(C - DATH(C - 1)2 + 3(C - 1)(Tea + Tb)
+ (11/8)DA(T¢A! + T.B')] - (1/8)DAA?TH11(C - 1) + 22(C - 1)
-+ (Tta + T.b) + 3DA(TLA' + T,.B")] - (3/8)D’A\3T3(Tia + T.b +C-1) |

- (251/7680)D*\* T (72) .



D. Nearly Simultanéous Testing Scheme .

When a system is tested using the nearly simultaneous testing scheme,
the components are tested at times s = 0, T¢, 274, ..., (n - 1)T¢. Following
each test, the repair begins, allowing one test and one repair crew to service
all the components. If the testing was done exactly simultaneously, n crews
would be needed. '

1. Two-<-component Systems

The average unavailability equations for the 1/2 and 2/2 systems
are presented in the following sections. Because of the method in which the
tests are staggered, the equations will generally be more involved than for
the uniformly staggered scheme.

a. One-out-of-two (1/2) Systeni. For a 1/2 system, the unavail-
ability for the system is calculated from

0 <s = T, U(s) = (A+aT)(C + DAT), (73)

Te <s < 2T, U(s) = (B + bT)(A + aT), _ - (74)

21,< s <0, U(s) = (B +bT), | (75)

8 <s =6+ Ty U(s) = (C + DAB)(B + bT), ‘ (76)
and

6+ T <s £ T, U(s) = (C+ Drs)2. | A (77)

In Eq. 73, unavailability of the second component is assumed
to be constant. This is valid, since T{ << T. This assumption is also made
in Eqs. 76 and 77. One criterion that is essential to make this set of equa-
tiovis valid is that 0 = 27T¢ ur Ty = T Iu general, fur the /i systes
(1 £ m € n € 4) using nearly simultaneous testing, T, must be greater
than (n - 1)T¢. This is acceptable based on current testing and repair practice
at nuclear power plants.

The average unavailability for this system is
T, = (1/T)[7¢(AB + AC + BC - 3C? + BDAB) + u(B? - C?)]
+ T¢[A(b + DA) + a(B + C) + b(C + DA8)] + 2Bby + C?
+ T[7ia(b + DA) + b2 + CDA] + (1/3)D%\2T?, (78)

where u = 0 - 27,
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In terms other than C? we integrated Eq. 77 from 0 to T
rather than from 6 + T,. The errors from this. approximation are smaller
than the errors found in Table VII. - For n > 1, the errors are less than 0.1%.
The errors are acceptable. '

TABLE VII. Errors in T - (8 + 7,)® = TR Approximation

Percent
n : ™ (€ + 1) Error2
1 720 19 2.71
2 © 5.184 x 10° 3.61 x 10% 6.97 x 1072
3 3.73 x 108 6.86 x 10° 1.84 x 1073
4 2.69 x 10! 1.30 x 10° 4.85x 10°°
5 1.93 x 104 2.48 x 10° 1.28 x 107°

&+ )" :
————Tn T+ ’Tt)n x 100%.

b. Two-out-of-two System. The unavailability equations for a
2/2 system are

0 <s =1, U(s) =1-[1-(A+aT)][Ll-(C+ D\T)|, (79)

T <s < zwt,lu(s) =1 -[1-(B+bDL - (A+aT)], (80)

274 <5 30, U(s) =1 =[1«(B+ bT)]Z,V | (81)

B <s s 0+ Tt»' U(s) = 1 . [1-(c+DA®)]1 - (B+ ij], (82)
and

0+ T4 <s = T,Us) =1-[1-(C+Drs))r. D (83)
The average unavailability for the system is |
Usfy = (L/T)7¢(2A + 2B - 4C - AB - AC - BC + 3C? - BDAB)
+uB-C)2-B-C)+cz-C)+1Ja(2-B-C)+b(2-A-C)
- DA(A +16)] + 2ub(1 - B) + T[DA(1 - C) - Tia(b + DA) - wb?]

- (1/3)D*\%T2. o ' (84)

2. Three-component Systems

The development of the average unavailability equations for
three-component systems is again similar to the development for uniformly
staggered tésting, except for the more complicated test-staggering procedure
at the start of the test interval.
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a. One-out-of-three (1/3) System. For a 1/3 system, the un-
availability of the system at any time in the test interval is given by

0 <s s T, U(s) = (A+aT)(C + DAT)?, (85)
Ty < s 2T, U(s) = (B+ bT)(A + aT)(C + DAT), ' (86)
27y < s S 3T, U(s) = (B + bT)*(A + ai"), ' (87)
31, <s £6, U(s) = (B+ bT)?, ' (88)
B <s <68+ T, U(s) =.(C+ DAB)(B + bT)?, (89)
B+ Tt <s <06 +27, U(s) = (C + DAB)%B + bT), : (90)
and
8+27, <s = T, U(s) = (C + Dirs)>. (91)

Again the assumption is made that if any component is in test
or repair, the system unavailability is constant. The average unavailability
for this system is:

U,/; = (1/T){7¢{[AB%> + ABC + AC? + B3C +BC? - 5C* + BDAO(B + 2C + DA8)]
+ v(B? - C*)} + T{[ADA(B + 2C) + Ab(C + 2B) + a(B? + BC + C?)
+ b(C. + DAB)(2B + C + DAB)] +3vB?b + C* + T{7 [aDA\(B + 2C)
+ ADA(b + DA) + ab(2B + C) + b%(A + C + DAB)] + 3vBb? + (3/2)C2DA}
+ T2{v¢[aDA(b + D)A) + ab?] + vb® + CD?A?} + (1/4)D3x3T3, ' (92)
where v = 6 - 37,
Again the integration of the last unavailability equation,

Eq. 91, was performed over the interval 0 to T for terms other than C°.
The errors are smaller than those shown in Table VIII’

TABLE VIIL. Errors in T? - (8 + 27¢)™ = T® Approximation

) ) Percent
n - ™ (8 + 27" Error2
1 720 21 3
2 5:184 x 10° 4.41 x 10? 1.51 x 1072
3 3.73 x 10® 9.261 x 103 2.48 x 1073
4 2.69 x.10' 1.94 x 10° 7.24 x 10°°
5 1.93 x 10 4.08 x 10° 2.1l x 10°¢

»

(6 +21)"

m‘ .9 100(70
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b. Two-out-of-three (2/3) System. For a 2/3 system, the un-
availability equations are

0 <s = T, Uls) = 2(A +aT)(C + DAT) + (C + DAT)?
- 2(A + aT)(C + DAT)?, S .('93‘).
Ty < s £ 27, U(s) - (A + aT)(B + bT) + (A + aT)(C + DAT)
\ .-+ (B+bT)(C + DAT) - 2(A + aT)(B + bT)(C + DAT), (94)
2Ty < s S 3T, U(s) = 2(A + aT)(B +bT) + (B + bT)?
- 2(A + aT)(B + bT)?, : | ‘ (95)
3Ty < s =8, U(s) = 3(B+ bT)> - 2(B + bT)>, (96)
B <s S8+ T U(s) = (B+ bT)2+ 2(B+ bT)(C + DAB)
- (B + bT)*(C + DAB), (97)
O+Te <s < 6+2T, U(s) = (C+ DAB)? + 2(B + bT)(C + DAB)
- 2(B + bT)(C + DAB)Z, (98)
and |
B +27y <s £ T, U(s) = 3(C + DAs)? - 2(C + DAs)3, ' (99)
The average unavailability for this .system is
Uyps = (1/T){7¢{(1 - 2A)(C? + BC) + 3AC + AB(3 - 2B) + 2B% + 2B(C + DA9)
- (2 - B) +(C + DAO)?(1 - ZB) - 5C%¥3 2C)] 1 vDB3(3 = 2B) - vC¥(3 - zL;)}
+ 1¢{(1 - 2C)(2ADX + Ab + aB) + 2C[DA + a(l - C)] + DAM(A + B - 2AD)
+ C(a‘+ b) + 2b(1 - 2b)(A + C + DAB) + 2aB(1l -.B) + 4Bb + 2b(C + DAB)
- (1 - C - DAB)} + 6vBb(1 - B) + C*3 - 2C) + T(7¢{(1 - 2C)(2aDx + ab)
+ (1 - 2A)(b? + bDA + D?\?) + (1 - 2B)(aDA + 2ab) + b¥[1 - 2(C + DAB)]}
+ 3vb3(1 - 2B) + 3CDAM(1 - C)) - T¥2aT4(b? + bDA + D?A2) + 2vb?

- DA%(1 - 2C)] - (1/2)D*\3 T3, ' © (100)



c. Three-out-of-three (3/3) System: For a 3‘/3 system, the
unavailability at any time is given by:

0<s s, U(s) =1-[1-(Aa+ aT)][l'— (C + DKT)]Z; ' (io1)

Ty <s S 27¢, U(s) = 1 -[1 -(A+aT)J[1l - (B + bT)]

- [1 - (C + DAT)], (102)
27, <s S 37,.U(s) = 1 -[1 - (A’+ aT)][l - (B + bT))}, (103)
31y < s S0, U(s) = 1-][1 »- (B + bT))?, . (104)
0 <s <6 +7,U(s)=1-[1-(B+ bT)]Z[l - (C + DAO)], (105)

B+ T <s <6+2T,U(s) = 1-[1-(B+bT)][1-(C+DAr6)J%, (106)
and
6+21, <s<T,U(s) = 1-[1 . (C + DAs)]. (107)
These equations‘give-rise to the average unavailabiiity equation
Uys = (1/T){57¢(1 - CP + T¢[(A - 1)(C - 1)(B+C -2)+(A-1)(B - 1)
+(B - 1)(1 - C - DAB)(2 - Bl- c4 -DAO)]+ (1 - C)*v + (B - 1)}
+ 7¢{(C - 1)[2(A - 1)DXA +a(C - 1)]+ (A - 1)(B - 1)DA + b(A - 1)
- (2B + C -3)+a(5--1)(B+c -2)+b(l -C-DAB)3 -2B - C - D\B)}
£3(B - 1)2b+ 14 (C - 1) + T{1fa(C - 1)(b + 2DA) + (A - 1)
- (b% + bDX | D*A%) | a(B - 1)(2b + DX) =»b2(1 « C - DAO)] + 3(B - 1)vbL?
+ (3/2)Dx(¢ - 1)3} + THa7(b? + bDX + D?A\?) + vb® + (C - 1)D?¥]

+(1/4)D3\3T13. - - ' 4 (108)

3. Four-component Systems -

The average unavailability equations for the 1/4, 2/4, 3/4, and
' 4/4 systems are presented in the following sections.

. a. One-out-of-four (1/4) System. The unavailability of a 1/4 sys-
tem at any time s is given by

0 <s < T; Uls) = (A+aT)(C + DAT)?, (109)
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Ty < s <27, U(s) = (A+aT)(B + bT)(C + D;\T)Z, a - (110)

L 2T < s S 37, U(s) = (A4 aLij)(B + bT)%C + D\ T), (111)

3'ft < s < 4T, U(s) = (A:+ ;T)(B +bT)?, ’ - (112)
4Tt,< s €86, U(s) = (B+ bT)*,: | » - o (113)

B <s <8+ T, Us) = (B+bT)}C+ Dx'e), ' | o (1~14)

O+ Ty <s =86 +27, U(s) = (B+ bT)Z(C + DAB)?, o (115)

‘ 0 +2T¢ <s 6+ 3T, U(s) = (B + bT)(C + DAO)?, | (116)

“and

O +3T, <s < T, U(s) = (C+ Drs) | (117)

Integréting a;nd taking the averaée yie.1d5
Uy/s = (I/T)(Tt{A(B3 + C3) + ABC(B +C) - 7C* + B(C + DA8)[B% + B(C + Die)
4 (C + DAY} + o(B* - %) + T, {(ADX + aC)(B? + BC + C?) |
+ ACDA(B + 2C) + AbC(2B + C) + BZ‘[3Ab + aB + 3b(C + DXe)]
+ b(‘C + DA8)4(2B + C + DAB)} + 40B%b + C* + T{T¢/(AD\ + aC)
- (3CDA + BDA + bC + Bb) + (aB + Ab)(CDA + BDA + bC + 3Bb)

+ b*(C + DAB)(3B + C + DAB)] + 60B?b* + 2C°DA} + TZ(Tt{(b + D))

- [DA(ADMA + 2aC) + b(Za’B + Ab)] + a(B + c‘)(bZ +' DZ}\Z) + b3(C + me)},

+ 40‘Bb3. + chD-’-xz) + T*[aT((b + DA)(b? + D?.XZ) + ob* + CcD3\?)]
+ (1/5)D*A*T*, BT o (116)
where n = Gb— 47;.
The integration of Eq. 117 for terms other than C* was done

over the entire test interval, The subsequent errors are smaller than thosec
listed in Table IX..



" TABLE IX. Errorsin TR - (0 + 374)™ = ‘T Approximation

Percent
n ™ (8 +37)™ - Errord
1 720 _ 23 . 3.30
2 5.184 x 10° 5.29 x 10? 1.02 x 107!
3 373 x 10° 1.22 x 10* 3.26 x 1073
4 2.69 x 1o!! 2.80 x 10° 1.04 x 10°*
5 1.93 x 10 6.34 x 10° 3.33 x 1078

2 (64310

m—n p.4 100(70.
-6 + 31y

b. Two-out-of-four (2/4) System. The unavailability equations
for a 2/4 system are

0 <s s T, Uls) = 3(A+aT)(C + DAT)? + (C + DAT)? - 3(A + aT)
- (C + DAT)3, - (119)
T, <s S 27, U(s) = 2(A +aT)(B + bT)(C + DAT) + (A + aT)(C + DAT)?

+ (B + bT)(C + DAT)? - 3(A + aT)(B + bT)(C + DAT)?, (120)
27y <'s £ 37y, U(s) = 2(A +aT)(B + bT)(C + DAT) + (A + aT)(B + bT)?
+ (B + bT)3(C + DAT) - 3(A + aT)(B + bT)%(C + D\T), | (121)

3Ty <s S 47T, U(s) = 3(A+aT)(B +bT)>+ (B + bT)* - 3(A + aT)

- (B + bT)?, ~ (122)
47¢ < s < 0, U(s) = 4(B + bT)? - 3(B + bT)%, (123)
B <s S B+, U(s) = 3(B + bT)%(C + DAB) + (B + bT)é i 3(B + bT)?
- (C + me), : . (124)
B+ Ty <s S0+ 27T U(s) = 2(B + bT)%C + DAB) + 2(B + bT)(C + DAB)?
| - 3(B + bT)*(C + DAB)?, (125)
B+27, <s 56+ 3Tt,‘ U(s) = 3(B + bT)(C + DAB)2 + (C + DAB)3

- 3(B + bT)(C + DAB)?, ' (126)
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and
8 +3Ty <s s T, U(s) = 4(C + DAs)® - 5(c + DAs)®. : (127)
The average unavailability for a 2/4 system is | |
Tas = (1/T)(Tt{3ACZ(i -C)+C*+ ABC(2 - 3C) + C3A + B) + B3(A + C)
+ Bkz - 3B)[AC + (c_+ DA8)?] + 3B%(l - B)(A + C + DA) + 2B~
- 7C34 - 3C) + 2(C + DAO)B? + 3B(C + DA6)? + (1 - 3B)(C + D}Xe)3} .
+oB3(4 - 3B). - 0C3(4 - 3c)) + T74{C(2 .- 3C)(3ADA + Ab + aB)
+ 3C¥Ha(l - C) + DA] + 2ABDA(1 - 3C) + C[2DA(A + B) + C(a + b)]
+ (2 - 3B)B[ADX + aC + 3b(A + C + DAB)] + 2b(1 - 3B)[AC + (C + DA6)?]
+ B*a + D\) + Z'Bb(A + C) + 3aB%(1 - B) + 6B%*b + 4Bb(C + DA6)
+ 3b(C + DAB)¥[1 - (C + DAB)]} + 120B?*b(1 - B) + C3(4 - 3C)
o+ T(Tt{m(l - 3C)[3ADX + 2(Ab + aB)] + aC(2 - 3C)(b + 3DX)
+ DA + B + 3(C - AB)] + 2(a + b)CD\A + b(1 - 3B)[2(ADM + aC)
+3b(A + C + DAB)] + aB(2 - 3B)(3b + DA) + 2Bb(a + DA) + b3 A +» c -
+ 3(213 - AC)] + b%(C + DAB)[2 - 3(C + DAB)]} + 60Bb3(2 - 3B)
+ 6C2DA(1 - C)) + T#(7¢{a(l - 3C)[b? + DA(2b + 3DA)] + (1 - 3A)
- (D®\% + b?DA + b3) + D?A%[a + b - 3(Ab + aB)] + ab(l - 3B)(3b + 2DA)
I b*[1 - 3(C + D?\O)].} + 40b*(1 - 3B) + zcnzxz'(z‘ - 30)) - T3[3aTi(b + DA)
- (b% + D?\?) + 30b* - DA3(1 - 3.'(:)] - (3/5)D*A%T (128)

c. Three-out-of-four (3/4) System. The unavailability at any
time s for a 3/4 system is given by

0 <s = T, U(s) = 3(A+aT)(C + DAT) + 3(C + DAT)? ; 6(A +aT)(C + DAT)? -
| -2(C + DAT)® + 3(A+ aT)(C + DAT)?, ) “ | (129)
Ty < sV.S 274, U(s) = (A + aT)(B + bT) + z(p;‘ +aT)(C + DAT) + 2(B + bT)

- (C+DAT) +(C +DAT)? - 4(A +aT)(B+ bT)(C + DAT) - 2(A + aT)

- (C + DAT)? - 2(B + bT)(C + DAXT)® + 3(A + aT)(B + bT)(C + DAT), (130)




27, < s S 37T, U(s) = 2(A +aT)(B + bT) + (A + aT)(C + DAT) + 2(B + bT)

- (C + DAT) + (B + bT)? - 2(A + aT)(B .+' bT)? - 2(B + bT)*(C + DAT) '

- 4(A +aT)(B + BT)(C + DAT) + 3(A + aT)(B + bT)XC + DAT), | (‘isl’)
31, <s S 4T, U(s) = 3(A +aT)(B + ~bT) + 3(B + bT)? - 6(A + aT)(B + bT)?

