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A neural uelwork concep[ delr~ed from an analogy b~tween the Immune
system and the cenlral nertiow systein M outllncd ThF theory M baaed on a
neuron that is sl]ghdy more complicated than the conventional hlcCu]]ogh-
Pitt.s type 0[ neuron, In that IL exhlblts hysteresis at the mngle cell level This
added cornpllcauon M compensated by the fact thaL a network O( guch neurons

is able to learn without the neccs.sl Ly for any changes In synapuc connection
slrcnglhm The ]earnlng occum as a naturrd cormcquen:e of Intcracllons
between the nclviork and ILS enviro,~ment. wllh environmental stlmull moving
the syowm aro.,l, d In an A’-dlmenmonrd ph~e space. until a point In phase
space m rcncilcd such thal the system’s re~~nws are appropriate for deallllg
kllh the Stllnull Due LO Lhe hystercms aaamiatcd wlh each neuron. the ny~
lem rends w ~tay In the region of pham rnp~cc whrre IL m Iocalrd The theory
lncl~des a role for sleep in Icarnlng

1NTROD[VX3N

11 i~ dlllcul~ to ovcm~alc lhc lmportnncc of nnnlogy In tl,c .Irvclopmcnl

or Lllrwlcs .An cxflmplc from phyoics m the dr}clupmpnl of lhr Lhrory ‘1[

clcctromngnclmm In lhr last rrnlur-y, ~hlch Involved lhr UMF of rompllcntr(l

mcchnnlca] anulog]~s 1 All ●xnrnplr from blO]OK~ IS Durniw”s cknnl SC; fCII[)II

theory of lhr Imrtlunr rrnponw, 0 Lhwry Lhnl m mndcllcd on I)nrwln”n Lhmmy

of ●ko]ullwn, n ~ d-rrlks a aur~lvnl of Lhr iilLrmL pr-rw nt Lhr Irvr] [If
—

mrern:.n!fil ~j,~r,fi.
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single cells within an animal.2 The precumor of the clonal selection theory wss
Jerne’a natural selection theory of antibody I’srrrations, which marked the
transition from older instructionist ideas to Darwinian selectionist theories
Analogies clearly played a similarly crucial role when Jerne su’usequently PO*
t.ulated that the immun~ system functions as a network; this time he was

impressed by analogies between the structures and the functions of the
immune system and the central nervous system.”b

ln order to explore a variety of ideas on how the brain could work, we
need h utilize whatever analogies we can think of. !n the early 1970’s, Little
[ormulated a neural network theorye based on the analogy between an Ising
spin system and a neural network. l<lopf’ and Bartoe have desclibed neural
network models in which they assume that the selfish behaviour of neurnl net-
works might be a reflection of analogous selfishness at the level of the neu-
ronal building blocks. 11 would be interesting to know what nnalogies with
other physical system, if any, aided Hopfield ill lhe furnluiti~ion of his model,”
which has had such a profound influence on this field during the l~t four
years. }Iis treatment of the etlect of symmetric synaptic coefficients, Tij , was

probably inspired by familiarity with many physical systems in which sym-
metric couplings lead t~ interesting properties.

As mentioned above, similarities between the central ncmouu system and
the immune system led to a ncw way of viewing the immune system. .hr
exciting po~qibility is that we can now reveme the process, and apply insights
gained in the study of the immune system network to the central nervous sya-
tcm problem, This possibility hsa been considered also by kLdelman and
Recke.10 The immune system is also a complex system, but in the Isst few
years we hnve learned an enormous amount about how it functions. We now
have at least ~he outline of an immune systcm network theory that seemo to
work quite well. 11-10 Since many of the .oimilarit,iee hetwcen the immune sys-
tcm and the central nervous eystcm are nt a high level, ” we considered the

possibility that the same kind of mathematical model could be applicable to
both systcmo, That idcrr led to a theory thnt we here review briefly, and that
hsa been dcvclopcd in more dctnil elscwhcre,17’la

At one Ievcl our theory is slighl !y more complex thnn other theorien, in
thnt we il)vokc hyatcrcsis at the Icvcl of uinglc ncuronn. This ridded ,’ompi?x-

ity is compcnsntmf by a ncw simplicity nt tlm ICVCIof the network; the net-
work cnn Icarn without nny chnngeo in the synaptic connection strengths.

l,cnrncd information is wsocintccl solely with a stnte vector; mrmory is a
conscqucncc of the fact thnt CIUUto the hysteresis aasociatwl with each neuw. n,
the systcm tends to ntny in the region of an N -dimcrmionnl phnsc spnec to
which iti cxprricnces hnvc tnkcn it, Its ntimulun-rcnpcmmc Mhnviour is rlctct-
mitlrd by i~s lcrcntion ill thnt npncc.

