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ABSTRACT

A summary is provided of the 'first of three years of experimental and
theoretical research on free-forced convection flows in cavity-type solar

" receivers. New experimental and theoretical results are presented and
discussed. The implication of these findings, with respect to the future
thrust of the research program, are clarified as well as is possible at the
present time. Following various related conclusions a summary and tentative
- schedule of work projected for year two of research is presented.

'
DISCLAIMER

This book was prepared a account of work sponsored by an agency of the United States Govemrvem.

N(hehu edSueG eramen: nor any agency thereof, nor any of their employees, makes any

i or ssumes ylegllblwa responsibility for the ccuw

usefuln any information, apparatus, product; or process disclosed, or

is usa wowld nnt infringe or vaw‘v W“ed gh Refers eren ce her in to any specific

commercial product, process, of service by tra e, . + OF o 2, yoes

. not necessaril ily i or imply its or Invo ring by the United

| States Government or any agency Uhereod, The views end opinlons of authars evpréssed herein do not
necessarily state or reflect those ot the Unlted States Goveranent of sny ager ‘v thoreof,

DISTRIBUTION OF THIS DOCUMERT (S ULIHTED
I



CONTENTS ' PAGE

1.  SUMMARY OF RESEARCH ACCOMPLISHMENTS FOR YEAﬁ ONE (1979-1980) 1
1.1 Eiperimental work - ‘ 3

1.2 Theoretjcal work - 5

2. NEW EXPERIMENTAL RESULTS AND DISCUSSION | 8
3. NEW THEORETICAL RESULTS AND DISCUSSION ' ' 11
4. CONCLUSIONS | 13

5.  SUMMARY AND PROJECTED RESEARCH SCHEDULE.FOR YEAR TWO (1980-1981)15

5.1 Experimental work : 15
. 5.2 Theoretical work ) 16
ACKNOWLEDGEMENTS 18
REFERENCE | 19
TABLES ' _ _ 23, 24
FIGURES 21,22, 25, 26

APPENDIX: "Numerical Calculation of Thermally Driven Two-Dimensional 27
“ Unsteady Laminar Flow in Cavities of Rectangular Cross-Section",
by P. Le Quere, J.A.C. Humpﬁrey and F.S. Sherman, Mechanical
Engineering Report No. FM 80/i,'University of balifornia,

‘Berkeley



1.  SUMMARY OF RESEARCH ACCOMPLISHMENTS FOR YEAR ONE (1979-1980)

'In this section an overview is provided 6f the first of thfee years
of exﬁerimental and theoretical investigation of free-forced éonvection
losses frdm a laboratory-scale model of a solar thermal cavity-type receiver.

The main purpose 6f this work is to develop, over a three-year period,
a numerical calculation procedure capable of predicting two-dimensional,
recirculating, unsteady, free-forced convection turbulent flows. Heat
transfer conditions are such that the Bouésinésq approximation does not
apply. A characteristic demanded df the calculation scheme is that at a
later date it should be easily extended to allow the prediction of more
general three-dimensional flows. |

A stage-wise approach has been taken in the study by delineating
specific objectives to be met during,the three-year program. Year one,

briefly reviewed be1ow; has beeﬁ devoted to deverping and testing a laminar
"version of the calculation scheme. Years tWo and three will be devoted to
extending the app]icabi1ity of the numerical procedure to turbulent flow

and (particularly duringlyear three) exploring its adaption to large scale
cavity geometries.

It is mandatory that in:the course of its development the calculation
scheme shou1d‘be tested rigorously. For laminar flow this has already been
aone by reference to data available on flat plate and enclosure geometries.
Similar information does not exist %or cavity-type geometries for the heat
transfer and flow conditions of interest to this work. This has led to thé'
incorporation of .a substantial experimental effort in the study which is
being conducted in parallel with the theoretical-numerical work. The

experiment consists of a laboratory-scale electrically heated cavity geometry



éf variable orientétion and aspect ratio. Temperature 1evefs-froh ambiént
to about 1000°F can be uniformly maintqined at two heated inside cavity walls.
Although séveral'érderg of magnitude removed from Tife-size devices in terms
of attainable Grashof and Reynolds numbers, tﬁe small-scale experiment bro?ides
quantitative tehpérature,and velocity information, as well. as qualitative
features of the fleAobtainéd by méans of the shadqwgraph,technique; The data is

indispensable for testihg the calculation scheme thorodgh]y. It is particularly
important to 1e§rn.how to imposé‘faf-field flow conditions in the free-con-
vection.f1ow regime. This can be found from experimentation. |

The remainder of this section is divided into two parts, corresponding

to'the experimental and theoretical accomplishments of year oﬁe respectively.
A rather substantial account of much of the work performed during year one
of research has already been provided .in the form of a mid-term report (July
1980) to Sandia Laboratories. The reporf includes an gxtensive'literature
review, covering‘experimehfql and theoretical studies of flat-plate, enclosure
and open-cavity flbws with thermal'éffects of relevance to this work. 1In an .
effort to avoid unnecessary duplication, throughout the remainder of thjs |

communication reference will be made to'the mid-term report as the need arises.



1.1 Experimental work

An experimental apparatus has been constructed and tested, a) to help
clarify the complex. fluid mechanic and thermal processe§ taking place in
high-temperatufeAopen.cavityfffows and b) to sérVe as a test base for vaif—
dating'the calculation proéedure'for fhis class of flows. The apparatus
and its associated instrumentation have been’describea in the July 1980
mid-term report. A brief summary is given below.
| Existing literature provided little help for the design of the
experimentaf equipment. This accounts, in part, for the delays incurred
during its fabrication: In the ffnaifdesign, fhe cavity has a fixed length-
to-height ratio . (frontal view) equa1'to 5.70, to encourage two-dimensional
mean flow. The cavity cross-section (side view) is rectangular, with a

‘continuous1y variable depth-to-Height>aspecttratio ranging from 0 (flat plate
cdndftfons) to 1.40 (deepest cavity condition). Thé cavity is 23 3/4" long
and 3 11/16" high.

" Side walls made of 1/8" borosilicate glass plates allow optical probing

- of the cavity along its length (span-wise direqtion). Strip heaters imbedded

" in the bottom and back inner cavityiwa11s allow tembefatures 6f about 1000°F

to be achieved at these walls. To date thé apparatus has been tested at a

maximum wall temperature of 750°F. Cruciform arrayé of thermocouples on
eaéh of the three inner walls permit monitofing of temperature conditions
there. |

The hcated inner walls of the cavity are made of 1 1/4" thick copper
plate. - The non-heated wall is 1/4" thick copper. These walls are surrounded
by not less than 2" thick Fiberfrax Duraboard insulation. The main frame
supporting the copper p]ateé and insulation-is made of 1/4" aluminum plate -

except for end walls which are 1" thick. A steel harness, allowing for



vafiab1e cavity orientation, pivots on brackets mounted on the aluminum

end walls. The whole of the test section is supported by a steel stand.
This stand has a pulley arranéemeht whfch allows tilting of the Cavity'
between -60 and +60 degrees with respect to gFaVity;'

| Experiments corresponding to free-convection regime in the cavity are
presently being performed..‘These are described in seqtion'Z of this report.
Free;forced.convection experiments héve been moved from year one to year

two of research and will be carried out in thg'Mechanic§1 Engineeriné '
Department subsonic wind'tuhne1. Carpentry and electric power:modifications
fo the wind tunnel have been CqmplétédAwhich a]low'the'int1usion of the
cavity and its stand in the large chamber precéeding-the contraction section.
Glass windows on the sidés of the wind tunnél a116w optical access at the
level the cavity will stand. The windows are large enough so that cavity
cross-section andforiéntétipn may be varied over fuf] ranges while the
lcavity remains. within the field of view.

Testingvdf the apparatus.has been cdnc]uded. It has been verified

that all aspects of mechanical design and electrical operation (heaters,
power control units and‘thékmocduple measurements of temperature) are in

working condition.



1.2 Theoretical work

' The development and testing of the numerical pfocedure was accomplished

by subdividing the work of year'one intoAsequeﬁtfal tasks. The framework
serving as the algorithm basis for this sfudy was. the two-dimensional, elliptic,
steédy state TEACH calculation procedure from Imperial College, London. Prior
to extending the procedure to encompass the class 6f flows of interest here

the TEACH code was streamlined and debugged. The‘conservation equations

modeled in the origihai algorithm were then extended.to include unsteady

terms. This required thaf»the solution algorithm be modified in order to

be able to calculate iteratively in the time démain.

' -The cohp]ete sét of conservation equations modéked in the new élgorithm,
their origin and justification and their appTicability to this work have been
digcussed in detail infthe'du]y 1980 mid-term report. Suffice.it to remark
here that the equations describe those types of flows wherein high frequency
pressure oscillations are neglected but large thermaf variations are allowed.
Thus, whiTe the equatidns are not Boussinesqg-approximated, density is essentially
a function of temperéture only. This avoids the time-step limitations imposed
in any numerical effort to trace sound waves. Rigorous forms are used for
the momentum and continuity equations. AuxiTiary relations for physical
properties and the ideal gas law close the system of equations modeled.
| Testing of the expanded code, henceforth referred to as REBUFFS*, was
rigorously conducted with particular emphasis blaced on thermally driven
1aminar f]ow along f]at.platés and iniréctangu1ar enclosures. The results
and discussion of the validation process are carefully detailed in the

July 1980 mid-term report.

*Acronym for: Recirculating Buoyant and Forced Flow Solver,



The validated scheme was applied to predict thermally driven flow in
“open éavities'of recténgu1ar cross-section. To do this it'w§s nece§safy to
prescribe appropriate far-field conditions for velocity and'tempefanré.
In the first set of’caiculations,‘norma1 derivatives of temperature and
velocity at the faerie1d'boundarfes were set equal to zero; except fp;'
témperaturé which was set equaljtd the .ambient value at the bottom inlet
far-field p]aﬁe. Numerical experimentation showed that the cavity flow was
insensitive tovperturhatiohs purposefully induced on‘fhe far-field boundaries.
Thfs‘is due to the strong iocal determination of flow in the cavity. ~Neverthe-
less, in an effort to produce a more realistic picture of the far-ffe1d flow
a different far-field boundary §pecification f6r velocity was used. The
approach (together with results and’djgcu3510n,) is described in the appendix
and is based on the notion that the far-field flow should be both incompressible
.and irrotational.