- 2(B + bT)’ + 3(A +aT)(B + bT)>, | ' (132)
47y < s S0, U(s) = 6(B+bT)? - 8(B + bT)?> + 3(B + bT)*, : (133)

6 <s=6+ T¢, U(s) = 3(C + DA6)(B + bT) +.3(B + bT)?* - 6(C + DAB)

- (B + bT)? - 2(B + bT)® + 3(C + DAO)(B + bT)*, | (134)
6+ Tt <s €6+27, U(s) = (B+bT)?+(C+ DAB)?> + 4(B + bT)(C + DA8)

- 4B + bT)?*(C + DAS) - 4(B + bT)(C + DA8)® |

+ 3(B + bT)*(C + DA6)?, - (135)

6 +21, <s 6+ 37, U(s) = 3(C + DAB)(B + bT) + 3(C + DAB)? - 6(B + bT)

- (C + DAB)? - 2(C + DAB)* + 3(C + DA6)*(B + bT), (136)
and
6 +37¢ <s S T, U(s) = 6(C+ DAs)? - 8(C + DAs)® + 3(C + Dis)™ (137)

Integrating these equations gives rise to the average unavailability equation:

Uy = (l/T)(‘rt{3AC(C - 152 +2C¥2 - C) + ABC[3(B +C) - 8]-7C¥6 - 8C + 3cz). A
+ (A + B)(B +>3c - 2C% + B(A + C)(1 - 2B) + B¥3A - 2) + BY7 - 2B
- 6(C + DA6 + A)] + 4AB + 3B(C + DA8)|1 + B® + (C + DA8 - 1)?] + 2(C + DaB)?
- [2 - (C + DAB)] + B(C + DAB)[3B(C + DAB) - 4(C + DA8 + B - 1)]}
+ oB2%(3B? - 8B + 6) - aC%3C% - 8C + 6)) + ft{3'ac(c - 124+ (3C - 1){C - 1)
- (3ADA + Ab + aB) - 2G(C - 1)(a + b + 3DA) + 2DAA(1 - 2B) + B(1 - 2C)
+ (1 - 24)] + (Ab + aB)[3R%2 + 3+ C(3B - 4)] + b(A + C)(1 - 4B)
+ BDA(6AC - 4A + 1) + (A + B)DA + (a + b)(2B + C - 6B%) - 2B%a + DA)

+ 3AB(BD)A + bC) + b(A + 2B + 6AB?) - 6Bb[2(C + D\B - 1 + A) + B} + b(C + DAB)

"[9B*+ 7 - 8B + 3(C + DAB - 1)}] + 2b(C + DAB)*(3B - 2)} + 12Bbo(B - 1)

(138)

+ C%3C%-8C +6)+ T[Tt(BaD)\(3C - 1)(C - 1) + D2A¥3AB - 2(A + B) - 6C + 4] r (Contd )
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+ (3C - 2)DA[2(Ab + aB) + 3ADA] + abC(3C - 8) + ab(9B%? + 1) + b(L - 4B)(4a + DA)
+ (Ab + aB)[3(BDA + bC) - 4DA] + (a + b)(b + 3D\ - 4CDA)+ b%(3 - 8A - 2C)

+ 3Bb[ADA +aC + b(3A - 2)] + B*{3[(C + DAB)(3B - 2) - 2B + 1] + (C + DA8 - 1)

- [3(C + DA8) - 1]}) + 60b*3B - 1)(B - 1) + 6CDA(C - 1)2] + T¥(7¢{(3A - 2)

. .(b3 + D)%) + aDA(3C - 2)(2b + 3D)) + 3DA(aB + Ab)(b + DA) - 2D*A%(a .+ b)

+ ab[3(BDA + bC) 7_4D'>\] + b%(9aB - 8a - 2D)A) + b[3(C + DA8) - 2]} + 40b3*(3B - 2)

+ 2DAY3C - 1)(C - 1)) + T3[3a(b? + D*A%)(b + DA)T¢ + 30b? + D*A3(3C - 2)]

+ (3/5)D*4T4,

J

(Contd.)
(138)

d. Four-out—of-fou;r_”(4/>4) System. Finally, for a 4/4 system,

the unavailability equations are

0<s %1 U(8) = 1-[1-(a+al)]lL-(C J?'DAT)]’,

Tt < s S 27¢, U(s) =1- [L -(A+aT)][1 - (B + bT)]

- [1 - (C + DAT)]?,

2Ty < s S 3Ty, Ij(s) = 1-[1-(A+aT))[1 - (B + bT)]?

- [1 - (C + DAT)],

374 < s S 47T, U(s) = 1 -1 - (A +aT)][1 - (B +bT)),

414 <s 6, U(s) = 1-[1-(B+bT))*,

9 <s =8+ Te, U(s) = 1 -[1 - (B+bT)P[1 - (C+ DXe)],

6 + Tt <s S 6+27, U(s) = 1 -[1-(B+bT)P[1-(C+ Dro)J%,

O +27 <s <£6+37, U(s) = 1.-[1-(B+ bT)]
- [1 - (C + DAO)]P,
and

6+3T, <s s T,U(s) = 1-[1-(C+Dxrs)]*

The average unavailability for this system is

(139)
(140)
(141)
(142)
(1'4..3)
(144)
(145)

(146

(147)



Taps = (i/Tl)(m(l - C)f - me{(A - 1)(C = 1)+ (B - DI(A - 1)(C - 1)
+(C + DA - 1)’ + (B = 1)}[(A - 1)(C - 1) +v(c + DA - 1)3].+ (B - 1)
N +C+DAO - 2)} +.('c - 1)% - (B - 1)%)+ 1 - 7¢{(C - 1)2[(A - .1) '
“(b+3D0) +a(B+C - 2)] + (A- 1)(B - DIBC - 1) + DA(B + 1]
+(B -'1)[a(B - 1) + b(A - 1)](B+ C - 2) + b(B - 1)2[2(A - 1)
+ 3(C +. DA® - i)] + b(C'+ DAB - 1)2(2“B +C + bxe -3)} - 4_(13 - 1)%cb
- (¢ - 1)* - T(7e{l(A - 1)DA + a(C'- 1)][3(C - 1)DA + b(é - 1)]
+[a(B - 1) + b(A - 1)J[(C - 1)(b + 2D)) % (B.- 1)(3b + DA)] + (A - 1)
- (B -_l)p?x’- + ap(c - l)Z +(C + DA8 - 1)b%(3B + C + DAB - '4)}'
+ 6(B - 1)*b%0 + 2(C - 1)3 m) (T;{[ (B -1)+bAa -1)]
- (b? + BDx + bzxz) + (c‘ l)a (bZ +2bDA + 3D?\?%) + DA[ab(B - 1)
+ (A - l_)DZ)\Z] + 2a(B - 1)b% + b3(C + DAB - 1)} + 4(B - 1)b%c
+2(C - 1)?D2A2) - T3[aty(b? + szz)(b + D)) +0b* + (C - 1)D?\3]
- (1/5)D*A*T*, o o | | | | _(.‘14>8v)

E. Calculation of Optimum Test Interval

Each of the average unavailability equations for the uniformly
staggered and nearly simultaneous testing schemes presented in the prev10us
sections were of the form

O(T) = /T + % BiTi, : : o (149)

i=o0

where n = number of redundancies in the system, and the coefficients & and "
.B; are given by the appropriate equations in the precedmg sections dependingv

upon, the type of system’ and testing scheme (see Table X).

TABLE X. Equation Numbers for System Unavailabitity

Umformly » Nearly : Uniformly " @ ° Ne“arly.

Staggered Simultaneous - Staggered - Simultaneous
System Testing - Testing System Testing " Testing
2 78 va . 51 s

1/2 .

R s : 84 a4 62 . Y
1] 2 o9 3/4 67 - 138
n a 100 44 72 .48
ElE] ] 108
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" the form

Taking dU(T)/dT and setting it equal to zero yields an equation of

n . . _
Yy BT - o = 0. | (150)

iz1

To solve this equation, we use the Newton-Raphson meéthod? for finding the
roots of an equation. This method works in the following manner. An initial
guess is made at the optimum test interval. (In this case, T, from Eq. 25 is
sufficient since it is usually within a factor of 1.5 from the true optimum.)

A new estimate is obtained from ’

- . f(Tn).
Tat1 = 4n - £1(Ty)’

(151)

where f(Tp) is the value of Eq. 150 evaluated at Tp, and {'(Ty) is the deriva-
tive of Eq. 150 with respect to T and evaluated at Tp.

If the convergence criterion is met (Tpt, - Tp less than some specified
value), the process is halted. If not, the new guess, Tp4,, is substituted for

Ty on the right-hand side of Eq. 151.

F. Calculation of Fractional Unavailabilities

Occasionally, it becomes desirable to know how the contributions to
the average unavailability break down among testing, repair, and random
failures.

Consider a system having an average unavailability of U and the input
test interval T. If the fraction of time the component is down during testing,
q,, is set equal to zero, a new value for the average unavailability, ﬁNT’ is
obtained. The fraction of the average unavailability due to testing, f,, is then

U-Unt _ . Unt
)y = =1 - —. (152)
U U -

To find the contribution made from repair, the parameters B and b
from Eq. 19 are set equal to zero while maintaining q, at zero. This average
unavailability UNTNR is used to find the repair contribution, f,, using the
formula ‘ '

U - UNTNR - (U - UNT) _ UNT - UNTNR (153)
U U '

f, =
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The fractional unavailability due to rafidom failure is simply what
remains, or

f; = 1.0 - £, - £,.:° : ' - (154)

These results can be used to determine whether testing and repair
procedures should be modified to increase the reliability of the system.

G. Summafy

The average unavailability equations for all m/n(l €m < n < 4)
systems for random, uniformly staggered, and nearly simultaneous testing
schemes have been developed. The equations for the uniformly staggered.
and nearly simultaneous testing schemes are listed in Table X. These .~
equations, along with the methods for calculating the optimum test interval
and fractional-unavailabilities, have been incorporated into a computer
code ICARUS.. A user's manual for ICARUS is found in Appendix B.
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IV. COMPARISON OF ICARUS AND FRANTIC

- This chapter presents various sets of numerical comparisons between
ICARUS and FRANTIC to determine the validity of the methodology and accu-
racy of the coding found in ICARUS. Also, multicomponent redundancies are
treated.

A. Introduction

FRANTIC is the acronym for the Formal _lie'liability Analysis including
Normal Testing, Inspection, and Checking computer code developed at the NRC.
It calculates time-dependent and-average unavailabilities, and also the break-
down of the unavailability contributions from testing, repair, and random
failures,

FRANTIC is able to treat four kinds of components: constant-
unavailability components, nonrepairable components, monitorcd components,
and periodically tested components. The main emphasis in this study is to
obtain the average unavailability of periodically tested components given such
information as the test duration time, repair time, test-override capability,
and test efficiency.

B. Differences between ICARUS and FRANTIC

1. Testing Schemes

In comparing ICARUS3 and FRANTIC, we must recognize that
FRANTIC is more general than ICARUS. ICARTIS was developed to treat only
periodically tested components, while FRANTIC ie able to handle a variety of
components. Also, FRANTIC calculates time-dependent and average unavail-

- abilities for any test interval (not necessarily in the asymptotic state). Since

this option is available, the user can choose the length of the first test interval
for each component and thus stagger the test intervals for the components in
whatever manner is desired. ICARUS, on the other hand, calculates the
average unavailability only in the asymptotic state. As a consequence, with
ICARUS, the user must choose one of the three available testing schemes
rather than creating a particular testing scheme through the input, as with
FRANTIC.

2. Numer‘ical Calculations

In regard to numerical calculations, FRANTIC calculates the
average unavailability by multiplying the unavailability of each component at
specified times, and performing trapezoidal-rule integration. Consequently,
FRANTIC cannot calculate the optimum test interval internally, whereas
ICARUS, which is totally analytical in its treatment of the average unavail-
ability equations, calculates the optimum test interval by direct differentiation.
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Also, the analytical treatment in ICARUS avoids any inherent numerical error.
FRANTIC, for example, can give errors up. to a factor of 2.5 for quadruply
redundant systems.’

3. Component Types

FRANTIC can treat systems made up of different types of com-
ponent, whereas ICARUS assumes the redundahcies in the system to be iden-
tical. A formulation has been developed to treat mult.ico’rr'xponent redundancies
in ICARUS and is presented in Sec. IV.D below

4, Failure Modes

‘Finally, ICARUS is able to treat thr¢é failure modes not found in
FRANTIC:

Yr, failure to start due to true demand,

P failure to detégt or ré_pair a failure,

and

py» failure due to a test demand that is not repaired.
Since the purpose of this research is to incorporate as many failure modes
as possible and to evaluate their importance, a more in-depth study of these
failure modes is performed in Chapter V.

C. Comparison of ICARUS and FRANTIC Simple Systems

To verify the coding and accuracy of the average unavailability equa-
tions found in ICARUS, we used ICARUS and FRANTIC to calculate the average
unavailabilities of systems made up of one valve per redundancy. This was
done for both staggered and nearly simultaneous testing schemes us1ng only
the failure modes common ‘to both codes.

1. Comparison of Uniformly Staggered Testing Scheme

The comparison data for a single valve are given in Table XI.
Table XII shows the average unavailability value obtained by the two codes
and the percent difference between them. All the differences are less than
2.0% with the majority less than 1.0%. Since this kind of study usually requires
order-of-magnitude accuracy, the differences here are well within dcceptable
bounds.

2. Comparison of Nearly Simultaneous Testing Scheme

The data in Table XI were also applied to the nearly simultaneous
testing scheme. Note that 1y = 3.0 h and v = 10.0 h; therefore, rt, is always
greater than (n - 1)7¢ for all n < 4. Table XIII gives the results of the com-
parisons. Again, all the differences are small (s1.1%).



TABLE XI. Input Data for Single-valve Redundancy

Failure rate () 3.0x 10"7/h
Fraction of downtime during test (qy) 1.0 x 107!
Prébability of f_ailure due to test demand (Ye) 1.0 x 10-3/d~
Test period duration (r,) | 3.0 h

Repair period duration (7 ) ‘ . 10.0h

Test interval (T) . | 720 h

TABLE XII. Comparison of ICARUS and FRANTIC Results
for Uniformly Staggered Testing

- v Percent
System ICARUS FRANTIC Difference?®
1/4 1.73 x 1071° 1.73 x 10713 0
1/3 1.45 x 1071 1.46 x 107" 0.68
2/4 6.01 x 1074 6.00 x 107" n17
1/2 1.04 x 107 1.06 x 1077 1.88
2/3 3.16 xA~10'7 3,16 x 1071 v
3/4 6.34x 107" 6.31x 107 0.48
1/1 '5.46 x 10°* 5.45x 107* 0.18
2/2 1,10 x 1072 1.09 x 1073 0.92
3/3 165 x 1073 1.64x 107° 0.61
4/4- 2,21 x 103 2.18 x 1073 1.38
[ -5y
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TABLE XIII. Comparison of ICARUS and FRANTIC Results
for Nearly Simultaneous Testing

i

Percent
System .. IGARUS -~~~ - _  TFRANTIC Difference®
1/4 9.24x 1071 9.24 x 1071 0
1/3 7.66 x 107'° - 7.67 x 1071° ' 0:13
2/a” 7 3o0s5x10% "3.05 x 1077 0
1/ . . 6.33x1077 - 6.40 x 1077 © 109
2/3 1.89 x 1078 ’ 1.91 x 10~ 1.05
3/4 3.77 x 1078 3.81 x 107° 1.05
1/1 5.46 x 107 5.45x 107* 0.18
2/2 1.09 x 107° 1.09 x 107° 0
'3/3 ' 1.64 x 1073 163 x 107? 0.61
4/4 2.18 x 1073 2.18 x 107° 0
PV
' IUF—__U-I—I x 100%.
F

Note that the unavailabilities for the uniformly staggered testing
scheme were lower than the nearly simultaneous testing scheme in all cases,
except for the n/n systems where the average unavailabilities were calculated
to be virtually indentical.

.

D. Treatment of Multicomponent Redundancies

As stated before, the ICARUS code was wrltten to handle systems
made up of single- component redundancies. However, we can represent a
multicomponent redundancy by an effective "S1ngle" cdrnponent and thus apply
ICARUS to the more complicated multicomponent systems if each of the nine
ICARUS input paramcters are handled correctly. The method for handling
each parameter is discussed in the following sections. The theoretical basis '
for the definitions can be found in Ref. 7.

1. Test Interval, Teff

Since the components in the redundancies are all assumed to have
A the same test interval T, it remains unchanged. Thus Tegr = T.

2., Test-’perio'd‘ Duration, Tteff

Each co.mponent in the retlundancy most be tested in the test -
period. Therefore, Tiq¢y will be the sum of the individual 'T‘t s for the compo-
nents in the redundancy. That is,
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k
Tteff = I_Z Ttj?
j=1

(155)

where k equals the number of components in the redundancy.

3. Repair-period Duration, Treff

The repair-period duration, 7,, of the redundancy depends upon
the probability of the components in the redundancy failing, and the time re-
quired to repair a failed component. The probability that a component is
repaired after a test (per test) is given by

pu+)\T

R - G(1 pg+(1-8y, - v+ )['i - (Qf+ Ye)l-

1'(pf'pu

For the redundancy, the effective repair-period duration is
S L E— (156)

where the repair times Trj of components j are we1ghted by the RJ values
defined above for each component. '

4. Fraction of Downtime during Teoting, q,q¢f

The total dowulimme due to testing is assumed to be the sum of the
downtimes of the components in series. Thus, the effective fractional down-
time value is calculated from

I
2 Ttjd,;

j=1 :
VI sa— - : (157)
oetf Tteff |

. 5. Remainder of the Parameters

The remainder of the parameters--the constant failure rate (1),
failure to start on true demand (y,), failure due to test demand (repaired, vye;
not repaired, p,), and failure to détect or repair a failure (p,)--are treated
the same way as the test-period duration. The values for the parameter in
question for each component are added together to get an effective value for
that parameter.



