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ABSTRACT 

A summary is provided of the ·first of three years of experimenta 1 and 
theoretical research on free-forced convection flows in cavity-type solar 
receivers. New experimental and theoretical results are presented and 
discussed. The implication· of these findings, with respect to the future 
thrust of the research program, are clarified as well as is possible at the 
present time. Following various related conclusions a summary and tentative 
schedule of work projected for year two of research is presented. 
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1. SUMMARY OF RESEARCH ACCOMPLISHMENTS FOR YEAR ONE (1979-1980) 

In this section an overview is provided of the first of three years 

of experimental and theoretical inve~tigation 6f free-forced convection 

losses from a laboratory-scale model of a solar thermal cavity-type receiver. 

The main purpose of this work is ·to develop, over a ttiree-year period, 

a numerical calculation procedure capable of predicting two-dimensional, 

recirculating, unsteady, free-forced convection turbulent flows. Heat 

transfer conditions are such that the Boussin'esq approximation does not 

apply. A characteristic demanded of the calculation scheme is that at a 

later date it should be easily extended to allow the prediction of more 

general three-dimensional flowi. 

A stage-wise approach has been taken in the study by delineati_ng 

speci fi.c objectives to be met during the three-year program. Year one, 

briefly reviewed below, has ~ee~ devoted ~o developing and testing a laminar 

version of the calculation scheme. Years two and three will be devoted to 

exte~ding the applicability of the numerical procedure to tu~bulent flow 

and (particularly during year three} exploring its adaption to large scale 

cavity geometries. 

It is mandatory that in·the course of its development the calculation 

scheme should be tested rigorously. For laminar flow this has already been 

done by reference to data available on flat plate and enclosure geometries. 

Similar information does not exist for cavity-type geometries for the heat 

transfer and flow conditions of interest to this work. This has led to the 

incorporation of .a substantial experimental effort in the study which is 

being conducted in parallel with the theoretical-numerical work. The 

experiment consists of a laboratory-scale electrically heated cavity geometry 
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of variable orientation and aspect· ratio. Temperature levels from ambient 

to about 1000°F can be uniformly maintained at ·two heated inside cavity walls. 

Although several orders of magnitude removed from life-size devices in terms 

2. 

of attainable Grashof and Reynolds numbers, the small-scale expe~iment provides 

quantitative ~emperature and vel6cit~ informatioh, as well ~s qualitative 

featu~es of the fl6w obtain~d by means of the shadowgraph. technique. The data is 

i ndi spensabl e for testing the calculation scheme thoroughly. It is particularly 

important to learn how to impose far-field flow conditions in the free-con-

vection flow r.egime. This can be found from experimentation. 

The remainder of this section is divided into two parts, corresponding 

to the experimental and theoretical acconiplishme.nts of year one respectively~ 

A rather substantial acco~nt of muih of the work performed du~ing year ·one 

of research has already been provided in i~e for~ of a mid-term report (July 

1980) t6 Sandia Laborato~ies~ The report includes an extensive literature 

review, covering experimental and theoretical studies ·of flat-plate, enclosure 
. . ' 

and open-cavity flows with thermal ·eff~cts of relevance to this work. In an 

effort.to avo1d unnecessary duplication~ throughout the remainder of this 

communication reference will be made to=the mid-term report as the need arises. 

J 
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1.1 Experimental work 

An experimental apparatus has been constructed and tested, a) to help 

clarify the complex. fluid mechanic and thermal processes taking place in 

high ·temperature open cavity flows and b) to serve as a test base for vali­

dating the calculation procedure for this class of flows. The apparatus 

and its asso~iated instrumentat~on hav~ been described in the July 1980 

mid..:t"erm report. A brief summary is giveri below. 

Existing literature provided little help for the desi_gn of the 

experimental equipment. This accounts~ in part, for the delays incurred 

during its fabrication. In the final.design, the cavity has a fixed length­

to-height ratio (frontal view) equal· to 5.70; to encourage two-dimensional 

mean flow. The cavity cross.:.section' (side ·view) is rectangular, with a 

continuously variable depth-to-height aspect ratio ranging from 0 (flat plate 

c6ndi.tions) to 1.40 (deepest cavity condition). Th~ cavity is 23 3/4" long 

and 3 11/16" high. 

Side walls made of 1/8" borosilicate glass plates a.11ow optical probing 

·of the cavity along its length (sp~n-wise direction). Strip heaters imbedded 

in the bottom and back inner cavity· walls allow temperatures of about 1000°F 

to be achieved at these walls. To date th~ apparatus has been tested at a 

maximum wall temperature of 750°F. Cruciform arrays of thermocouples on 

each of th~ three inner walls permit monitoring of temperature conditions 

there. 

Tha heated inner wa 11!; of the cavity are made of 1 1 /4" thick copper 

plate.· The non-heated wall is 1/4" thick. copper. These walls are surrounded 

by not less than 2" thick Fiberfrax Duraboard insulation. The main frame 

supporting the copper plates and insulation is made of 1/4" aluminum plate·­

except for end walls which are 1" thick. A steel harness, allowing for 
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variable cavity orientation, pivots on brackets mounted on the aluminum 

end walls. The whole of the test section is supported by a steel stand.· 

This stand has a pulley arrangemerit which allows tilting of the cavity 

betw.een -60 and +60 degrees with ·respect to gravity. 

Experiments co~responding to free-convection regime in the cavity are 

presently being performed.· These are described in section 2 of this report. 

Free-forced.convection experiments have been moved frcim year one to year 

two of research and will be carried out in the Mechanical Engineering 

Department subsonic wind tunnel. Carpentry and electric power ·modifications . . 

to the wind tunnel have.beeri ~ompleted which allow the in~lusion of the 

cavity and its stand in the large cha~ber preceeding the coritraction section. 

Glass windows on the sid~s of the wind iunnel allow optical access at the 

level the cavity will stand. The windows are large enough so that ca~ity 

cross-section and ori~ntation may be vari~d over full ranges while the 

cavity remains.within the ffeld of view~ 

Testing of the apparatus has been concluded. It has been verified 

that all aspects of mechanical design and electrical operation (heaters, 

power control units and thermocouple ~easurements of temperature) are in 

working condition. 

4. 



5. 

· 1.2 Theoreticai work 

The development and testing of the numerical procedure was accomplished 

by subdividing the work of year one into sequential tasks. The framework 

serving as the algorithm basis for this study was the two-dimensional, elliptic, 

steady state TEACH c~lculation procedure from Imperial College, London. Prior 

to extending the procedure to encompass the class of flows of interest her~ 

the TEACH code was streamlfned and debugged. The conservation equations 

modeled in the origi~al algorithm-were then extended.to include unsteady 

terms. This required that the solution algorithm be modified in order to 

be able to calculate iteratively in the time domain. 

The complete set of conservation equations modeled in the new algorithm, 

their origin and justification a~d their appiica~ility to this work have been 

discussed in .detail in·i.:theJuly 1980 mid-term report. Suffice it to remark 

here that the equ~tions de~~ribe those types of flows wherein high frequency 

pressure oscillations are neglected· but large thermal variatfons are allowed. 

Thus, while the equations are not Boussinesq-approximated, density is essentially 

a function of temperature only. This avoids the time'-step limitations imposed 

in any numerical effort to trace sound waves. Rigorous forms are used for 

the momentum and continuity equations. Auxiliary relations for physical 

properties and the ideal gas law close the system of equations modeled. 

Testing 9f the expanded code, henceforth referred to as REBUFFS*, was 

rigorously conducted with particular emphasis placed on thermally driven 

laminar flow along flat plates and in rectangular enclosures. The results . . . . . 

and discussion of the vaitdation process are carefully detailed in the 

July 1980 mid-term report. 

*Acronym for: Recirculating s·uoyant and forced flow ~olver. 



The validated scheme was applied to predict thermallydriven flow in 

open cavities of rectangular cross-section. To do this it was neceisary to. 

prescribe appropriate far-field conditions for velocity and temperature. 

6. 

In the .first s~t of calculations,. normal derivati~es of temperature ind 

velocity at the far-field boundaries were set equal· to zero; except for 

temperature which was set equal to the .ambient value at .. the bottom inlet 

far-field plane. Numerical experimentation showed that the cavity flow was 

insensitive. to perturbadons purposefully induced on the far-field boundaries. 

This is due to the. strong local determination of flow in the cavity.· Neverthe­

less, in an effort to produce a. more realisti~ pi~ture of the far-field flow 

a different far-field boundary specification for velocity was used. The 

approach '(together with resufts and discussion,.) is described in the appendix 

and is based on the notion that the far-field flow shou.ld be both incompressible 

.and irrotationa1. 

Among the desireable new features included i.n the REBUFFS ccide is an 

improved differ-encing.technique for convection terins in the transport equations. 

The use o~·quadratic upst~eam interpolation as opposed to hybrid differencing 

permits stability of the ca lcul ati on scheme for high va 1 ues of the Peel et 

num~er while retaining second order ~c~uracy in the computations. The 

procedure and its improvements are documented in .the July 1980 mid-term 

report. It should be remarked that the higher order scheme appears to 

resolve time-dependent recirculating structures in open cavity flows in more 

. detail, at a given v~lue of Grashof number, than the hybrid scheme. 

A matrix of open cavity flow calculations has been provided in the 

July 1980 mid-term report for the following ranges of relevant parameters: 
4 7 . 

10 ~ Gr ~ 3 ~ 10 , 6T = 50 and SOOK, a/b = 1/2, 1 and 2, and Pr = 0.73. 

Flow field calculations are i~ good.qualitative agreement with the cavity-flow 



vi sua 1 izati on results obtained so far, although .the 1 atter appear more unsteady 

than the former. It will be especially important to establish experimentally 

the nature of the far-field flow in order to determine the most appropriate 

treatment of velocity ~omponents at .the far-field boundaries. 

In summary, a time-dependent, two-dimensional, elliptic flow calculation· 

·procedure has been developed. It has been found that an appropriate formula­

tion of the far-field boundary conditions is required in order. to predict the 

far-field of an open cavity flow. However, local events inside the cavity are 

essentially independent of far-field conditions if the latter are imposed at . 

a distance far-enough removed from the cavity (typically about two cavity 

widths). The ca 1 cul at ions verify the strong dependence .of ve 1 oci ty and 

temperature on geometry cross-section and inclination. Quantitative checks 

between predictions and measurements of the temperature field are necessary 

and underway. · 
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8. 

2. NEW EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental component of this work is now under way in full force. 

Some of the results obtained to date, for free-convection are presented here~ 

A work schedule for the experimental program during year two, includfng the 

free-forced convection flow regime, is tabulated in section 5 of this report. 