Among the desireable néw features included in the REBUFFS cdde is éh
improved differencing.technique for'conveétion_terms in the transport equations.
'TheAU§e of. quadratic ﬁpstfeam'interpblation as opposed to hybrid differencing
permits stability of the calculation scheme f@r high values of the Peclet
number whi1e retaining second order écéuracy in the computations. 'The
procedure and it§ improvements are documented in.the July 1980 mid-term
report. It should be remarked that the higher order scheme appears to
resolve time~dependent recircu]ating‘ﬁtructures in open cavity flows(in more
- detail, at a given vdlqg of_Grashof number, than the hybrid scheme.

-A matrix of open cavitj flow calculations has been provided in the

July 1980 mid-term report for the following ranges of relevant parameters:
10% < 6r <3+ 107, AT = 50 and 500K, a/b = 1/2, 1 and 2, and Pr = 0.73.

Flow field calculations are in good qualitative agreement with the cavity-flow



Qisua]ization results obtained so far, although the latter appear more unsteady
than the former. It will be especially important to establish experimentally
the nature of the far-field flow in 6rder to determine the most éppropriate'
treatment of ve]bcity components at the far-field boundaries.

In summary, a time-dependent, two-dimensional, elliptic flow calculation -
procedure has been deve]obed. It has been found that an appropriate formula-
tion of the far-field boundary conditions is required in order to predict the
far;field of an open cavity flow. However, local events inside the cavity are
essentially independent of far-field condftions if the latter are imposed at .
a distance far-enough removed from the cavity (typically aboﬁt two cavity
widths). The calcu]afions verify the strong dependence of velocity and
temperature on geometry cross-section and inclination. Quantitative checks
between‘predictions and measurements of the temperature field are necessary

and underway.



2. NEW EXPERIMENTAL RESULTS AND DISCUSSION

The expefimental cohponent of this work is now under way in full force.
Some of the results obtained to date; for free-convection are presented here.
A work schedule for the experimental program during year two, including the
free-forced convection flow regime, is tabulated in section 5 of this report.

Typical flow visualization results obtained using the shadowgraph tech-
nique are shown in Figure 1. These correspond to a cavity aspect ratio of
one, with the cavity tilted to 0, 20 and 45 degrees, respectivély. The
shadqﬁgraphs were obt&ined by shining an intense point source of light from
a xenon tqbe along the spanwise length of the cavfty. The magnified 1mage'
brojected onto a piece of vellum (drafting) baper, was photographed with a
movie camera and with a 35mm SLR camera; The movie films* immediately conQey
a "feeling" for the scale and intensity of the fluid motion which is not
apparent in the still photographs shown in the figures.

Time-averaged measurements of wall temperature were taken at the positions
defined in Figure 2 and Table 1. The data for a nominal temperature of 400°C,
and air aspect ratio a/b = 1, is shown in Table 2 for three angles of the
cavity, o = 0°, 20° and 45°. As expected, the temperature of each wall is
very near]y‘uniform. fhis is true even of the.top wall, which contains no
heaters and receives heat only from the air in the cavity and, by conduction
and radiation; from the heated back and bottom walls. Thus,.in the numerical
calculations, we may accurately impose boundary conditions of uniform tempera-

ture on each wall.

A most interesting characteristic of the cavity flow is the'inherenf
instability of.the boundary layer generated on the bottom wall by the flow
entering the cavity at the aperture plane. The shadowgraph technique sharply
delineates the region of interaction between the heated boundary layer fluid

and the cold fluid entering the cavity. It is remarkable that, in spite of

*These are available at a cost covering duplication and postage to destination.



'very careful attempts to’ehsure a purely free-convection.regime*,‘for all the
experimental conditions the boundary layer "f]aps";'the flow separafing from
theAshérp lower 1ip of the caQity'is unstable and will oscillate; even at
very lbw Grashof numbers. 'At high Grashof numbers, the numerical calculations
show oscillations in this same general region, but if‘seéms that the
frequencies of experimental and computed oscillations are quite different.

The position df zero velocity in the .aperture p]éne is a weak
_function of cavity oriehtation as 'is shown by the plot given in Figuré3 .

For all orientations the flow entering thé cavity is considerably more
streamlined than that emerging. Buoyancy driven motions along inclined walls,
especially the back wall, cause mixing of the flow. For doanard facing |
orieﬁtations a 1argé eddy; the:size.of which increases with inclination
angle, is trapped at the upper wall cofner; Thermallstratification:fn the
inclined orientations appears to stabilize the flow. Neverthe]ess,’lumps
of heated fluid are seen to emerge sporadically from the cavity. Whether
thiglis a predictable time-evolving process governed by the equations of
two-dimensional hotion, or a random, turbulence related, phenbmenom, is nof
clear at the time of writing.

Numerical calculations révea] the existence of two large recirculation
zones or eddies in the cavity for a = 45 degrees. The flow visualization
results appear to confirm this prediction although for conditions which do
not correspond exactly to the calculations. |

Mgasurements of temperdture in the aperture plane have not yet been
obtained. vIn principle'a resistance thermometer made of fine tungsten wire

could yield measurements of temperature which would not require corrections

*The cavity is protected from sideways ventilation by a tent-1ike enclosure
made of cloth which allows entrainment of air through the bottom and its
exit through the top.



10.

due to radiation and convection-induced thermal 1osses. However the con-
struction of such a probe appears to be'difficult and costly and its‘viabi1ity_
is presently being ésseséed; In the meantime, a chrome]Aq1umé] thermocouple
probe- spanning the length of the cavity is being checked as a possible
alternative for making measurements of temperature in the aperture plane.

Two probes of diffefent wire diameter are being'tested. Some preliminary

data for the larger diameter probe (0.030") are shown in Figure 4. The
temperature plot shows qualitatively correct trends. An estimate of the
amount of error incurred in the measurements is indicated in the figure. |
Thus, in the aperture plane at the 1ocati6n where flow enters the cavity

the thermocouple should have measured ambient temperature but radiation and
convection errors combined have produded a reading 7.5°C in excess of this
value. Theoretical calculations based on ah.error analysis given in appendix
A8 of the mid-term report predict a reading error‘of 35% for a wire 0.030" in
diameter. The error estimated from Figure 4 is about 31%. The error analysis
indicates that a wire 0.003" in diameter would be subject‘to an uncertainty

of about 20%. Méasuremehts of3température will be made with this wire thickness
to. demonstrate. the viability of the thermocouple approach as a suitable

alternative to the original resistance thermometer proposal..
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3. NENATHEORETICAL RESULTS AND DISCUSSION

In the July 1980 mid-term report a considerable amount of numerical
infofmation'was ﬁrovided Eoncerning‘the flow and temperature fields within
a heated open cavjty. The results'werg presented as vector velocity and

temperature plots for. a range of Grashof numbers (104, 105, 106

and 107),
two dimensionless temperature diffefen;es, (aT/T_ ='50/288 and 500/288), and an
aspect ratio of oﬁe. The fluid properties were those for air and were taken
as functions of temperature with T, = 288°K (except for the specific heat at -
constant pressure). |
| A preliminary discussibn'of these results was also provided in the
report. However, since-the submission of the report, new computations have
been performéd. They are included here with a detailed'discussion and are
presented in the form of an appendix. A summary of 1mpor;ant findings is
listed below.
1. Accurate far field specifications of boundary conditions for velocity
are necessary for fesolving properly the flow field in front of the
~cavity opening. However, the flow field within the cavity is
essentially insensitive (for the conditions computed) to the far
field boundary condition specifications provided these are sufficiently
removed from the aperture plane (about two cavity heights).
2. The quadratic upstreém interpolation techhique appears to be superior
to the hybrid difference technique fur convective terms. The.
former reveals time dependence of the flow, which is suppressed by
the numerical diffusion of the latter.
3. Cavity aspect ratio and inclination angle strongly influence heat

losses for fixed Grashof number and temperature difference. In



general theAmean Nusselt number increéses with Grashoff number, and
is Targer for shallow cqvities than for deep. This is especially
the case when the cavity is tilted down. A tabulation of the
various parameters affecting heat transfer is given in‘the
appendix.
Presently, calculations are being pefformed for expgrimenta1 conditions
~of cavity flow with ffee convection;A The question of what is the most appro-
priate treatment of far field boundary conditions is also being considered.:
Both these jsSuesAwill be addressed in a future conmunication..

Finally, it has been found in the numerical work that for high Grashof
numbers (Gr 2 167) the calculation procedure requires Qndér-relaxation of
buoyancy effects to ensure sfabi]ity.' This, however, means.that it takes
longer for.thé procédUre to satisfy a pre-established convergence criterion

and, consequently, that the calculations are more costly.

12.
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‘4. CONCLUSIONS

The fo]}owing major conclusions may be drawn from the work aCCOmplished

during the first year of this research pkojeqt}

1.

There is, to date, no body of fundamental experimental data .per-
taining to therha11y driven flow in oben cavities of simple geometry

(with or without forced convection effects superimposed) which serves

the purposes of: a) helping to understand the fluid mechanical and

thermal processes taking place; b) guiding the modeling of those
flows, especialiy in turbulence regime; c) testing the worthiness

of possible calculation schemes.

A laboratory scale experimental apparatus has been constructed and
tested which will alleviate the situation poihted out in 1. above.
Preliminary flows visualization results and temperature measurements
are in qualitative agreement with prediction§ in free-convection
regime.

A quantitative technigue for measuremeﬁt of temperature using 0.003"
chromel-alummel thermocouple brobe is being tested for substitution
of tﬁe‘or1gina11y‘proposed resistance thermometer concept.

A two-dimensional, transient, non-Boussinesq calculation procedure,
the REBUFFS code, has been developed, tested and applied to vertical
plate, open and enclosed cavity flows in laminar regime. A solution
procedure capable of predicting general thermally driven cavity flows
is very desirable since, if it can be used with confidence, it is
considerably more economical to run than the equivalent amount of
experimentation. The REBUFFS code can readily be extended to
encompass three-dimensional flows. During year two of research it

will be generalized to predict two-dimensional turbulent flows.



Both exper1ment and calculations show that the flow f1e1d 1n an
open cavity can be time- dependent and that the rec1rcu1ating nature
of the flow is a strong function of cavity aspect ratio or1entation
and %I-at fixed Gr. The 1nf1uence of variations in these parameters
can b: systematica]]y 1nvestigated w1th a ca1cu1at1on scheme over
the ranges of Grashof and AT for wh1ch it 1s reasonab1e to expect
1am1nar f]ow |

Currently furthér development of the scheme is nnderway to allow

‘stably COnvergent calculations at high'Va1ues of the Grashof number.