E. ICARUS and FRANTIC Comparisons for Two-valves-per-redundancy
Systems S T B

ICARUS and FRANTIC values for the average unavailabilities - were
compared for a set of systems that contained two valves in series for each
redundancy. For FRANTIC, the values of each parameter for a single valve
are given in Table XIV. ' -

- TABLE XIV. ICARUS and FRANTIC Input Values
for Multicomponent Redundancies

, ICARUS ~ FRANTIC Value
Parameter - Value : (per Valve)
Ye 0.002 | 0.001
A T 6ox 107"/h 3.0 x 10'7'/h
q, 1.0 x 10712 - lLox107!
o 10.0 h 10.0 h
Tt : 6.0 h® 3.0 h
T o 720 b o . 720k

2ICARUS will change these values internally ifneces-
_sary, to meet the input criteria.

With the methods of Secs. IV.D:1:IV.D.5, the values used in ICARUS
for two valves in series (one redundancy) are also given in Table XIV.

1. * Comparisun of Uniformly Staggcred Teeting Scheme

The average unavailabilities calculated by ICARUS and FRANTIC
for the two-valve—per—redﬁndancy systems are listed in Table XV for the
uniformly staggered testing scheme.

In each case, the difference is less than 3%, indicating that the
averaging scheme used by ICARUS to represent multicomponent redundancies

is adequate.

2. Comparison of Nearly Simultaneous Testing Scheme

The average unavailabilities for the two-valve-per-redundancy
systems tested nearly simultaneously are listed in Table XVI.- Unlike the
previous comparisons, large differences appear in five of the ten cases. It is
-not clear which of the codes is incorrect since fairly good agreement between
‘the lwu was established in ecarlicr comparisons.
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TABLE XV. Comparison of ICARUS and FRANTIC Results for
Two Valves per Redundancy and Uniformly Staggered Testing

U
: Percent

System ICARUS FRANTIC Difference?

1/4 2.790 x 1071* T 2.741x 10714 1.79

1/3 1.169 x 10°1° 1.152 x 10-1° 1.48

_10 R

2/4 4.852 x 10°%° 4.771 x 10 » ©2.99

1/2 4.213 x 1077 4.159 x 1077 1.70

2/3 1.274x 10°° 1.255 x 10°¢ 1.51

3/4 2.562 = 107 2.517x 107" 1.79

1/1 1.101 x 10°° 1.090 x 107 1.01

2/2 2.212 x 1073 2.179x 107° 1.51

3/3 3.332 x 1073 3.268 x 107° 1.96

4/4 4.360 x 1073 4.356x 1073 0.09
PYE—

|OF - Ui

—— x 100%.

Ug

TABLE XVI. Comparison of ICARUS and FRANTIC Results for
Twro Valves per Redundancy and Nearly Simultanacur Tasting

U. | .
. Percent
System ICARUS FRANTIC Difference?
1/4 T 1.473x 1071 1.357 x 107 % 985.48
1/3 ' 6.087 x 10°° 3.147 x 10°° 93.42
2/4a - . 2.429 x 10°°8 7.913 x 1077 206.96
1/2 2.534 x 107 2.506 x 107° 1.12
2/3 7.556 x 10°¢ 6.294x 10°°¢ 20.05
3/4 1.504 % 10°F Luss x 107" 229y
1/1 1.101 x 10-3 . Lo0%0x107° 1.09
2/2 2.204 x 1073 2.177x 107° 1.24
3/3 3.296 x 107° 3.263x 107° 1.01
4/4 4.360 x 107 4.348 x 10’ - 0.28
a|Up - T
OF - Gl |4,



. - One possible source of érror is the ‘numerical- integration scheme
used by FRANTIC to calculate the average unavailability. FRANTIC chooses
points on the time-dependent unavailability curve where changes in slope occur.
Then, using trapezoidal-rule integration, we obtain the area under the curve.
When applying this to nearly simultaneous' testing, note that the changes in
slope occur at the start of the interval during test and repair. The rest of

the interval is dominated by random fdilure upon which the method mdy break
down. To show this would require an exact calculation of the average un-
availabiiity of one of the systems in question.

3, Exact Calculations for Averageé Unavailability of 1/3.System

™ The exact calculations for the average unavailability of a _1/3 sys-
tem with two valves per redundancy were performed using the following
equations, where for notational 51mphc1ty, Ay = 1-(A+aT)and B, = 1 -
(B + bBT): : o : ,
T -5, <s<T-4r, U(s) = {1 - Ao[l - (s + 4T )]}{1 - [1= A(s + 37))]
“[1 - X5 + 214) 1} {1 - [1- (s + 'Tt)](]. - )\s)} 4 (158)
T - 4r <s<T-3r, Us) = (1 - BeA{L - [1 - A(s+ 37)][1 - (s + 29T}

S+l - as), Lo (159)

T -'3Tt< ST - 2r,, Uls) = (1 - B < Agl1 72 Als 27 ML - [1 - A(s+ 7))
C-as) LT T (160)

T - th{< ss T - 7, U(s) ”;:,“(1‘__ B3)(1 - BoAg)l - ['"1 - Ms + 79l - As)h.

| , T (161)

T - 'Tt<-"s < T, U(‘s)-z (1 - BZ [1 - Ao(l - xb}]' (162)

0-'< s s Tt U(s) = (1 BZ) (1 - BoAy), | ) (163)

r <SSt - 4ry Uls) = (1- BY), R  (164)

r-4Tt<s;Tr-3Tt, U(s) = {1-[1-As+ 574) ]Bo}(l-BZ), - (165)
T - 31, <8< }r - 21, U(s {1 . [1 - A(s + STt)][l - )\(s + 47 )11 - Bo) ,

‘ (166)

v - 2rg <SS iy Uls) = {1 -TL - \(s 4 57p)L < Als + 4re)])

- [ A 4 deled - B, A 50
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r Tt

1 - A(s + 2191 - BY), I | (168)

T <ssq7. U(s) = {1 -[1- (s + 51)][1 - A(s + 4Tt)]}{1 - [1 - A(s + 371

1,<s=<9o, Us)={1-[1- x(s% 5re)][1 - A(s + 4Tt)]}{1 - [1 - AMs + 37)]
1 - (s + 219 THL - [1 - (s + 7,)]Bo}, | -~ (169)
and

8<s<T - 57, U(s) = {1 - [1 - A(s+ 51)][1 - A(s + 4r)]HL - [1 - A(s + 37,)]
S - (s + 2rg)IHL - [1 - A(s + 7911 - As)) o : (170)
These equations result from knowing that the unavailability of two

valves in series is 1 - (1 - U;)(1 - U,). Thus for three parallel sets of two

valves in series, the unavailability is

Uy = [ (1= U0 BN - (1= U= UM - (1 - U1 - U]
' ' (171)

Also note that for this set of equations, 1y must be greater than 3r7,.

With the data in the first column of Table XVII for each valve,

' the average unavailability of the system was calculated to be 3.111 x 10-°.

TABLE XVII. Parameter Values for Test System

. | kxact ICARUS FRANTIC
Parameter Calculation Input Input

o 3.0 x 10~7/h 6.0 x 10”7 /n 3.0 x 10" 7/h

Yo - 1.0 x 1072 2.0x 1073 C L0x 107

q, 0.10 - 0.10 0.10 |

T, 10.0 h 10.0 h 10.0 h

Ty 1.5h . 3.0h 1.5h

T 720 h . 720 h 720 h

With the data in-the second column of Table XVII for each redun-
dancy, the average unavailability for the same system was calculated using
ICARUS. The value obtained for this method was U;/; = 3.145 x 1077,
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Finally; with the data from the third column.of Table XVII, the
average unavailability was calculated using the FRANTIC code. The value
obtained was 2.310 x 10°8, which is significantly different from the ICARUS
value. To identify why the difference in values occurred we made two more’
FRANTIC runs. In the first run, the q, value was halved and the Tt value
doubled to maintain the q T, value of testing unavailability. The error is
small since, in the testing period, the equations are

Exact U

(re/T)la, + (1 - q))(ve + AT)]

(re/ Tla, + (1 - a)vel + (1 - g s, - aw)

Approximate U

(21/Tla,/2 + (1 - 4 /2)(ve + AT)]

(re/Dla, + (2 - a)vel + (2 - q)Ary. (173)

This leads to an error of about 1% in this case. The value obtained using these
data is U;;5 = 1.610.x 10~?. This is closer to the ICARUS value.

.Next, the original q, was multiplied by 2 and T¢ was halved. The
value obtained for this case is U;;; = 3.112 x 10" . This is nearly the exact
answer calculated by -analytical means.

F. Summary

It is not clear what problemis arise in modeling nearly simultaneously
tested systems using FRANTIC. The three cases presented above should give
approximately the same answers, but instead differ by an order of magnitude
in at least one of the cases. A

As for ICARUS, the averaging methods used to simulate rﬁulticomponent
redundancy systems appear adequate in light of previous verification runs.
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V. ANALYSIS OF AN AUXILIARY FEEDWATER SYSTEM

In this chapter-, the ICARUS code is used to calculate the alverage un-
availability of an auxiliary feedwater system for the three testing schemes.
Also, the sensitivity of the unavailability values to the ICARUS input is

determined.

A. Description

The auxiliary feedwater system (AFWS) provides feedwater to the
secondary side of the main steam generator upon the loss of main feedwater.
Figure 10 is a simplified flow diagram of the AFWS,

From To
Feeduatar 1 Dteau

Generators
Pumps A

' , J 4 J - 1
Electric . % % ’
Pumps ? .

—
T Turbine

Pump

From

<}
Tonk ><}—
<}

Fig. 10. Simplified Drawing of Auxiliary Feedwater System

The following paragraphs are taken from WASH-1400,!° and describe .
an auxiliary feedwater system for a typical PWR 3-loop design.

"Given a need for the AFWS, the three pumps, two electric
(350 gpm) and one turbine (700 gpm) can be started either automat-
ically or manually. The electric pumps are started automatically
when: (1) a Safety Injection Control System signal is present;
(2) loss of offsite power is detected; (3) main feedwater pumps shut
- off; or (4) low water level is detected by a steam generator. The
turbine pump is started when low water level in a steam generator
is detected or loss of offsite power is detected.



"All pumps are aligned to the 110,000 gallon condensate tank via
separate suction lines at all times, except when maintenance is being
performed on a pump. The three pumps deliver water to two headers
which penetrate containment. Inside containment, each steam gener-
ator can receive condensate from either header,

"All the decay heat produced can be removed by any one of three
steam generators. The amount of feedwater decreases with time, and
the operators can throttle flow to steam generators by shutting off re-
dundant pumps, and then utilizing the motor operated valves inside
containment, decrease the flow as necessary to match the steam pro-
duced and released." -

The pump test is performed by closing the valve(s) leading to the
header, opening the valve(s) on a return loop to the 110,000-gal (416 -m3) res-
ervoir, and then operating the pump. In this way, the pump is tested without
draining the auxiliary feedwater supply. During the test, the pump is not
available since it is valved off from the secondary loop.

B. ‘Dé.ta Base |

Components such as pumps, valves, and Diesel generators are not ex-
clusive to the nuclear industry. Because of this, a large data base is avail-
able for component parameters such as failure rates, test-period durations,
and repair-period durations. Extensive data were analyzed and reported in
WASH-1400 and will be used in this work whenever appropriate.

1. Values of p, and p¢

The data available on human error are small and not as éasily
found as data on equipment failures. In particular, there is no source of
numbers from which to assign values to the failure modes p, (test fails com-
ponent and is not repaired) and py (test fails to detect a component as failed).
Millan and Edison'! have tabulated a list.of auxiliary- feedwater-system fail-
ures that occurred in 1974-1976, the plants at which they occurred, their
causes, and the docket number for each occurrence. The list was stud1ed
and possible candidates for the failure modes (py and pf) were selected. The
dockets were then read, and each selected failure was assigned a p,; or pf
designation. Case failures are summarized in Appendix F.

In all, there were six p,, failures and two pf fa11ures In the three-
: year period, there were 3209 PWR reported occurrences, 95 of which were
auxiliary-feedwater-system failures. During this period, also, the 35 power
~plants studied had accumulated about 83.3 years of operating experience. If
we assume that each plant had an auxiliary feedwater system with three re-
dundancies, and each redundancy was tested monthly, the total number of test
demands on the components is about 3000. A value fot p, can be calculated
using

= 6 failures/3000 demands = 2.0 x 107°/d.
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Calculating a number for pf is not quite as straightforward. A
p¢ failure can only occur if there had been a previous failure of the system
and an unsuccessful repair. The value of pf is thus calculated from

pgf = 2 failures/95 AFWS failures = 2.11 x 1072,
Although the value of ps is greater than that of p,;, the contribu-
tion it makes to the average unavailability of the system is not as large, since
the probability of an auxiliary-feedwater-system failure is in itself small.

2. Values of yg and yp

Since the auxiliary-feedwater-system failure data were available,

‘it was decided to calculate values for test and true-demand failuroo; v and

Y, directly. Sinco, thc enly difference Lbelween yve and Yy 1s the time at which
the failure (initiating event) occurs, the total number of failures on demand
was used to calculate the values of both ye and yy.

In Ref. 11, three instances of failures on demand were found among

" the 3000 demands. These are also given in Appendix ¥. To be on the conser-

vative side, the value obtained for failure on demand was assumed to be valid
for both y¢ and v, giving ‘

Ye = Yr = 3 failures/3000 demands = 1.0 x 107%/d.

C. Numnerical Analysis

Computer runc of ICARUS were rmade tu calculate the average un-
availability of the auxiliary feedwater system in three cases:

Case I: plant steam a'vailable, offsite power available.
Case II: no plant steam, offsite power available.

Case III: no plant steam, no offsite power,

1. Case I: Plant Steam Available, Offsite Power Available

Case I models the auxiliary feedwater system when steam is
available to power the turbine pump and offsite power is present to operate
the two electric pumps. The auxiliary feedwater system would be called upon

"if, for example, a low water level was detected in the steam generators. To

simplify the system for an ICARUS calculation, the system was idealized to
look like the one in Fig. 11. This is a 1/3 system since only one pump is
needed to supply the steam generators. Also, since these are multicomponent
redundancies, the averaging equatlons presented in Chapter IV are used to
model the system.
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a. FEffective Duration of Redundancy Test Period and Fraction
of Downtime. The following values of T4 were obtained from Ref. 10,
Table III 5-1:

! TtValve = 0.86 h.

Howevéxl since the pump and valves are tested at the same
time, the test-period duration of the effective component redundancy is that
of a pump plus some additional time to ahgn the valves properly (approxl—
'mately one valve-test duration time) or

Tteff = 2.26 h.

As for Qo, all the components are taken offline when testing
. is done. Thus the value of qo for the effective component redundancy 1s 1.0.

b. Effective Repair-period Duration of Redundancy. The effec-
tive repair-period duration of the redundancy is equal to the average of the
repair times for each component weighted by the R factor of Eq. 156 for each
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component (i.e., by the probability of having to repair the component). The
following data were obtained from Ref. 10, Table III 5-3:

TrValve = 7.0 h and TrPump = 19.0 h.

The R term was derived previously as

R = ve +G(1 - pg - ve)=ve +py +AT. _ (174)

. The values of Ygq, Yy, and py obtained in Sec. V.B.2 were for a single redun-

dancy rather than for individual components. Since three components make
up each redundancy in Case I, the vg, Yy, pf; and p values obtained in

Sec. V.B.2 are divided by 3 to obtain values for each component in the re-
dundancy to be used to determine the repair-period duration. Thus, for the
three components, i

Ye = Yy = 3.33x107%, pg = 7.018x 1073, and py = 6.67 x 107%.

A value for the constant failure rate is also needed for each
component, and a problem arises since the failure rates found in WASH-1400
are for components in operation rather than on standby. To obtain a standby A,
the probability of failure on demand, Qg, for each component (Ref, 10,

Table Il 4-2) was d1v1ded by the length of one test interval to obtain a failure
rate, since

Qg = AT, . - (175)

For a valve, Q3 = 1.0 x 10"%, For a test interval of 720 h,
Av = 1.389 x 10"7/h. The R value for a valve equals

'R =333x107%+6.67x107"+1.0x10™% = 1.1 x 1073,

For the pump, Qd = 1.0 x 107>, For a test 1nterva1 of 720 h, Ap =
1.389 x 10~ ('/h The R value equals

R =333x10"*+6.67x10"*+1.0x107% = 2.0 x 107°.
The value of T, for the effective component rcdundancy is calculated from

2R,T oy + RyT

pTrp
T = = 1 . .
T eff 2Ry + Rp 2.7h

c. Redundancy Failure Rate. The failure rate for the redundancy
can be approximated as the sum of the failure rates of the components in the

redundancy

Neff = 2hy + Ap = 1.67 x 107¢/h.



d. ICARUS Results for Random Testing Scheme. The average
unavailability, optimum test interval, and unavailability fractions due to test-

ing, repair, and random failures were calculated for the system by ICARUS
assuming completely random testing. The results are shown in Table XVIII.
The major contributor to the average unavailability is testing, followed by ran-
dom failures and, finally, repair. The large testing factor is due to the sys-
tem being completely unavailable during the test-period duration (qpeff = 1.0).

TABLE XVIII. ICARUS Results for Case I

Testing Completely Uniformly Nearly

Scheme i Random Staggered Simultaneous
Average . 3.23x1077 1.77 x 1077 3.75 x 10-7
Unavailability e .

Optimum 1624.4 - 1183.2 1381.3
Test

'Interval h

Average 2.03 x 1077 1.62 x 1077 3.22x 1077
Unavailability

at TOPTIMUM

Unavailability 2.71 x 1077 - 1.25x 1077 3.17 x 1077
due to Testing (%) (83.7) (70.6) (84.7)
Unavailability 2.90 x 10-°  '2.81 x 10°° 6.56 x 1077
due to Repair (%) (0.90) (1.6) (1.7)
Unavailability: - 497 x10°% - 4.92x10"® 5.10 x 108
due to Random ' (15.4) - (27.8) (13.6)

Failures (%)

The optlmum average test interval is 68 days, which is longer

than the 30-day standard. In general, this points to a large test and #epair con- ‘

tribution and, as seen in Table XVIII, these two contributions make up about
85% of the average unavailability.