Typical flow visualization results obtained using the shadowgraph tech­

nique are shown in Figure 1. These correspond to a cavity aspect ratio of· 

one, with the cavity tilted to 0, 20 and 45 degrees, respectively. The 

shadowgraphs were obtained by shining an intense point source of light from 

a xenon tube along the spanwise lerigth of the cavity. The magnified image 

projected onto a piece of vellum (drafting} paper, was photographed with a 

movie camera and with a 35mm SLR camera. The movie films* immedia~ely convey 

a "feeling" for the scale and intensity of the fluid motion which is not 

apparent in the still ~hotographs shown in the figures. 

Time-averaged measurements of wall temperature were taken at the positions 

defined in Figure 2 and Table 1. The data for a nominal temperature of 400°C, 

and air aspect ratio a/b = 1, is shown in Table 2 for·three angles of the 

cavity, a= 0°, 20° and 45°. As expected, the temperature of each wall is 

very nearly uniform. This is true even of the top wall, which contains no 

heaters and receives heat only from the air in the cavity and, by conduction 

and radiation, from the heated back and bottom walls. Thus, in the numerical 

calculations, we may accurately impose boundary conditions of uniform tempera­

ture on each wall. 

A most interesting characteristic of the cavity flow is the inherent 

instability of the boundary layer generated on the bottom wall by the flow 

entering the cavity at the aperture plane. The shadowgraph technique sharply 

delineates the region of interaction between the heated boundary layer fluid 

a~d the cold fluid entering the cavity. It is remarkable that, in spite of 

*These are available at B cost covering duplication and postage to destination. 



very careful attempts to ensure a purely free-convection regime*, for all the 
. . 

experimental conditions the boundary layer "flaps"; the flow separating from 

the. sharp lower lip of the cavity is unstable and will oscillate; even at 

very low Grashof numbers. At high Grashof numbers, the numerical calculations 

show osc{llations in this s~me·~eneral region, but it seems that ihe 

frequencies of experimental and computed osci.llations are q·uite different. 

The position of zero velocity in the aperture plane is a weak 

function of cavity orie~tation as ·is shown. by th~ plot giver in Figure3 

For all orientations the flow enteri.ng the cavity i~ considerably more 

streamlined than that emerging. Buoyancy driven motions along inclined walls, 

especi~lly the back wall, cause mixing of the flo~. For downward facing 

orientations a large eddy, the .size of which increases with inclination 

angle, is· trapped at the upper wall corner. Thermal stratification in the 

in~linsd orientations appears t6 stabilize the flow. Nevertheless, lumps 

of heated fluid are seento emerge sporadically from the cavity. Whether 

this is a predictable time-evolving process governed by the equations of 

two.-dimensional motion, or a random, turbulence related, phenomenom, is not 

clear at the time of writing. 

Numerical calculations reveal the existence of two large recirculation 

zones or eddies in the cavity for a= 45 degrees. The flow visualization 

results appear to confirm this prediction although for conditions which do 

not correspond exactly to the calculations. 

Measurements of temperature in the aperture plane have not yet been 

obtained. In principle a resistance thermometer made·of fine tungsten wire 

could yield measurements of temperature which would not require corrections 

.*The c~vity is protected from sideways ventilation by a tent-like enclosure 
mad~ of cloth which allows entrainment of air through the bottom and its 
exit through the top. 
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due to radiation and convection-induced thermal losses. However the con­

struction of such a probe appears to be difficult and costly and its.viability 

is presently being ~sses~ed. In the meantime~ a chromel~~lumel thermocouple 

probe span~ing the length of the cavity is being checked as a possible 

alternative for making measurements of temperature in the aperture plane. 

Two probes of different wire diameter are being tested. Some preliminary 

data for the larger diameter probe (0.030 11
) are shown in Figure 4. The 

temperature ~lot shows qualitatively·correct trends. An estimate of the 

amount of error incurred in the measurements is indicated in the figure. 

Thus, in the aperture .plane at the location where flow enters the cavity 

the thermocouple should have measured ambient temperature but radiation and 

convection errors combined have produded a readi~g 7.5°C in excess of this 

value. Theoretical calculations based on an error analysis given in appendix 

A8 of the mid-term report predict a reading error of 35% for a wire. 0.030 11 in 

diameter. The error estimated from Figure 4 is about 31%. The error an·aly$1S 

indicates that a wire 0.003 11 in diameter would be subject to an uncertainty 

10. 

of about 20%. Measurements of temperature will be made with this wire thickness 

to.demonstrate the viability of the thermocouple approach as a suitable 

alternative to the original resistance thermometer proposal .. 



3. t'JEW .THEORETICAL RESULTS AND DISCUSSION 

In the July 1980 mid-term report a considerable amount of numerical 

information was provided ·concerning the flow and temperature fields within 

a heated open cavity. The results were presented as vector velocity and 
. . 

temperature plots for a range of Grashof numbers (1 o4, 1 o5, 1 o6 and 1 o7), 

two dimensionless temperature differences, .(t.T/T
00 

=·50/288 and 500/288), a.nd an 

aspect ratio of one. The fluid properties were thos~ for air and ~ere taken. 

as functions of temperature with T
00 

= 288°K (except for the sp~cific heat at 

constant pressure). 

A preliminary discussion of these results was also provided in· the 

report. However, since the submission of the report, new computations have 

been performed. They are included here with a detailed discussion and are 

presented in the form of an appendix. A summary of important findings is 

listed below. 

1. Accurate far field specifications of boundary conditions for velocity 

are necessary for resolving properly the flow field in front of the 

cavity opening. However, the flow field within the cavity is 

essentially insensitive (for the conditions computed) to the far 

11. 

field boundary condition specifications provided these are sufficiently 

removed from the aperture plane (about two cavity heights). 

2. The quadratic upstream interpolation technique appears to be superior 

to the hybr1 d d1 fference technique fur· C011vect i ve terms. The 

former reveals time dependence of the flow, which is suppressed by 

the numerical diffusion of the latter. 

3. Cavity aspect ratio and inclination angle strongly influence heat 

losses for fixed Grashof number and temperatvre difference. In 



general the mean Nusselt number increases with Grashoff'number, and 

is larger for shallow cavities than for ·deep. This is especially 

the case when the cavity is tilted down. A tabulation of the· 

various parameters affecting heat transfer is given in.the 

appendix. 

Presently, calculations are being performed for experimental conditions 
. . 

of cavity flow with free convection. The question of what is the most appro-

priate treatment of· far field boundary conditions is also being considered.· 

Both these issues will be addressed in a future conmunication. 

Finally, it has been found in the numerical work that for high Grashof 

numbers (Gr ~ 1.07) the calculation procedure requires under-relaxation of 

buoyancy effects to ensure stability. This, however, means that it takes 

longer for the procedure to satisfy a pre-established convergence criterion 

and, consequently, that the calculations are more costly . 

• 



4. CONCLUSIONS 

The following major conclusion's may be drawn from the wor.rk accomplished 

during the first year of this research project. 

1. There is, to date, no body ·of fundamental e·xperimental data per-
. . 

taining to thermally driven flow in open cavities of simple geometry 

(with or without forced convection effects superimposed) which serve's 

th~ purposes rif: a) helping to understand the fluid mechanical and 

thermal proces~es taking place;· b) guidi_ng the model i.ng of those 

flows, especially in turbule.nce regime; c) testing the worthiness 

of possible calculation schemes. 

2. A laboratory scale experimental apparatus has been constructed and 

tested which will alleviate the situation pointed out in 1. above. 

Preliminary flows v;'sua 1 i zati on results and temperature measurements 

are .in qualitative .agreement with predictions in free-convection 

regime. 

3. A quantitative technique for measurement of temperature using 0.003" 

chromel-a 1 ummel thermocouple probe is being tested for substitution 

of the ori gina 11 y proposed resistance thermometer concept. 

4. A two-dimensional, transient, non-Boussinesq calculation procedure, 

the REBUFFS code, has been developed, tested and applied to vertical 

plate, open and enclosed cavity flows in laminar regime. A solution 

procedure capable of predicting general thermally driven cavity flows 

is very desirable since, if it can be used with confidence, it is 

considerably more economical to run than the equivalent amount of 

experimentation. The REBUFFS code can readily be extended to 

encompass three-dimensional flows. During year two of research it 

will be generalized to predict two-dimensional turbulent flows. 
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5. Both experiment and ~alculations show that the flow field in an 

open cavity can be time~dependent and that the recir~~lating nature 

of the· fiow is a strong functio~ of cavity aspect ratio, orientation 
M . . . . . 

and Tat fixed Gr. The influence 9f variations in these parameters 
00 . 

can be systematically investigated with a calculation scheine over 

the ranges of Grashof and ilT for which it is reasonable to expect 

lcimi riar flow. 
6. Currently further development of the scheme is underway toa11ow 

stably convergent calculations at high values of the Grashof number ... 

14. 



5. SUMMARY AND PROJECTED RESEARCH SCHEDULE FOR. YEAR TWO (1980-1981) 

The numerical component of this research has progressed satisfactorily 

and is presently on schedule. The calculation pf experimental test cases 

has been postponed u~til experimental data is available but a matrix of 

releva~t test cases has be~n computed and documented, in part, in the 

July 1980 mid-term report pertainihg ~o this contract. Current. effor~s 

are being dedicat~d to reviewing literature related to the turbulence modeling 

approach to be pursued in this work (see original proposal for· details con­

cerning the model). 

By contrast to the numerical work the experimental component of the 

study has been set. back relative to the schedule originally anticipated. 
) 

The main cause for the delay has been the construction of the apparatus which 

has proven to.be an elaborate ~nd sophisticated piece of equipment. 

Flow visual izati.on and temperature'·;measurements have been ·.commenced in 

free-convection regime. Flow visualization and temperature measurements in 

free and free-forced· convection modes wi'll be conducted prior to point­

wise measurements of velocity in free-convection regime. 

5.1 Ex peri menta 1 Work 

The main tasks.to be accomplished under this headtn·g during year two of 

research are: 

1) Completion of flow visualization and temperature measurements of 

cavity flow in free convection regime. 

2) Commencement and completion of flow visualization and temperature 

measurements of cavity flow in free-forced convection regime. 

3) Commencement and completion of point-wise measurements of velocity 

15. 

of cavity flow in free and free-forced convection regimes. Addittonal 

measurements of temperaturP. to correlate with velocit.v results. 



It is anticipated that use will be made of an existing dual velocity 

component laser-Doppler velocimeter facility linked to an automatic data 

acquisition system run by a PDP 11/34 minicomputer. It is fairly clear 

how the facility can be used to make the free convection meas.urements of. 

velocity. However, .the use of the facility for obtaini_ng corresponding 
. . 

measurements in the free-forced convection regime requires further consid-

eration since the wind~tunn~l, ~herein the cavity_will. be placed for the 

forced convection experi~ents, is at a considerable distance from the 

velocimeter's location. It is very unlikely that the rather large veloci­

meter facility can be disassembled and transported to the wind-tunnel site. 

