LA-UR -86-1449 CAIN b = LW 5= - A
RECEVED @Y 03T MAY 12 1986

LOS Alamos Nauonai Laboratory 5 operaled by the Unversity of Cahforrua for the Unied Siawws Depertment of Energy under contract W -7403-ENG-28

MASTER

TITLE NEURONS WITH HYSTERESIS FORM # NETWORK THAT CAN LEARN

WITHOUT ANY CHANGES IN SYNAPTIC CONNECTIOR STRENGTHS

LA-UR--86-1449
DE86 010205

AUTHOR(S) Geoffrey W. Hoffmann

Maurice ﬁ. Benson

SUBMITTED TO To be published by the AIP in the
Proceedings of the conference on
Neural Networks for Computing

Snowbird, Utah, April 13-16, 1986

By acceplance of '~y a*' ¢ *~@ Dubl'sher recognizes thatl the U S Government retaing 8 noneaciusive, roysity-tree icense 10 publish or repre duce
the pubhished fo'= of '~ s :oni*.bulion or o allow olhers 10 do so for US QGovernment purposes

The Lot Alamos Natora Laberatory requesis that the pubhiaher identify thin arlicie as work pativmed under (he svsprtes of the U § Depanment of Energy

Los AISNNOS LesAames Natonal Labarstor

a mem mam NINTHRIDIHYIAM AF FHIA Raciiacmn -


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


NLURONS WITH HYSTLCRESIS FORM A NETWORK THAT CAN LEARN
WITHOUT ANY CIIANGES IN SYNAPTIC CONNECTION STRENGTHS

Geoffrey W Hoffmann
Theoretical Biology and Biophysics. Los Alamos National Laboratory.
Los Alamos, New Mexico 87545. US A ,
and
=Departments o Physics and Microbiology. University of British Columbia.
Vancouver, BC.., Canada V6T 2A8

Maurice W Benson
Center for Nonlinear Studies. Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, US A,
and
*Department of Mathematics. Lakehead University.
Thunderbay. Ontario. Canada P7B 5E1

ABSTRACT

A neural network concept deived from an analogy b2tween the immune
system and the central nervous systein i1s outhned The theory 1s based on a
neuron that is shightly more complicated than the conventional McCullogh-
Pitts type of neuron, i1n that it exhibits hysteresis at the single cell level This
added complication 18 compensated by the fact that a network of such neurons
1 able to learn without the necesaity for any changes in synapuc connection
strengths The learning occurs as a natural consequenze of interactions
between the network and its enviroament, with environmental stumuli moving
the system around in an N -dimensional phase space. unul a point in phase
space 13 rcaciied such that the system’s responses are appropriate for dealing
with the sumuli Due to the hysteresia associated with each neuron. the ays-
tera tends to atay 1n the region of phase apace where 1t 18 located The theory
inclcdes a role for sleep in learning

INTRODUCTTION

It is difficult to overstate the importance of analogy in the Jdevelopment
of therrica  An example from physica 18 the developinent of the theory »f
clectromngnetism 1n the last century, which involved the use of complhicated
mechanical analogies ' An example from biology 18 Burnet'a clonnl aeiection
theory of the immune response, a theory that s madelled on Darwin's theory
of evolution, a 1 Jdeacriben a survival of the litteat proceas at the level of

sPerniansnt addrase



single cells within an animal.? The precursor of the clonal selection theory was
Jerne’s natural selection theory of antibody formration®, which marked the
transition from older instructionist ideas to Darwinian selectionist theories
Analogies clearly played a similarly crucial role when Jerne suusequently pos-
tulated that the immune system functions as a network; this time he was
impressed by analogies between the structures and the functions of the
immune system and the central nervous system.*®

In order to explore a variety of ideas on how the brain could work, we
need to utilize wha'ever analogies we can think of. In the early 1970’s, Little
formulated a neural network theory? based on the analogy between an lsing
spin system and a neural network. Klopf” and Barto® have desciibed neural
network models in which they assume that the selfish behaviour of neural net-
works might be a reflection of analogous selfishness at the level of the neu-
ronal building blocks. It would be interesting to know what nnalogies with
other physical system, il any, aided Hopfield in the formulaiion of his model,?
which has had such a profound influence on this field during the last four
years. His treatment of the effect of symmetric synaptic coeflicients, T;,, was
probably inspired by familiarity with many physical systems in which sym-
metric couplings lead t¢ interesting properties.