A NIIXUtON WITII 11}’s”1’1;1{1!s1s
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Neurophysiologists tell mc that we cannot, on the basis of presently
available data, excluue the possibili~y that at least some neurons exhibit hys-
teresis at the single cell ievel, A simple, plausible biochemical model that
could lead to single cell hysteresis is as follows. Let X be a key neural meta-
bolize that controls the rate of firing of the cell, such that the rate of firing is
(say) proportional to the concentra~ion of X. The concentration Of X is
assumed h be affected by a second substance Y that reflects the net level of
inhibitory signals the cell receives. We consider the following simple reaction:

A+x

x + B (slow)

X + B (catalysed by Y)

Excess X inhibits Y

X is produced at a ccnstant rate [rem A, X is broken down by two
processes, one or which is slow and is independent of Y, The second break-
down process involves Y aa an enzyme or the activator of an enzyme, High
levels of X inhibit tihe enzymatic breakdown of X by Y. This phenomenon,
known to biochemists M substrnt~ inhibition of enzymes, can occur when an
enzyme h~ two binding sites for the substrate, H we denote the concentrs,-
tions of X and Y in neuron i by Zi and vi , respectively, an appropriate
dillerential equation for Zi w a function of time can have the form

Zi vi
ii ‘l-Zi-

1 + ~Zi2
(1)

where a is a constant, ~i is given by

~ij is the synaptic connection str(,nglh from neuron j to neuron i . The ~ij
correspond to the Tij of llopllcld, c%ccpl thut lenrnin~ can occur with the ~ii
fixed (see Mow).

There can bc three slcndy-~tntc vmlues for ench Zi , two of which are
stable (A and C, Fig. 1), and one of which is unstable (U), With N neurons,
each of which crm I.)c in either a high =i or a 10W Zi sternly strife, the number
0[ attrnctom cm bc nltnost 2,N I’hc number of unstnblc stcndy stateu in the
systcrn cnn bc cloac to 3,N

Till; DYNAMICS OF AN N -I) INI13NSIONAI, SYS1’Ehf l_)lS1’1.AYED ON .l
PI LMII; 1‘I,ANII
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lt is convenient k consid~r a simple variant of the system (I) that also

has about 2~ attractors:

2i=(l-lZi[)Zi-~i (3)

\\ ’hen the system (3) is at equilibrium, all the neurons are located on the
reverse !%haped curve

~i=(l-l Zil)Zi

which is shown in Figure 2. Figure 2a shows trajectories fcJlowing a small
transient stimulus. The same stimulus with a larger amplitude results in a
qualitatively identicrd perturbation of the network (Figure 2b), A still larger
stimulus causes the Zi value of one or more. neurons to change sign, and the
other neurons then relax back to slightly diflerent positicns on the equilibrium
curve (Figure 2c), The system can make a large number of different responses
h a correspondingly large number of diflerent stimuli and unless the ampli-
tudes of the stimuli exceed s certain threshold level, the system stays in ihc
same region of phsse space,

The network has been shown to be capable of producing arbitrary out-
puts, providing lb’ is sulliciently large,17

A particular output is produced if the system haa an initial ccmdi~ion
that can lead to that output, The hysteresis rwociatcd with each neuron
tends to keep the system as a whole in a restricted region of the P/-
dimensional phase space, and this can account for memory, The particular
region in that space where the system is located at any imtant depends on the
set of stimuli t.a which it has been cnrbjectcri. }Ience, in contrast to conven-
tional neu)al network models, the fcrm.ation of memories does not need to
involve changes in the synaptic strengths, @ii .

TEACHING

These rwtworks can be taught to exhibit prespecifled stimulu-response
behavior. Wc systematically perturb the network until it r~aches a region of
phase spnce where it gives the desired stimuius-response behavior. Since the

system lends to stay in a particular region of the phase spnc~ in the absence
of systematic pcrlurbalions, the uystem is able to retain trained stimulu~-

responsc behavior or memories, The idea is that a brain is moved around in
the N -dimcnsiomd phssc space by the stimtlli that it reccivcs, until it reaches

a pOII~t iII that phase space ouch that its responses to the environment are
such that it is not strongly pcrtulbed by the environment,