14,
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5; SUMMARY AND PROJECTED RESEARCH SCHEDULE FOR. YEAR TWO (1980-1981)
The numerica1 component of this research has progressed satlsfactor11y
and is present]y on schedule. The ca]cu1at1on of exper1menta1 test cases
has béen postponed until experimental data is available but a matrix of
relevant test cases has been computed and documented, in part, in the
- July 1980 mid-term report pertainihg.to this confract.' Curreﬁt'effortg
are being dedicated to feviewingiliterature related to the turbulence modeling
approach to be pursuéd in this work (see original proposal for details con-
cerning the model). | |
By contrast to the ﬁumerica] work the experimenté] component of .the
study has been set back relative to the schedule oriéina]]y anticipated.
~The main cause for the delay has been the construction of the apparatus which
has proven to be an eléborate énd sophisticated piece of equipmenf. |
Flow visua1ization and“temberétdreﬁmeasurements have béeh:commencéd in
free-convection regime. Flow v15ua112§t%on and temperature measurements in
free and free-forced convection modes will be conducted prior to point-

wise measurements of velocity in free-convection regime.

5.1 Experimenta1 Work

The ma1n tasks to be accomp11shed under this heading during year two of
research are: |

1) Comp]et1on of flow v1sua112at1on and temperature measurements of
cavity flow in free convection regime

2) Commencement and completion of flow visualization and temperaturé
measurements of cavity flow jn free-forced convection regime.

3) ‘Commencement and completion of point-wise measurements of velocity
of cavity flow in free and free-forced convection regimes. Additional

‘measurements of temperature to correlate with velocity results.



It is anttcipated that use will be made of an existing dua]ive1oc1ty :
component laser-Doppler velocimeter faci]itw 1inked to an automatic data
"~ acquisition system run by a PDP 11/34 minicomputer. It is tair1y ciear
how the fac111ty can be used to make the free convection measurements of .
velocity. However, the use of the facility for obta1n1ng correspond1ng
measurements in the freefforced convection reg1me requires further consid-‘“
eration since ‘the windetunne1, wherein the cavity will. be piaced tor the
forced convection experiments, is at a considerable distanoe from the
ve1ocimeter‘s location. It 1s very unlikely that the rather 1arge'veloc1-
meter facility can be disassembled and transported to the w1nd tunnel s1te.
It current1y serves f1ve on-going exper1ments* where it is present]y 1ocated

'and for which it was originally conceived. Alternate ways of measuring ‘

velocity in and about:the cavity when in the wind tunnel are being considered;

among them laser-Doppler ve1ocimetry with a similar but more‘portable system,

vane anemometry and streak_photography}_

5.2 Theoretical Work

In parallel with the experimental work further development of the
calculation code for predicting ooen»cavity.two-dimensional flows will be
pursued. Aspects of the code wnich require further development and testing
are: |

a) - Inclusion of forced convection in the flow

b) Inclusion of turbu]ence in the f]ow and its modellng

c) Formulation of appropr1ate density weighted transport equations

While point (a) is fair]y simple to deal with, point (b) will require
careful investigation and a relative eva]uation of turbulence closure models

of relevance to cavity flows with free-forced convection effects. Guidance

*Including the free convection cavity flow regime of interest to this work.

16.



exists in the literature concerning possible paths for developing (b) and .
(c) above. A detailed exposition of. the turbu]ence‘modeling approach most
likely to be purﬁyed in this work has been given in the original proposal. -
It i§ quite likely that the development and testing of (a), (b) and
(c) above will run into year three of research. Development and testing
of the turbulence model.Will‘be guided not only by present éxpeyimentation
but by existing data relating to cavity flows and cavity experiments such
as the one being conducted by Dr. J. Kraabel and associates at Sandia
Laboratories, Livermore. Finally, it should be noticed that further
developments of the ca]culation procedure, its testing and extended runs
will be performed on the CDC 7600 machine at the Lawrence Berkeley

Laboratory.

5.3 Commenf on Changes in Manpower

A new Ph.D. graduate research student, Mr. Wai Min To, has been selected
to continue with the numerical and turbulence modeling aspects of the work.‘
Mr. Kang Shin Chen will continue with the experimental component of the
study with the assistance of Ms. Lori Miller (M. Sc. Céndidate).

Professor Sherman will be on sabbatical leave during the Winter and
Spring quarters 1980-81 but will be available for consultation in relation

to this research.
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Figure 1. Shadowgraph flow visualization
of heated cavity. (TBAC S T T =28,
6r = 5 x 10%, (a) 0°, (b) 20°, (c) 45°.

T = 25°C = 298°K.
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Figure 2

Coordinate System for Model Cavity

0 on the top surface of the bottom wall.

b = 3.69" (9.37 cm) on bottom surface of top wall.
0 on the front surface of the back wall.

a (adjustable depth of cavity) on aperture plane.
0 on the mid-span plane.

+ c =+ 10.5" (26.7 cm) on the side planes.



T.C.# X a-y z  NOTES

(inches) (inches) (inches)
0 0 0.22 0 Bottom
1 0 2.88 0 Wall
2 0 6.25 0
3 0 9.20 0
4 0 4.56 -2.50
5 0 4.56 - 2.50
6 0 4.56 -5.00
7 0 4.56 5.00
8 0 4.56 . 27.50
9 0 4,56 7.50
10 1.25 a 0 Back
" 3.50 a 0 Wall
12 2.38 a -2.50
13 .38 a 2,50
14 2.38 a -5,00
15 2,38 a 5.00
16 2.38 a. -7.50
17 2,38 a 7.50
18 3.69 0.28 0 Top
19 3.69 1.75 0 Wall
20 | 3.69 3.25 . 0
21 - 3.69 4.81° 0
22 3.69 6.38 0
23 3.69 7.86 0
24 ' 3.69 9.35 0
25 . 3.69 4.81 - -2.50
26 3.69 4,81 2,50
27 | 3.69 4.81 -5,00
28 3.69 4.81 5,00
Table 1

Locations of Wall Thermocouples
(See Figure 2 for Definitiun of Coordinates)



Notes

Typical Surface Temperatures

a:

b = 3.69

T.C. a=0° o = 20° a = 45°

0 395°¢ 385°C 390°¢ exposed to flow

1 399 © 390 397 } | o
2 403 397 412 )

3 403 397 47

4 400 393 408

5 400 393 404 behind E
6 396 391 400 > “back 8

7 398 391 402 wall 2

8 394 387 397

9 394 388 399 o

10 393 398 400

1 392 398 400

12 398 395 398

13 393 399 401

14 . dead dead dead x
15 392 398 401 &
16 382 386 389
17 390 396 399

18 333 337 342

19 328 335 340 exposed to flow
20 333 339 344 '

21 338 344 348 )

22 335 340 345

23 325 1332 338 " behind

24 330 334 339 back

25 336 342 346 >. wall S
26 341 346 351

27 331 337 34

28 345 351 356

Table 2 -
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"Figure 3. Approximate location of zero velocity position on

aperture plane: a/b =1 (b = 9.37 cm);

g =
| Thac | D ' Tamb
X
04 + ]
rea— ()
T\ Tbot
03 \\
\
\
\
02 N\
Ql T
o L— t : —t — o
50° 70° SO°

10° 30°

Q ( Degrees ) |

Tbot = 402 + 10°C;

Toac = 400 # 4°C3 Ty = 348 +-4°C; T, = 23°C= 296°K;
Gr =‘98(T£éc - Témb)b3/vz =5 x ]06; B andvv evaluated at
Te = (Tbac ¥ Tamb)/z'
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Figure 4. Temperature profile in aperture plane using
0.030" Chromel-Alumel thermocogp1e wire; a/b =1, a = 0
average wall témperatures, Grashof number and géometry

specified in Figure 3.
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ABSTRACT

Numerical results are reported for'tﬁermally-driven laminar flow in
two-dimensional reCtangu]ar'geometriés with one p]ane;‘the aperture p]éne,
removed. Finite difference expfess%dns are derived'from a set of approximated
transport equations in which large temperature and density variations are
allowed but higH frequency pressure‘bsci11ations are not. The approach a]Tows
small time-step limitations to be removed from the calculation pfocedure. A
second order accurate quadratic upstream interpolation technique is used for
the finite differencing of convection terms in the transport equations thus
reducing numerical diffusion error,

Parameters varied in the calculations wefe cavity aspect ratio and’
inclination angle with respect to gravity, inside wall temperature and
Grashof number. A value of Prandtl number corresponding to air was fixed
(Pr = 0.73).

Thelca]cu]ations reveal various and complex recirculating flow structures
in the cévity which are a strong function of cavity aspect ratio and inclination
angle. Thus, inclined cévities with a downward-facing aperture plane show one
'or two (counter-rotating) vortices, depending on the inclincation angle. Flow
unsteadiness similar to that observed experimentally by Humphrey, et al. [31]
appears at Gr > ]06 and also depends strongly on the cavity geometrical
characteristics and orientation. For cavities with the aperture plane aligned
with the gravity vector, the unsteadiness appears as a periodic series of small
"bubble-1ike" vortices which sweep_the bottom cavity wall. These vortices
“are sequentially driven by the bulk convective motion of air entering the cavity
towards the back wall where they rise. * For downward-facing cavity flows the
unsteadiness is dampened and apbears not to exist for angles larger than 20
6

degrees and Gr < 10 In general, the results show that the average Nusselt



number of a cavity.decreases with increasihg aspect ratio and inc]ination
angle and with decreasing wa]i temperature and Grashof number.

It is an jnteresting feature of the problem examined,that, aithough the'_
flow fie]d.approaching the cavity is a functiqn of the type ofvfar-fie]d
conditions specified, the flqw fields within the cavityvand‘jn the - aperture
.plane are detérmined mainly by local heat transfer events. Predictions of
“the cavity fluid mechani cand heat transfer characteristics are relatively
“insensitive to the far-field boundary condition specification provided it is

made at a distance 1.5 cavity heights or more from the aperture plane.
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NOTATION

Aj -convection-diffusion- coefficient in difference equation
a cavity depth dimension

b . cavity aperture plane dimension

i mass flux through cell wall
cp' specific heat at constant pressure
Gj mass flux 3
' 98(T,,~T,,)b"
Gr  Grashof number (———é—ﬁ—————)
v

9; acceleration due to gravity
k thermal conductivity
L length of vertical flat plate
M tot&]_maSs in an enclosed cavity : -
m  mass ceT]linAbalance
Nu  Nusselt number (defined by equation 31)
Pr Prandtl number A(E;E) |
p pressure '
Ra -Rayleigh humber (Gr x Pr) -
‘gas.constant for. air

R
S source term in difference equation
T

“temperature
t time
uj velocity component
v volume

Lo cavity jnc]ination angle with respect to gravity vector
B coefficient of volume expansion

r transport coefficient in difference equation



Notation continued

€ dimeﬁsion]ess temperature perturbation parameter
u viscosity |
) kinematic viscosity
o density
Tij' stress tensor

¢ dummy variable in difference equation

Y stream function

Subscripts denote

C cold

d  dynamic component

H hot

i ith component coordinate
J jth component coordinate
max maximum value

0 initial value

P node P in the calculation domain
W wall value

X x component coordinate
y y component coordinate

0 ambient value

Superscripts denote

- average value

n time step n

* value of past iteration (within n)
** - value of present iteration (within.n)

! correction value



Symbols
A  finite increment
Vz‘ Lap]acian operator

z summation



INTRODUCTION

The Problem of Ihterest

‘Flows driven by thermally induced buoyant forces, or which are
‘significant1y affected by buoyant forces, arise in many situations, both
natural and man-made. Much effort has been exbended.in thé experimental
and tHeoretica1 study of these flows. The mosf extensively investigated
geometry is almost certainly the semi-infinite flat plate, vertiﬁa]]y
| aligned or inclined. Recehtly, considerable attenfion has been given to
understanding better the problem of thermally driven flow in rectangular
enclosures. These studies have been strongly motivated by the need to
quantify the relative contribution of free convection to the heat transfef
between a pair of facing vértica1 walls. Such a configuration is of
relevance to, forlexamplet coo1in§ of nuclear fuel rods, ventilation and
energy conservation in bui]dings;'fire spread in rooms and corridors,
| reactor insulation, etc. A tabulated review of over 100 references per-
taining to these flows is available in the report by Humphrey et al. [1].