The average unavailability at the optimum test interval is a
factor of 1.6 times lower than that at the 30-day interval. Average unavail -
ability versus test 1nterva1 is plotted in Eig. 12. The curve decreases rapidly’
with time at short test intervals, but after reaching a minimum, increases
rather slowly.
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Fig. 12. Average Unavailability vs Test Interval for Case I

e. ICARUS Results for Uniformly Staggered Testing. The re-
sults of ICARUS runs made for the uniformly staggered testing scheme are
also shown in Table XVIII. Again the testing of the system contributes the
most (70.6%) to the average unavailability. Also, the optimum test interval
is aboul 49 days. This is longer than for the once-per-month test, but less
than the optimum using random testing. The longer test interval is again due
to the high test contribution to the average unavailability.

Average unavailability versus test interval is plotted in
Fig. 12. The curve'is of the same shape as the curve for the random testing
scheme, except that the magnitude at each test interval is smaller.

f.  ICARUS Results for Nearly Simultaneous Testing. The re-
sults for theé nearly simultaneous testing scheme for Case I are also shown
in Table XVIII. The average unavailability contribution due to testing is very
high and makes the overall average unavailability the highest of all three test-
ing schemes for test intervals greater than 600 h. The optimum test interval
is long (57.6 days) due to testing, and the unavailability at the optimum is the
highest of all the schemes. Average unavailability versus test interval is
plotted in Fig. 12.

2. CaselIl: Plant Steam Not Available, Offsite Power Available

Case II models a plant at a time when no steam is present to op-

_erate the turbine pump, but the electric pumps do have an outside power
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source. This system would look like the one in Fig. 11 with the turbine pump
having an unavailability equal to 1.0. This is a 1/2 system having the same
ICARUS input as Case I.

a. ICARUS Results for Random Testing Scheme. The results for
the ICARUS run of the 1/2 system are shown in Table XIX. The average un-
availability for the random testing scheme is primarily due to testing 70.2%),
with random failure (28.7%) and repair contributions (1.1%) following in order.
The average unavailability for this 1/2 system is about 150 times greater than
for the same scheme in Case I. The removal of one redundancy can thus
greatly affect the performance of a system,

.TABLE XIX. ICARUS Results for Case II

Testing ' 'Co'mpletely Uniformly Nearly
Scheme Random Staggered Simultaneous
. Average . 4,71 x 10-5 .3.68.x 1073 - 5.05x 107°
Unavailability '
Optimum 1624.4 1403.1 1572.7
Test .
Interval, h
Average ‘ - 3.45x10°° 3.19x107° 413 x107°
Unavailability :
at TopTIMUM |
Unavailability 3.31 x 107° 2.28 x 107 3.59 x 1073
due to Testing (%) + (70.2) . (62.1) (71.1)
Unavailability 5.20 x 1077 5.13 x 1077 9.44 x 1077
due to Repair (%) (1.1 - (1.4) : (1.9)
Unavailability 1.35 x 107° 1.35 x 107 1.37 x 1075
due to Random (28.7) (36.5) (27.0)

~ Failures (%)

The optimum test interval is again 68 days (see Sec. III.B),
and the average unavailability at this interval is only a factor of 1.37 times
less Lhan for the once-per month test. Average unavailability versus test
interval is plotted in Fig. 13. The random scheme has very high unavailabil-
ity for short test intervals because the probability of having both components
of the system tested near or at the same time becomes more probable as the
test interval shortens. ‘ ‘ '
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b. ICARUS Results for Uniformly Staggered Testing. The re-
sults for the uniformly staggered testing scheme are listed in Table XIX.
The average unavailability is again lower than for random testing, as is Lhe
average unavailability at the optimum test interval, The contribution to the
unavailability is mostly from testing, The optimum test interval occurs at
58.8 days. Figure 13 is a plot of average unavailability versus test interval.

c. ICARUS Results for Nearly Simultaneous Testing. Table XIX
presents the results of the Case II analysis with nearly simultaneous testing.
The average unavailability is ‘again the highest of the three testing schemes
for test intervals greater than 630 h. Testing is the dominant factor in the
unavailability, driving the optimum test interval up to 65.5 days. The average’
unavailability at the optimum is 1.22 times less than for once-per-month
nearly simultaneous testing. Average unavailability versus test interval is
plotted in Fig. 13.

3. Case Ill: No Steam Available, No Offsite Power Available

In Case III, both main power sources for the pumps are gone.
There is no steam to drive the turbine pump, and the electric pumps must
rely on Diesel generators to operate. The idealized system is shown in
Fig. 14. Since all the components in each redundancy must operate, the se-
ries system averaging equations of Chapter IV must be used.

)
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a. Duration of Redundancy Test Period and Fraction of Downtime.
The two valves and pump are down during testing, and since the test-period
duration of the Diesel generator is the same as that of the p‘ump, 1.4 h (Ref. 10,
Table III 5-1), it is assumed that the generator is tested concurrently with the
pump; T¢ = 2.26 h, qo = 1.0.

b. Duration of Redundancy Repair Period. To calculate the re-
pair period duration, T,., we must calculate the R term for each component.
As for the ye, Yy, Py, and pf terms in Sec. V.C.l.b, each is divided by the
number of components in the redundancy: This yields

Ye = Yr = 2.5x 107, py = 5x107% pg = 5.28 x 1073,

and

. _ 'ZR_VT rv * RpTrp + RD/GT rD/C—
Tregs = 2Ry + Rp + RD/G

= 20.0 h.

The value of TrD/G = 21 h was obtained from Ref, 10, Table III 5-3.
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c. Redundancy Failure Rate. The redundancy failure rate is the
sum of the failure rates of the components in the redundancy: ‘

Neff = 2hy + Ap +AD/G = 4.33 x 10-3/h,

where Ay and \p were evaluated previously and AD/G is derived from the fact
that Qp/Gg = AT = 3.0 x 1072,

d. ICARUS Results for Random Testing Scheme. The results
for the random testing scheme for Case III are shown in Table XX. This is
a very unreliable system due to the high failure rate of the Diesel generators.
This is evident in the contribution of random failures to the average unavail-
ability. It now dominates and drives the optimum test interval down to
13.4 days. Also, since the repair time for the Diesel generator is long, the
repair contribution becomes significant (6.8%).

TABLE XX. ICARUS Results for Case III

Testing Completely Uniformly Nearly
Scheme Random Staggered Simultaneous
Average 5.43 x 10~* 4.83 x 107* 7.20 x 107*
Unavailability
Optimum 320.5 201.7 214.8
Test i
Interval, h
Average 3.36 x 10~ 2.41 x 107* 3.85 x 10°*
TInavailability :
at TOPTIMUM
Unavailability 1.32 x 107* 1.16 x 10°* 2.20 x 10°*
due to Testing (%) (24.3) (24.1) (30.5)
Unavailability 3.70 x 10°% 3.59 x 1077 '3.83 x 107°
due ta Repair (%) (6.8) (7.4) (5.3)
Unavailability 3.75 x 1074 3.31 x 1074 4.62 x 10™*
due to Random (68.9) (68.5) (64.2)

Failures (%)

Figure 15 is a plot of average unavailability versus test in-

terval for the testing scheme. At short test intervals, the slope of the un-

availability curve is not as steep as in the previous two cases since testing

does not contribute as greatly as before.
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e. ICARUS Results for Uniformly Staggered Testing. The re-
sults for the uniformly staggered testing scheme are also listed in Table XX,
The average unavailability is also high for this scheme and system, most of
it again due to random failure,

Figure 15 shows the curve for average unavailability versus
test interval. The optimum test interval is only 8.4 days and would seem to
be unreasonable, even though the reliability of the system could be doubled.
Manpower to perform the tests in such short intervals. would be scarce, given
the other tests and repairs that must be performed.

f. ICARUS Results for Nearly Simultaneous Testing. Table XX
shows the results for the nearly simultaneous testing scheme. This is again
the least desirable testing scheme for test intervals greater than 216 h.

Figure 15 is a plot of average unavailability versus test in-
terval. The optimum test interval is short, 9.0 days, but reduces the average
unavailability by a factor of 2,03, At short test intervals, the simultaneous
scheme has a smaller average unavailability than the random scheme.

4, Summary of Results

The pertinent data' from all .three cases are summarized in
Table XXI. For the auxiliary feedwater system, the 1/3 configuration is



TABLE XXI. Suinmary of Data from All Cases

Zase | Case |l Case III

Testing Scheme Random Stajgered Simultaneous Random Staggered SimultaneoLs Random Staggered Simultaneous
Average Unavail- - ) '
ability at T= 720 h 3.2x 1077 1.8x 1077 33 x 1677 L7 ¢ 107 37x100% - 51x107° 54 x 1074 48x 104 C12x 104
Optimum Test - A
Interval, h 1624.4 1183.2 1381.3 1624.4 14031 1512.7 / 320.5 201.7 214.8
Average Unavail- _
ability at Optimum . . '
Test Interval 20x 107 1.6 x 1077 3.2x 107 35 x 107 3.2x 107 41x 10 34 x 1074 2.4 x 1074 3.9x 10
Average Unavail-
ability Relative
to Case WI .0007 0.13 1.0

oL



206 times more available than the 1/2 system (Case I versus Case II) for the
720-h test interval and ‘staggered testing. If the Diesel generator is needed
in the 1/2 system, the system suffers an availability drop of a factor of 7.5.
The Diesel generators are the most unrehable components in the ser1es

With data from Table XXI, a'yearly average unavailability can be
calculated for the three testing schemes. If the probability of having both off-
site power and steam available to run the pumps (Case I) can be estimated to
be about'0.70 and the probability of losing offsite power is taken to be 0. l/yr
"then the probabihty of Case II is calculated to be 0.27, which is simply the
probability of no steam (0.30) times the probability of offsite power (0.90).
The probability of Case III is the r’emairi»ing 0.03.

For each testing scheme, the yearly -average unavallabihty, as -
suming a .test interval of 720 h is:

Random testing,
Uyr = 0.70(3.2 x 1077) + 0. 27(4.7 x 10° )+oo3<54x10 4) = 2.91 x 1075,

Uniformly staggered testing,

Uyr = 0.70(1.8 x 1077) + 0.27(3.7 x 107°) + 0.03(4.8 x 107%) = 2.45 x 107°.
Nearly simultaneous testing,
Uyr = 0.70(3.8 x 1077) + 0.27(5.1 x 1075) + 0.03(7.2 x 10™%) = 3.56 x 1075.

With the most reliable scheme, the average unavailability is
2.45 x 1075, of which 59% is due to the Case III unavailability. With the plots
in Figs. 12, 13, and 15, an optimum test interval for the yearly average un-
availability can be found. The yearly optimum test interval is 473 h for the
staggered testing (most reliable) scheme and gives rise to an average un-
availability of 2.22 x 10~ 5, a factor of 1.10 times less than the average un-
availability with a 720-h test interval.

5. . Sensitivity of ICARUS Re.sults .

. The ICARUS code was 1ncorporated as a set of. subroutines into
the probab1hst1c response surface code PROSA® in order to study the sensi- -
tivity of the ICARUS results to the various input parameters. To perform
this analysis, PROSA assigns selected probability distributions.to each pa-
rameter being evaluated, and then selects combinations of these input param-
eters to determine the sensitivity of the results or consequences to the input.

Only Case 1 results were analyzed since its contribution to the
average unava11ab111ty was the greatest. The user-defined consequences in
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this case were the average unavailability and the optimum test interval. The
log normal distribution was assigned to all the input parameters except for
qo, which was held constant at 1.0. For the parameters Yy, Ye, Pf» Pu, and A,
90% confidence limits within a factor of 3 from the nominal values used in
Sec. V.C.3 were chosen. For T, and T¢, 99.9% confidence limits and for T a
nearly 100% confidence limit were used within the same factor of 3 from

nominal.

For Case III, uniformly staggered testing, the averagé unavail -
ability was sensitive to the input parameters in the order listed in Table XXII.
The numbers in the third column are the magnitudes of the sensitivity rela-
tive to the least sensitive parameter. Note that the p,;, Y, and pf parameters
are third, fifth, and sixth, respectively, in order of sensitivity, This shows
the importance of the new failure modes included in the equations derived
earlier. For Case I and II, these modes are even more significant, since for
these the random failures (AT) are not dominating as in Case III.

TABLE XXII. Results of Sensitivity Studies

T Sensitivity _ TopTIMUM Sensitivity U,,,/U,,3 Sensitivity
Relative Relative o ﬁelative
Ranking Ifararneter Importance Parameter Importance Parameter Importance

1 A 793.0 _ A 188.5 A . 1011.1
2 T 134.1 Tt 46.6 T 198.1
3 Pu ‘ 85.9 Py 37.4 Pu 132.0
4 Te - 47.0 Yr - 17.0 Tt 67.6
5 Yr 42.1 Py, 6.3 Yr ) 40.0
6 of 35.5 Ty 4.2 Pf 45.8
7 L 17.7 Ye 1.0 Tr 17.5
8 Ye 1.0 T 0 Ye 1.0

The optimum test interval of 201 h had a standard deviation of
about the same magnitude. The order of the sensitivity of the optimum test
interval to the input is also listed in Table XXII. As shown, the py, Y, and pg
terms were the third, fourth, and fifth most significant terms in determining
the optimum test interval. '

A final analysis was performed in which the ratio of the average
uhavailability of the Case LUl system (1/2) to the same type of system with
three redundancies (1/3 system with Diesel generators) was found to be 56
with a standard deviation of 46. In other words, increasing the system from
1/2 to 1/3 would increase the reliability by a factor of 56, but the uncertainty
of this value is high (standard deviation = 46). - )



The order of sensitivity of the ratio to the input is listed in col-
umns 6 and 7 of Table XXII. Note that this is the same order as for the av-
erage unavailability of the 1/2 system.

D. Summary

The results of the analysis show that the average unavailability of the
-auxiliary feedwater system over a one-year period is 2.45 x 10~° for the most
reliable testing scheme (uniformly staggered testing). Most of this unavail-
ability is due to the Diesel generators be1ng part of the system when no out-
side power source is available.

The sensitivity analysis of the input shows that the new failure modes
introduced in’this report are important parameters when evaluatmg the aver-
age unavailability of the auxiliary feedwater system.
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"VI. SUMMARY AND CONCLUSIONS

A. Summary

Standby safety systems at nuclear power plants are called upon to
function if an emergency situatidn develops. The system, however, may fail
to respond due to mechanical breakdown or human failure. It is therefore of
interest to be able to calculate the average unavailability of the system in or-
der to quantify this probability of failure to respond. ' '

Efforts have been made in the past to develop methods to calculate the
average unavailability of a system as a function of various failure modes and
testing practices. For the most part, however, these efforts were cither
severely limited in the number and type of failures that could be trealed, or
did not allow for the calculation of other parameters of interest related to the
average unavailability, such as the optimum test interval.

In order to treat a variety of failure modes and to apply the treatment
to the calculation of the average unavailability in such a way that the optimum
test interval of the system could also be easily calculated, analytical equations
for all' m-out-of-n (m/n, 1 < m < n < 4) safety systems were developed for
completely random, uniformly staggered, and nearly simultaneous testing
schemes. A computer code, ICARUS, was written to incorporate these equa-
tions in such a way that the contributions of testing, repair, and random fail-
ures could also be calculated. Since the average unavailability equations were
analytically derived and then programmed, the running time of the computer
code is short (<1 s for analysis of all m/n oyotems with 1 £m & n < 4),

To verity the coding in ICARUS, comparison runs were made betwccn
ICARUS and FRANTIC using options common to both codes. For single-
component redundancy systems, the results showed adequate agreement for
both uniformly staggered and nearly simultaneous testing.

Since most systems have redundancies made up of more than one
compouent, it was clear that some special treatment would be needed in order. ’
to apply ICARUS to these systems. In this work, the multicomponent redur-
dancies were represented by a single effective component. Each input param-
eter was modified to reflect the "effective" component characteristics,

Comparison runs were then made with FRANTIC for systems having
two valves in series making up each redundancy. For the uniformly staggered
testing scheme, the agreement was again acceptable for all mi/n (1 <m <n < 4)
systems. In the comparison of the nearly simultaneous testing scheme, the -
highly redundant system comparisons displayed large errors. After checking
against a hand calculation of a 1/3 system, we concluded that FRANTIC cannot
suitably treat these highly redundant systems, which are nearly simultaneously
tested.

)
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Finally, ICARUS was used to calculate the average unavailability of an
auxiliary feedwater system. Data for testing practice and failure modes was
obtained from the literature in order to make a realistic assessment of the
unavailability. The auxiliary feedwater system can take on various configura-
tions, dependihg upon the presence of steam and offsite power. A yearly aver-
age unavailability for the system was calculated taking into account different
configurations. The uniformly staggered testing scheme was found to be the
most desirable. Also, the configuration that has Diesel generators driving the -
electrical pumps accounts for 59% of the yearly average unavailability.

A sensitivity analysis using the PROSA code was performed to deter-
mine which of the ICARUS input parameters were the most important. We
found that the failure modes in ICARUS that are not in FRANTIC are important
enough so that their omission in any unavailability analysis may lead to in- .
accurate results. ‘ ' o ‘ ’ "

B. Recommendations for Future Work

The equations developed for the ICARUS code represent an extensive
development of average unavailability equations for redundant systems. How-
ever, additions could be made to the code that would even more realistically
model the system in question. The most important of these is the treatment
of common-mode or common-cause failure, since common-mode failure has
played an important part in system failures in the past.