It currently serves five on-going experiments* where it is presently located 

and for which it was originally conceived. Alternate_ways of measuring 

v~locity in and about the cavity when in the wind tunnel are being considered; 
. . 

among them laser-Doppler velocimetry with a sim.ilar but more portable system, 

vane anemometry and streak photography. 

5.2 Theoretical Work 

In parallel with the experimental w~rk further development of the 

calculation code for predicting open cavity. two-dime-nsional flows will be· 

pursued. Aspects of the code which require further development and testing 

are: 

a) ·Inclusion of forced convection in the flow 

b) Inclusion of turbulence in the flow and its modeling 

c) Formulation of appropriate density weighted transport equations 

While point (a) is fairly simpl~ to deal with, point (b) will require 

careful investigation and a relative evaluation of turbulence closure mo~els 

of relevance to cavity flows with free-forced convection effects. Guidance 

*Including the free convection cavity flow regime of interest to this work. 
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exists in the literature concerning possible paths for developing {b). and 

{c) above. A detailed exposition o~ the turbulence modeling approach most 

likely to be pursued in this work has been given in the original proposal .. · 

It is quite likely that the development and testing of {a), {b) and 

{c) above will run into year th~ee of research .. Development and testing 

of the turbulence model. will be guided_ not only by present expe_rimentation 

but by existing data relating to cavity fl~ws and cavity experiments such 

as the one being conducted by Dr. J. Kraabel and associates at Sandia 

Laboratories, Livermore. Finally, it should be noticed that further 

developments of the calculation procedure, its testing and extended runs 

will be performed on the CDC 7600 machine at the Lawrence Berke 1 ey 

Laboratory. 

5. 3 Comment on Changes in Manpo\'Jer 

A new Ph.D. graduate research student, Mr. Wai Min To, has been selected 

to continue with the numerical and. turbulence modeling aspects of the work. 

Mr~ Kang Shin Chen will continue with the experimental component of the 

study with the assistance of Ms. Lori Miller {M. Sc. Candidate). 

Professor Sherman will be on sabbatical leave during the ~Jinter and 

Spring quarters 1980-81 but will be available for consultation in relation 

to this research. 
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Figure l. Shadowgraph flow visualization 

of heated cavity. (TBAC - T00 )/Too = l .28, 

Gr 5 x 106, (a) 0° , (b) 20° , (c) 45 ° . 

T ~ 25 °C = 298°K . 
00 
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Figure 2 

Coordinate System for Model Cavity 

x = 0 on the top surface of the bottom wall. 

x = b = 3.69 11 (9.37 em) on bottom surface of top wall. 

y = 0 on the front surface of the back wall. 

y = a (adjustable depth of cavity) on aperture plane. 

z = 0 on the mid-span plane. 

z = + c = + 10.5 11 (26.7 em) on the side planes. 

22 
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T.C.# X a-y z NOTES 

{inches) {inches) (inches) 

0 0 0.22 0 Bottom 

1 0 2.88 0 Wall 

2 0 6.2S 0 
3 0 9.20 0 
4 0 4.S6 -2.SO 
s 0 4.S6 2.50 
6 0 4.S6 -s.oo 
7 0 4.56 5.00 
8 0 4.56 . -7 .so 
9 0 4.S6 7.SO 

10 1.2S a 0 Back 
11 3.50 a 0 Wall 

12 2.38 a -2.SO 
13 • 38 a 2.SO 
14 2.38 a -5.00 
lS 2.38 a s.oo 
16 2.38 a. -7 .so 
17 2. 38 . a 7.SO 

18 3.69 0.28 0 Top 
19 3.69 1. 7S 0 Wall 

20 3.69 3.25 0 
0 

21 - 3.69 4.81 0 
22 3.69 6.38 0 
23 3.69 7.86 0 
24 3.69 9.35 0 
25 3.69 4.81 -2.SO 
26 3.69 4.81 2.50 
27 3.69 4.81 -5.00 
28 3.69 4.81 5a00 

Table 1 

Locations of Wall Thermocouples 
(See Figure 2 for Definition of Coordinates) 
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T.C. # a.. = oo a. = 20° a. = 45° Notes 

0 395°C 385°C 390°CJ exposed to flow 

1 399 390 397 

2 403 397 412 '"'I 

3 403 397 417 

4 400 393 408 

5 400 393 404 behind E 
0 

6 396 391 400 back ...., ...., 
0 

7 398 391 402 wall a::l 

8 394 387 397 

9 394 388 399 ..., 

10 393 398 400 

11 392 398 400 
12. 398 395 398 

13 393 399 401 

14 dead d.ead dead ~. 

u 

401 
IQ 

15 392 398 a::l 

16 382 386 389 
. ' 

17 390 396 399 

18 333 337 342 } : 

19 328 335 340 exposed to flow 

.20 333 339 Q 344 
.... 

21 338 344 348 

22 335 340 345 

23 325 332 338 behind 

24 330 334 339 back 
a. 

25 336 342 346 wall 0 
1-

26 341 346 351 

27 331 337 341 

28 345 351 356 .., 

Taple 2 · 

Typi ca 1 Surface· Temperatures 

a = b = 3.69 



X 
0 1--

Ttop b 
05 

[LX Tbac ~mb 
0!4 

~a~ 
\ Tbot 

0.3 \ 
\ 
\ 
\ 
\ 

02 't-~-i 
01 

0 
30<' 50° 70° 90° 

a ( Degrees ) 

Figure 3. Approximate location of zero velocity position on 

aperture plane: a/b = 1 {b = 9.37 em); Tbot = 402 ± 10°C; 

f = 400 + 4°C· f = 348 +·4°C' f · = 23°C=:296°K; bac - ' top - ' amb 
- - 3 2 6 

Gr = gS(Tb~c - Tamb)b /v = 5 x 10 ; 8 and v evaluated at 

Tf = (fbac + famb)/ 2. 
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7.5°C In excess of Tomb ( 31% er.ror) 

0.1 0.2 

I -.!. 
b 

OS 06 0.7 as 0.9 

Figure 4. Temperature profile in aperture plane using 

0.030" Chromel-Alumel thermocouple wire; a/b = 1, a = 0; 

average wa 11 temperatures, Grashof number and geometry 

specified in Figure 3. 
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ABSTRACT 

Numerical results are reported for thermally-driven laminar flow in 

two-dimensional rectangular geometries wfth one plane, the aperture plane, 

removed. Fi tiite difference express 1 ons are derived· from a set" of approximated 

transport equations in which large temperature and density variations are 

allowed but high frequency pressure ··oscillations are not. The approach allows 

small time-step limitations to be removed from the calculatiOn procedure. A 

second order accurate quadratic upstream interpolation technique is used for 

the finite differencing of convection terms in the transport equations thus 

reducing numerical diffusion error. 

Parameters varied in the calculations were cavity aspect ratio and 

inclination angle with respect to gravity, inside wall temperature and 

Grashof number. A value of Prandtl number corresponding to air was fixed 

(Pr = 0.73}. 

lhe calculations reveal various and complex recirculating flow structures 

c 

in the cavity which are a strong function of cavity aspect ratio and inclination 

angle. Thus, inclined cavities with a downward-facing aperture plane show one 

or two (counter-rotating} vortices, depending on the inclincation angle. Flow 

unsteadiness similar to that observed experimentally by Humphrey, et al. [31] 

appears at Gr > 106 and also depends strongly on the cavity geometrical 

characteristics and orientation. For cavities with the aperture plane aligned 

with the gravity vector, the unsteadiness appears as a periodic series ·of small 

11 bubble-like 11 vortices which sweep the bottom cavity wall. These vortices 

are sequential_ly driven by the bulk convective motion of air entering the cavity 

. towards the back wall where they rise. For downward-facing cavity flows the 

unsteadiness is dampened and appears not to exist for angles larger than 20 
6 degrees and Gr < 10 • ln general, the results show that the aver(ige Nussel t 



number of a cavity decreases with increasing ,aspect ratio and inclination 

angle and with decreasing wall temperature and Grashof num~er. 

It is an interesting feature of the prob.lein examined that, although th~ 

flow field approaching the cavity is a function of the type of far-field 

conditions specified, the flow fields within the cavity and _in the-aperture 

plane are determined mainly by loca~ .heat transfer events. Predictions of 

the cavity fluid mechani tand heat trarisfer characteristics are relatively 

insensitive to the far-field boundary condition specification provided it is 

made at a distance 1.5 cavity heights or more from the ap~rture plane. 
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NOTATION 

A· J 

a 

b 

g. 
1 

k 

L 

M 

·convection~diffusion coefficient· in difference equation 

cavity depth dimension 

cavity aperture plane dimension 

mass flux through cell wall 

specific heat at constant pressure 

mass flux 
gB(T -T )b3 

( . w
2 

co ) Grashof number 
. . \) 

acceleration due to gravity 

thermal conductivity 

length of vertical flat plate 

total mass i.n an enclosed cavity 

m mass cell in balance 

Nu Nusselt number (defined by equation 31) 
. l..lC 

Pr Prandtl number (~) 

p pressure 

Ra Rayleigh number (Gr x Pr) 

* R . gas constant for. air 

S source term in difference equation 

T ·temperature 

t time 

u i ve 1 oc i ty component 

v volume 

a cavity inclination angle with respect to gravity vector 

8 coefficient of volume expansion 

r transport coefficient in difference equation 



Notation continued 

£ dimensionless temperature perturbation parameter 

J.l viscosity 

v kinematic viscosity 

p density 

T • • stress tensor lJ 

¢ dummy variable in difference equation 

~ stream function 

Subscripts denote 

c cold 

d dynamic component 

H hot 

i ith component coordinate 

j jth component coordinate 

max maximum value 

o initial value 

P node P in the calculation domain 

W wall value 

x x component coordinate 

y y component coordinate 

oo ambient value 

Superscripts denote 

n 

* 

**· 
.. 

average value 

time step n 

value of past iteration (within n) 

value of present iteration (within.n) 

correction va 1 ue 

g 



h 

Symbols 

6 finite increment 

v2 Laplacian operator 

~ summation 



INTRODUCTION 

The Problem uf Interest 

·Flows driven by thermally induced buoyant forces, or which are 

significantly affected.by buoyant forces, arise in many situations, both 

natural and man-made. Much effort has been expended in the experimental 

and theoretic~l study of these flows. The most extensively investigated 

geometry is almost certainly the semi-infinite flat plate, vertically 

aligned or inclined. Recently, considerable attention has been given to 

understanding better the problem of thermally driven flow in rectangular 

enclosures. These studies have be~n strongly motivated by the need to 

quantify the relative contribution of free convection to the heat transfer 

between a pair of facing vertical walls. Such a configuration is of 

relevance to, for example: coo.ling of nuclear fue.l rods, ventilation and 

energy conservation in buildings, fire spread in rooms and corridors, 

reactor insulation, etc. A tabulated review of over 100 references per­

taining to these flows is available in the report by Humphrey et al. [1]. 