Buoyant flows within and about cavitiesf with internal surfaces at
high temperatures have received comparatively little attention, even though
suchlheated cavities'provide an attractive design option for Solar Thermal
Central Receiver Systems (STCRS). These. systems have been identified as
a possible technological pathway for generating high-quality energy,
essentially free of undesirable chemical po]]dtants, from a virtually in-
exhaustible source. However, it has been shown [2] that the performance
and efficiency of a life-scale STCRS wii] be significantly éffected by the

thermal losses it sustains. Of these, the most difficult to quantify are

* Defined here as a rectangular enclosure with one face removed.



free-forced convection losses, which are comparable in magnitude to losses
incurred through radiation effects.

' Numenical calculations of thermally induced flows past cavities have
been performed by Penot [3] and Orlandi, Onofri and Subetta [4], who used
Boussinesq approximated equations and solved for streamfunction and |
vorticity. The results of these studies show cleaf]y the importance.of
buoyant forces fn cavity flow heat transfer. 1In particular, Penot [3] ha§
demonstrated the dependence of thermal losses on cavity orientation as well
as the existence of time—dependént large scale variations in the flow for

specific conditions of Grashof number and inclination angle.

Non-Boussinesq Calculation Procedures

| Because it reduces the number of dimensionless parameters on which the
flow depends, the Boussinesq approXimation is desirable. It cannot, however,
be justified for the high energy flux flows of interest to this work, in
which very large spatial variations in density occur. Only a few prediotive
studies of thermally driVen flows in closed and open cavities have not
employed the Boussinesq approximation. Se?era] of these are briefly dis-
cussed below.

A perturbation approach, in terms of the parameter

£ = 2(TH - TC)/(TH + TC), was used by Rubel and Landis [5] for predicting
thermally driven flows in enclosures. By developing the Navier-Stokes
equations in a power series expansion in € and retaining zeroth and first
order terms, density variations were accounted for in the inertia terms.

Thus, for example, these authors observed an asymmetrical shift of the



uni-cellular motion displayed by the streamfuhction towards the 1ow¢r
colder corner of their enclosure.

Unfortunately, the power ;eries expansion appfoach is severefy 1imi ted
by thé need to provide and e9a1uate an increasing number of terms as €
1ncréases, Consequently, methods based on a direct numerical approach are
more appealing. It appears that Poleghaev [6] was the fir;t,to pursue a'
numerical approach based on aﬁ'algorithm for high speed compressible flow.

In Polezhaev's formulation time dgrivatives are retained in the Navier-Stokés
équations and pressurevis replaced by the_product pT wherever it appears.
The ca]cﬁ]ation procedure involves using a two time-level.step scheme

fractional in space. Each of the four variables (ux, u., T, p) is calculated

y?
separately from the rest, leading tp-independent tri-diagonal matrices.

The solution of the equation system in ‘this formu]atidn requires eight
intermediate steps in order to advance one full step in iime. Po]ehaev's
predictions are in good qua1itative:agreement with the'resuits of Rubel and
Landis [ 5] and Spradley and Churchill [ 7] for values of Ra < 105. Central
differenciﬁg of convective terms aﬁd the artificial decoupling introduced
by the sequential treatment of variables are the cause for poor results for

6. Although mentioned in the paper, the restrictions imposed by

Ra > 10
high ffequency acoustic phenomena and corresponding time'step limitations
are not discussed in detail.

Sprad1ey and Churchi]]r[ 7] have studfed more completely the role of
high freqﬁency motions in fherma]]y driven enclosure flows. They showed |
that heat is transferred by pressuré waQes whjch originate from a step
change in température at time t = 0 at the heated vertical wall in the

enclosure. However, their numerical scheme, like that of Polezhaev, was

severely constrained by time step limitations.



In a'stddy of three-dimensional enclosures, Le Quere and Alziary [ le
avoid the time step limitation by using an 1mp1i¢1t numerical scheme in
which non-Tlinearities in time are dealt with according to the Briley-McDonald
[ 9] linearization phocedure} The resulting equations are solved by the
Douglas-Gunn [10] ADI procedure.. A]thngh the scheme is very stab1é, analysis
of the formal truncation error due to‘factorization in space shows fhat 1tA
is us¢1ess to choose arbitrari1y<1arge time steps. Thus, the optimum time
step was detefmined-to be 100 times the CFL compfessib]e Timit. |

The three numerical approaches outlined above apply to flows 1n»Which
density and pressure variations are strongly coupled. Théy require small
tjme steps to describe thé propagafion of pressure waves at acoustic speeds.
In a 1ess restrictive scheme, Leonardi and Reizes [11] solve elliptic forms
Vof the momentum eqdations formulated in terhs of streamfunction and vorticity
using the false transient method developed by Mallinson and De Vahl Davis
[12]7;}A1thqugh pressure .is explicitly absent in the equations, in order
to determine density from the équation of state they chose to solve a Poisson
équatiqn for. pressure. This equation, togethér with the elliptic équation
relating streamfunction to vorticity, makes-it necessafy to solve two'Poisson
équatibns per "fime step", thereby impairing tﬁe'efficiency of the scheme.

It has been shown By Rehm and Baum [13] that in very non-adiabatic,
non-dissipative buoyant peffect gas flows wherein the time scale associated
with heat addition and resultant fluid motion is necessarily long compared
with the transit time of an acoustic signal across the enclosure, acoustic
oscii]atibns due to elastic properties of the fluid mayAbe ignored. These authors
derive a set of simplified time-dependent.transport.equations characterized by a

- spatially uniform mean pressure appearing in .both the equations of energy and



of state, with the spatfal]y non-uniform component of pressure appearing

only in the momentum equation. Thus, in broblems for which theif formulation
is accurate, pressure remains almost constant in space while density and
temperature vary significantTy. The drguments formally set forth in the
analysis by Rehm and Baum were .intuitively app1ied'b& Forester and Eméry [14]'
and Ku, Doria and Lloyd i[15] in reSpectiVe elliptic ﬁa]culation séhemeg '
which were formulated in ‘terms of primitive variables and in which time
dependent terms were retained. The enclosure calculations provided by
Forester and Emery are mostly for Ra =‘104 and were obtained using central
.difference approximations for the convection terms. The autﬁors were
intefested in a cryogenic application and recpgnized that thé extension of
their calculation procedure to higher: Rayleigh number flows would require

an improved finite difference scheme-for convection. The numerfca] procedure
employed by Ku, Doria and Lloyd is based oﬁ a hybrid differenc{ng scheme
(upwind/central) for convection terms. ‘As will be shown below, such a

scheme yjelds accurate results for Ra < 106 provided sufficient grid refine-
ment is used in calculating the flow field. Herver, this approach becomes
expensive in terms of computational time and-storage for larger values of
Rayleigh number; an especially serious Timitation in any calculation scheme,

if, subsequently, it is to be extended to. three-dimensional flows.

Objectives of This Study

The present work provideé the first of seyeraj necessary steps towards
predicting generallfree-forcéd recirculating f16w§11n aéd about sfrongly
heated cavities (open or closed) of variable orientation and aspect ratio.

The calculation procedure developed in this study is firmly based on

an extension of the formal analysis of Rehm and Baum [13]. It is elliptic



in ﬁature,'but retains time dependence by treating transient terms\as extra
source terms in the formulation. Thus, for ranges.of the variables for
which a steady state solution exists, the so]ut1on can be calculated by
s1mp1y setting a very ‘Targe time step in the calculation scheme. The
solution is then atta1ned{ iteratively, within this single time step.

The imp]ementation of a higher order difference scheme for convection
terms, based on the quadratic ubstream interpolation'approach suggested by
Leonard [16], allows accurate computations to be performed:in coﬁvectjbn-
dominated flows with coarser grids than are a110wed by an upwind/central
hybrid difference approach; In particular, for high values of.Grashof
number (Gr > 106) it has: been fodnd.that more detailed resolution of the
hnsteady flow field is predicted by thé higher-ordér scheme. 'Finally,

the procedure deve]oped'here,(unlike that of Penot)'sblves for primitive
variables directly and can readily be extended to predict three-dimensional,

buoyant, time-dependent flows.



_GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The set of elliptic partial differential equations governing a

_SingTe-phase, compressible, variable property‘f1ow is given below in

(repeated) sub-indexed notation form.

Continuity
8, 9 -
3t T ax, (PUy) = 0
Momentum
U, U, K 9T, .
i _dy - _ 8P L 13
p(at+ujaxj) ax1+°9i+ax].

In equation (2) the appropriate expression for the stress tensor

(Tij) is given by:

Energy

~ . ou
aT 3T, _ 3 5T p 3p oY
pe, (5 + uj axj) B (k axj) + (5 * oy axj) Ty o

(2)

(3)

(4)

The above equations, together with an equation of state for the fluid

and auxiliary relations for fluid properties (u, k and cp), specify a

system of eight equations with eight unknowns in a 2-D flow. The

appropriate equation of state for our applications is the ideal gas law



p=pRAT" | ©(5)

* .
where R is the gas constant for air in this study. Auxiliary relations

for the physical properties'of air are of the general form:

cp = cp (T)
pe=u(n (6)
k (T)

>
n

Specific forms of the physical property relations for air which were.uséd
in this work are given by the U.S. Stan&ard Atmosphere [17] for u and
k. cp was fixed toAa conStént value taken from [18].