A second task that might be undertaken would be the modification of
the ICARUS code to handle multicomponent redundancies directly. Each re-
dundancy: could be treated as a set of miniature systems whose average un-
availabilities could be calculated using the existing ICARUS equations.
Depending upon the configuration of the components in the redundancy, the
average unavailability of the redundancy and then of the system could be cal-
culated. To be able to calculate the optimum test interval directly, the calcu-
lation of the average unavailability should be in terms of coefficients of the
powers of the test interval T (see Chapter III). The calculation of the optimum
test interval is -one of the main features found in ICARUS. :

Another line of development includes modifications in the FRANTIC
code such that the main features of the ICARUS code, as well as.the models of
Ref. 7, can be merged to a general availability-analysis code. ‘

e
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APPENDIX A

Linearization of exp(-is)

In order to simplify the average unavailability expressions, an ap-
proximation for exp(-As) would be in order. Expanding exp(-As) in a Taylor
series about the origin (Maclaurin series) yields

exp(-s) = 1 - As +1%s2/2! - A3s>/3! +a%s%/a! - ... . (A.1)
Taking the first two terms of the expansion, we can write exp(-As) as

exp(-As) = 1 - \s. . | (A.2)

The unavailability at any time s can be found from

U(s)

1 - exp(-As)=1-(1 -2as)

or . (A.3)

U(s) As

Table A.1 shows the errors incurred using this approximation. For
values of As less than 107?, which is typical for this study, the error is less

than 0.1%.

TABLE A,1, Asvs 1l - exp(-As)

As » 1 - exp(-rs) Percent Error®
1.0 ' 0.6321. 58.20
0.5 10.3935 27.07
1,0x 10} B 9.52 x 107¢ 5.08
5.0x 1072 4.88 x 1072 2.52
1.0x 107% - 9.95x 1073 0.501
5.0.x 10 ? 5.98.x 107* 0.250
1.0x 1073 9.995 x 10~* 0.050
5.0x 107* 4.999 x 10°* 0.025
l1.ox 107 9.9995 x 10°° 0.00%

22s - [1 - exp(-rs)]
1 - exp(-As)

x 100%.
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APPENDIX B
" ICARUS Users' Manual

1. Program Surnmary

The program calculates the unavailability characteristics of a period-
ically tested standby sdafety system with m-out-of-n redundancy (1 =sm <n<4)

The main funcétions of the program are to calculaté the average un-
availability, the optimum test interval, and fractional unavailabilities due to
testing, repair, and random failures for three different testing strategies. It
will also calculate the average unavailability as a function of the test interval
at each point in the range 0.2TopTIMUM to 1-8TOPTIMUM at intervals of

0.2ToPTIMUM-

The code can be used to evaluate sensitivities to different failure
modes and data as well as current testing/repair strategies to determine if
changes to these strategies will optimize the system availability.

2. Program Abstract

a. Name of Program. ICARUS

b.. Computer for Which Program Is Designed. IBM 370/195

c. Descrlptlon of Problem. The problem is to determine the average
unava1lab1l1ty of a standby system with m/n redundancy, given that it can fail
due to testing, maintenance, mechanical failure, or human error. The m/n
redundancy means that the system has n parallel components, each with
IOO%/m capacity; i.e., operation of m components is needed to perform the
safety function.

v ' ICARUS first calculates the average uriavailability, optimum test
interval, and average unavailability at the optimum test interval, given the
system conflguratlon and testing scheme. If desired, the code then calculates
the average unavailabilities at points around the optimum test interval and
also calculates the unavallablllty contr1but1ons due to testlng, repalr and
random fallures ' ’

d. Method of Solution. As input data, the program needs the system
configuration (m and n), testing scheme, testing and repair parameters, and
values for the testing, repair, and standby failure modes. Using these data,
the program calculates the average unavailability for the system and solves
for thé optimum test interval of the system using the unavailability equation.
Since the analytical equations for each system and testing strategy are pro-

" grammed into the code, computational time is very short.
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If desired by the user, the code calculates the average unavail -
ability in the interval O‘ZTOPTIMUM to 1"8TOPTIMUM at each O’ZTOPTH\/I[TM
increment. The program then calculates the contributions (numerically and
in percent) that testing, repair, and random failures make to the average
unavailability.

e. Restrictions on the Complexity of the Problem. The system con-
figuration can only be m/n with 1 < m <n < 4, which is sufficient for most
safety systems currently in use. The three testing strategies allowed in the
code are: '

Random
Uniformly staggered
Nearly simultancous.

In the random testing scheme, the components are tested at
randomly shifted times throughout the test interval. The uniformly staggered
testing scheme has the component tests being performed at equally spaced times
throughout the test interval. Finally, in the nearly simultaneous testing scheme,
allthe components are tested consecutively at the beginning of the testinterval.

The equations assume only one component per redundancy. How-
ever, redundancies with several components in series can be analyzed by
properly defining the failure data for a series system in terms of the data for
individual components.

f. Typical Running Time. Typical running time for all m/no(l <m
< n < 4) systems and all three testing schemes is <1 s on an IBM 370/195.

g: Unusual Features of the Program. The analytical unavailability
equations for all 28 systems (1/1 system plus nine systems times three test-
ing schemes per system) are separately programmed in the code. For each
system, the equations (divided into coefficient equations) are polynomials with
both positive and negative powers of the test interval. This allows for the cal-
culation of the optimum test interval by taking the derivative of the average
unavailability equation with respect to the test interval, setting that equal to
zero, and solving for the optimum test interval. When a numerical solution
is required, the Newton-Raphson method, which converges quickly for poly-
nomial equations of this type, is used. Direct analytical equations are avail-
able for the random testing scheme.

h. Related and Auxiliary Programs. The ICARUS code can be used
with the PROSA response surface analysis code to determine the sensitivities
and probability distributions of the unavailabilities and optimum test intervals.

i. Status. The program is operational at ANL.
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e References.  Publications 'in preparation.

k. Machine Requirements. IBM 370/195; card reader; line printer,

B P Programmmg Language Used FORTRAN Iv.

i

m. Operating System. IBM System/370 Model 195; FORTRAN IV (G)
or (H) compiler with optimizer.

n. Othér Programmmg or Operatmg Informatlon or Restrlctlons
All floating-point variables are double precision.

o. Name and Establishment of Author. Dominic Sciaudone; University
of Lowell, Nuclear Engineering Department, 1 University Avenue, Lowell,
Massachusetts 01854. J. K. Vaurio, Argonne National Laboratory, Bldg 208,
9700 S. Cass Avenue, Argonne, Illinois 60439.

p. Material Available. Source decks, sample problem, control cards.

q. Category. P. General Mathematical and Computing System 'Rout_irles.

r. KeyWords. Availability, human errors, peri‘odic- testing,'redundancy,
redundant, reliability, safety system, testing, test interval, unavailability.

3. Program Use

ICARUS can be directed to perform féour different tasks. The task to
be executed is specified by the input variable ITASK. The tasks are described
in Sec. a below. The input for each task is specified in Sec. b below. The flow
charts for the program are presented in Appendix C, and the function of each
subroutine is briefly described in Sec. c below.

a. Task Descriptions

Each execution of the program performs any one of the following
four tasks specified by the variable ITASK. After each case, the program
control returns to the beglnmng and a new Case starts (number of cases speci-
fied by NCASE). * '

(1) Task 1 (ITASK = 1): Selected System Unavailabilities.
Calculates and prints the average unavailability, optimum test interval, and
average unavaxlab1hty at'the optimum test interval for any system, te stmg
scheme ‘and fallure mode probab111t1es specified by the user.

- (z) Task 2 (ITASK = 2): Selected System Total and Fractional U

(a) Performs same task as Task 1.
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(b) Calculates and prints the average unavailability of each
point in the interval 0.2T ypripMuM tO ;‘STOPTIMUM at an increment of

0.2TopPTIMUM-

(c) Calculates the average unavailability contributions due
to testing, repair, and random failures in the form of numerical values and
percents,

(3) Task 3 (ITASK = 3): All System Unavailabilities. Performs
the same task as Task 1 for all m/n systems (1 <m-<n<s<4)and testing

schemes using one set of component input values. There are 28 systems in
all.

(4) Task 4 (ITASK = 4): All System Total and Fiactional A
Uiravailabillties, Performs the same task as Task 2 but for all systems and
testing schemes using one set of component input values. '

b Input . Instructions

Card l

Variable Columns Format Description

NCASE  1-6 16 Number of cases to be run

Card 2

Variablc Culwnns Format Description

ITASK 1-6 16 Task indicator (see Sec. a ahove)
Card 3

Variable Columns Format v Description

ITITLE 1-80 20A4 Title of case

Card 4 (Optional; only needed for ITASK = 1 or 2)

Variable Columns Format : Description

NSYSTM 1-6 16 Numnber of systems to be run for case
Card 5

Variable Columns Format Descriptions

IMARK 1-12 112 Marker for system and testing schene,
: Three-digit integer. First two digits
specify system (12, 1/2 system, etc.)
Last digit specifies testing scheme.
1 = random ;
2 uniformly staggered
3 nearly simultaneous.

Use IMARK = 100 when ITASK = 3 or 4.



Card 5 (Contd.)

Variable Columns - Format Descriptions
GAMMAE 13-24 ~ Dl2.5 Probability that a test causes a failure
) ' that gets repaired. -

GAMMAR 25-36 Dl2.5 Probability that a true demand causes
a failure.

LAMBDA 37-48 DI12.5_ . Failure rate per hour of component
redundancy.

QZERO 49-60 Dl12.5 Fraction of downtime for a component

during a test.

RHOF 60-72 D12.5 Probability that a'component that had
: failed before the test is not detected or
not repaired due to human testing error,
detection error, or human repair error.

Card 6

Variable Columns - Format A Descriptions

RHOU S 1-12 D12.5 Probability that a test caused a failure
that does not get repaired before the
next test (negligence or hidden failure).

TAUR - 13-24 D12.5 Duration of repair period.

TAUT 25-36 D12.5 Duration of test period.

TUP 37-48 Dl12.5 Duration of test interval.

c. Subroutine Functions
‘The function of each subroutine is described below.
CALC Calculates average unavailabilities and writes all résults.
COMB Calculates the binomial coefficient. o

FRACUN Calculates fractional unavaiiabilities ‘and writes results
ITERAT Calculates optimum test interval using Newton-Raphson method.

MAIN Reads data, calculates uhavailability coefficients, and pei'forms
" overall routine control,



APPENDIX C
Flow Diagrams for ICARUS

Figures C.1-C.3 present the logic used in the calculational subroutines
of the ICARUS computer code.
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Fig. C.1. Flow Diagram for MAIN Routine
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APPENDIX D
ICARUS Program Listing

The following is a computer listing of the I'.CABUS ébmputef"ééigle.

HAIN PROGRAM

IMPLICIT REAL%8(A-H,0-2)
REAL*8 LAMBDA
© COMMON/INTVAR/N, IMRK, IMRK1, ITASK, IHKRITE,NN(28),IFLAG, ISIGN NNSY’

1,ITT

COMMON/FLTVAR/GAMMAE , GAMMAR ,, LAMBDA , QZERQ, RHOF, RHOU TAUR, TAUT, TUP,
1ERR, A,B,C,D,E,F,TOPT,AP,BP,CP,UBAR1,UBOPT 1, TOPT1 UBP,UBT, UBT1 U8T2
2,UBT3,UBT12,UBT22,U3T32, THETA

DIMENSION ISYSTM(6450),ITITLE(20)

DATA ISYSTH/109%0,1, 10*0 2,3,4%4,7%0,8,9,10,7%x0,17,18,19,77%0, 5 6,7,
17%0,11,12,13,7%0,20,21,22,87%0, 14, 15, 16,7%0,23,24,25, 97*0.46 27,28 -
2, 7*0/ ‘

DATA ITITLE/20xH e .

IREAD=5

ICASE=0

ERR=1.0D-03

INPUT DATA DEFINITIONS

NCASE  NUMBER OF CASES TO BE RUN - 1 CARD ONLY

ITITLE TITLE GF CASE TO BE RUN - 1 FOR EACH CASE

ITASK  ITASK=1 FRINTS UBAR, T OPTIMUiM, AND UBAR(TOPT) FOR SYSTEMS
DESIGHATED BY VARIABLE IHMARK
ITASK=2 FRINTS ITASK=1 INFCRMATICN PLUS UBAR(TOPT) FOR VALUES
OF .2%TOPT TO 1.8%TOPT, AHD THE FRACTIONAL UNAVAILABILITIES

ITASK=3 FRINTS UBAR, T OPTINU, AMD UBAR(TGPT) FCR ALL SYSTEMS

ITASK=G FRINTS ALL INFORMATION FOR ALL. THE SYSTEHS

IMARK - MARKER TO DESIGNATE SYSTEM DESIRED - 122 DEMOTES 1/2 SYSTEM,
STAGGERED TESTING. FIRST 2 INTEGERS ARE SYSTEM CONFIGURATION
LAST INTEGER IS TESTING SCHEME: 1-RANDCH 2-STAG. 3-SIMULT.
IF ITASK IS CRUATER THAN 2, SET IMARK TO 100

NSYSTM NUMSER.OF SYSTEMS TO BE INVESTIGATED (QNHLY IF ITASK < 3)

GANHMAE PROSABILITY THAT A TEST CAUSES A FAILURE THAT GETS REPAIRED

GAMMAR PROSABILITY CF A TRUE DEMAND COMPANENT FAILURE

LAMSDA CONSTANT FAILURE RATE FCR A SINGLE COMFONENT

QZERO  FRACTION OF DOWM TINE DURING A TEST

RHOF  FROBABILITY THAT A CONPONENT WHICH HAD FAILED BEFORE THE TEST
IS RANDONLY NOT DETECTED AS BEING FAILED BY A TEST OR DOES NOT
GET REPAIRED (HUMAN TESTING ERRCR, DETECTION ERROR, OR HUNAN

. REPAIR ERROR)

RHOU . FROBABILITY THAT A TEST CAUSES A FAILURE THAT DOES NOT GET

REPAIRED RFFGRF THE NEXT TEST (NEGLIGENMCE OR HIDDEM TYPL FAILURE)

TAUR REPAIR .TIME
TAUT  TESTING TIME
TUP TESTING INTERVAL
READ NUMBER OF CASES TO BE RUN
READ{IREAD. 1000) MCASE

START OF NCASE LOOP

1 CONTINUE
INITIALIZE FOR CASE

ICASE=ICASE+1
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IMARK=0
N=0
NNSYS=0

READ TASK NUMBER

READ( IREAD, 1000} ITASK

READ AND WRITE CASE TITLE

READ(IREAD, 1300) (ITITLE(I),I=1,20) .
HRITE(IKRITE,1200) ICASE,(ITITLE(I),I=1,20) S

IF ITASK<3 READ NUMBER CF SYSTEMS TO BE INVESTIGATED

2

3 :
IF ITASK>2, READ VARIABLE INPUT ONLY ONCE. IF NOT, READ NSYSTHM INPUTS.

4

IF(ITASK.GT.2) GO TO 2
READ(IREAD, 1000) HNSYSTM!
GO 10 3

CONTINUE

NSYSTHM=28

CONTINUE

IFCIMARK.EQ.100) GO TO 4.

READ(IREAD, 11060) IARK,GAMMAE,GAMAAR, LAMBDA, QZEROD,RHOF ,RHOU, TAUR, -

1TAUT, TUP
QZcROP=QZERO
TAUTP=TAUT
CONTIKNUE

INITIALIZE FOR SYSTEM

RESET TESTING VARIABLES

SET
44

QZERO=QZEROP
TAUT=TAUTP

ITT DEFINES WHICH INFUT CRITERION WAS NOT MET (IF ANY).
ITT=0

IFLAG DEFINES WHICH FRACTIONAL UNAVAILABILITY IS BEING CALCULATED.

IFLAG=0

M=+l

HHEYS=NNSYS+1
IF(MOD(ITASK,2).NE.O) GO TO 8

TESTING PARAMETERS FOR FRACTICHAL UNAVAILABILITY (ITASK=2,4)

CONTINUE .
IFLAG=IFLAG+1
IF(IFLAG.EQ.2) GO TO 6
GO T09

CCHTINUE

QZERC=0.000

GO 10 ¢

CCNTINUE

IFLAG=S
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S CONTINUE
IF(ITASK.GT.2) GO TO 5
N=ISYSTM( IMARK)

5 CONTINUE

NN DEFINES SYSTEM AND TESTING SCHEME.
ISIGN DEFINES THE TESTING SCHEME.

IV DEFINES THE NUMBER OF SYSTEM REDUNDANCES.

ODOOOOOOOO

ISIGH=NN(N)-(KN(N)/10)%10+1
IV=((NNINIZ10)%10-(NN(N)/100)%100)/10

MAKE SURE INPUT CRITERIA ARE MET FOR EACH SYSTEM. ADJUST VALUES TO MEET
CRITERIA IF PCSSIBLE. IF HOT, PRINT ERROR MESSAGE. .

2N EaNe]

IFLISIGN.NE.G) GO TO 19
IF(TAUR.LT.1.00-503 GO TO 112
THETA=TAUT+TAUR
GO T0(19,15,16,17),1IV

15 CONTINUE
THU=THETA-2.0=TAUT

- IF(TMY.GE.0.030) GO TO 19

THU=0.0D0
TAUT=TAUR
ITT=1
GO TO 18

16 CONTINUE
THU=THETA-3. 0%TAUT
IF(TNU.GE.0.CDO0) GO TO 15
THU=9.000
TAUT=TAUR/2.CD0
ITT=2 .
GO TO 1R

17 cONTINUE
TSIG=THETA-G, J=TAUT
{F(7516.65.0.000) GO TO 19
T8IG-0.003
TAUT=TAUR3. 300
ITT=3

18 CCHTINUE
QZERD=QZEROP*TAUTP/TAUT

19 CCHTINUE
IF(QZERO.GT.1.0D0) GO TO 112

[of
C VARIABLE DEFINITIONS
c

THETA=TAUT+TAUR

- GDELTA=RHOFr~-FROU

CDEL=1.0-GRELTA

CUP=GAHMAR+RHOU/GDEL
c . .
C WITH SIMULTANEOUS TESTING, AUP USED IN INTEGRATING FROM 0 TO T.
C WITH RANDOM AND STAGGERED TESTING, AUP-CUP IS USED.
o}

AUP=QZERO+( 1. 0~GZERO }*{ GAMMAR +GAMMAE +RHOUX( 2., 0-GDELTA ) /GDEL }-CUP
ADN=(1.0-QZERO J*LAM3DA
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BUP=GAMMAR + GAMMAE +RHOU*( 2. 0-GDELTA)/GDEL-CUP
BDH=LAMBDA

IF(ISIGN.ME.4Y GO TO 12

AUP=AUP+CUP

BUP=BUP+CUP

CONTINUE

AUP2=AUP*AUP

ADNZ2=ADN»=ADN

REPAIR PARAMETERS FCR FRACTIONAL UNAVAILABILITY.