Buoyant flows within ~nd about cavities* with internal surfaces at 

high temperatures have received comparatively little attention, even though 

such heated cavities provide an attractive design option for Solar Thermal 

Central Receiver Systems (STCRS). These. systems have been identified as 

a possible technological pathway for generating high-quality energy, 

essentially free of undesirable chemical pollutants, from a virtually in­

exhaustible source. However, it has been shown [2] that the performance 

and efficiency of a life-scale STCRS will be s~gnificantly affected by the 

thermal losses it sustains. Of these,, the most difficult to quantify are 

* Defined here as a rectangular enclosure with one face removed. 

1. 



free-f9rced convection losse~, which are comparable in magnitude to los~es 

incurred through radiation effects. 

Numerical calculations of thermally induced flows past ·cavities have 

been performed by Penot [3] and Orlandi, Onofri and Subetta [4], who used 

Boussinesq approximated equations and solved for streamfunction and 

vorticity. The results of these studies show clearly the importance.of 
.• 

~.· 

buoyant forces in cavity flow heat transfer. In particular, Penot· [3] has 

demonstrated the dependence of thermal losses on cavity orientation as well 

as the existence of time-dependent large scale variations in the flow for 

specific ~onditions of Grashof number and inclination angle. 

Non-Boussinesg Calculation Procedures 

Because it reduces the number of dimensionless parameters on which the 

flow depends, the Boussinesq approximation is desirable. It cannot, however, 

be justified for the high energy flux flo~s of interest to this work, in 

which very large spatial variations in density occur. Only a few predictive 

studies of thermally driven flows in closed and open ~aviti~s have not 

employed the Boussinesq approximation. Several of these are briefly dis­

cus~ed below. 

A perturbation approach, in terms of the parameter 

E: = 2(.TH- Tc}/(TH + TC}' was used by Rubel and Landis [5} for predicting 

thermally driven flows in enclosures~ By developing the Navier-Stokes 

equations in a power series expansion in £ and retaining zeroth and first 

order terms, density variations were accounted for in the inertia terms. 

Thus, for example, these authors observed an asymmetrical shift of the 

2. 



uni-cellular motion displayed by the streamfunction towards the lower 

colder corner of their enclosure. 

Unfortunately, the power series expansion approach is severely limited 

by the need to pro.vide and evaluate an increasing number of terms as E 

increases. Consequently, methods based on a direct numerical approach are 

more appealing. It appears that Polezhaev [ 6] was the first to pursue a 

numerical approach based on an algorithm for high speed compressible flow. 

In Polezhaev's formulation time derivatives are retained in the Navier-Stokes 

equations and pressure is replaced by the product pT wherever it appears. 

The calculation procedure involves using a two time-level step scheme 

fractional in space. Each of the. fo~:~r variables (ux' uy, T, p) is calculated 

separately from the rest, leading to independent tri-diagonal matrices. 

The solution of .the equation system in this formulation requires eight 

intermediate steps in order to advance one full st~p in time. Polehaev's 

predictions are in good qualitative _agreement with the results of Rubel and 

Landis [ 5] and Spradley ·and Churchill [ 7 J. for values of Ra ~ 105. Central 

differencing of_convective terms and the artificial decoupling introduced 

by the sequential treatment of variables are the cause for poor results for 

Ra '> 106 Although mentioned in the paper, the restrictions imposed by 

high frequency acoustic phenomena and corresponding time step limitations 

are not discussed in detail. 

Spradley and Churchill.[ 7] have studied more completely the role of 

hfgh frequer•~Y motions in thermally driven enclogure flows. They showed 

that heat is transferred by pressure waves which originate from a step 

change in temperature at time t = 0 at the heated vertical wall in the 

enclosure. However, their numerical scheme, like that of Polezhaev, was· 

severely constrained by time step limitations. 

3. 



In a ·study of three-dimensional enclosures, Le Quere and Alziary [ 8] 

avoid the time step limitation by using an implicit numerical scheme in 

which non-linearities in time are dealt with according to the Briley-McDonald 

[ 9] linearization procedure. The resulttng equations are solved by the 

Douglas-Gunn [10] ADI procedure .. Although the scheme is very stable, analysis 

of· the formal truncation error due to factorization in space shows that it 

is uieless to choose arbitrarily large time steps. Thus, the op~imum time 

step was determined ·to be 100 times the CFL compressible 1 imit. 

The three numerical approaches outlined above apply to flows in.which 

density and pressure variations are strongly coupled. They require small 

iime steps to describe the propagation of pressure waves at acoustic speeds. 

In a less restrictive scheme, Leonardi and Reizes [il] solve elliptic forms 

of the momentum equations formulated in terms of streamfunction and vorticity 

using th.e false transient method developed by Mallinson and De Vahl Davis 

[12] .... Although pressure .is explicit]:y absent in the equations, in order 

to determine density from the equation of state they chose to solve a Poisson 

equation for. pressure. This equation, together with the elliptic equation 

relating· str.eamfunction to vorticity, makes-it necessary to solve two Poisson 

equations per 11 time step 11
, thereby impairing the efficiency of the scheme. 

It has been shown by Rehm and Baum [13] that in very non-adiabatic, 

non-dissipative buoyant perfect gas flows wherein the time scale associated 

with heat addi.ti.on and resultant fluid motion is necessarily 1 ong compared 

4. 

with the transit time of an acoustic signal across the enclosure, acoustic 

oscillations due to elastic properties of the fluid may be ignored. These authors 

derive a set of.simp·lified time-dependent,transport,equatior:~s character:ized by a 

spatially -uniform mean pressure appearing in both the equations of energy and 



of state, with the spatially non-uniform component of pressure appearing 

only in the momentum equation. Thus, in problems for which their formulation 

is accurate, pressure remains almost crinstant in space while density and 

temperature vary significantly. The arguments formally set·forth in the 

analysis by Rehm and Baum were .intuitively applied by Forester and Emery [14] 

and Ku, Doria and Lloyd ![15] in respecti~e elliptic calculation schemes 

which were formulated in terms of primitive variables and in which time 

dependent terms were retained. The enclosure calculations provided by 

Forester and Emery are mostly for Ra = 104 and were obtained using central 

difference approximations for. the convection terms. The authors were 

interested in a cryogenic application and re~ognized that the extension of 

their calculation procedure to higher Rayleigh number flows would require 

an improved finite difference scheme for convection. The numerical procedure 

employed by Ku, Doria and Lloyd is based on a hybrid differencing scheme 

(upwind/central) for convection terms. As will be shown below, such a 

scheme. yields accurate results for Ra ::; 106 provided sufficient grid refine­

ment is used in calculating the flow field. However, this approach becomes 

expensive in tenns of computational time and storage for larger values of 

Rayleigh number; an especially serious limitation in any calculation scheme, 

if, subsequently, it is to be extended to.three-dimensional flows. 

Objectives of This Study 

The present work provides the first of several necessary·steps towards 
. : 

predicting general free-forced recirculating fl~w~ in a~d about s~rongly 

heated cavities (open or closed) of variable orientation and aspect ratio. 

The calculation procedure developed in this study is firmly based on 

an extension of the formal analysis of Rehm and Baum [13]. It is elliptic 

5. 



in nature, but retains time dependence by- treating transient terms as extra 

source terms in the formulation. Thus, for ranges of the variables for 

which a steady state solution exists~ the solution can be calculated by 

simply setting a very large time step in the calculation scheme. The 

Solution is then attained, iteratively, within this single time step. 

The implementation of a higher order difference scheme for convection 

terms, based on the quadratic upstream interpolation approach suggested by 

Leonard [16], allows accurate computations to be performed in convection­

dominated flows with coarser grids than are allowed by an upwind/central 

hybrid difference approach. In particular, for high values of~Grashof 

number (Gr ~ 106) it has been found .that more detailed resolution of the 

unsteady flow field is predicted by the higher order scheme. Finally, 

the procedure developed here (unlike that of Penot) ·solves for primitive 

variables dttectly and can readily be extended to ~redict three-dimensional, 

buoyant, time-dependent flows. 
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GOVERNING EQUATIONS. AND BOUNDARY CONDITIONS 

, The set of elliptic partial differential equations governing a 

. single-phase, compressible, variable property flow is given below in 

(repeated) sub-indexed notation form. 

Continuity 

££. + _a_ ( pu . ) = o 
at axi 1 

Momentum 

au . a u . . ~ . aT 1· . p (-1 + u . _1 ) = - ..iE_ + p g . + ·_l_J_ 
at J ax. a xi 1 ax. 

J J 

In equation (2) the appropriate expression for the stress tensor 

(Tij) is given by: 

Energy 

(1) 

(2) 

(3) 

The above equations, together with an equation of state for the fluid 

and auxiliary relations for fluid properties (lJ, k and cp)' specify a 

system of eight equations with eight unknowns in a 2-D flow. The 

appropriate equation of state for our applications is the ideal gas law 

7. 
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*. 
p = p R T 

where R is the gas constant for air in this study. Auxiliary relati-ons 

for the physical properties· of air are of the. general form: 

c = c {T) p p 

1J = ll (T) 

k = k (T) 

(5) 

(6) 

Specific forms of the physical property relations for air which were used 

in this work are given by the U.S. Standard Atmosphere [17] for ll and 

k. c was fixed to a const"ant value taken from [18]. 
. p . 

If, for the present flm1, estimates of velocity and of. the gradients of 

temperature and velocity can be safely drawn from the known behavior of 

laminar free-convection boundary layers\ it is easily shown that the Rehm 

and Baum equations are those·needed. (For details, see Appendix A3 

of the report by Humphrey et al. [ 1 ]) • The final equations are: 

Continuity 

Momentum 

au. au. 
P ( at1 

+ u j a/) = 
J 

(1) 

(7) 

8. 



with T .. given by equation (3) and the dynamic component of the pressure 
lJ 

field defined as pd = P - P - poogixi 

Energy 

(aT + aT ) a ( k aT ) + ~ 
p cp at uj ax. = axj ax. dt 

. J J 
(8) 

In the above equations p is an average pressure in the flow domain related 

to p and T through the perfect gas law 

* p = p R T (9) 

The above equations, like those of Boussinesq, apply to situations in 

.which the hydrostatic variation of pressure leads to a negl_igible variation 

of density. The way in which the Boussinesq approximation arises when the 

. driving temperature difference ts small compared to the mean temperature 

is given by Rehm and Baum [13]. 