' If, for the present flow, estimatesAof velocity and of.the gradients of
temperature andvve1ocity can be safe]y drawn from the known behavior of
laminar free-convection boundary layers, it is easily shown that the Rehm
and Baum'equations ére those‘neéded. (Fdr detéiTs, see Appendix A3 |

of the report by Humphrey et al. [1]). The final equations are:

Continuity
P, 3 _ |
ot X (pug) = 0 R (1)
Momentum
du, du, op ' T, . ’
1 —dy _ __'d : 1]
p (g + uj x5l T oK tlo - po) 95 + e (7)



with Tij given by equation (3) and the dynamic component of the pressure

field defined as py = p - p - 0,34 X;

Energy

o7 =a§ (k 2T

oT -
pc (= +u,
ot X . ax .
P J 9% J J

dp
) + g (8)
In the above equations p is an average pressure in the flow domain related
to p and T through the perfect gas law

*

P=oR T | (9)

" The above equations, like those of Boussinesq,'apbly to situations in
.-which the hydrostatic variation oprressure leads to a nég}igible variation
of density. The way in which the Boussinesq approximation arises when.the
- driving temperature difference'is small compared to the mean temperature
is given by Rehm and Baum [13].
Equations (1,7,8 and 9) have been used in finite-difference form to
analyze two;dimensiona1 buoyéncy-driven flows in both open and closed cavities,
with the latter serving as a validation test case. lThe'approprjate initial and

boundary conditions are specified below.

Closed Cavify'(See Figure 1-a)

) uniformly prescribed at t = 0.

uy normal and tangential velocities set equal to zero at walls and
prescribed at t = 0.

T prescribed at t = 0 throughout the flow domain. One side-wall
was kept uniformly hot and the other uniformly co]d; The top

and bottom walls were‘kept adiabatic or with T variations prescribed.



10.

Open Cavity (See Figure 1-b)
P uniformly constant (= 1 atm.)

ug normal and tangential velocities set equal to zero at walls.

: NOrmal derivatives of u, vanish on planes (1), (2) and (3) or
specified as explained below.
T . (or heat flux) prescribed at all solid walls. Temperature
prescribed on plane (1), normal derivative of T vanishes on
planes (2) and (3).
It should be noticed that the boundary conditions used for the open
cavity calculations at planes (1), (2) and (3) are only approximate but
were of sufficient accuracy for the needs of this work. That this was the
case was checked by performihg numerical tests in which both the positiohs
of the boundaries relative to the cgvity and the conditions set at these
locations (as diScuseed'further below) were varied. While the tests showed
that the far field surrounding the cavity was sensitive to the boundary
condition specifications, the flow and heat transfer characteristics within
the cavity and radfa]]y around it (within about one cavity width) were not;
even for cavity inclination angles ef up to 45° with respect to the vertical.
In practice, this set of approximated boundary conditions was successf&]]y
applied within 1.5 cavity widths -of the aperture plane provided far field
flow details were not required. This was possible due to tﬁe strong local
determination of the flow and heat transfer characteristfcs within the cavity.
Nevertheless, proceeding along the lines of ear1ier work by Fernandez-Pello
[19] an attempt was made to prescribe more realistic physical Boundary condi-

tions in order to obtain realistic predictions of the far field surrounding the

cavity for a limited number of calculation cases. This was done by Tooking upon the



cavity as a heated horizontél 1ine source in an infinite, initially homo-
éeneous fluid medium.. The boundary layer solution. for the steady laminar
plume, rising from a horizohtaT 1ine source is given in, fof example, Yih
[20]. Thus, the streamfunction in the plume region over the 1ine source
is: |

v, = AX7E

where A is a constant, X is thé coordinate direction vertically upwards
from the line source and f(n) is a function of the similarity variable -
n = y/g(x) which tends to a finite constant value as n » . g(x) is the
hal f-width.of the plume rising from the source. Since the far field flow

is irrotational and solenoidal it satisfies

Vg, =0 (1)

where wo is the streamfunction outside the boundary 1ayer. Boundary
conditions on wo may be specified in polar coordinates (r,0) around the
line source. These are:
a) Yy (r,m) = 0 ; This assumes that the vertical line extendfng down-
wards from the source is a streamline.
b) Yy (r,0) = P (n = «) ; This matches the inner and outer stream-
functions at the edge of thé plume, ensuring that enough potential
flow is entrained from the éurrounding to replace the flow rising

in the plume.

f(n): (10)

11.



12.

remain finite as r ~ for 0.< 6 <7 .

The Laplace equation and these conditions are satisfied by the simple
"separable" function

35 sin 375 (6 - 1)) (2

wo =B r
_ From this solution boundary:conditions can be:devised which imply,
as they should, that the entrained flow is irrotational, and so]enoidg],
and that velocity components decay properly With_djsfance from the source.
This must be dpne‘without specifying the "strength", B, of the entrained
flow, which is determined by processes inside the boundaries; |
| One possibi]ity, which has been“exp]oited,.is to*defive "radiation"
conditions that are satisfied by the solution (12), no hatter what the
'Va1ue of B. In Cartesian corrdinates'(k'increases vertically upwards),

these conditions are

M. .au ux.-.u
Py 2 (X
ox 2y 5 x% 4y
and - | o | , )
au - 3u UX+uy

= = - £ (L—2)
ox  dy 5. x2 2

These conditions have the additional advantage, that they are invariant
- with respect to rotations of the coordinate axes. Thus, they can be used
just as they stand for studies of inclined cavities, and they no longer insist

that any particular ray, 6 = constant, is a streamline.



J

In this'work, various computations were made using equations (13)
for du /3x and auy/ax at plane (1), and for du /3y and auy/ay at plane
(2), in Figure 1-b. Bqundary(conditions for temperature and for the

velocity at'p1ahe,(3) remained the same as specified above.

13.
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THE NUMERICAL PROCEDURE

Finite Difference Equations

For purposes of deriving appropriate finite difference equations
it is convenient to recast the transport equations for momentum and energy

into the equivalent forms shown below:

Momentum
dpu, 5 ou Py
-t * 5;3'(puiuj -u axj) = - o, + (p - p) 95 + S, + S, (14)
Energy
AT . 3 _k 3Ty _ 1 dp
3t * ax 5 (QTuj < T <, H% , (15)

a -
S = ua— (=)
o] ax1 axj
(16)
. ou. 4
S = _8}1_ _J.
M axj axi

Equations (1, 14 and 15) -may be written in the general form:

309 , 3 3y . |
3t *x, (G5 ¢ T Sf?) = S | (17)



where G, = p u, and, for:
i~ P
¢ = u (momentum equation recovered)

' =y

_ %Py N
S¢.—-E+ (p-poo)g_i'l'sp SU

¢ = T (energy equation recovered)

T = k/cp

-1 de
S¢ = cp at

¢ =1 (continuity equation recovered)

The general equation (17) is the basis for deriving the finite
difference equations required in this work. These are obtained by volume
integration of the general equation about cells surrounding nodes of the
calcﬁ]ation mesh. The manner in which this procedure is accomplished
and the rules adhered to regarding variable locations and their distri-
butions over cell surfaces and the cell interior, have been documented

in detail in various references; see for example [21]. The result for

15.



(
a cell, centered about a node P is:

o ¢2+1 - op 051 &%+ op* T AT L ] (j0)"™" - "y (18)

"Equation (18) is implicit in ¢p and requires the iterative solution of

this variable according to:

» K kondl | ¥ n+1 nAv
(F A" +(s0)" av + pp opay
*, n+l *n+l Ay ‘

(o)™ =

In the above eﬁuatidn Av and At rgpresent the cell volume and time step

increment, respectively. The superscript.n denotes time level n whi1é the
superscripts * and * denote present and past iterations (within time step
n+l), respectively. Summationlis over the ‘cell sﬁrfaces.surrounding P and
'the-Aj coefficients combinelconvective'and diffusive contributions to the

balance of ¢.

The corresponding finite difference equation for continuity is given by:

("ﬂ +C, -C +C -C =0 ' (20)_

P) S e W

where Cn, CS ... are the mass fluxes through the north, south ... faces -
of the cell.

Equation (19) applies to velocities and temperature. To solve for

_ pressure it is possible to proceed as follows[21]:

16.



Velocities are written in Taylor series expansion as:

Bu * ‘ aui *
= (ui) + (aApd) ddpy ¥ (55—) dp

where AP is the pressure “difference dr1v1ng U, For subsonic

f]ows of interest here

- aui
= (Ui) + (53550 dapy

!

This approximation is consistent with.the neglect of "high

frequency pressure oscillations referred to earlier. The second -

. term on the right-hand side of equation (22) is a velocity

"correction." Thus:
u, = (u.) + u,

Take

where pé is the "correction" sought for dynamic-pressure.

Substitute equations (23) and (24) into the finite difference

equation for continuity (20) to find:

n+1 n+l n+
el (Z j Paj) '('“) - lop - (op

(Pg p

DM &Y

At
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(21)

(22)

(23)

(24)

(25)
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*

p
As the numerical procedure converges to the solution for n+l,

In equation (25) m_ is the current mass cell.imbalance.

*.n+l ‘n+l . . s
(pp) > p and the last term in equation (25) tends to zero. The

p
neglect of this term is consistent with the assumption of a quasi-steady

“subsonic flow. -

Values of pa are determined from equation (25) over the whole flow
field and these are used to obtain finai'va]ues for pressure and
velocity by means of equations (24) and (23). Detailed forms of the

coefficients Aj-anciA3 in equations (19) and (25) are.given in [21,22].



Calculation Scheme: The REBUFFS Code

The calculation scheme used to solve the finite difference equations
given above originates from the TEACH-2E code developed at Imperial College
(London) [23]. The modified form of.thefscheme deVeTobed in this study
:d1ffers signifftant]y fromAthe'parent éode’and was named REBUFFS:
‘Recirculating ggpyént gnd,fprcedwfjows Solver. .

The REBUFFS code works according to principlés similar to those embodied
1h the parent code. Differences arise due to the'time dependent nature of
the equations solved, the strong 1ink existing between energy and momentum
equations thfqugh density dependence on temperature .and the use of quadratic
‘upstream interpolation forAconvéctive differentiatidn. The purbose of this
section is to outline the solution procedure algorithm. Much of the
1iterature which is already available on the TEACH family of codes and
related algorithmé applies to .the present procedure; see among others,
references [21,22,23]. |

Once finite difference equations have been set up for all nodes in thg
calculation domain, within a time stepvthey are solved iteratively by a
Tine-by-line procedure using the tri-diagonal matrix algorithm. The
dynamic component of pressure is calculated by means of the SIMPLE algorithm.
The 1ine;by-1ine phocedure and the SIMPLE algorithm have been discussed in
detail in [21].