As mentioned above, similarities between the central ncrvous system and
the immune system led to a new way of viewing the immune system. An
exciting possibility is that we can now reverse the process, and apply insights
gained in the study of the immune system network to the central nervous sys-
tem problem. This possibility has been considered also by Edelman and
Recke.'”® The immune system is also a complex system, but in the last few
years we have learned an enormous amount about how it functions. We now
have at least the outline of an immune system network theory that seems to
work quite well.!"!® Since many of the similaritica hetween the immune sys-
tem and the central nervous system are at a high level,'” we considered the
possibility that the same kind of mathematical model could be applicable to
both systems. That idea led to a theory that we here review briefly, and that
has been developed in more detail elscwhere '™

At one level our theory is slighvly more complex than other theories, in
that we invoke hyateresis at the level of single neurona. This added ~omplex-
ity is compensated by a new simplicity at the level of the network; the net-
work can learn without any changes in the synaptic connection strengths.
Learned information is associated solely with a state vecior; memory is a
consequence of the fact that duc to the hysteresis sssociated with each neuren,
the system tends to stay in the region of an N-dimensional phase space o
which ita experiences have taken it. Its stimulus-response behaviour is deter-
mined by its location in that space.

A NEURON WITH HYSTERESIS



Neurophysiologists tell me that we cannot, on the basis of presently
available data, excluue the possibility that at least some neurons exhibit hys-
teresis at the single cell ievel. A simple, plausible biochemical model that
could lead to single cell hysteresis is as follows. Let X be a key neural meta-
bolite that controls the rate of firing of the cell, such that the rate of firing is
(say) proportional to the concentration of X. The concentration of X is
assumed to be affected by a second substance Y that reflects the net level of
inhibitory signals the cell receives. We consider the following simple reaction:

A—-X
X — B (slow)
X — B (catalysed by Y)

Excess X inhibits Y

X is produced at a ccnstant rate from A. X is broken down by two
processes, one of which is slow and is independent of Y. The second break-
down process involves Y as an enzyme or the activator of an enzyme. High
levels of X inhibit he enzymatic breakdown of X by Y. This phenomenon,
known to biochemists as substrate inhibition of enzymes, can occur when an
enzyme has two binding sites for the substrate. If we denote the concentra-
tions of X and Y in neuron f by z; and y;, respectively, an appropriate
difTerential equation for z; as a function of time can have the form

o 1 —g - W (1)
' ' 1+ OI,'Q
where a is a constant. y; is given by
N
W = X B3, (2)

J=-1

Bi; is the synaptic connection strength from neuron 5 to neuron ¢. The 8,
correspond to the T;; of Hopficld, except that learning can cceur with the g,
fixed (see below).

There can be three sieady-sinte values for each z;, two of which are
stable (A and C, Fig. 1), and one of which is unstable (B). With N neurons,
each of which can be in cither a high =; or a low z; steady stnte, the number
of attractors can be almost 2.7 The number of unstable steady states in the
system can be close to 3.V

THE DYNAMICS OF AN N -DIMENSIONAL SYSTEM DISPLAYED ON A
PHASE PLANFE



It is convenient to consider a simple variant of the system (1) that also
has about 2V attractors:

5 =(-|=z|)-w (3)

When the system (3) is at equilibrium, all the neurons are located on the
reverse S-shaped curve

v = (- |z |)s

which is shown in Figure 2. Figure 2a shows trajectories following a small
transient stimulus. The same stimulus with a larger amplitude results in a
qualitatively identical perturbation of the network (Figure 2b). A still larger
stimulus causes the z; value of one or more neurons to change sign, and the
other neurons then relax back to slightly different positicns on the equilibrium
curve (Figure 2c¢). The system can make a large number of different responses
to a correspondingly large number of different stimuli and unless the ampli-
tudes of the stimuli excead a certain threshold level, the system stays in the
same region of phase space.

The network has been sliown to be capable of producing arbitrary out-
puts, providing N is sufficiently large."?

A particular output is produced if the system has an initial condition
that can lead to that output. The hysteresis associated with each neuron
tends to keep the system as a whole in a restricted region ol the N-
dimensional phase space, and this can account for memory. The particular
region in that space where the system is located at any instant depends on the
set of stimuli to which it has been subjected. Hence, in contrast to conven-
tional neural network models, the formation of memories does not need to
involve changes in the synaptic strengths, g, .

TEACHING

These networks can be taught to exhibit prespecified stimulus-response
behavior. We systematically perturb the network until it reaches a region of
phase space where it gives the desired stimuius-response behavior. Since the
systemn tends to stay in a particular region of the phase space in the absence
of systematic perturbations, the system is able to retain trained stimulus-
response behavior or memories. The idea is that a brain is moved around in
the N -dimensional phase space by the stimuli that it receives, until it reaches
a point in that phase space such that its responses to the environment are
such that it is not strongly pertmibed by the environment.,