We simply apply stimuli and observe responses. There is no “twiddling”

of the syl!aptic connection strengths. Only the variou:, stimuli themselves are

used to move the sydtcm around in the Af-dimensiorid phase space until a

satisfactory rrgion in thnt spncc is found. If at same point a satisfactory
response to n stimulus is riot obtained, the stimulus is reapplied and can
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intensify. A wrong response means the system WrM in an unsatisfactory region
of the phase space. Applying the same stimulus again takes the system

further away from the region of phase space that did not give the correct
response. 1[ a good response is obtained, we pass on to another stimulus. This
algorithm presumes to mimic the way real brains learn by experience. In an
abstract sense there needs to be some complementarily between the stimulus
and the response. If we are exposed to a stimulus and respond to it appropri-
ately, our response can lead b the elimination of, or escape from, the
stimulus. lf we do not respond appropriately, the stimulus can persist, and
possibiy intensify, independently of whether the stimulus is being provided by
a teacher or ~pects of the non-human or inanimate environment. In a recent
~eries of experiments wc trained networks consisting of 20 neurons to respond

to stimuli in prespecified ways using an algorith,n based on the.w ideas. ia The
correct responses were defined in a binary fsshion, so that untrained networks
had a fifty percent rate of making correct responses. In one series of experi-
ments, we achieved an average accuracy of 73% when we were training for a
sing!e s!iml~ll!s, 70~o when thpre wpr~ tum ntimllli: 66?% with 3 stimllli, and

59% when there were 4 stimulus-response pairs being taught.

SLEEP

There is an aut.oma~ic motion of each neuron from the central region

(near ?i = O in the model (3)) towards onc of the attractor (near zi = *I).
The system can be strol:gly influenced by small signals when neurons are in
the central region, while much larger stimuli are required when the system is
at or neai a system attractor, The system might therefore be much more
eaaily taught if there were some mearrs of keeping at least some of the neurons
nenr the central regions. Perhnps du:ing sleep dle ii versus Zi characteristic
changes to, say,

‘., =-u z,

-1 I

where u is a constant, The Zi c’f the system then relax back towards the ori-

gin during sleep, while maintaining their respective relative magnitudes, This
part of our theory leads to the prcrliction that the vcriancc in the rates of

firing of ncurom involved in memory should incrcasc during waking houm and
dccrcue during ulccp,

The potclitia! possibilities for systems of tllc above t,ypc hM scarcely

begun to be cxplorvd. In this !lnnl section I spcculatc about the directions

that future research might take

Since the ~i~ matrix ia flxcd, ~pcciid forms of tlimt matrix thnt permit
very rapid coml;utatiol~ by digital or opticnl tcchlliqucs can IN used. An dis-
cusacd elacwhcrc,18 tbc usc of circulnntt n)utriccs will pcrl)lit computntionn
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that are up to a factor of h’ /log IV faste~ Lhan ca]culaLions wiLh random

matrices, and such systems are also amenable to the application of exLreme]y
rapid analogue optical methods,

The blain is organized largely ss groups or neurons that have high inter-
nal connectance, with lower connec Lance between groups. For artificial intelli-
gence applications, it might be profitable to mimic this architecture, md Lhus
obtain reliakle behavior from unreliable components. If we couple wgcther
groups of our neurons LhaL have been previously trained separately, ;t shouid
be possible Lhat the larger aggregates will give an improved fraction of
‘correct” responses than the smaller groups are ab~- to do independently.

A scientific and perhaps philosophical rr,J .Lury in neural science M the
ql~estion of Lhe neural bases of pain and joj. We are presently employing a

Leaching method that might be viewed EM using “pain. ” (If the respon~ is
incorrect, we increw the magnitude of the stimulus. ) Presumably the

e~lciency of our teaching could be much greater if we could add something to
the algcrithm equivalent to joy, A very speculative neural inLerpretation of
pain and joy is in terms of familiar and unfamiliar regions of phase space.
Perhaps pain is associated wiLh stimuli that take one much away from a fami-
liar region of phsse space (as most completely random strong stimuli would

do), and joy results from stimuii that are special in the sense that they move
one back towards more familiar regions. New stimuli could move one back
towards f’ miliar regions of phase space if Lhey are somehow correlated (in the
context of the wiring diagram of our brains) with other stimuli we have
received, If this speculation is correct, we might be able to simulate joy by
making a ;\etwork accust~med to a certain set or stimuli during its “ont.e
geny. ” Stinluli that are correlated with the tarly set might then be used k
in, part “joy, ”
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FIGURE CAPTIONS

Fig. 1, The rate of change in the rate of firing, tii, as a function of ~i for
three different values of the input vi: ]OW(yi “= ~’), intermediate (~i = y,),
and high (vi = VH). For Vi = VI the neuron has two stable steady state
rates of firing, Zi ‘2A andzi =ZC.

Fig. 2. The dynamics of a network with 20 neu.mns portrayed in the vi ,Zi
phase plane. The system is at equilibrium when the ~i ,Zi ccmrdinates of every
neuron is on the reveme S shaped curve. (a) A transient small perturbation
causes the neurons w leave the c~rve, and then relax back k their original
positions. (b) A larger stimulus causes a quali~atively similar response. (c) A
still larger stimulus causes one neuron ta switch from one branch of the curve
to the other, and the equilibrium values of each of the other neurons changes
somewhat, For these plots we ~sed a network wi~h 20 neurons with a random
~ij matrix, connectanct 0,5.
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