The sequential steps taken by the calculation procedure may be
summarized as follows: |

1. Provide .initial estimates of fhe values of fhe dependent variables

-(“1’ T, pd,p) and the auxiliary variables, u, k, Cp

19.
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2. Advance in timg (t « t + At).

3. Advance in iterations'(n‘+ n o+ 1?.
4. Sélve the momentum equations to obtain,interme@jate values of ve]qpity.
5. Sdlve'ﬁhe pressure correction equatidnj(24) to dbfaﬁh bé. :

6. Correcf pressUre.and velocities with equation$~(24)_and‘(23).ki

7. 'Solve for f.
8. Calculate p.

i

9. Calculate u, k., cb which, ﬁogéthér with the new valudes of the dependent

variables, are now used as improvediestimateé in Step 4.

10. Go to Step 3 and repeat 3 to 10 until a pre-established convergence

criterion is_Satisfied.‘

11. Check time 1imits and flow steadiness. If either is attained terminate

the calculations.

1

Mfsce11aneous Mafters

éiﬁce'the REBUFFS Code differs significantly in Var{ous aspects from the
parent brocedhre, various mﬁsce11aﬁéous mattefs arise which reqdire c]arifiéafion.'
These are discussed below. |

i) Treatment of %%-term in-the energy equation for.c]osed cavity flow.

Whereas in the case of open cavity flow geometries it follows from':
the definition of p that %%:= 0, in a closed cavity the possibility

must be allowed for p to vary with time. This is done as follows:



The perfect gas law for a cell in the calcu]ation'domain gives

o =B (26)
I .
where double and single stars denote current and previous iterative
values within a time step. - The total mass. in the cavity is found
by'summing equation (26) over-all cells multiplied by the respective

cell volumes:
—k .
M'=)Av ep' =p. ) f%% (27)

Since total mass in the cavity is conserved (rulfng out leaks), the
' ek
new average pressure p must.obey the relation:
kx L AV
My =P L% (28)
T
where M0 is the initial mass in the cavity. The new value of
pressure is then found from equations (27) and (28) and is given by:
—kk —% Mo - M

P =Pt H | ' (29)

L S+
T

ki
Correspondingly, the new value of density p at each cell is given
- by:
sk k%
o =E5 ©(30)

%%

T
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ii) H}Hrid and Quadratic Upstream Interpo1ation'Convective Differentation

The TEACH Code, from which the preseht procedure evolves, employs a
HYBRID (upwind/central) differencing formulation for the combined effects
of convection and diffusion terms. The scheme has been documented 1in,
for-examp1e, reference. [21].e HYBRID d1fferenc1ng comb1nes the accuracy
of centra1 d1fferenc1ng for Peclet numbers such that Pe 2 w1th the
stability of upstream-d1fferenc1ng for-Pe > 2. The ratlona]e of the
scheme has been explained -in reference [24] and has been'widely tested.
The HYBRID.scheme is'phySica11y'more realistic at high Pe and the modi-
fications it includes can be shown to be essehtiad to the convergence
of the iteration scheme used to solve the difference equations, as discussed
in [25]. o | - |

While the HYBRID differencing practice is desirab1e because if is
linherently stable it is first order accurate and prone to numerical
diffusion, particularly when flow to grid skewness arises; 'In'order to
dmprove the numerical. accuracy of predictions performed for values of

CGr > 106 the calcu]at1on procedure was mod1f1ed to embody the quadrat1c
upstream 1nterpo]at1on (QUICK) scheme for convect1on or1glna11y proposed
in [16].

In principle, the QUICK procedure avoids the stability problems of
central differencing while remaining free of the inaccuracies of '
numerical diffusion associated with upstream (upwind) differencing.

The advantage of the QUICK scheme 1ies in the economy of calculation
storage and time cost, since it yields accurate numerical solutions on
relatively coarse grids (compared to the HYBRID scheme) .

The usefulness of the QUICK scheme for laminar flow regime has been

documented in [26], and for Taminar and turbulent flows in [27]. The



last reference provides a discussion of the various'possible methods for
implementing the QUICK scheme in the REBUFFS- Code and should be consulted for
further detail. Suffice it to reMark that to retain stability and convergence
properties it was necessary to‘split curvature térms arising from parabolic
interpolation in the QUICK formulation into two groups, one of which was added
to the tri-diagonal iterative matrix, fhe other being treated explicitly as a
source term requiring re-evaluation after each sweep of the line-by-line

solution algorithm within an iteration.

23.

In this study calculations were performed using both calculation techniques.

.Howe&er, the QUICK scheme generally yielded grid-independent results with
considerab]y‘coarser meshes than were required (for equal precision) by the
HYBRID scheme. For example, ca]cu]atfons with QUICK on a 31 x 22 grid (in the
Acdvity) differed by less than 0.5% with calculations on a 23 x 22 grid and by
]eés than 1% with calculations on a 19 x 22 grid. By contrast, ca]cu]atjons .
with HYBRID on a 31 x 22 grid differed by about 4% with results computed on a
23 x 22 grid and differed (at the worst locations) by about 10% with the
coarest QUICK mesh ca]éu]ations. ,fhe trend in the data sugggsts that to
obtain results as accurate as the coarsest QUICK scheme prediétions with the
HYDBRID scheme would require a mesh of apprdximate]y 45 x 30 nodes in the
cavity. It was also verified that for conditions where unsteadiness arose in
the cavity flow, time dependent characteristics ;ere adequately resolved by
the HYBRID approach. Thus, for example, the HYBRID scheme showed a steady

state behavior of the flow in a square cavity with Gr = ]06 and Tw - T = 50°K

which the QUICK scheme predicted as mildly unstead&. At Gr = 107, both schemes
predicted unsteady flows but with better spatial resolution being given by the
QUICK scheme. Calculations performed using the QUICK scheme on a 23 x 22
internal cavity grid distribution were considered to be sufficiently accurate

for the purposes of this study.
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iii) Grid Refinehent and.Cé1cu1ation Time Considerations
The recirculating open cavity f]ows'cqmputed in this study required
grids sufficiently refined to solve for detailed characteristics in
the flows. In particular, a non-uniform grid spacing was used in the
near Wa]] regions in order to resolve adequately the boundary 1ayer 
flows. Thus, at all times thefe were nevér less than four, and often
as many as seven, grid nodes between the wa]]vand the location of peak
tangential velocity in the boundary layers. It should be nofed that
this level of grid refinement in the near wall regions was sufficient
when using the QUICK scheme.

A1l calculations were performed on the CDC 7600 machine located in
the Lawrence Berkeley Laboratory, Berkeley. Typical open cavity cal-
culations were conducted on a 48 x 36 grid, with 23 x 22 nodes within :
the cavity, and required approximately 0.8 seconds pér itehation. A1l
numerical runs were started using input data derived from calculations
at smaller values Qf-Grashof number. For a given Grashof number,
about 100-200 iterations were typically fequired to obtain a converged
solution at avGrashof number one order of magnitude larger than the
starting value. For equivalent grid reffnement, calculations using the
higher order QUICK scheme took about twiéelthe amount of numerical run
time than did calculations based on the HYBRID scheme.

Within a time step, the convergence criterion imposed in the
calculation écheme was that fhe re]ative.change between consecutive
iterations qt a monitorjng point should be less than a typical value of _

4

107" and that the residual sources of mass, energy and momentum be

less than 1073,

As the calculations proceeded in time the number of
iterations for a converged solution within a time step decreased with

time. The convergence criterion for achieving a steady state solution
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was simply that the number of iterations per time step should be equal’
to or less than 2.

For those cases where is was known a priori that a steady state
solution existed (about Gr < 106, depending on other conditions such
as cavity aspect~ratio, oriéntation and AT) is was possible toireach
a converged solution within a single time step by setting the tfme step
to a very 1arge-number. It was verified that significant differences
did not exist between steady state solutions reached through either one

of the above approaches.

Validation

The elliptic numerical procedure was validated by reference to two
fundamental test cases: the heated semi-infinite vertical flat plate and
thermally driven flow in a two-dimensional enclosure with hot and cold
(vertical) side walls. Comparison data for the first.test case were taken
from the theoreticallwork of Ostrach [28] which includes experimental |
resu]ts of others. Corresponding data for the enclosure flow were taken
from the detaijed experimental study recently performed by Duxbury [29].
Duxbury's data is particularly attractive fér evaluation purposed since it
includes temperature ranges for which departures from the Boussinesq approx-
imation may be expectéd to arise. A complete discuséion of the test case'
calculations has been given in the report by Humphrey et al [ 1]. A summary
of those findings is provided here.

Vertical flat plate laminar flow calculations were performed for a plate

of length L such that Gr = 107, with T,, - TOo = 20°K. The boundary

W
conditions for this flow correspond to the special case indicated in Figure 1-b.

x| x=L

Calculations were performed using the HYBRID and QUICK schemes respectively.

Grid independent’results in éxcel]ent<agfeement with Ostrach's solution
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were obtained with the QUICK scheme on a grid which had 40 nodes in the
main flow direction and 30 nodes transverse to the flow. “The width of
the calculation domain was taken a5 twice the'bdundary layer thickness at
the furthest downstream 1ocation,‘corresbonding to x = L. Although the
grid was uniformly spaced it a]1owed for not:less than 4 calculation nodes
between the wall and the location of maximum Ve10city at any stream-wise
Tocation. By contrast, the HYBRID scheme did not yield grid independent
resuTts on the same_grid due to the lack of sufficient near-wall nodes,
required by this lower order accuracy scheme.

Thermally driven enclosure flow calculations corresponding to Duxbury's
study were carried out by specifying experimental]y'determined boundaryA
conditibns»for temperature in the numerical procedure. In his work Duxbury
‘maintained the side wa]ls»of the enclosure at constant unfform knownAva1ues '
of temperature and, because the top and bottom walls of the ene]osure were
not truly adiabatic, measurements of temperature at those locations were
also mede.. The boundary. conditions for this flow are i]]ustreted in Fig. 1-a.

Typical temperature and Nusse]t number calculations and their comparieon
with Duxbury's data are presented for an as;ect ratio of 0.8‘in Figs. 2-a .

" and b. Comparisens for other aspect ratios‘and flow conditiens were a]se
carried out and showed similar levels of agfeement. .Especialiy noteworthy

is the fact that detailed cross-over features of temperature profiles corres-
ponding to a cavity-aspect ratio a/b = 1.6 were accurately predicted by the
.caTeu1ation s:chemeT In the calculations Ra was 4 x ]06 and TH - TC = 60°K
(the largest AT investigated in Du*bury's work) and sign{ficant departures
from the Eoussinesq approxihation were observed. While calculated temperature
“profiles always showed Ye?y good qua]itatiye agreement with the measurements

discrepancies of up to 10% between measurements and calculations were observed.