IF(IFLAG.NE.3) GO TO 11
BUP=0.0D0

BCN=0.000

CONTINUE

BUP2=BUF*BUP
SDN2=8BDN*BDN
CUP2=CUPs:CUP
DUP=(1.0+GOELTA)/GDEL
SUR=TAUT*AUP+TAURXBUS
SDH=TAUT*ADN+TAURSLEHN
DLH=DUP=LAlSDA
DLM2=DLM=DLY
CDT=CUP+DLM*THETA
COT2=CDT*CDT
EDDLH=EON+DLH e
AADB=AUP=DBIN+BUP*ADN
AB=ADN+BON

BA=AUP+EUP

CB=BUP+CUP

CA=AUP+CUP
AFH1=AUP-1.0
AFM2=APM1%APMY
BFi1=BUP-1.0

BPH2=BFM 1#BPM1
CcPHi=CcuP-1.0
CFl2=CFMT=CPM1

A=0.0

>PTTmMOOD

oM

Hooooo
We v . e
cCooocoo
o

BP=SDN+CUP

CP=DLM/2.0

TOPT 1=DSART(AR/CP)
IF(TOPTT1.LT.1.00-20) TOPT1=1.0D0-20
USART=AP/TUP+BP+CPxTUP

UBOPT 1=AP/TOPT 1+BP+CF*TOPT1

C GO TO SYSTEM DESIGHATED BY ISYSTM(IMARK).

c

o000

10

60 10 (10,20,30,40,50,60,70,80,90,100,111,120, 130, 140, 150, 1606, 170,

1180,190,200,210,220,230,240,250,250 ,270,280) ,N

171 SYSTEM

CONTINUE

89
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OO0

o000
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- 'CALL CALC

20

30

40

50

60

70

IF(IFLAG.LT.3) GO TO 44
GO TO 110
"1/2 SYSTEM - COMPLETELY RANDOM TESTING

CONTINUE

CALL caLC
IF(IFLAG.LT.3) 6O T0 44
GO TO 110

172 SYSTEH - COHFLETELY STAGGERED TESTING

CCNTINUE

A=2.0%CUF*SUP
B=2.0*%CUP*SDN+DLM*SUP+CUP2
C=ULM*(SUN+CUP)
0=2.0/2¢.0%DLM2

CALL CALC

IF(IFLAG.LT.31 60 TN 44

GO To 110

172 SYSTEM - SIHULTANEOUS TESTING

CONTINUE

A=TAUT*(AUP%CB+BUP*CDT ) +THUxBUP2

B=TAUT*( AUP¥BNDLM+ADN*CB+BDN4CDT ) +2. 0xBUP*BDN%TMU+CUP2
C=TAUT*ADN=BIDLM+BDNH2#THU+CUP*DLH

D=1.0/3.0%DLM2

CALL CALC

IF(IFLAG.LT.3) GO TO 44

GO TO0 110

2/2 SYSTEM - CONPLETELY RANDOM TESTING

CONTINUE

CALL caLC
IF(IFLAG.LT.3) GO TO 11
G0 TO 110 '

2/2 SYSTEM - COMPLETELY STAGGERED TESTING

CONTINUE

=2.0%(CUP=*( THETA-SUP)+SUP)
B=-2.0%SDH*CPH1+DLM*( THETA-SUP) +2. 0%CUP-CUP2
C=-1.0%DLMx(SDN+CPH1)

D=-5.0/24.0%DLM2
CALL CALC
IF(IFLAG.LT.3} GO TO 44
@0 70 110

272 SYSTEM - SIHULTANEOUS TESTING

CONTINUE
A=TAUT*{ ~CPH 1%AUP+2 ., xBUP+CUP- BFH1*(AUP+CDT))+TMU*BUP*(2 0-BUP) .
B=TAUT*(-APM1#BDDLM+ADN*( 2. -CR}+RON*{ 1.-CDT)) -2, U*THU*BDN*BFN1+CUP
ix(2.0-cupP)

C=-1. 0% (ADN*TAUT*BODLM+THUxBDN2+DLMSCPM1)

D=-1.0/3.0%0LM2
CALL CALE .
IF(IFLAG.LT.3) GO T0 44
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G0 T0 110
1/3 SYSTEM - COMPLETELY RANDOM TESTING

CONTINUE

CALL CALC L
IF(IFLAG.LT.3) GO TO 44 T : *
GO TG 110 S

1/3 SYSTEM - COMPLETELY STAGGERED TESTING

CONTINUE

A=3_0%CUP2xSUP

B=3.0xCUP2=SDN+3. 0::CUP*DLM*SUP+CUP*CUP2
C=DLI*(3.0:CUP*SDN+Z.0/3. O*DLH*SU°+1 )*CUP }
D=2.0/3.0xDLH2%( SDH+CUP)

E= 1 0/12.0¥DLM*DLMH2

CALL CALC

IF(IFLAG.LT.3) GO TO 64

GO TO 110

173 SYSTEM - SINULTANEOUS TESTING,

CONTINUE

A=TAUT*(AUP¥*(CUP2+3BUP*CUP+BUP2 }+BUP*CDT*{BUP+CDT) }+ TNU%BUP2%BUP |
B=TAUT= (AUP=DLMx(BUP 12, 0:CUP ) +AUP*BDN#( 2 ..0%BUP+CUP ) + ADNs: ( BUP2+BUP*
1CUP+CUP2 ) +BDN%CDT( 2. 6%BUP+CDT ) )+3. 0% TNU*BUP2¥BDN+CUP*CUP2
C=TAUT*( ADH#DLM=(BUP+2. 0%CUP ) +AUPSDLM*EDDLM+ ADNBDN%( 2. OXEUP+CUP ) +
1BDNZx (AUP+CDT ) 1+3. 0xTRU=BUF=BON2+ 1. 5xCUPZ*DLM

D=TAUT*{ ADN:=#DLM=BOOLM+ADN*BON2 )+ TNU%BDN*BDN2+CUP*DLM2
E=.25%DLH*DLN2

CALL CALC

IF(IFLAG.LT.3) GO TO 44

GO TO 110

2/3 SYSTEM - COMPLETELY RANDOM TESTING

CONTINUE

CALL CaLC
IF(IFLAG.LT.3) ”O Ry 4%
GO 70 110

2/3 SYSTEM —:COHPLETELY_STAGGERED‘TESTING

CONTINUE

CA=3.0%CUP*(2.0%( 1.0~ CUDJ*SUP+CUP¥THETA)

B=3.U%DLM¢L 1.0-2.0+CUP)®SUP-6 . 0xCUPKCPHT1%EDM+3. 0¥FUP*HIH*THFTA*CUP
12%(3.0~2.0%CUP)

C=3.%DLMx*(1.-2.xCUF)*SDN+2./3, #DLM2%( THETA-2.%SUP)-3. %CUP*DLM=CPM1
D=-2.0/3.0%DLH2#(2.0%(SDH+CUP)-1.0) . .
E=-1.0/6.0+DLMxDLM2

CALL CALC

IF(IFLAG.LT.3) GO TO 4%

GC TO 110

273 SYSTEM - SINULTANEOUS TESTING

CONTINUE ' ’

ASTAUT*C( 1.-2.%AUP )= (CUP2 1 BUP*CUP) +3. 0¥AUP*CUP+AHP*BUP*(3 0 O*BU
1P)+2.%BUP2+2 . xBUP=CDT*#(2. -BUP)+CDT2%( 1. -2, *BUP))*ThU*BUPZ*(S -2. *B
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OO0

OO0
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OO0

2UP) .
B=TAUT*#( ( 1.-2.%CUP)*(2.%AUP*DLM+AABS } +2. *CUP*(DLM-ADNXCPM1)+DLM*( A
1UP+BUP-2.%AUP*BUP J+CUPXAB+2. xEDN*( 1. ~2. ¥BUP )% AUP+CDT)-2. #ADN«<DUP*
2BPi11+G . ¥BUP*BDH+2 . *BDN*COT*( 1.-CDT) ) -6. ¥ THUXBDN*BUP*BPM 1+CUP2%( 3. -
32.%CUP})

C= TAUT*(Z *ADN*BDOLM*( 1.-2. %CUP)+( 1.-2.%AUP )3¢(DLH2 +BON*DLM+BON2 ) +(

11.-2.%BUP )*2, *ADN*BDDLM+BDON2*( 1.-2.%CDT) ) +3. *ThU*BDNZ*(1 -2.%BUP)-

23 . %CUPXDLM=CPH 1
D=-2.0%( TAUT*ADN®(BON2+BON*DLM+DLM2 ) + TNU*BON*BDN2-DLM2*( .5~ CUP))
E=-.5%DLM=DLM2
‘CALL CALC
IF(IFLAG.LT.3) GO TO 44
60 10 110

3/3 SYSTEM - COMPLETELY RANDOM TESTING

160 CONTINUE
CALL CALC
IF(IFLAG.LT.3) GO TO 4% )
GO TO 110

3/3 SYSTEM - COMPLETELY STAGGERED TESTING

150 CONTINUE
A=3 . 0% THETA+CFI2%(SUP- THETA)]
B=3.0%CFM2%SOH+ 3. OxCPi1%DILM¥ (SUP-THETA) + 1.0 +CPN 1%CPH2
C=3.0%DLH*(2.0/9.0%DLMe(SUP-THETA)+CPMT#SON+ . 5*CPH2)
D=2.0/3.0=DL12%( SCN+CPi{1)
E=1.0/12. 0xDLM*DLN2
CALL CALC
IF(IFLAG.LT. D) GO TO 44
GO 10 110°

373 SYSTEM - SIMULTANECUS TESTING

160 UUNTINUE

AsS OSTAUT+TAUT#LARM HCPHI*{CB-2. ) +AFNI*BFM2+BFM1%( 1. ~CDT)*( 2. -BUP
1-COT )+ TNU+THUBFI 1#RPH2 .

B=1.00%TAUT#{CPM1#{ 2. 221 1DLH+ADN*CPH 13+ AP 1%BPM1%DLM+BON*APH 1(2
1.*BUP+CHP~3.J+ﬁDN*SFd1¥(CB-2.lIDCH*(1.-CDT)*(3.-2.*BUP-CDT))+3.*TN
2UxBDH*BF12+CPM1#CFH2+1.0

C=TAUTH{ ADHSCPMH 1% (BON+2. 0%DLM)+APM 1% ( BDN2+DLM*BDN+DLMH2 ) +ADN*BFRI 1% (
12.0%BON+DLM)-BDN2%( 1.0-CDT ) )+ 3. 0xBPM I%THUXEDH2+ 1. 5%CFRii2*DLH

D=TAUT*{ ADH*DLH=BODLM+ACNSEDNZ ) + THU» SDN¥BDNh+CPM1iDLH2

E=.2S#DLM=DLM2

CALL CALC

TF(TFI 86, LT.3) GO To a4

GO TN 110

174 SYSTEM - COHPLETELY RANDOM TESTING
170 CONTINUE
CALL CALC
IF(IFLAG.LT.3) GO TO 44
Go 10 10
1/4 SYSTEM - COMPLETELY STAGGERED TESTING

180 CONTINUE y
A=G, O*CUP*CUPZ*SUP ’



c
c
c

a0

00

B=CUP2x%CUP2+4 . 0%CUP*CUF2%SDN +6 . 0xCUP2xDLM*SUP :
C=CUP*DLH*( 6. 0%CUP=SON+2 . 75xDLH*SUP+2. 0=CUP2) . v
D=. 125%DLH2%(22..0%CUP*SDN+3. 0%DLM*SUP+ 11, 0%CUP2)
. E=3.0/8. 0#0LM*DLM2=( SDN+CUP) -

F=251.0/7630. Oi“Ll_ruLHZ

CALL CALC

IF(IFLAG.LT.3) GO TO 44

GO TO 110

174 SYSTEM - SIHULTANEOUS TESTING.

190 CONTINUE
A= TAUT*(AUP*(BUP*BLPZ'FCUP*CUPZ)*AUP*BUP*CU"*CB*BUP*CDT*(BUPZ*CDTZ+
1BUP#CDT ) }+TSIG*BUP2:BUP2 . -
B= TAUT*((AU”*DL”*A"?kCUP)*(CUP*CB+BUP2)*AUP*CUP*DLH*(BUP+L *CUP)+A

TUP*BDON*CUF# (2. 0%BUF+CUP J+BUFZ%( 3. 0%¥AUP=EON+BUP*ABN+3. 0xEDH%CDT)+BD"

2UxCDT2%( 2. C#BUP+CDT ) ) +6. 0% TSIG#BUP*BUP2#LDN+CUP2%CUP2

C=TAUT*( ( AUP*DLI+ACHRCUR )% ( 3, 0<CUP*DLM+BUP*DLM+BON*CUP ) +AABB* (CUP
1DLM+BUP*DLM+BDN*CUP+X . xBUP*EDN } +BUPXEDN«{ AUP%DLM+ADN%CUP }+BDN2%CDT
2%(3.0%BUP+CDT) )+6 . OxTSIG#BUF2%BON2+2. 0xCUP2#CUP*DLH
D=TAUT*(BODLM*{ DL ( AUPs:DLI+2. #ADN®CUP }+BDN* (AUPxBDN+2 . ¥ADN*BUP ) } +
TADM*CB*( EDii2+DLM2 ) +EON2%BON=COT ) +4. x TSIG*BUPXRDNXBDN2+2, «CUP2%DLM2
E=ADNSTAUT#(DLM2+E0H2 ) %BDOLM+BONZ#BDN2# TSIG+CUP*DLM=DLM2
F=.2xDLH2%DLM2

CALL CALC

IF(IFLAG.LT.3) GO TO 44

GO 10 110

2/ SYSTEM - COHPLETELY RANDGOM TESTING

200 CCNTINUE
CALL CALC
IF(IFLAG.LT.3) GO TO 44
GO TO 110

2/% SYSTEM - CGMPLETELY STAGGERED' TESTING

210 CONTINUE
A=G . 0:CUP2%( -3. 0*CPH1*SUP+CUP*THETA]
B=6 ., 0xCUPXDLM*(2.-3.%CUP )%*SUP-12.*CUP2XCPM1%SDN+6 . ¥CUP2*DLM*THETA-
13.0%CUP2#CUP2+6 . 0xCUF2xCUP
C=DLM=(2.75%DLM((1.0-3.0%CUP }*SUP+CUP*THETA)+CUP*(6.0%(2.0-3.0%CU
1P)%SDN-6.0xCUP*CFi11))
D=1./8 . %DLM2%(22.%(1.-3 . %CUP )%SDN-3. #DLM*( 3. %SUP-THETA)+ 11, #CUP*(2
1.0-3.0%CUP})
E=-3.0/8.0%(3.0%{SDN+CUP)~ 1 OJ*DLN*DLHZ
F=-251.0/2550. O*DLr.E*DLNZ -
CALL CALC
IF(IFLAG.LT.3) GO TO 44 .
GO TO 110 .. S o ¢

2/% SYSTEM - SIHUtTANEOUS'TESTING
220 CONTINUE

A=TAUT*(-3. 0*AUP*CUP2*CPH1+CUP2*CUP#AUP*BUF¥CUP*(2 0 3.0%CUP)+CUP2
1:BA+BUP2xCA+BUP*( 2. -3, xBUP )% (CUP&AUP+CDT2)~3. ¥BUP2#BPH 1 ( AUP+CDT )+
22 .%BUP¥BUP2+2 . ¥CDT*B UP2+3.*BUP*CDTZ*CDT*CDTZ*(1.-3J*BUP))*TSIG*BUP
3%BUP2%(4.-3.%BUP) -

B=TAUT*(CUP*(2.-3.%CUP)x( 3. *AUP*DLM+AABB J+3. *LUF‘*(DLM ~CPH I*%ADN ) +2
1. %AUP*BUPXDLM*{ 1. -3.%CUP 142, *BAXCUP*DLH+CUPZ*AB+(2.-3. *BUP 1*BUP*(A
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c
C

2UP*DLM+ ADN#CUP+3 . *BDN#( AUP+CDT ) ) +2.¥BDNx*{ 1. -3, ¥BUP )%{ CUP*AUP+CDT2)
3+BUP2*(ADN+DLM ) +2 . xBUP*BON*CA-3. %ADN=BUP2%BFM 146 . *BUP2%BDN+4 . xBUP*
GBUN-CDT+3. ¥BDN*CDT2#( 1.~CDT))-12. *TSIG*BUP2*BDN*BPHM1+CUP2*CUP*(&. -
53.%CUP)
C=TAUT*(DLM*(1.-3.%CUP)%( 3. xAUP*DLM+2 . *AABB )+ ADN*CUP*( 2. -3, #CUP }%(
1EDN+3.%DLM)+DLM2%(BA+3. % (CUP-AUP¥BUP ) )+2. x ABx*CUP#DLM+BDN*( 1.~3.%8U
2P)%( 2. % AUP*DLM+ADNH#CUP ) +3 . #BDH*( AUP+CDT) ) +ADN*BUPN(2. -3, *BUP)*[3
3I%BDN+DLM)+2. xBUP=BDN* (ADM+DLH ) +BDH2*%(CA+3. % (2. ¥BUP-AUP=CUP) ) +BGN2
GCDT*(2.-3.%C0T) )46 . xTSIG*BUPKBDH2% (2. -3.#BUP ) -6 . xCUP2*CL H*CPM1
D=TAUT*(ADH*(1.-3.*CUPl*(EDN2+DLH*(3.*0LH+2.*EDH))+[1.—3.*AUP)*(DL
1M*DLH2+BDH2*DLM+BDNEDNZ ) +DLM2%( AB-3 . »AABB J +ACNXEDH*( 1. -3 . *¥BUP ) %( 3
2.%BDN+2 . *DLH)+BON*BDN2%{ 1. -3.%CDT) ) +4 . xTSIG=BON*BDN2%( 1. -3, %BUP }+2
3. %CUPDLM2%(2.-3.%CUP) - '