Equations (1,7,8 and 9) have been used in finite-difference form to 

9. 

analyze two-dimensional buoyancy-driven flows in both open and closed cavities, 

with the latter serving as a validation test case. The-appropriate initial and 

boundary conditions are specified below. 

Closed Cavity (See Figure 1-a) 

p uniformly prescribed at t = 0. 

ui normal and tangential velocities set equal to zero at walls and 

prescribed at t = 0. 

T prescribed at t = 0 throughout the flow domain. One side-wal.l 

was kept uniformly hot and the other uniformly cold. The top 

and bottom walls were kept adiabatic or with T variations prescribed. 



Open Cavity (See Figure 1-b) 

p uniformly constant (~ 1 atm.) 

ui normal and tangential velocities set equal to zero at walls. 

~ormal derivatives of ui vanish on planes (1), (2) and (3) or 

specified a~ explained below. 

T (or heat flux) prescribed at all solid walls. Temperature 

prescribed on plane (1), normal derivative ofT vanishes on 

planes (2) and (3). 

It should be noticed that the boundary conditions used for the open 

cavity calculations at planes (1), (2) and (3) are only approximate but 

were of sufficient accuracy for the needs of this work. That this was the 

case was checked by performing numerical tests in which both the positions 

of the boundaries relative to the cavity and the conditions set at these 
\ 

locations (as discussed further below) were varied. While the tests showed 

that the far field surrounding the cavity was sensitive to the boundary 

condition specifications~ the flow ahd heat transfer characteristics within 

the cavity and radially around it (within about one cavity width) were not; 

even for cavity inclination angles of up to 45° with respect to the vertical. 
. . 

In practice, this set of approximated boundary conditions was successfully 

applied within 1.5 cavity widths·of the aperture plane provided far field 

flow details were not required. This was possible due to the strong local 

determination of the flow and h~at transfer characteristics within the cavity. 

10. 

Nevertheless, proceeding along the lines of earlier work by Fernandez-Pelle 

[19] an attempt was made to prescribe more realistic physical boundary condi-

tions in order to obtain. realistic predictions of the far field surrounding th~ 

cavity for a limited number of calculation cases .. This was done .by looking upon the 



cavity as a heated horizontal 1 ine source in an ·infinite, initially homo­

geneous flu1d medium. The boundary layer s9luti-on for the steady laminar 

plume, rising from a horizohtal line source is given in, for example, Yih 

[20]. Thus, the streamfunction in the plume region over the line source 

is: 

3/5 
~· = A~ f(n) · 

1 
(1 0) 

where A is a constant,- X is the coordinate direction vertically upwards 

from the line source and f(n) is a function of the similarity variable · 

n = y/g{x) which tends to a finite constant value as n-+ oo. g(x) is the 

half-width of the·plume rising·from the source. Since the·far field flow 

is irrotational and solenoidal it sat1~fies 

v2 ~ = o (11) 
0 

where ~0 is the streamfunction outside the boundary layer. Boundary 

conditions on ~0 may be.specified in polar coordinates (r,e) around the 

line source. These are: 

a) ~ (r,TI) = 0 ; This assumes that the vertical line extending down­o 
wards from the souice is a streamline~ 

b) -~o (r,O) = ~; (n = oo) ; This matches the inner and outer stream­

functions at the edge of the plume, en~uring that enough potential 

flow is entrained from the surrounding to replace the flow rising 

in the plume. 
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aw o 1 aw o 
c) ar and r as rem~in finite as r +()()for 0 ~ e ~ 1T 

The Laplace equation and these conditions are satisfied by the .simple 

. 
11 separable 11 function 

( 12) 

From this solution boundary,conditions can be devised which imply, 

as. they should, that the entrained flow is irrotational, and solenoidal, 

and that velocity components decay properly with d.i stance from the source. 

This must be done without specifying the "strength", B, of the entrained 

flow, which is determined·by processes inside the boundaries. 

One possibility, which has been exploited, is to derive "radiation .. 
I 

conditions that are satisfied by the solution (12), no matter what the 

value of B. In Cartesian corrdinates (i increases vertically upwards), 

these coriditions are 

d~X .. au 2 U X -.U y 
___J[ ( X y ) --ax = - ay = - 5 2 2 

X + y 

and ( 13) 

These conditions have the additional advantage, that they are invariant 

with respect to rotations of the coordinate axes. Thus, they can be used 

just as they stand for studies of inclined cavities, and they no longer insist 

that any particular ray, e = co~stant, is a streamline. 
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) 

In this work, various computations were made using equations (13) 

for aux/ax and au /ax at plane (1), and for aux/ay and au /ay at plane y : y 

(2), in Figure 1-b. Boundary .conditions for temperature· and for the 

velocity at plane. (3) remai.ned the same as specified above. 
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THE NUMERICAL PROCEDURE 

Finite Difference Equations 

For purposes of der.ivtng appropriate finite difference equations 

it is convenient to recast· the transport equations for momentum and energy 

into the equivalent forms shown below: 

Momentum 

apui a 
~t + ~ (pu.u. 

a aX. 1 J 
J 

au. 
l1 ~) = 

oX. 
J 

apd 
- ~X + (p - P00 ) g1. + Sp + S,, 

a i ,... 
( 14) 

Energy 

apT a ( T _ .!_ _n_) = _1 ~ 
at + -a - P u · c ax . c crt 

xj . J . P J .P 
( 1 5) 

In the above equations the source terms are given by 

( 1 6) 

Equations (l, 14 and 15) may be written in the general form: 

M +_a_ (G. <P - r ~) = s 
at ax . J ax . <P 

J J 
( 17) 
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where G. = p u. and, for: 
J J 

• = u1 (momentum equation recovered) 

r = 1-1 

(p- p ) g. + s + s 
00 1 p j.l 

• = T (energy equation recoveied) 

S = c-l ~ 
• p dt 

• = 1 (continuity equation recovered) 

r = s = o rp 

The general equation (17) is the basis for deriving the finite 

difference equations req~ired in this work. These are obtained by volume 

integration of the general equation about cells surrounding nodes of the 

calculation mesh. The manner in which this procedure is accomplished 

and the rules adhered to regarding variable locations and their distri-

buttons over cell surfaces and the cell interior, have been documented 

in detail in various references; see for example [21]. The result for 
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a cell, centered about a node P is: 

Equat16n (18) is.implicit ih-~p and req~ires the iterative solution of 

this variable according to: 

( 1 9) 

In the above equation 6v and 6t represent the cell volume and time step 

increment, respectively. The superscript n denotes time level n while the 

** * superscripts and denote present and past iterations (within time step 

n+l), respective.ly. Summation is over the cell surfaces surrounding P and 

the A. coefficients combine convective and diffusive contributions to the 
. J 

balance of ct>. 

The corresponding finite difference equation for continuity is given by: 

n+l n 6v ' 
( Pp - Pp) -- + C Cs + C - C · = 0 LSt n e w 

where en, Cs ..• are the mass fluxes through the north~ south ... fates 

of the cell. 

Equation (19) applies to velocities and temperature. To solve for 

pressure it is possible to proceed as follows[21]: 

(20) 
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1. Velocities are written in Taylor series expan~ion as: 

* au. * au. * 
ui· = (ui) + (at.~d) d~pd + (apl) dp 

where t.P is the pressure difference dri.ving ui. For subsonic 

flows of interest here: 

This approximation is consistent with the neglect of·high 

frequency pressu~e oscillations referred to ea~lier. The second · 

term_Ci>n the right-:-hand side of e4uation (22) is a velocity 

11 Correction. 11 Thus: 

2. Take 

* P - p + PI· d - d d 

where pd is the 11 correction 11 sought for dynamic-pressure. 

3. Substitute equations (23) and (24) into the finite difference 

equation for continuity (20) to find: 

1 * 1 * n+l * n+l n+l * n+l Av 
( t A ) ( ) ( ( ) ) o 

( p a **) n+ 1 = . L. j p-'-'dJ._· __ -_m:.._P __ -_P...:...p __ -_P...:...p_._....;;;t.;;..;..t 
d p <I A'.*)n+l 

J 
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( 21 ) 

(22) 

(23) 

(24) 

( 25) 



* In equation (25) mp is the. current mass cell.imbalance. 

As the numerical procedure converges to the solution for n+l, 

( *)n+l n+l d th 1 t t · · t• (25) d Th p -+ p an e as .·. erm 1n equa 1on · .. ten s to zero. e . p . p . 

neglect of this term is consistent \vith the assumption of a quasi-steady 

·subsonic flow.· 

4. Values of pd are determined from equa'tion (25) over the whole flow 

field and these are used to obtain final values for pressure and 

velocity by means of equations (24) and (23). Detailed forms of the 

coefficients AfandAj in equatiens (19~ and (25) are.given·ir.~ [21,22]. 
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Calculation Scheme: The REBUFFS Code 

The calculation scheme used to solve the finite difference equations 

given above originates from the TEACH~2E code developed at Imperial College 

(London) [23]. The modified form of. the scheme develo.ped in this study 

differs significantly from the parent code· and was named REBUFFS.: 

. Recirculating Buoyant and f.orced· flows ~ol ver .. 

The REBUFFS code works according to principles similar to those embodied 

in the parent code. Differences arise due to the time dependent nature of 

the equat1ons.solved, the strong link existtng between energy and momentum 

equations through density dependence on temperature .and the use of quadratic 

upstream interpolation for convective differentiation. The purpose of thjs 

section is to outline the·solution procedure algorithm. Much of the 

literature which is already available on the TEACH family of codes and 

related algorithms applies to the present procedure; see among others, 

references [21,22,23]. 

Once finite difference equations have been set up for all nodes in the 

calculation domain, within a time step they are solved iteratively by a 

1 ine-by-1 ine procedure using the tri -diagona 1 matrix a 1 gorithm. The 

dynamic component of pressure is calculated by means of the SIMPLE algorithm. 

The line-by-line procedure and the SIMPLE algorithm have been discussed in 

detail 1n [21]. 

The sequential steps taken by·the calculation procedure may be 

summari~ed as follows: 

1. Provide "initial estimates of the values of the dependent variables 

.(u1,T, pd,p) and the auxiliary variables, lJ, k, cp. 

19. 



20. 

2. Advance in time (t +- t + &) . 
. i. ·j 

3. Advance in iterations {n ~ n + 1). 

4. Solve the momentum equations to obtain int.er.med.iate va.ll!es o~ ve.locity. 

5. Solve the pressure ccir~ection equaticin (24} to obia~~ ~~· · 

6 .. Correct pressure and velecities with equations ·(24) and (2.3). 