In general, calculated temperatures were always higher than their corresponding
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experimental values. This is explained, in part, by the observation made
by Duxbdry that end wall losses in the experiment were as large as 30% of
the total heat input. | o

Ve1ocjty profiles have not been plotted, simply because there is no
data for their relative comparison; .Howevér; from the calculations it was.
possible to derive Qe]oé{ty vector fields and streamfunction plots. These
were in excellent qua]itative,agreement with the flow visualization photo-
~graphs provided by Duxbury.

In addition to the above comparisons, other calculations were performed
to show the effect of side wall temperature differénte'and Rayleigh number
on the value of mean pressure within a sealed enc1osure: The results of
these calculations arelshown in Fig; 2-c where a relative comparison is
made with similar calculations by Leonardi and Reizes [11], although for slightly
different conditions. The calculations of Leonardi and Reizes correspond

to values of 2(T, - TC)/(TH + fc) = 0.4°and 0.8 whereas present calculations are

H
for a value of this parameter equal to 0;67; The complek variation of
mean pressure indicated in Fig. 2-c is an indirect reflection of fluid
medium physical property variations with temperature* and comes as a
consequence of the complicated balance struck between the modes of energy
storage within the enclosure (kinetic, potential and internal), A more

detailed discussion of this effect may be found in the paper by Leonardi

and Reizes.

* 11 was given by Sutherland's law and k was found by holding Pr and c
constant. This approximation, over the temperature range of the
calculations (300K < T < 550 K), was quite adequate.



OPEN CAVITY RESULTS AND DISCUSSION

General Considerations

The numerical results of calculations performed for air in an open -
cavity geometry are presented and discussed in this section. The'VarTables
of interest in the calculations were: Grashof number (Gr), "the difference
between cavity wall and ambient temperature (AT =T,-T.), cavity aspect -
ratio (a/b) and angle of inclination (a). |

As shown in Fig. 1-b the cavity'fs connected at the aberturé plane to
adiabatic upstream and downstfeam flat plate sections whichAéljows'an un- -
ambiguous,determination.of'the flow in the vicinity'of the entrance and exit
corner regions. A1l three interna1.wa11s in the cavity were kept a£ the
same temperature, T .. Since AT/T_ is ‘an independent parameter in the
'non—Boussinésq form of the conservation equations governing the fiow; two
levels of temperature were ca]cuiated corresponding to values of AT = 50°K
and 500°K, respectively. The ambient temperature, T_, was set equal to
288°K for all ca]cu]atibhs.

4 5

Calculations were perfokmed'for values of Grashof equal to 107, 107,

108, 107

and 3 x 107. In general, Grashof number was varied by "changing
the reference length correspond{ng‘to the apertdre'p]ane dimension (b)
shown in Fig. 1-b while hdlding AT/T_ fixed. ‘Although the bulk of the
calculations were performed for a cavity of square cross-section with
inclination angle of zero degrees, flows with aspect ratios a/b = 1/2 and
2 (with a = 0°) and a/b =1 (with a = 20° and 45°) were also cohputed. AN
the results pfesented in this.géctioﬁ were obtaiﬁéé ﬁsinéltﬁe QUICK higher

order convective scheme.

- 28.
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A note is in order régarding the calculations performed for a = 45°.
For this case the numerical scheme converged very slowly Hue to the ]qrger under-
relaxation imposed'on'pressure, velocity and temperatufe to ensure'stabi1iﬁy;
In order to obtain numerical results in a reasonab]e_(affordab]e) amount of
computer time the convergence criterion was increased from 10'4 to ]0'3. By

necessity then, these results are less accurate and comparisons with the

remaining cases, although valuable, should be made with this restriction in

mind.
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Prior to d1scuss1ng in deta11 the spec1f1c dependence of therma]]y dr1ven
cavity flow on the parameters ment1oned above various features of the f1ow
are presented first in order to prov1de some 1ns1ght regard1ng 1ts genera]
characteristics. F1gure 3-a shows a typ1ca1 steady state vector ve]oc1ty
field in and about a vert1ca11y or1ented cav1ty of square cross- sect1on for
conditions of Gr = 10 and AT = 50° K The degree‘of grid ref1nement (48 X 36
nodes, with 23 x 20 1ns1de the cavity) and the re]at1ve d1str1but1on of gr1d
nodes, which were unequally spaced in the near wall zones to reso]ve the
boundary layer flow, is illustrated by the ve1oeity vector positions in
the,figure*. A magnified'view oflthe corresponding temperature field within
the cavity is shown in Fig. 3-b. These calculations were performed using
the improved far-field boundary condition treatment leading to equations (13).
The vector field of Fig. 3-a shows cold fluid entering the cavity over the
bottom 2/3 of the aperture. plane. Hot fluid leaving the cavity emerges frbm
the top 1/3 of the anerture plane. Intense shearing of the flow arises at
the horizontal plane in the cavity where the entering and emerging flow
fields meet. By contrast with the entering flow, which is drawn almost
radially from the surroundings, the flow emerging from the cavity is
quickly deflected vertically upwards by buoyant forces. The air heated in
the cavity, particularly at the vertical back wall, drives the flow and is
the cause for a substantial amount of entrainment from the surrounding fluid
medium, especially along horizontal planes above the cavity. For the

calculation conditions in Fig. 3 recirculation regions did not arise in the

*The near-wall gr1d positions for velocity are too.closely spaced to be
c]ear]y discerned in the figure.
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.cavity. Temperature contours shown in Fig. 3-b and detailed velocity
. distributions (not shownlhere) attést to the boundary layer nature of the -
flow, eépecia]1y at the bottom wall.

qu values of Grashof > 107 the flow field became noticeably unsteady,
giving rise to localized recirculation zones on the bottom wall in the cavity.
The nature of the unsteady.f]ow was periodic and is illustrated in Figs. 4
and 5 for Gr = 3'x 107 at consecutive times within a cycle, 2 seconds apart.
The figures show small recirculating flow regions or eddies being convected
along the cavity bottom wall, and vertically upwards along the back wall. As
these "heat bubbles" move, diffusion effects gradually smear out their thermal
identifies.. At the later instant in time, the ve]oc{ty vector plot shows'a
small eddy rising along the back wall as a resd]t of the wave-like disturbance
traveling downstream. The recirculating flow region in the top half of the
aperture plane was also a periodic feature of the flow.for the conditions
calculated and is related to the eddy shedding process occurring on the back and
bottom walls. Thus, vorticity is fed ihto the aperture plane by the bottom
wall eddies and is the cause for a small amount of periodic thickening of the
thermal layer at the top wall in the cavity. Thé same effect was not observed
for inclination angles of a = 20° and 45° and may be due to having taken
larger time steps (2s aé opposed to 0.1s) to hasten cohvergence. However,
the flow is stabilized by inclining the cavity and detailed (but costly)
calculations will be required to settle the question of the presence of a
periodic recirculating zone in the aperture plane for o > 0°. Although it
appears to originate at the edge’of the cavity bottom wall, the flow un-
steadiness was definitely thermal in nature since equivalent ca]cu]ations
with an adiabatic bottom wall did not produce the eddy structures. A

similar unsteadiness to the one just discussed was also observed for the flow
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107

in a cavity with a/b = 2, a = 0°, Gr and AT = 500° K However for the
same conditions but in a cavity with a/b = 1/2 the unstead1ness was 1ess,
suggesting a stabilizing effect of decreasing cavity aspect ratio on the flow.
Flow visualization results presented in [30] confirm the ex1stence of the
bottom wall eddies for thermally-driven air flow in a cavity with a/b 1 end
o = 0°. In the experiment, AT = 90°C and Gr = 6 Xx 106 with an ambient N
temperature, T = 205C. The eddies in [30] were generated and driven along the
bottom cavity wall at a frequency of approximately 1-2 Hz. This compares
favorably with the frequency of approximately 0.5 Hz displayed by the
calculations discussed above. |
In addition to the above, calculations were performed for a square cav1ty

inclined at angles of a = 20° and a = 45° with respect to gravity. It was
verified that for both inclination angles, the flow within the cavity and in
the aperture plane was fairly insensitive_to iarge perturbations falsely
introduced at the far field boundaries. 'This confirmed the notion that the
boundaries were sufficiently removed from the cavity so as not to 1nf1uence
- significantly the flow fie]d‘within it. A comparison between Figs. 6 and
7 illustrates the effect of increasing Grashof nunber trom 10° to 106_for
a fixed inclination anQ]e of a = 20° and AT = 50°K. While both cases show
- a large recirculation zone within the cavity, the larger Grashof number case
reveals a second smaller, quasi-steady recirculating flow region in contact
with the cavity top wall. The steadiness of the high Grashof number f]ow,is
in contrast to that calculated in a cavity of identical conditions but with

= 0°, in which a weak but observable unsteadiness was found. The stabilizing
effect of an inclined geometry was further COnfirmed for the case of a cavity
flow with a = 45°, Gr = ]0 and AT = 50°K shown in Figs. 8

The relatively strong influence of cavity orientation on the flow is read11y



apparent and is manifested by the enlarged recirculating zone appearing at the
top wall. For this case, all walls in the cavity behave as inclined flat
‘p]atés and, in conjunction, act to create a complex doubly reciréu]ating

flow pattern within the cavity. A similar cavity flow field has been pre-
dicted by Humphrey and Jacobs [31]. However, in their case the top wall re-
-circulation zone was driveﬁ by free streaa fofced convection. Particularly
noticeable in the present case is the féct that cold flow entering the cavity
aperture plane must be strongly deflected in order to proceed along the bottom
wall to the back wall. Temperature contours in Fig. 8b show a region of hot
fluid trapped in the top inner corner of thé cavity and reflect a condition

-of ‘'stable stratification within the cavity.

33.
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Velocity and Temperature Profiles

While the results presented in the previous section are very- 'descriptive
of‘the flow, for quantitatiVe purposes, and particularly for comparisén with
other works, it is useful to provide detailed profiles of calculated velocity
and temperature distributions. Figures 9 to 11 show dimensionless velocity -
and temperature profi]és at three x7b and four y/a locations in a cavity of -
square cross-section for two values of Grashof number, AT and o, respective]y.
In each figure the velocity profiles have been normalized with respect to the

maximum value of uy in the aperture plane, u » which is also given.

ymax

For o .= 0°, the velocity profiles show a decreasing boundary layer thick-
ness and a displacement of velocity maxima towards their respective walls as

Grashof increases. Correspondingly, the uy profiles at the aperture plane

(y/a = 1.0) become more uniform in the flow region penetrating the cavity.