We simply apply stimuli and observe responses. There is no ‘'twiddling"”
of the synaptic connection strengths. Only the variou: stimuli themselves are
used to move the system around in the N-dimensionsl phase space until a
satisfactory region in that space is found. Il at some point a satisfactory
response to a stimulus is not obtained, the stimulus is reapplied and can



intensifly. A wrong response means the system was in an unsatisfactory region
of the phase space. Applying the same stimulus again takes the system
further away from the region of phase space that did not give the correct
response. If a good response is obtained, we pass on to another stimulus. This
algorithm presumes to mimic the way real brains learn by experience. In an
abstract sense there needs to be some complementarity between the stimulus
and the response. If we are exposed to a stimulus and respond to it appropri-
ately, our response can lead to the climination of, or escape from, the
stimulus. If we do not respond appropriately, the stimulus can persist, and
possibly intensify, independently of whether the stirnulus is being provided by
a teacher or aspects of the non-human or inanimate environment. In a recent
series of experiments we trained networks consisting of 20 neurons to respond
to stimuli in prespecified ways using an algorithin based on these ideas.:® The
correct responses were defined in a binary fashion, so that untrained networks
had a fifty percent rate of making correct responses. In one series of experi-
ments, we achieved an average accuracy of 73% when we were training for a
single stimulus, 70% when there were two atimuli; 669 with 3 stimuli, and
29% when there were 4 stimulus-response pairs being taught.

SLEEP

There is an automatic motion of each neuron from the central region
(near 7; = 0 in the model (3)) towards one of the attractors (near z; = %1).
The system can be stroigly influenced by small signals when neurons are in
the central region, while much larger stimuli are required when the system is
at or nea: a system attractor. The system might therefore be much more
easily taught il there were some means of kecping at least some of the neurons
near the central regions. Perhaps during sleep vhe z; versus z; characteristic
changes to, say,

-y =~ uI;

where u is a constant. The z; of the system then relax back towards the ori-
gin during sleep, while maintaining their respective relative magnitudes. This
part of our theory leads to the prediction that the veriance in the rates of
firing of ncurona involved in memory should inercase during waking hours and
decrease during slecp.

PROSPECTS

The potentia! possibilities for systems of the above type hns scarcely
begun to be explored. In this final sectinn | apeculate about the directions
that future research might take.

Since the 8;; matrix is fixed, special forms of that matrix that permit
very rapid computation by digital or optical techniques can be used. As dis-
cussed elsewherce, 18 the use of circulant matrices will permit computations



that are up to a factor of N /log N faster than calcviations with random
matrices, and such systems are also amenable to the application of extrernely
rapid analogue optical methods,

The brain is organized largely as groups of neurons that have high inter-
nal connectance, with lower connectance between groups. For artificial intelli-
gence applications, it might be profitable to mimic this architecture, and thus
obtain reliatle behavior from unreliable components. Il we couple *cgether
groups of our neurons that have been previously trained separately, .t shouid
be possible that the larger aggregates will give an improved fraction of
“‘correct’ responses than the smaller groups are abl= to do independently.

A scientific and perhaps philosophical mj.icry in neural science 1s the
qrestion of the neural bases of pain and joy. We are presently employing a
teaching method that might be viewed as using "“pain.” (I the response is
incorrect, we increase the magnitude of the stimulus.) Presumably the
efliciency of our teaching could be much greater if we could add something to
the algcrithm equivalent to joy. A very speculative neural interpretation of
pain and joy is in terms of familiar and unfamiliar regions of phase space.
Perhaps pain is associated with stimuli that take one much away from a fami-
liar region of phase space (as most completely random strong stimuli would
do), and joy results from stimuii that are special in the sense that they move
one back towards more familiar regions. New stimuli could move one back
towards f=miliar regions of phase space if they are somchow correlated (in the
context of the wiring diagram of our brains) with other stimuli we have
received. If this speculation is correct, we might be ahle to simulate joy by
making a etwork accustomed to a certain set of stimuli during its “‘onto-
geny.” Stimuli that are correlated with the early set might then be used to
in.part “‘joy."
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FIGURE CAPTIONS

Fig. 1. The rate of change in the rate of firing, z;, as a function of z; for
three different values of the input y;: low (3 = y, ), intermediate (y; = y;),
and high (y; = yy). For §; = y; the neuron has two stable steady state
rates of firing, r; =z, and ;, = 1.

Fig. 2. The dynamics of a network with 20 neuv.ons portrayed in the y;,z;
phase plane. The system is at equilibrium when the y; ,z; coordinates of every
neuron is on the reverse S shaped curve. (a) A transient small perturbation
causes the neurons to leave the curve, and then relax back to their original
positions. (b) A larger stimulus causes a qualitatively similar response. (c) A
still larger stimulus causes one neuron to switch from one branch of the curve
to the other, and the equilibrium values of each of the other neurons changes
somewhat. For these plots we used a network with 20 neurons with a random
B;; matrix, connectance 0.5.
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