7 0 Solve forT. 

B. Calculate p. 

9. 
. . 

Calculate ll• k, c which, together with th.e new values of the dependent p . 

variables, are now used as improved.estimates in Step 4. 

10. Go to Step 3 and repeat 3 to 10 until a pre-es~ablished convergence 

criterion is satisfied. 

11. Check time limits and flow steadiness. If either is attained terminate 

the calculations. 

., 
Miscellaneous Matters 

Since the REBUFFS Code differs significantly in various aspects from the 

parent proced~re, v~rious m~scellaneous matters arise ~hich require clarification. 

These are discussed below. 

i) Treatment of * term in the energy eguati on for closed cavity flow. 

Whereas i:n the case of open cavity flow geometries it follows from 

the definition of p that*= 0, in a closed· cavity thoe possibility 
.. 

must be allowed for p to vary with time. This is done as follows: 



Th·e .perfect gas law for a cell in the calculation domain give~ 

-* 
PI - .P.._ 

- ** 
T 

(26) 

where double and single stars denote current and previous iterative 

va.lues within a time step. · The total mass -in the cavity is found 

by summing equation (26) over all cells multiplied by the respective 

cell volumes: 

\ --* t !!.v M' = L ~V • p' = p. L ~ (27) 
T 

Since total mass in the cavity is conserved (ruling out leaks), the 

-** new average pressure p must.obey the relation: 

.\ 6v . 
. L **· 

T 
(28) 

where M
0 

is the initial mass in the cavity. The new value of 

pressure is theJ1 found from equations (27) and (28) and is given by: 

--** --* 
p = p 

M - M' 
+ 0 

\ ~v 
L ** 

T 

(29) 

** Correspondingly~ the new value of density p at each cell is given 

. by: 

--** ** 
p - .P.._ 

- ** (30) 
T 
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ii) Hyl::irid and Quadratic Upstream Int.e'~polation Convective Differentation 

The TEACH Code, from which the present procedure evolves, employs a 

HYBRID (upwind/central) diff~rencing formulation for the combined effects 

of convection and diffusion terms. The scheme. has been documented in, 
. . 

for :example, reference. [2ll. HYBRID differencing combines the accuracy 
. . . ; .. ; 

of centra 1-di fferencing for Peel et numbers such that Pe ~ 2 with the 
. . . . 

stabi 1 ity of upstream-differencing for Pe > 2. The rationale of the 

scheme has been explained in reference [24] and has been widely tested. 

The HYBRID scheme is physically more realistic at high Pe and the modi·-

fications it includes·can be shown to be essential to the convergence 

22. 

of the iteration scheme used to solve the difference equations, as discussed 

in [25]. 

While the HYBRID dif~erencing practice is desirable beca~se it is 

inherently stable it is first order acc~rate ~nd prone to numerical 

diffusion, particularly when flow to grid skewness arises. In order to 

improve the numerical. accuracy of predictions performed for values of 

Gr?; lOQ the calculation procedure was modified to embody the quadratic 

upstream interpolation (QUICK) scheme for convection originally proposed 

in [16]. 

In principle, the QUICK procedure avoids the stability problems of 

central differencing while remaining free of the inaccuracies of 

numerical diffusion associated .with u.pstream (upwind) differenCing. 

The advantage of the QUICK scheme lies in the economy of calculation 

storage and time cost, since it yields accurate numerical solutions on 

relatively coarse grids (compared to the. HYBRID scheme). 

The usefulness of the QUICK scheme for laminar flow regime has been 

documented in [26], and for laminar and turbulent flows in. [27]. The 



last reference provides a discussion of the various possible methods for 
i 

implementing the QUICK scheme in· the REBUFFS-Code and should be consulted for 

further detail. Suffice it to remark that to retain stability and convergence 

properties it was necessary to split curvature 'terms arising from parabolic 

interpolation in the QUICK formulation into two groups, one of which was added 

to the tri~diagonal iterative matrix, the other being treated explicitly as a 

source term requiring re-evaluation after each sweep of the line-by-line 

solution algorithm within an iteration. 

23. 

In this study calculations were performed using both calculation techniques • 

. However, the QUICK scheme generally yielded grid-independent results with 

considerably coarser meshes than were required (for equal precision) by the 

HYBRID scheme. For example, calculations with QUICK on a 31 x 22 grid (in the 

cavity) differed by less than 0.5% with calculations on a 23 x 22 grid and by 

less than 1% with calculations on a 19 x 22 grid. 6Y contrast, calculations • 

with HYBRID on a 31 x 22 grid differed by about 4% with results computed on a 

23 x ~2 grid and differed (at the worst locations) by about 10% with the 

coarest QUICK mesh calculations •. The trend in the data suggests that to 

obtain results as accurate as the coarsest QUICK scheme predictions with the 

HYDBRID scheme would require a mesh of approximately 45 x 30 nodes in the 

cavity. .It was als.o verified that for conditions where unsteadiness arose in 

the cavity flow, time dependent characteristics were adequately resolved by 

the HYBRID approach. Thus, for example, the HYBRID scheme showed a steady 

state behavior of the flow. in a square cavity with Gr = 106 and T - T = 50°K . w 00 

which the QUICK scheme predicted as mildly unsteady. At Gr = 107, both schemes 

predicted unsteady flows but with better spatial resolution being given by the 

QUICK scheme. Calculations performed using the QUICK scheme on a 23 x 22 

internal cavity grid distribution were considered to be sufficiently accurate 

for the purposes of this study,. 



. ·. . -~ . 

iii) Grid Refinement and Calculation Time Considerati~ns 

The recirculating open cavity flows c?mputed in this study r.~quired 

grids sufficiently refined to solve for detailed characteristics in 

the flows. In particular, a non-uniform grid spacing was used in. the 

near wall regions in order to resolve adequately t.he boundary layer. 

flows. Thus, at all times there were never less than four, and often 

as many as seven, grid nodes between the wall and the location of peak 

tangential velocity in the boundary layers. It should be noted that 
' 

this level of grid refinement in the near wall regions was sufficient 

when using the QUICK scheme. 

All calculations were performed on the CDC 7600 machine located in 

the Lawrence Berkeley Laboratory, Berkeley. Typical open cavity cal­

culations were cdnducted on a 48 x 36 ~rid, with 23 x 22 nodes within 

the cavity, and required approximately 0.8 seconds per iteration. All 

numerical runs were started using input data derived from calculations 

at smaller values qf Grashof number. For a given Grashof number, 

about 100-200 iterations were typically r~quired to obtain a converged 

solution at a Grashof number one order of magnitude larger than the 

starting value. For equivalent grid refinement, calculations using the 

higher order QUICK scheme took about twice the amount of numerical run 

time than did calculations based on the HYBRID scheme. 

Within a time step, the convergence criterion imposed in the 

calculation scheme was that the relative change betw~en consecutive 

iterations at a monitorjng point should be less than a typical value of 

10-4 and that the residual sources of .mass, energy and momentum be 
-3 less than 10 . As th~ calculations,proceeded in time the number of 

iterations for a converged solution within a time step decreased with 

time. The convergence criterion for achieving a steady state solution 
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was simply that the number of iterations per time step should be equal· 

to or less than 2. 

For those· cases where is was known a priori that a steady state 

solution existed (about Gr < 106, depending on other conditions such 

as cavity aspect ratio·, orientation and ~T) is was possible to reach 

a converged solution within a single time step by setting the time step 

to a very large number. It was verified that significant differences 

did not exist between steady state solutions reached through either one 

of the above approache~. 

Validation 

The elliptic num~rical procedure was validated by reference to two 

fundamental test cases: the heated semi-infinite vertical flat plate and 

thermally driven flow in a two-dimensional enclosure with hot and cold 

(vertical) side.w~lls. Comparison data for the first.test case were taken 

from the theoretical work of Ostrach [28] which includes experimental 

results of others. Corresponding data for the enclosure flow were taken 

from the detailed experimental study recently performed by Duxbury [29]. 

Duxbury's data is particular'lY attractive for evaluation purposed since it 

includes temperature ranges for which departures from the Boussinesq approx­

imation may be expected to arise. A complete discussion of the test case 

calculations has been given in the report by Humphrey et al [ 1 ]. A summary 

of those findings is provided here. 

Vertical flat plate laminar flow calculations were performed for a plate 
. 7 

of length L such that Grxlx=L = 10 , with Tw- Too= 20°K. The boundary 
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conditions for this flow correspond to the special case indicated in Figure 1-b. 

Calculations were performed using the HYBRID and QUICK schemes respectively. 

Grid independent results in excellent agreement with Ostrach's solution 



were obtained with the QUICK scheme ·on a grid which had· 40 nodes in the 

main flow d.irection and 30 nodes transverse to the flow. 'The width of 

-the calculation domain was·_ taken as twice the· boundarY layer thickness at 

the furthest downstream 1 ocati on, corresponding to x = L. Although ·the 

grid was·unifo~mly spaced it allowed for not less than 4 calculation nodes 

between the wall and the location of maximum velocity at any ~tream-wise 

location. By contrast, the HYBRID scheme did not yield grid indep~ndent 

results on the same grid due to the lack of sufficient near-wall nodes, 

required by this lower order accuracy scheme. 

Thermally driven enclosure flow calculations corresponding to Duxbury's 

study were carried out by specifying experimentally determined boundary 
. . 

conditions for temperature in the numerical procedure. In his work Duxbury 

·maintained the side walls of the enclosure at constant uniform known values 

of temperature and, because the top and bottom walls of the enclosure were 

not truly adiabatic, measurements of temperature at those locations were 

also made .. The boundary conditions for this flow are illustrated in Fig. 1-a. 

Typical temperature and Nusselt number calculations and their comparison 

with Duxbury's data are presented for an aspect ratio of 0.8 in Figs. 2-a. 

and b. Comparisons for other aspect ratios.and flow conditions were also 

carried out and showed similar levels of agreement. Especially noteworthy 

is the fa'ct that deta i 1 ed cross-over features of temperature profi 1 es corres-

ponding to a cavity.aspect ratio a/b = 1.6 were accur.ately predicted by the 
6 . 

calculation scheme. In the calculations Ra was 4 x 10 and TH - Tc = 60°K 

(the largest ~T investigated in Duxbury's work) and significant departures 

from the Boussinesq approximation were observed. While calculated temperature 

·profiles always showed very good qualitative agreement with the measurements . . . 
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discrepancies of up to 10% between measurements and calculations were observed. 

In general, calculated temperatures were always higher than their corresponding 



experimental values. This is explained, in part, by the observation made 

by Duxbury that end wall losses in the experiment were as la.rge as 30% of 

the total heat input. 