E=-3. *ADNxTAUT*BDDLM*(BDH2+DLH°) 3. *TSIG*BDNZ*BDN2+DLH*DLM2*(1 -
1*CUP)

F=-3.0/5. O*DLMZ*DLNZ

CALL CALC

INCITLAG.LT.3) GO TO 44

AN TH 110

3/64 SYSTEM - COMPLETELY RANDOM TESTING

230 CONTINUE

CALL CALC
IF(IFLAG.LT.3) GO TO 44
GO 70 110

374 SYSTEM - COHPLETELY STAGGERED TESTING

240 CONTIMUE

A=4 . O=CUP*(CUPxTHETA*(J,-2.%CUP)+3 . ¥CFM2%xSUP)

B=3.0xCUP2%CUF2-3.0%CUP=CUR2+6 . 0%CUP2+6 . 0:DLM%( 1.0-4.0%CUP )*SUFP+6.
10%CUP*DLE=( -2, 0%THETASCFI11+3. 0:CUP*SUP }+12. 0>CUPxSDN*CPM2
C=6.*DLH*SDN=CrH1*(3 wCFHI+2.)+2.75*DLH2*((3.*CPH1+1.)*SUP—THETA*(
12.%CFMT+1.) )+6 . 2CUP#CPNZ#*DLM

D=9./8 . %xDLM2::DLM~SUP-. 75D LH2xDLM*THETA+2. 75*DLM2*(3 *CPH1+1. )%SDN
P18 u(J xCPN 2, YJHCPHIRBLNZ

E=9./8 . xDLM=DLN"%3DN+3./8. *DLM»DLMZ*(S *CPM1+1.)
F=251./2560,*%DLH2%DLH2

CALL CALC :

IF(IFLAG.LT.3) 60 TO 44

GO TO 110

3/4 SYSTEM - SIMULTANEGUS TESTING

250 CONTINUE

A=TAUT*( 3, *AUP*CUP*CPI2+2.%CUP2% (2. -CUP)+AUPXDUP*CUPH (3  #CB-8. 1+(B
1UP+3 . %CUP-2. ¥CUF2 )*BA+RUPHCA%( 1. -2.%BUP ) +BUB=BUP2%( 3, %¥AUP- 2.)+EUP2
2%(7.-2.%BUP-6.%(COT+AUP ) )+4 . xAUPxRUP+3  ¥BUP*CDT*{ 1. +BUF2+(CDT-1.

’ 3*2)*2 *CDT2%(2. CDT)+BUP*CDT*(3 *BUP*CDT-4. *(FDT+RPM1)\]+T§1633UFQ

G%( 3. %BYP2-8. #BUP+6.)

B=TAUT*( 3. *#ADM=CUPRCP 12+ (3. ¥CUP-1, )%CPM 1% ( 3. #AUPXDLM+AABRB ) -2 . ¥CUPx"
1CEMI%(AB+3.%DLM)+2 . *DLH*(AUP%( 1.-2 ,¥BUP)+BUP%( 1, -2.%CUF)+CUP*(1.-2
2.%AUP) )+AADB*( 3. #BUF2+3. +CUPX( I _*%BUP~4. )} J+CONxCA%( 1.~G . x3UP )} +BUP=D
ILM*{ 6. %AUPHCUIP-G . ¥AUP+ 1, ) +BA*DLM+AB%{ 2 . %BUP+CUP-6 . xBUP2) ~2 . xRUF2% (
4ADN+DLM)+3.*AUP*BUP*(BUP*DLM+BDN¥CUP)+BDN*(AQP+2.*BUP+6.*AUP*BUPZ)
5+6 . ¥xBUP*BDN* (2. -2 : %AUP-BUP-2. #CDT ) +BDN%CDT=( 9. %BUP2+7 . -8 . xBUP+3. %(
6CDT-1.)%x2)4+2, *BDH*CDTZ*(S *BUP-2. ) )+12. xBUP*BDN*TSIGXBPH2+CUP2*( 3
7.%CUP2-8 . %CUP+6.)

C=TAUT»*(3.*%ADN*DLM*( 3. %CUP~-1. 1*CPM1+DLM2%( 3. xAUP*BUP-2.%BA-6 . xCUP+
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c
C
c

c

250

270

280

16.)+(3.%CUP-2. )*%DLMx (2. *AABB+3. *AUP*DLM) +ADN%BDN*CUP*( 3. xCUP-8. }+A
20NxBON*(9.*xBUP2+1. J+BDN*( 1. ~G . xBUP )% (G . *ADN+DLM)+AABBX( 3. %( BUP*DLM
3+BON%CUP ) -4 . %*0LM)+ 25 (BDON+3. xDLM-% . #CUP*DLM) +BDN2%( 3. -8. ¥AUP-2. xCU
GP)+3.*BUP*BDN* (AUPDLM+ADN#CUP+BON*® (3. xAUP-2. ) ) +BON2* (3. x(CDT*( 3. %
5BUP-2.)-2.%BUP+1.)+{CDT-1.)%(3.%C0T-1.)))+6 . ¥TSIG=EDN2*(3.*%BUP-1.0
6 )*BFH1+6 . xCUP=DLMxCPM2

D=TAUT*( (3.#AUP~2. )% (PON2*BON+DLM*DLM2 )+ ADN=DLH*( 3. %CUP-2. )#(2.%BD
IN+3.%0LM)+3. xDLM*AAZS%3DDLH-2 . %DLH2*AB+ADH*BDNx (3. ¥ (BUPXDLM+BONxCU
2P)-4 . xDLH)+BDN2#(9 . xADN*BUP-8 . %ADN-2. ¥DLM ) +BDH*BDN2%( 3.%C0T-2. ) ) +4
3.#TSIG*BON*BDN2#( 3. *BUP-2. )+2. ¥DLMH2%( 3. xCUP-~1. )*CFM1

1523 ¥ADN® (EDH2+DLM2 ) #BDDLM*TAUT+3. ¥TSIGXSON2*BDN2+DLH2*DLM* (3. *CUP

)

F=3./5.%DLHM2%DLM2

CALL CALC

IF(IFLAG.LT.3) GO TO 44

Go TO 110

4/4 SYSTEM - CGHPLETELY, RANDOM TESTING

CONTINUE

CALL CALC
IF(IFLAG.LT.3) GO TO 44
GO T0 110

4/% SYSTEM - COMPLETELY STAGGEREB TESTING

CONTINUE

Az=4  Ox( THETA-CPM1%CrH2=( SUP-THETA))

B=1.0-CPH2=CFM2-6G. =CPH2*% (CPM 13SDN+ 1. 5%DLM®( SUP-THETA))

C=-2 . %CPH1%DLM*(CPH2+3 . %CPH1%SDN+11./8 . xDLM*( SUP-THETA))
D=-1./8. *DLM2%( 11.%CFi12+422. *CPM1%SDN+3 . xDLM%( SUP-THETA)})

E=-3./8 . *DLM2#DLMN#(SDN+CPM1)

F=-251./7680.%DLM2=DLM2

CALL CALC

IF(IFLAG.LT.3) GO TO 4% . . . .

GO TO 110

4/4 SYSTEM - SIMULTANEOUS TESTING

CONTINUE

A=7  %TAUT-TAUT*(APM 1%CPMT#CPI2+BPH I { APM1%CPM2+(CDT-1. )%x3)+BPM2x%(
TAPMIRCPMTI+(COT-1. Jxx2 ) +BPHMI*BPM2%( AUP-2.+CDT ) )+ TSIG-BFH2%BPH2%TSIG
B=1.-TAUT*(CPH2*(AF} 1% (BDH+3.xDLM) +ADNR(CB-2. ) ) +APM 1«BIH 1% BON%CPM
11+DLM*(BUP+1. ) ) +BFH 1% ( ADN#BFM1+APH1*BON)*(CB~2, ) +BOM=BPH2* (2. *APM1
2+3.%(CDT-1.) }+BDN=(CDT< 1. )%%2%(2.¥BUP+CDT-3. ) )-4 . *BF}12%BPM1%TSIG*B
3DN-CPM2%CFM2

C-~T.4TAUT*( (APH1XDLM+ADN®CRM 1) % (3 . «CPM1#DLM+RON%APMT )+ (ADN%BPH14B
1DN*APHM1)* (CPM1%(BON+2. %DLM) +BPM15( 3. ¥BDN+DLM) ) +APH1xBPM 1%DLM2+ ADNx
2BDNXCPM2+(CDT+ 1, IxBON2:#( 3. #BUP+CDT-4. ) ) -6 . #BPH2xBDN2%xTSIG-2. *CPH 1%
SCPM2%0LM
D=-1.0%TAUT*( ( ADN% BrH1+BDN*APH1)*(BDNZ*BDN4DLM+DLH2)+CFH1*ADN*(BDN

2+2 *BDON*DLM+3 . %DLM2 ) +DLM ( ADN*BDN*BPM1+APHIxDLI2 ) +2 . xADN*BPM 1%BDN
2242DMH2%#BDH*(CDOT-1. ) )~4 . *BFi11%TSIG*BON2*BDON-2., ¥CFH2»DLM2 -
E=-1.%ADH:#( BDN2+DLM2 )*BDDLI*TAUT-TSIG*BDN2*BON2-CPM 1xDLM2*DLM
F=-1.0/5.0x%D.M2xDLti2

CALL CALC -

IF(IFLAG.LT.3) GO TO 44

GO T0 110

C WRITE ERROR MESSAGE AND STOR IF INPUT CRITERIA NOT MET.

95



c
112 CONTINUE
HRITE(IWRITE,1470)
STOP
110 CONTINUE
C :
C CHECK FOR LAST SYSTEM AND CASE.
c
IF(NNSYS.LT.NSYSTH) GO TO 3
IF(ICASE.EQ.NCASE) GO TO 300
GO 70 1
300 CCNTINUE
STOP
1000 FCRMAT(216)
1100 FORMAT(I12,5D012.5/4D12.5)
1200 FORMAT(IH1, 1300 TH*)//62X,4HCASE,13//25X,204%//1301 H*}///)
1300 FORMAT(20A%) ’
1400 FORMAT(///130( 1H%)//720X,70H%%x%*x% INPUT ERROR **x%x¥% CHECK TO SEE
ITHAT THE VAIUFS AF TAUT, TAUR; ~//20X,34HAMD QZCRO MCET THE INFUT C
2RITERIA.//130(1H*))
EHD
BLOCK DATA
COMHON/INTVAR/N, IMRK, IMRK 1, ITASK, IHRITE ,NN( 28 ), IFLAG, ISIGN,NNSYS
1,ITT .
DATA WN/110,121, 122,123,221,222,223, 131,132, 133,231,232,233, 331,
1332,333, 141, 142, 143,241, 242,243, 341, 342, 343,44 1,442,443/
DATA IWRITE/6/
END
SUBROUTINE CALC

THIS SUBROUTINE PERFORMS CALCULATIONS AND HRITES THE RESULTS.

aoo0

IMPLICIT REAL*8(A-H,0-2)

REAL%8 LAMBDA

COMMON/INTVAR/N, IMRK, IMRK1, ITASK, INRITE,NN(28 ), IFLAG, ISICN NNSYS
LITT ‘
CCHMON/FLTVAR/CGAMMAE , GAMMAR .LAHBDA,QZERO,RHOF,RHOU,TAUR,TAUT,TUP;
1ERR, A,B,C,D,E,F,TOPT,AP,BP,CP,UBART,UBOPT1,TOPT 1,UBP,UBT,UBT1,UBT2
?;HBTS.UBT12,U3T22,UBT32,THETA

UBP IS TOTAL SYSTEM UNAVAILABILITY.

UBT IS THE UNAVAILABILITY CALCULATED THIS STEP (DEFINED BY IFLAG].
UBT1 IS THE FRACTION OF UNAVAILABILITY DUE TO TESTING.

UBT12 IS THE UNAVAILABILITY DUE TO TESTING.

UBT2 IS THE FRACTION OF UNAVA;LABILITY DUE TO REPAIR.

UsT22 IS THE UNAVAILABILITY DUE TO ﬁEPAIR.

OO0 OONCOOOCOO000000

UBT3 IS THE FRACTION OF UNAVAILABILITY DUE TO RANDOM FAILURES.



UBT32 IS THE UNAVAILABILITY DUE TO RANDOM FA&LURE. ‘

IMRK DEFINES M OF M/N SYSTEM.

OOO0O0O0

IMRK=KN(N}/100 . ‘
IHRK1=(NN{N)-100%IMRK)/10
60 TO (20,20,30,40),ISICGN

CALCULATIONS FOR M/N SYSTEM, RANDOM TESTING.

OO0

20 CONTINUE
USARR=0.0
UBOPTR=0.0
KP=IMRK1-IMRK+1 RUEE
DO 1 KK=KP,IMRK1 :

alnle]

CALL COMB TO CALCULATE BINGCHIAL COEFFICIENT

CALL COMB(COMBI,KK,IHRK1)
UBARR=UBARR+COMBI=UZAR 15xKK*( 1, 0-UBAR T ¥%x ( IMRK1~KK)
UBOPTR=UBOPTR+COMBIUSOPT 1%xKK%*( 1.0-UBOPT T)3%( IMRK1~KK]) -
1 COHTINUE
IF(MOD(ITASK,2).EQ.0.AND.IFLAG.NE.1) GO TG 22
IF(NNSYS.NE. 1) HRITE(IWRITE,1249)
IF(IHRK1.EQ.1) GD 70 2
HRITE(IKWRITE,2000) IHRK,IMRK]
GO 70 3
2 COHTINUE
WRITE(IWRITE,2500) IMRK,IMRK1
3 CONTINUE
c L
C HRITE INPUT AND RESULTS. IR
C

HRITE(IWRITE,2600) GAMMAE,GAMMAR,LAMBDA,QZERO,RHOF,RHOU, TAUR, TAUT,

1Tup
WRITE(IWRITE,2300) U3ARR,TOPT1,UBOPTR
IF(IFLAG.EQ.1) GO TO 21
RETURN e e

21 COMTINUE
IF(DABS(TOPT-THETA).LE.1.0D- 05) GO T0 6
WRITE(IWRITE, 12503 =: .- oW -
GO TO 7

6 CONTINUE
HRITE(IWRITE, 1251) L
TOPT=TUP

7 CONTINUE

c

C o
D0 5 J=2,18,2
TJd=J
TJ=. 1%TJ*TOPT1
UB1=AP/TJ+BP+CP*TJ
UB=0.0 ' :
KP=IMRK1-IMRK+1
DO & KK=KP,IHRK1
CALL COMBI(COMBI,KK,INMRK1)

C CALCULATE AND HRITE UBAR VALUES FOR INTERVAL FROM .2 TO 1.8%TOPT.
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98

oon

‘000

c
C

aOOcC

DO

UB=UB+COMBI*UB 15%KK*( 1. 0-UBT )% ( IMRK 1- KK)
4 COMTINUE
HRITE(IWRITE, 1300) TJ,UB
5 CONTINUE
UBP=UBARR
. RETURN .
22 CONTINUE
CALL FRACUN(IFLAG, UBARR)
RETURN

CALCULATIONS FOR M/N SYSTEM, STAGGERED TESTING.

30 CONTINUE
UBART=A/TUP+B+CxTUP+D*TUP*%2+ExTUPx%3+FxTUPx%4
IF(MHOD(ITASK,2).EQ.0.AHD,.IFLAG,NE. 1) GO TO 33

CALL ITERAT TO CALCULATE CPTIMUM TEST INTERVAL.

CALL ITERAT

TOPTT=TOPT
- UROPTT= A/TOPTT+B+C*TOPTT+D*TOPTT**2+E*TOPTT**3+F*TOPTT**4

IF(NNSYS.HE. 1) HRITE(IWRITE, 1249)

WRITE(IMRITE,2100) IHRK,IMRK1

WRITE(IWRITE,2600) GA!NMAE,GA'IMAR,LAMBDA,QZERC,RHOF, RHOU TAUR, TAUT,
1Tup

HRITE(IWRITE,2300) UBART,TOPTT,UBCPTT

UBP=U3ART -

IF(IFLAG.EQ.1) GO TO 31

RETURN

CALCULATIONS FOR M/H SYSTEM, SIMULTANEOUS TESTING.

40 CONTINUE
UBARI=A/TUP+B+CxTUP+D*xTUPx#2+E#TUP*%3+FxTUP*%4
IF(MHOD(ITASK,2).EQ.0.AMD.IFLAG.NE. 1) GO TO 44

CALL ITERAT TO CALCULATE OFTIMUM TEST INTERVAL.

CALL ITERAT

TOPTI=TOPT
UBOPTI=A/TOPTI+B+CxTOPTI+D*TOPTI**2+EXTOPTI*x3+FXTNPT T#x4
IF(NNSYS.NE. 1) KRITE({IKRITE, 1249)

HRITE(IWRITE,2200) IMRK,ItRK1T

WRITE(IHWRITE,2600) GAMMAE,GAMMAR,LAMBDA, QZERO RHOF ,RHOU, TAUR TAUT,
1TuP

INFORM USER OF INPUT VALUE ADJUSTMENT IF APPLICABLE.