The uniform entrance profile occupies about 2/3 of the cavity aperture plane
for Gr = ]04, increasing to a value of about 3/4 of b for Gr = 106 and 107. '
The uy velocity profiles show local maxima in the.entry flow region, at the
Abottom wall of the cavity. Similarly, the(ux profiles show corresponding but
larger maxima in the back wall region of the flow (near y/a = 0). It would
appear ‘that the local acceleration of'the flow on both walls is due to the
contribution of bubyant forces to the momentum balance in the cavity. From
a relative comparison of the.temperature profiles, it is readily éeen that
the depth of penetration of cold flow into the cavity increases with Grashof
number.

Superimposed on Fig. Y9-a and b are velocity and temperature profiles

corresponding to a AT = 500°K for the same Gfashof‘number. This highef

temperature'flow exits the cavity at a maximum velocity of 0.23 m/s which
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is twice as large as that correspdnding to'the 1owef temperature flow

(AT = 50°K). The higher temperature.flow also shows a larger portion of the
<éperture dedicated to entering fluid,. as well as a less uniform entrance
ye]ocity profile at this location. Considerable thickening of the boundary-
layer occurs at the back wali of the cavity for AT = 500°K. Corresponding
temperature contours show the same effect, with a larger proportion of the
fluid in the cavity being heated by the walls.

Velocity and temperature profiles corregponding to a cavity iné]ination
angle a = 45° (see Figs. 8a and b) are-given in Figé.:1]a and b, A comparison
_ between Figs. 10 and 11 shows that the effect of inclining the cavity has been
to accelerate three-fold the peak velocity of fluid f]owing a]dng the bottom
wall in the cavity. However,.the peak value qf ve]ocfty of the fluid leaving
-the cavity through the aperture plane is substantially smaller. The presence
of thermal stratification for this cavity inclination is evidenced clearly in
the temperature profiles corresponding to back and top wall lbcatibns; As
would be expected,-corresponding results for a = 0° do.not show this strong

influence on the flow.



36.

Heat Transfer Calculations

Nusselt number calculations were pekformed at the cavity wa11s.by<

evaluating numerically the expression:

Nu, = fTw ? T %% y _ | : (31)

In the -expression, n denotes the normal to any wall and b is the:tayity
aperture plane length, used as a reference. o

Figure 12 provides a comparison conaucted with.the Boussinesq approximatéd
" data available in Penot [ 3] for Grashof numbers of 8 x 10% and 8 x 10° respec-
tfve]y for a/b =1, o= 0° and AT = 50°K. For Gr = 8 x 104, qua]itqfive agree-
ment between the results is quite good é]thdugh duantifative differences
appear. For Gr = 8 x 105 present results for Nu differfsijnificanlty from'
those givenlby Penot. In particular, the resujts of‘thfg study show smaller
values of Nu at the bottom wall of tﬁe cavity. At the top‘wall, values of
Nu are comparable exéept near the fop inner corner where a maximum appears in
‘the present work. The differences are explained, in part, by the‘re1ati§e
.coarseness of the calculation grid used by Penot in his numerical scheme,
which was 12 x 12 in the cavity. Also included in Fig. 12 are calculations
obtained using the HYBRID and QUICK scheme respective]y. These results show

that differences between the schemes become significant for Gr > 106. Similarly

to Penot, present calculations for Gr = 107 exhibited a localized minimum in
the Nusselt number halfway along the bottom-wall of the cavity. The minimum

in Nu corresponds to a swell in the bottom wall boundary layer which eventually

leads to the formation of the small recirculatien- zones discdssed earlier,
Althougn -they are not.shown here, Nusselt number calculations along

the bottom wall reflected the presence<of'the recirculation zones
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fqr Gr =3 X ]07. For a cavity inc]jnation of o =.45°, the
calculations indicated that stable thermal stratification within the
cavity.and the absence of unsteadiness prevented-the occurrence
.of Tocal maximum and -minimum values of Nu at the top and bottom wall,
respectively.
A summary of the heat transfer predictions is presented in Table 1
for various conditions of interest. The results show that, in general,
Nusselt number increaséd with increasing Grashof number and decreasing
aspect ratio. The influence of cavity orientation on heat transfer from the
separate cavity walls is more complex. Thus, with increasing a, Nusselt
number on the bottom wall increases while Nusselt number on the back wall
decreases. This is explained by the fact that with increasing o the back
plate departs from its vertical orientation towards an inclined (downward
facing) orientation while the bottom plate goes from a horizontal orientation
towards an inclined (upward facing) orientation. The net effect is to enhance
heat transfer from the bottom wall while reducing that from the back. The
top wall in the cavity shows decreasing Nusselt for Grashof = 106 corresponding
to the appearance and growth of a recirculation zone at this wall with increas-
ing o (see Figures 7 and 8).

Temperature effects on heat transfer for cavities of equal size are
4

illustrated by comparing values of Nu in the table corresponding to Gr = 107,
AT = 50°K with Gr = 10°, AT = 500°K and values of Gr = 10°, AT = 50°K with
Gr = 107, AT = 500°K. In both cases the heat transfer from the top wall in

the cavity increases with an increase in AT. This is due to the back-wall
jet-1ike behavior of the flow which, when impinging against the top wall,
readily removes heat by convection. By contrast, the bottom wall shows a

decrease in heat transfer with an increase in AT. A detailed comparison
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betweenAve]ocity and temperature profiles at the bottom wall of the cavity
revealed that the'fluid heated aiong~this wall is deflected into-the cavity
core sooner at lower Grashof numbers. It appears that fluid elements .near
the bottom wall have a 16nger'residence Length in this:region for the higher
Grashéf number. Thus, a1thougﬁ initial heat transfer to the fluid elements
is high, since they are forced to remain near the bottom wall as they are
convected by the flow, their capacity to remove heat from the wall is. |
diminished.  The net effect is for a reduction in total heat tfansfer from

.this wall.
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" CONCLUSIONS
A two-dimensional, elliptic, transient, humerica] calculation procedure
firmly based on the formal ;na1ysis of Rehm and Baum [13] has been deve]oped,
tested and subsequently applied to the case of thermally-driven laminar flow
in cavities of rectangular cross-section. The nature of the equations‘solygd
is such that high-frequency pressure fluctuations (and the time-step limi-
tafions they impose) are eliminated from the calculations while relatively
large temperature aﬁd density variations are accbunted for. The Boussinesq
approximation is dispensed with and density variations are found directly
from so]ut{ons for the témperature and pressure fie]ds in conjuncfion with
the perfect gas equation of state. For open cavity flows density varies
with temperature 6n1y since pressure is a prescribed constant inAthe equation
of state. | |
The present method makes use of the.QUICK quadratic upsﬁream interpolation
technique for finite differencing of convective terms in the transport equé-
tions. In this way,; numerical diffusion associated with straightforward
upwind differencing (as emp]oyed in the HYBRID scheme) is reduced for Gr > 106,
particularly when f19w-to-grid skewness arises. The numerical method is
embodied in a computer code (REBUFFS) which solves for primitive variéb]es
6n an interconnected staggered grid configuration according to a well
established guess-and-correct iterative procedure. The method can readily
.be extended to predict_tréﬁsient three-dimensional flows in orthogonal coordinates.
New numerical results are reported for the thermally-driven laminar
flow of air ih‘open cavities of rectangular cross-section. It'has been found
that the flow field approaching the cavity {s a function of the far-field
boundary condition specification. Realistic conditions can be formulated
which ensure that the flow entrained through the far field is rotational and

solenoidal. Notwithstanding, calculations show that the flow field within



40.

the cavity and in the aperture plane is determined mainly by local heat transfer
effects and is relatively insensitive tb the.far-fie]d specifications provided
the far-field boundary is located at a distance of 1.5 cavity heights or more
from the aperture plane. |

Inspection of the predictions shows that flow unsteadiness similar to
that observed in [30] arises for values of Gr > ]06 for‘a/b =1 and a = 0°.
The unsteadiness appears as a sequence of recirculating eddies or "hot spots"
which originate at,thé edge of the cavity bottom wall along which they are
made to flow towards the cavity back wall where they rise. Changes in cavity
orientatioﬁ produce gtriking variations in cavity flow patterns due to the
interchanging heat transfer roles of the walls as the cavity is inclined.
The calculations presented here for o = 20° and 45° show clearly that thermal
losses diminish with increased values of the inciinatidn angle o due to
stable stratification of the flow and decreased unsteadiness. For Gr > 107
and for values of a = 20° and 45° strong under-relaxation of the calculation
variab]és was required to retain numerical stability. ﬂnfortunate]y, this
practice reduces the rate of convergence of the calculation scheme and
makes it costly to use. |

The effect of 1n;reasing Tw - T; in thermally driven cavity flow is tb
enhance heat losses from the top wall while reducing corresponding losses
from the bottom wall. The-latter effect is explained by thé reduced capacity
qf fluid elements to remove heat from the bottom wall in the cavity where
they are constrained ;o remain by the external flow while their temperature
 increases. Finally, %he average, Nusselt nuhber is seen to increase with
increasing Gr numbér while it decreases with increasing aspect ratio, as

would be anticipated.
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Table-1:: ‘Average Nu | on each cavity wall as-a function of relevant parameters

a/b =]

. . . a
AT (°K) 0° 20° 45°

.16 . (TOP WALL)
.725 (BACK WALL)
.02 (BOTTOM WALL)

Gr 10 50

.640-
.103
.09

.79 . 1.73
.74 2.25
.22 5.86

(82
(]
o
— OO wo —

10 +50

SIS

500 .23
.602

.59

nNO —

.09 2.56 1.75
.29 5.18 2.12
.39 10.30 10.97

10 50

7*

10 50 .05

.66
.53

.06. '3.43
.31 4
.85 6.10

-0 [oole &)

N —t

500

~NoOy Oy

%
310 a0 12.23
24.12

28.92

. |
Mo te 1 [ Wl patzen)
Lwal 1T

Tnstantaneoys values
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Table 2: Conductive plus convective thermal losses across aperture plane |

b(m) Gr .
(AT = 50°K, a/b = 1)
1.085 1072 10*
2.25 1072 10°
4.85 1072 10°
1 ‘ 7

1.50 10~ 310" *

N .
Instantaneous values

w/mz',
o
0° 20° - 45°
666
681 621
582 530 428
496
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Fig. 2 Relative comparison of calculated and measured temperature
- (a) and side-wall Nusselt number (b) distributions in a
thermally driven enclosure of aspect ratio a/b = 0.8 with

Ra = 4 x 108 and AT = 60°K. Experimental data from Duxbury

{shown as points).
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