Velocity profiles have not been plotted, simply because there is no 

data· for their relative comparison .. However, from the calculations it was. 

possible to derive velocity vector field~ and streamfunction plots. These 

were in excellent qualit~tive ~greement with the flow visualization photo­

graphs provided by Duxbury. 

In addition to the above comparisons, other calculations were performed 

to show the effect of side wall temperature difference and Rayleigh number 

on the value of mean pressure within a sealed enclosure. The results of 

these calculations are shown in Fig. 2-c where a relative comparison is 
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made with s.imi.lar calculations by Leonardi .and Reizes [ll], although for slightly 

different conditions. The calculations of Leonardi and Reizes correspond 

to values of 2(TH- Tc)/(TH + TC) = 0.4·and 0.8 whereas present calculations are 

for a·value of this parameter equal to 0.67. The complex variation of 

mean pressure indicated in Fig. 2-c is an indirect·reflection of fluid 

medium physical property variations with temperature* and coines as a 

' consequence of the complicated balance .struck between the modes of ene.rgy 

storage within the enclosure (kinetic,.potential and internal). A more 

detailed di.scussion of this effect may be found in the paper by Leonardi 

and Reizes. 

* ll was given by Sutherland's law and k. wa's found by holding Pr and cp 
constant. This approximation, over the temperature ran~e of the 
calculations (3oo··K ~ T ~ 550 K), was quite adequate.· 



OPEN CAVITY RESULTS AND DISCUSSION . 

General Considerations 

The numerical results of calculations performed for air in an open 

cavity geometry are presented and disc.ussed fn this ~ectiori. The· vartab 1 es 

of interest in the calculations were:. Grashof number (Gr), ·the·difference. 

between cavity wall and ambient temperature (~T = T - T ), cavity aspect . w 00 

ratio (a/b) and angle of inclination (a). 

As shown in Fig. 1-b the cavity is connected at the aperture plane to 

adiabatic upstream and downstream flat plate sections which ~11ows·an un- · 

ambiguous determination of·the flow in the vicinity;of the entra'nce and exit 

corner regions. All three interna·l walls in the cavity were kept at the 

same temperature, Tw .. Since b.T/T
00 

i.s ·an ·indep'endent parameter in the 

·non-Boussinesq form of the conserv~tion equations g~verning the flow, two 

levels of temperature were calculated corresponding to values. of fiT = 50°K 

and 500°K, respeitively. Th~ ambient t~mperattire, T , was ~et.eq~al to 
00 

288°K for ~11 calculations. 

Ca 1 cul ati ons were performed ·for va 1 ues ·of Grashof equal to 1 o4, 1 o5, 

106, 107· and 3 x 107. Iri g~neral, Grashof··number was varied by ·changing 

the reference length corresponding to the aperture ~lane di.mension (b) 

1-b whil~ holding f!T/T fixed. ·Although the ~ulk·of the 
00 

calculations were performed for a cavity of square cross-~ection with 

inclination angle 'of zero degrees, flows with aspect ratios a/b = l/2 and 

2 (with a= 0°) and .a/b = 1 (wit~ a= 20° and 45°) were also computed. All 
. . . . . :. I' . · .. 

the results presented in this section were obtained using the QUICK higher 

order convective scheme. 
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A note is in order regarding the calculations performed for et = 45°. 

For this case the numerical scheme converged very slowly due to the la.rger under­

relaxation imposed on pressure, velocity and temperature to ensure ·stabi 1 i. ty. 

In order to obtain numerical results in a reasonable (affordable) amount of 

computer time the convergence criterion was increased from 10-4 to 10-3. By 

necessity then, thes·e results are less accurate and comparisons with the 

remaining cases, although valuable, should be made with this restriction in 

mind. 



Prior to discussing in detail the specif.ic dependence of thermally driven 

cavity flow on the parameters mentioned above, v~rious fe.atures of the flow 

are presented first in order to provide some insight r_egarding its gen~ral 

characteristics. Figure 3-a shows a typical steady state vector velocity 

field in and about a vertically oriented cavity of square cross-section for 
5 . . . 

conditions of Gr = 10 and b.T = 50°K. The degree· of grid refin~ment .(48 x 36 

nodes, with 23 x 20 inside the cavity) ~nd the relative distdbution ·of grid 

nodes, which were unequally spaced in the near wall zones to resolve the 

boundary layer flow, is illustrated by the velocity vector positions in 

* the .figure . A magnified view of the corresponding temperature field within 

the cavity is shown in Fig. 3-b. These calculations were performed using 

the improved far-field boundary condition treatment leading to equations (13). 

The vector field of Fig. 3-a shows cold fluid entering the cavity over the 

bottom 2/3 of the aperture. plane. Hot fluid leaving the cavity emerges from 

the top 1/3 of the aperture plane. Intense shearing of the flow arises at 

the horizontal plane in the cavity where the entering and emerging flow 

fields meet. By contrast with the entering flow, which is drawn almost 

radially from the surroundings, the flow emerging from the cavity is 

quickly deflected vertically upwards by buoyant forces. The air heated in 

the cavity, particularly at the vertical back wall, drives the flow and is 

the cause for a substantial amount of entrainment from the surrounding fluid 

medium, especially along horizontal planes above the cavity. For the 

calculation conditions in Fig. 3 recirculation regions did not arise in the 

*The near-wall grid positions for velocity are too. closely spaced to be 
clearly discerned in the figure. 
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cavity. Temperature contours shown in Fig. 3-b and detailed velocity 

. distributions (not shown here) attest to the boundary layer nature of the 

flow, especially at the bottom wall. 

For values of Grashof > 10
7 

the flow field became noticeably unsteady, 

giving rise to localized recirculation zones on the bottom wall in the cavity. 

The nature of the unsteady flow was periodic and is illustrated in Figs. 4 

and 5 for Gr = 3 x 107 at consecutive times within a cycle, 2 seconds apart. 

The figures show small recirculating flow regions or eddies being convected 

along the cavity bottom wall, and vertically upwards along the back wall. As 

these 11 heat bubbles .. move, diffusion effects gradually smear out their thermal 

identifies. At the later instant in time, the velocity vector plot shows a 
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small eddy rising along the back wall as a result of the wave-like disturbance 

traveling downstream. The recirculating flow region in the top half of the 

aperture plane was also a periodic feature of the flow for the conditions 

calculated and is related to the eddy shedding process occurring on the back and 

bottom walls. Thus, vorticity is fed into the aperture plane by the bottom 

wall eddies and is the cause for a small amount of periodic thickening of the 

thermal layer at the top wall in the cavity. The same effect was not observed 

for inclination angles of a= 20° and 45° and may be due to having taken 

larger time steps (2s as opposed to O.ls) to hasten convergence. However, 

the flow is stabilized by inclining the cavity and detailed {but costly) 

calculations will be required to settle the question of the presence of a 

periodic recirculating zone in the aperture plane for a> 0°. Although it 

appears to originate at the edge of the cavity bottom wall, the flow un­

steadiness was definitely thermal in nature since equivalent calculations 

with an adiabatic bottom wall did not produce the eddy structures. A 

similar unsteadiness to the one just discussed was also observed for the flow 



in a cavity with a/b = 2, a = 0°, Gr = 107 and t.T = 500°K. However, for the 

same conditions but in a cavity with a/b = 1/2 the unsteadiness was less, 

suggesting a stabilizing effect of decreasing cavity aspect. ratio bn the flow. 

Flow visualization results presented in [30] confirm the existence of the 

bottom wall eddies for thermally-driven air flow in a cavity with a/b = 1 and 

a= 0°. In the experiment, t.T ~ 90°C and Gr ~ 6 x 106 with an ambient 

temperature, T
00 

= 20°C. The eddies in [30] were generated and driven along the 

bottom cavity wall at a frequency of approximately 1-2 Hz. This compares 

favorably with the frequency of approximately 0.5 Hz displayed by the 

calculations discussed above. 

In addition to the above, calculations were performed for a square cavity 

inclined at angles of a= 20° and a= 45° with respect to gravity. It was 

verified that for both inclination angles, the flow within the cavity and in 

the aperture plane was fairly insensitive to large perturbations falsely 

introduced at the far field boundaries. This confirmed the notion that the 

boundaries were sufficiently removed from the cavity so as not to influence 

significantly the flow field within it. A comparison between Figs. 6 and 

7 illustrates the effect of increasing Grashof number .from 105 to 106 for 

a fixed inclination angle of a = 20° and t.T = 50°K. While both cases show 

a 1 arge recirculation zone within the cavity, the larger Grashof number case 

reveals a second smaller, quasi-steady recirculating flow region in contact 

with the cavity top wall. The steadiness of the high Grashof number flow 1is 

in contrast to that calculated in a cavity of identical conditions but with 

a= 0°; in which a weak but·observable unsteadiness was found. The stabilizing 

effect of an inclined geometry was further confirmed for the case of a cavity 

flow with a = 45°, Gr ~ 106 and t.T ~ 50°K shown in Fi~s. 8, 

The relatively strong influence o! cavity orientation on the flow is readily 
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apparent and is manifested by the enlarged recirculating zone appearing at the 

top wall. For t.his case, all walls in the cavity behave as inclined flat 

plates and, in conjunction, act to create a complex doubly recirculating 

flow pattern within the cavity. A similar cavity flow field has been pre­

dicted by Humphrey and·Jacobs [31]. However, in their case the top wall re-
.. 

·circulation zone was driven by free stream forced convection. Particularly 

noticeable in the present case is the fact that cold flow entering the cavity 

aperture plane must be strongly deflected in order to proceed along the bottom 

wall to the back wall. Temperature contours in Fig. 8b show a region of hot 

fluid trapped in the top inner corner of the cavity and reflect a condition 

·.of stable stratification within the cavity. 
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Velocity and Temperature Profiles 

While the results presented in the previous section are very··descrip.tive 

of the flow, .for quantitative purposes, and particularly for comparison with 

other works, it is useful to provide detailed profiles of calculated velocity 

and temperature di stri buti ons. Figures 9 to ·11 show dimensionless vel acHy· 

* and temperature profiles at three x/b and four y/a locations in a cavity of 

square cross-section for ,two values of·Grashof number, t.T and a, respectively. 

In each figure the velocity profiles have been normalized with respect to the 

maximum value of u in the aperture plane, uy , which is also given. 
Y max 

For a.= 0°, the velocity profiles show a decreasing boundary layer thick-

ness and a displacement of velocity maxi.ma .towards their respective walls as 

Grashof increases. Correspondingly, the uy profiles at the aperture plane 

(y/a = 1.0) become more uniform in the flow region penetrating the cavity. 