IF(ITT.EQ.1) HRITE(IWRITE,2700}
IF(ITT.EQ.2) HRITE(IKRITE,2800)
IFCITT.EQ.3) KRITE(IKRITE,2900)
WRITE(IKRITE,2300}) UBARI,TOPTI,UBOPTI
UBP=URARI
IF(IFLAG.EQ.1) GO TO 31
RETLIRN
31 CONTINMUE
IF(DABS(TOPT-THETA).LE. 1.00- 05) 60 T0 8
- HRITE( IHRITE, 1250}
GO TQ 9
8 CONTINUE



HRITE(IKWRITE, 1251}
TOPT=TUP
9 CONTINUE
C CALCULATE AND HRITE UBAR VALUES FOR INTERVAL FROM .2 TO 1.8%TQPT.
C
DO 42 J=2,18,2
Ti=J
TJ=. 1%TJ*TOPT
UB=A/TJ+B+CxTI+D*T U552+ ExTI%%J+FxTIn%6
HRITE(IKRITE, 1300) TJ,UB :
42 CONTINUE '
RETURN
33 CONTINUE
CALL FRACUN(IFLAG,UBART)
RETURN
44 CONTINUE
CALL FRACUN(CIFLAG,UBARI)
RETURN

1269 FORMAT(IHD) )

1250 FCRMAT(6(/),25%,80HAVERAGE UNAVAILABILITIES FROM TIMES .2xTOPT TO
11.8%TOPT AT INTERVALS OF .2%TOPT://49X,4H T ,29X,4HUBAR/}

251 FORVAT(6(/),25X,80HAVERAGE UNAVAILABILITIES FROM TIMES .20%T TO
1 1.8x%T AT INTERVALS OF L20%T ://769%X,6H T ,29X,4HUBAR/)

1300 FCRMAT(45X,1PFD12.5,20X;1PD12.5)

2000 FORMAT(28X,10(TMH*},1I2,7H OUT OF,I2,434 SYSTEM - COMPLETELY RARDOM
1TEST INTERVALS ,10( 1ix)/) ° . ) .
2100 FORMAT(27X,10(TH#),I2,7H QUT OF,I2,45H SYSTEM - UNIFORMLY STAGGERE

1D TEST INTERVALS ,10(1H%)/)

2200 FORMAT(27X,10(1H*},I2,7H OUT OF,12,45H SYSTEM - NEARLY SIMULTANEOU
1S TEST INTERYALS , 100 1H*%)/)

2300 FORMAT(//25X,22HAVERAGE UNAVAILABILITY,5X, 1PB12.5//725X,21HOPTIMUM T
1TEST INTERVAL,6X,1F012.5//725X,47HAVERAGE UNAVAILABILITY AT OPTIMUM
2 TEST INTERVAL,5X,17D12.5)

2500 FORMAT(46X,10¢ TH*),I2,7H OUT OF,I2,8H SYSTEM ,10( 1H*)/)

2600 FORMAT(//25X,6HGAMI'AE,2X, 1FD12.5, 10X, 6HGAMHAR,2X, 1FD12.5, 10X, 6HLAM
180A,2X, 1FD 12.5/25X,EHQZERD ,2X, 1PD12.5, 10X, 4HRHOF, 4X, 1FD12.5, 10X, 6
2HRHOU ,2X, 1FD12.5/25X,6HTAUR  ,2X, 1PD12.5, 10X, 6HTAUT ,2X, 1FD12.5
3,10%,6HT »2X, 1F212.5) :

2700 FORMAT(/725X,80( 1H#)/25X,8( TH*},4X,54HTHE TAUR.GT.TAUT CRITERION W

© 1AS NOT MET. THE VALUES OF ,6X,8(1H%)/25X,8( 1H*),4X,58HQZERO AND TA
2UT HAVE BEEN CHANSED TO SATISFY THE CONDITICN.,2X%,8( 1H%)/25X,80( 1H
3%})

2800 FORMAT(//25X,80( 1H*)/25%,8( 1H*),4X,56HTHE TAUR.GT.2%TAUT CRITERION
1 HAS NOT MET. THE VALUES OF ,4X,8(1H%)/25%,8( 1H*),4X,58HQZERO AND
2TAUT HAVE BEEN CHANGED TO SATISFY THE CONDITICN.,2X,3( 1Hx)/25X,80(
INix)) L

2900 FORMAT(//25X,80( THx*)/25X,8( TH*),64X,56HTHE TAUR.GT.3%TAUT CRITERION
1 WAS NOT MET. THE VALUES OF ,4X,8( 1H%)/25X,8( 1H*),4X,58HQZERO AND
2TAUT HAVE BEEN CHANGED TO SATISFY THE COMDITION.,2X,8( 1Hx1/25X,80(
31H*))

END

SUBROUTINE CCMB(COMB1,IK,IIMRKT)
c - .
C THIS SUBROUTINE CALCULATES THE BINOMIAL COEFFICIENT.
c

IP=1

DO 1 IJ=1,IIMRK1

IP=IP%1J

1 CONTINUE

99 -
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OO0

C
C THI
c

2

4
2400

uP=IP

I0=1

D0 2 IJ=1,IK
ID=ID*IJ

CONTINUE

uD=ID

ID2=1

Un2=1.0
TIK=IIMRK1-IK )
IF(IIK.EQ.0) GO TO &
DO 3 IJ=1,1IK
ID2=102%1J

CONTINUE

up2=1D2

CONTINUE
COHR1=UP/Z(1N*IN2)
RETURN

END

SUBROUTINE FRACUN(IF u)

S SUBROUTINE CALCULATES THE FRACTIONAL UNAVAILABILITIES.

IMPLICIT REAL*3(A-H,0-2) .

REAL%8 LAMBDA ’

COHMON/INTVAR/N, IMRK, IMRK1, ITASK, IHRITE,NN(28), IFLAG, ISIGN,NNSYS
1LITT

COMHON/FLTVAR/GAHMAE , GAMMAR , LANSDA , QZER0, RHOF ,RHOU, TAUR , TAUT, TUP,
1ERR,A,B,C,D,E,F,TOPT,AP,BP,CP, UJAR1 UBOPT1 TOPT1,UBP,UBT,UBT1,UBT2
2,UBT3,UBT12,UBT722,UBT32, THETA

UsT=U/UBP

GO 70 (4,2,3,4),1IF

CONTINUE

UBT1=UBT

RETURN

CONTINUE

UBT2=UBT1-UBT

UsT1=1.000-UsT1

Uz 1£=U8P=uBT

UBT22=UBP*UBT2

UBT3=1.0D0-UBT1-UBT2

UBT32=UBP*UBTJ

HRITE(IWRITE.24001 [IRT12.1IRT1, HRT?? 1IBT2,UBT32,UBRT3

RETURN

CONTINUE

RETURY

FORHAT(6(/),25X,29HUNAVAILABILITY DUE.TO TESTING, 13X, 1PD12.5, SX,LP

“1F6.2,2X,8HPER CENT//25X,28HUNAVAILASILITY DUE TO REPAIR, 14X, 1FD12.

HI
ES

—

25;5X,2PF6.2,2X,8HPER CENT//ZDX 37HURAVAILABILITY DUE TO RANDOM FAI
3LURES,5X, 1FD12.5,5X,2PF6.2,2X,8HPER CENT///}

END

SURROLITINE ITERAT -

IMPLICIT REAL*8(A-H,0-2)

S. SUBROUTINE USES THE NEWTON-RAFHSON HCTHOD TO FIND THE OPTIMUM
T INTERVAL FOR THE SYSTEM. .

REALxS LAMNBDA

CCHHON/INTVAR/N, IHRK IMRK1,ITASK, IMRITE,NN(28),IFLAG, ISIGN,NNSYS
1LITT

CON%ON/FLTVAR/GAHMAE GAlMMAR, LAMBDA ,QZEROD,RHOF , RHOU, TAUR, TAUT, TUP,
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1EPR A,B,C,D,E,F,TOPT,AP,BP,CP,UBART, UBOPT1 TOPT1 UBP, UBT, UBT1 usT2
2,UBT3,UBT12,UBT22,UBT32, THETA
TOLR=TOPT1
1 COWTINUE
FX=4 0xF*TOLD*%5+3 ., O%ExTOLD%%G+2 . 0xD%TOLD*%3J+CxTOLD*%2-A
FXP=20.0%F*TOLD#%4+12. wa*TOLD**3+6 OxD*TOLD%%2+2 ., 0%C*TOLD
TT=TOLD-FX/FXP
IF(TT.LE. THETA) 60 TO 3
IF(DASS(TT-TOLD)}.LE.(ERR*TT)) GO TO 2
TOLD=TT
GO 70 1
2 CGNTINUE
TORT=TT
GO 70 ¢
3 CONTINUE
TOPT=THETA
4 CONTINUE
RETURN
END
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APPENDIX E
ICARUS Input and Output

Presented is a sample computer run-of ICARUS for two systems: a
1/3 system tested using the uniformly staggered testing scheme and a 2/4 sys-
tem using the uniformly staggered testing scheme. The task flag is set to
calculate the average unavailability as a function of test interval and also to
calculate the fractions of the average unavailability due to testing, repair,
and random failures. ’

There were eight input cards, and they appeared in the following order:

Card 1, NCASE = 1, caluron 6
Card 2, ITASK = 2, eolunin 6 ' o »
Card 3, ITITLE = ICARUS Documentation Run, columns 29-52
Card 4, NSYSTM = 2, column 6
Card 5, IMARK = 132, columns 10-12

GAMMAE = 1.0D-03, columns 18-24

GAMMAR 1.0D-03, columns 30-36
LAMBDA = 3.0D-07, columns 42-48

QZERO = 1.0D-01, columns 54-60

RHOF = 1.0D-03, columns 66-72
Card 6, RHOU = 1.0D-03, columns 6-12

TAUR = 7.0, columns 22-24

TAUT = 3.0, columns 34-36

TUP = 720.0, columns 44-48
Card 7, IMARK = 242, columns 10-12 .

Rest of Card 7 is the same as Card 5.
Card 8 is the same as Card 6.

The output is arranged in the following manner. The case title is printed
first with each of the systems to be studied following. The system title is
printed, as are the values that ICARUS uses to do the calculations. (These
may be different from the input if ICARUS makes internal modifications to the
input.) Next, ICARUS pr‘ints the average unavailability, the optimum test in-
terval, and the average unavailability at the optimum test interval.

If the task flag is set, the code will print the average unavailability for
values of the test interval that range from 0.2 to 1.8 times the optimum. The
same flag will calculate and print the fractional unavailabilities. '
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aakaneasge | OJT OF 3 SYSTEM o UNIFURMLY STAGGERED TEST INTERVALS awnwenanne

.

GAMMAR 1,00000003 LAMBDA 3.,00000U=07

GAMMAE  1,00000D~03
G2ERD 1.,00000D=01 RHOF 1,000000=03 RHOU 1.000000=03
TAUR 7.600000 00 TayT 3,000000 0O T 7.2v000V 02
AVERAGE UNAVATLABILITY 1.529880e08

. OPTIMUM YEST INTERVAL 1,331920 03

AVERAGE UNAVAILABILITY AT nPTIMUM TEST INIERVAL 1,412940=08

AVERAGE UNAVATLABILITIES FRUM

TIMES 2%TOPT TO 1,8«TUPT AT INTERVALS UF +2xTUPTI

T UBAR

2.663840 02 2,34645p=08

5.,32768D 02 1,679580=08

7.991%2D 02 1,49317p=08

1,065540 03 1,428220=08

1.331920 03 1.,41294D=08

1.59830D 03 -~ 1,42344De=08

1.864490 03 1,44947D=08

2.131070 03 1,48593p=08

2.39746D0 03 1.,53000D=08
UNAVAILAGILITY DUE TO TESTING 5.,529550=09 " B6.14  PER CENT  °
UNAVAILABILITY DUE TO REPAIR  2.871250=10 1,88 PER CENT
UNAYAILABILITY DUE -TO RANDOM-FATLURES. 9,482100=09 . 61,98 - PEN"CENT. .

€01
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\

wasatanaas 2 OUT OF 4 SYATEM = UNIFUKMLY STAGGERED TEST INTER¢ALS exnasannns .

.

GAMMAE  1,000000=03 SANMAR  1,000000a03 LAMBDS  3,000QUb=07
QZERO 1.000000=01 , RHOF 1,000000«G3 RFO® 1.00UQ00=03
TAUR 7.000000 00 TAUT 3,000000 GO T 7.20U90U 02
AVERAGE UNAVATLABILITY 6.:6159Deub -

UPTIMUM TEST INTERVAL . 1,348030 03

AVERAGE UNAVAILABILITY AT cPYIMUM TEST INIERVAL 5.57518Q-oe

AVERAGE UNAVATLABILITIES FRPUM TIMES ,2%TQFT TU 1.,8*TOPT AT INTERYLLS UP .2eTUPTS

v o ' UBAR

2.682000 02 9,45704D=28

S.34413D 02 6,75728D=n8

8,.046190 D2 6.00206D=08

1.072830 03 5,738740=08

1.341p3D 03 S,67678D=08 .

.1,60924D0 03 5,71940D=08 .

1.877450 03 5,82520D=C8"

2.14%45D 03 5,97353D=(8 .

2,41380D 03 6,152970=(8 .
UNAVAILABILETY DUE TO TESTING ’ 2.20732v=08 35.82 PER CENT
UNAVAILABILITY DUE TO REPAIR " 1,146160=09 1,86 PER (ENT

UNAVAILABILITy DUE TQO RANDQM FAILURES 3,839650.08 62,32 PER CENT
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APPENDIX F

Dgta B.ase'f'gr pub, P Ye: and Y Type Failures
The following reported occurrences were used as the bases for the
values of the parameters py, Pf, Ye, 2nd Y, in the auxiliary-feed-water-system

analysis of Chapter V.

Failure Type: p,

Plant: Zion Unit 2 Docket No.: 50-304-183

Event: Three Related ‘Abnormal Occurrences with Diesel Generation

Date: February 17, 1974

Cause: The unit was operating at 25% power with two auxiliary feed-
water pumps inoperable. During the daily testing of the third pump, the
standby ac power-supply Diesel generator started, but tripped out on over-
speed. Due to an operator error, the synchro-speed setter had been set on
13.5 instead of 12. After it was reset, the Diesel operated properly. Then
the output breaker would not close on the bus so that the D/ G control panel was
latched closed. A loose screw was lodged in the pivot. The screw was re-
moved. The lapsed time to correct these defects exceeded the 4-h limit of
operating without an AFWS pump by 2.7 h,

Failure Type: pf

Plant: Turkey Point Unit No. 3 Docket No.,: 50-250-230

Event: Malfunction of Auxiliary Feedwater Pumps

Date: May 8, 1974

Cause: All three auxiliary feedwater pumps had been tested satisfac-
torily on May 7, 1974, according to the operation precedure OP7304.1, which
is the monthly test. After the test, the pump packing was adjusted on the
A and B pumps. Apparently, the packing was tightened with the pumps secured,
and the packing was tight enough to prevent the pumps from starting. The
pumps were not tested for operability after the packing was tightened.

Failure Type: p,

Plant: Prairie Island
~ Nuclear Generating Plant I Docket No.: 50-282-274

Event: Failure of No. 12 Auxiliar‘y Feedwater Pump to Start

Date: August 13, 1974

Cause: During testing with the reactor at 100% power, an electric
auxiliary-feedwater-system pump failed to start. During maintenance
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on August 6, 1974, someone inadvert'entlAy- opened the breaker for the auxiliary
lube oil pump. This action prevented the No. 12 auxiliary feedwater pump
from starting due to the lube-oil pressure interlock. -

Failure Type: p,

Plant: H. B. Robinson Unit No. 2 Docket No.: 50-261-454

Event: Overspeed Trip of Steam-driven Auxiliary Feedwater Pump

Date:- November 19, 1974

Cause: Investigation revealed the woodward governor manual setting
was out of adjustment. It could not be determined if the settinlg was inadver-
tently moved after a previous test or changed by noncognizant per sonnel
working in the area.

Failure Type: pf

'Plant: Oconee 3 Docket No.: .50-287-268

Event: Inoperable Emergency Feedwater Pump
Date: April 30, 1975 ’

Cause: Maintenance was performed on the emergency feedwater pump

. to repair a leaking packing gland on April 19, 1975. The packing was appar-

ently set too tight, and the pump was returned to service without verifying
operability as is required by procedure.

bailure Type: Pu

Plant: Ttrojan Nuclear Plant Docket No.: 50-344-249

Event: Diesel-driven Auxiliary-feedwater-pump Failure to Start

. Date: January 9, 1976

Cause: This occurrence was caused hy a change in enginc conditions
(vil and water temperatures, etc.) from those under which the governor had
last been aligned.

Failure Type: g,

Plant: Trojan Nuclear Plant Docket No.: 50-344-387

Event: The Turbine-driven Auxiliary Feedwater Purnp Failed to
Automatic Start

Date: October 19, 1976

"Cause: The trip throttle valve (MO 3071) was not properly reset by
an auxiliary operator for an automatic start.
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Failure Type: Pur Yer Yy

Plant: Millstone Unit 2 = Docket No.: 50-336-539

Event: Pump Inlet Steam Valve Fails to Open

Date: July 24, 1976

Cause: The cause of the valve-shaft shearing prohibiting the valve
from opening was discovered to be improper torque switch setting (reported
October 22, 1976).

Failure Type: vyg, v,

Plant: Zion Unit 1 .Docket No.: 50-295-324

Event: An Auxiliary Feedwater Pump Found Inoperable

Date: June 6, 1974

- Cause: On June 6, 1974, at 2115 h with the unit 1 reactor operating
at 75% power level and the steam-generator load at 750 MW, the shift
supervisor, during a tour of the plant, found the overspeed trip valve on the
1A steam-turbine-driven auxiliary feedwater pump in the tripped position.
The trip valve was reset, and an attempt was made to run the pump. The pump
started normally, but water accumulation in the turbihe exhaust pipe caused
an excessive water hammer that broke one of the exhaust pipe hangers.
Because of this, the 1A auxiliary feedwater pump was shut down and declared
inoperable pend1ng repairs.

Failure Type: v, Y,

Plant: Zion Unit 1 Docket No.: 50-295-606

Event: Auxiliary Feedwater Pump Fails to Start
‘Date: March 5,"1976 \

Cause: The pump had been started and stopped several times to
maintain steam-generator pressure. Because of this, moisture accumulation
was higher than normal in the turbine .and moisture could not drain off prop-
erly. The pump thus became waterbound and failed to start.
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