The uniform entrance profile occupies about 2/3 of the cavity aperture plane 

for Gr = 104, increasing to a value of about 3/4 of b for Gr = 106 and 107• 

The uy velocity profiles show local maxima in the entry flow region, at the 

bottom wall of the cavity. Simiiarly, the ux profiles show corresponding but 

lar.ger maxima in the back wall region of the flow (near y/a = 0). It would 

appear that the local acceleration of the flow on both walls is due to the 

contribution of buoyant forces to the momentum balance in the cavity. From 

a relative comparison of the temperature profiles., it is readily seen that 

the depth of penetration of cold flow into the cavity increases with Grashof 

number. 

Superimposed on Fig. 9-a and b are velocity and temperature profiles 

corresponding to a t.T = 500°K for the same Grashof number. This higher 

temperature flow exits the cavity at a maximum velocity of 0.23 m/s which 
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is twice as large as that corresponding to the lower temperature flow 

{l~T = 50°K). The higher temperature flow also shows a larger portion of the' 

aperture dedicated to entering fluid,. as well as a less uniform entrance 

velocity profile at this location. Considerable thickening of the boundary-

layer occurs at the back wall of the cavity for 6T = 500°K. Corresponding 

temperature contours show the same effect,' with a larger proportion of the 

f] ui d in the cavity being heated by the wa 11 s. 

Velocity and temperature profiles corresponding to a cavity inclination 

angle a= 45° (see Figs. 8a and b) are given in Figs. lla and b. A comparison 

.·between Fi9s. 10 and ll shows that the effect of inclining the cavity has beeY) 

to accelerate three-fold the peak velocity of fluid flowing along the bottom 

wall in the cavity. However, the peak value of velocity of the fluid leaving 

the cavity through the aperture plane is substantially smaller. The presence 

of thermal stratification for this cavity inclination is evidenced clearly in 

the temperature profiles corresponding to back and top wall locations. As 

would be expected, corresponding results for a= 0° do not show this strong 

influence on the flow. 
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Heat Transfer Calculations 

Nusselt number calculations were performed at .the cavity walls by, 

evaluating numerically the expression: 

b aT 
Nuw = (T ~ T } an w . w 00 

In the·expression, n denotes the normal to any wall and b is the cavity 

aperture plane length, used as a reference. 
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( 31) 

Figure 12 provides a comparison conducted with the Boussinesq approximated 
4 . 5 -

data avanable in Penot [ 3] for Grashof numbers of 8 x 10 and 8 x 10 respec-

tively for a/b = 1' d'= 0° and 6T = 5d°K. For Gr = 8 X 104, qualitative agree­

ment between the results is quite good although quantitative differences 

appear. For Gr = 8 x 105 present results for Nu differ significanlty from 

those given by Penot. In particular·, the results of this study show smaller 

values of Nu at the bottom wall of the cavity. At the top wall, values of 

Nu are comparable except near the top inner corner where a maximum appears in 

the present work. The differences are explained, in part, by the relative 

coarseness of the calculation grid used by Penot in his numerical scheme, 

whi~h was 12 x 12 in the cavity. Also included in Fig. 12 are calculations 

obtained using the HYBRID and QUICK scheme respectively. These results show 

that differences between the schemes become significant for Gr ~ 106. Simjlarly 

to Penot, present calculations for Gr = 107 exhibited a localized minimum in 

the Nusselt number halfway along the bottom·wall of the cavity. The minimum 

in Nu corresponds to a swell in the bottom wa 11 boundary ltayer which eventually 

leads to the formation of the small recirculation.zones discussed earlier. 

Although .they are not. shown here,. Nusse.lt number calculations along 

the bottom wall r~flected the presence of the recirculation zones 



for Gr· = 3 x 1 o7• For a cavity i ncl inati on of a = 45°, the 

calculations indicated that stable thermal ·stratification within the 

cavity.and the absence of unsteadiness prevented the occurrence 

.of local maximum and·minimum values ·of Nu at the top and bottom wall, 

respectively. 

A summary of the heat transfer predictions is presented in Table 1 

for various conditions of interest. The results show that, in general, 

Nusselt number increased with increasing Grashof·number and decreasing 

aspect ratio. The influence of cavity orientation on heat transfer from the 

separate cavity walls is more complex. Thus, with increasing a, Nusselt 

number on the bottom wall increases while Nusselt number on the back wall 

decreases. This is explained by the fact that with increasing a the back 

plate departs from its vertical orientation towards an inclined (downward 

facing) orientation while the bottom plate goes from a horizontal orientation 

towards an inclined (upward facing) orientation. The net effect is to enhance 

heat transfer from the bottom wall while reducing that from the back. The 
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top wall in the cavity shows decreasing Nusselt for Grashof = 106 corresponding 

to the appearance and ~rowth of a recirculation zone at this .wall with increas-. 

ing a (see Figures 7 and 8). 

Temperature effects on heat transfer for cavities of equal size are 

illustrated by compariog values of Nu in the table corresponding to Gr = 104, 
. 5 6 

~T = 50°K with Gr = 10 , ~T = 500°K and values of Gr = 10 , ~T = 50°K with 

Gr = 107, ~T = 500°K. In both cases the heat transfer from the top wall in 

the cavity increases with an increase in ~T. This is due to the back-wall 

jet• like behavior of the flow which, when impinging against the top wall, 

readi1y removes heat by convection. By contrast, the bottom wall shows a 

decrease in heat transfer with an increase in ~T. A detailed comparison 



between velocity and temperature profiles at· the bottom wall of the cavity 

revealed that the ·fluid heated along th·is .wall is deflected into··the cavity 

core sooner at lower Grashof numbers. It .appears that fluid elements .near 

the bottom wall have a longer residence le.ngth in thi.s:region .. for the: higher 

Grashof number. Thus, although initial heat transfer to the fluid elements 

is high, since they are forced to remain near the bottom·wall as they are 

convected ·by the flow, their capacity to remove heat from the wa 11 is , 

diminished.· The net effect is for a reduction in total .heat transfer from· 

.this wall. 
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CONCLUSIONS 

A two-dimensional, elliptic, transient, numerical calculation procedure 

firmly.based on the formal analysis of Rehm and Baum [13] has been developed, 

tested and subsequently applied to the case of thermally-driven laminar flow 

in cavities of rectangular cross-section. The nature of the equations solved 

is such that high-frequency pressure fluctuations (and the time-step limi­

tations they impose) are eliminated from the calculations while relatively 

large temperature and density variations are accounted for. The Boussinesq 

approximation is dispensed with and density variations are found directly. 

from solutions for the temperature and pressure fields in conjunction with 

the perfect gas equation of state. For open cavity flows density varies 

with temperature only since pressure is a prescribed constant in the equation 

of state. 

The present method makes use of the.QUICK quadratic upstream interpolation 

technique for finite differencing of convective terms in the transport equa­

tions. In this way; numerical diffusion associated with stra_ightforward 

upwind differencing (as employed in the HYBRID scheme) is reduced for Gr ~ 106, 

particularly when flow-to-grid skewness arises. ·The numerical method is 

embodied in a computer code (REBUFFS) which solves for primitive variables 

on an interconnected staggered .grid configuration according to a well 

established guess-and-correct iterative procedure. The method can readily 

39. 

be extended to predict transient three-dimensional flows in orthogonal coordinates. 

New numerical results are reported for the thermally-driven laminar 

flow of air in open cavities of rectangular cross-section. It has been found 

that the flow field approaching the cavity is a function of the far-field 

boundary condition specification. Realistic conditions can be formulated 

which ensure that the flow entrained through the far field is rotational and 

solenoidal. Notwithstanding, calculations show that the flow field within 
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the cavity and in the aperture plane is determined mainly by local heat transfer 

effects and is relatively insensitive to the far-field specifications provided 

the far-field boundary is located at a distance of 1.5 cavity heights or more 

from the aperture plane. 

Inspection of the predictions shows that flow unsteadiness similar to 
6 . 

that observed in [30] arises for values of Gr > 10 for a/b = 1 and a= 0°. 

The unstead.iness appears as a sequence of recirculating eddies or 11 hot spots 11 

which originate at the edge of the cavity bottom wall along which they are 

made to flow towards the cavity back wall where they rise. Changes in cavity 

orientation produce striking variations in cavity flow patterns due to the 

interchanging heat transfer roles of the walls as the cavity is inclin.ed. 

The calculations presented here for a = 20° and 45° show clearly that thermal 

losses diminish with increased values of the inclinati6n angle a due to 

stable stratification of the flow and decreased unsteadiness. For Gr > 107 

and for values of a = 20° and 45° strong under-relaxation of the calculation· 

variables was required to retain numerical stability. Unfortunately, this 

practice reduces the rate of convergence of the calculation scheme and 

makes it costly to use. 

The effect of increasing T - T in thermally driven cavity flow is to w 00 

enhance heat losses from the top wall while reducing corresponding losses 

from the bottom wall. The·latter effect is explained by the reduced capacity 

of fluid elements to remove heat from the bottom wall in the cavity where 

they are constrained to remain by the external flow while their temperature· 
I . 

increases. Finally, the average .. Nusselt number is seen to increase with 

increasing Gr number while it decreases with increasing aspect ratio, as 

would be anticipated. 
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Table·l:: 
.. + 

Average Nu on each-cavity wall as ·a functfon of· relevant parameters 

a/b = 1 

a 
~T. ( 0 K") oo 20° 45° 

Gr 104 50 1.16 . (TOP WALL) 
. 0.725 (BACK WALL) 

3.02 (BOTTOM WALL) 

500 0.640-
0.103 
1.09 

105 • 50 2.79 1. 73 
2.74 2.25 

. 5. 22 5.86 

500 1.23 
0.602 
2.59 

106 50 5.09 2.56 ]. 75 
6.29 5.18 2.12 
8.39 10.30 10.97 

107* 50 9.05 a = 0° 
17.66 a/b 21.53 

2 0.5 
500 6.06. ·3.43 6.97 

6.31 4.65 7.22 
7.85 6.10 9.98 

. 7* 
3 10 50 1?.?.3 

24.12 
28.92 

- + . 1 
N u = ------.-

R. wa 11 

* 
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Table 2: Conductive ·plus convective thermal losses across aperture plane 

w;m2· 

Q(I1J) Gr a 

(liT = 50°K, a/b = 1) oo 20° 45° 

1.045 10-2 104 666 

2.25 10-2 105 681 621 ~ 

4.85 10-2 106 582 530 428 

1.50 1 o-1 
3 10

7 * 496 

* Instantaneous values 
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fig. 2-c 

E = 0.4 

E =067 

E = 0.8 

106 Ra 

Average pr~ssure variation in a thermally driven enclosure flow 

as a function of Ra number and c = 2~T/(TH + TC). Results 

for c = 0.4 and 0.8 are from Leonardi and Reizes [11]; £ = 0.67 

values correspond to this work. 
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