
SLAC-JUJ-2413
Octobar 1979
(I)

.-.«- SNOOP MODULE CAMAC INTERFACE TO THE
166/E MICROPROCESSOR

J. T. Carroll, V. H. Mltnick, L. Paffrath, D
•J Stanford Linear Accelerator Center .

Stanford University, Stanford, California 94305

- "rkar , -,»°°

Abstract

A pair of 168/E microprocessors will be uitd to
meet the fealtime computing requirements of the SLAC
Hybrid Facility. A SNOOP module and 168/E Interface
provide the link between the host computer and the
microprocessors. By eavesdropping on normal CAMAC read
operations, the SNOOP provides a direct data transfer
from CAMAC to microprocessor memory. The host computer
controls the processors using standard CAMAC progressed
I/O to the SNOOP.

Introduction

The SLAC Hybrid Facility (SHF) selectively takes
bubble chamber pictures by using data from external
particle detectors, i.e., proportional wire chambers,
fierenkov counters, etc.1 An electronic fast trigger
initiates transfer of data from detectors to CAMAC mod-
uJeu, the host computer reads the CAMAC modules, and a
software algorithm selects triggers of interest. This
entire sequence, including the software decision, must
be completed within the bubble chamber flash delay of
2.5- 3.0 ms. A pair of 168/E microprocessors2 will be
used to execute more efficient algorithms and increase
the quantity of data that can be processed within this
time constraint.

The SNOOP Module and a 168/E interface provide a
CAMAC link between the host computer (currently a NOVA
SAO) and the 168/E microprocessors. A program nprHnii
on the host computer can control the processors using
standard CAMAC I/O to the SNOOP, e.g., load program
memory, start processor, check processor status, raad
results from 168/E data memory, etc. The SNOOP also
provides a fast direct data transfer from CAMAC to 168£
memory by eavesdropping on I/O to other CAMAC modules
in the same crate. When SHOOP Is in the Listen Mode,
CAMAC data can be transferred simultaneously to the
host computer and microprocessor memory at a rate of 2
(JS per 16 bit word. The CAMAC interface minimizes the
data transfer
time to the
mic roprocessor.

A block
diagram of the
system is shown
in Fig. 1. The
host computer
uses NC023C NOVA
controllers to
access any CAHAC
module including
the SNOOP. The
SNOOP usually
occupies slots
22 - 23 next to
the controller,

Figure 1.
System Diagram

S-ENOOP MODULE
CC-UUTE

CONTROLLER

Work supported by tha Department of Euergy under
tco«tcact number DE-AC03-76SF00S15.
On leave from The Weisaann Institute, Rehovot. Isratl.

but it can be placed at any normal station number.
SNOOP modules and 168/E interface boards are all connec­
ted in a daisy chain using a 50 wire flat cable. Any
one SNOOP module can control and transfer data to 1-8
microprocessors, and data from multiple CAMAC crates can
be transferred directly by using a SNOOP in each crate.
In the proposed SHF configuration two CAMAC crates are
Interfaced to a pair of 168/E microprocessors.

SNOOP Module

Figure 2 shows a block diagram of the SNOOP module,
with the CAMAC bus on the left side and the I/O lines to
the 168/E on the right side of the figure. CAMAC func­
tions for controlling the SNOOP are defined in Table I.
As shown in Fig. 2, the SNOOP can operate in the follow­
ing three modes:

W -

IM <

Write Mode,
Read Mode,
Listen Mode.

Operation of the SNOOP in the Write or Read Modes
follows usual CAMAC protocol, i.e., the station number
(N) addresses the module, and the SNOOP intercepts the
control and function lines. The SI strobe is used pri­
marily to transfer data between the host computer and
166/E, while the S2 strobe is used for internal control.

In the Write Mode, data is transferred from the
host computer to 168/E processor via the CAMAC crate
controller, SNOOP module and 168/E interface. The SNOOP
decoder interprets write commands F(16,17,20,22), as
defined in Table I, as the same function as far as the
subaddress, function and write data lines are concerned.
Only F(19) is separately decoded and in coincidence with
S2 loads the SNOOP module word counter. Functions F(16)
and F(17) load 168/E data and program m̂ niory, which are
physically and logically separate on the processor
memory boards.

In the Read Mode, data is transferred from the
16B/E to the host computer via the 168/E interface,
SNOOP module and crate controller. The SNDOP decoder
interprets read functions 7(0,1,4,6) as the same function
as far as the subaddress, function and read data lines
(in the direction toward the CAMAC bus) are concerned.
With the exception of F(19), most of the logic to pro­
cess read or write functions is on the interface board.
The SNOOP decodes the CAMAC command as R-Mode or
W-Mode and loads the function line drivers as shown in
Fig. 2.

In the Listen Mode (LM) of operation, any data the
host computer reads from a CAMAC module in the same
crate as the SNOOP is also written into 168/E data memo­
ry. Set Listen Mode function F(28) activates the LM
control line which takes over the function of the N-Line
(station address). Consequently, the SNOOP is active
regardless of which modules are addressed by succeeding
CAMAC instructions. In this mode the SNOOP's 16 bi­
directional R-lines are gated toward the 168/E interface
and any data on the CAMAC R-lines which the host compu­
ter reads is alBO strobed into 168/E memory. In the LM-
Mode the SNOOP does not pass the CAMAC function and sub-
address lines to the 168/E interface, and the main func­
tion decoder is inhibited. Clear Listen Mode F(30) can
be recognized and executed using the S2 strobe and a
separate decoder activated by the LM control line. The
condition S2*F{.t0) clears the LM-Mode and returns the
SNOOP to a state which recognizes non-LM commands. Since
the SNOOP in LM-Mode is sensitive to any CAMAC I/O, all

IP-.H i •*• «t th- ;<,7» **KLear HtM*$mo^L*m_Fvm^,JMVttt^, October 17-19, 1979.

Figure 2. SNOOP Block Diagram

instructions to other nodules which are required to sat
up the data transfer should be completed before setting
LH. Similarly, a safe programing protocol Is to clear
the U4-Kode »m soon *m the data transfer Is completed.
LK d«ta transfer can use either CAKAC progranaed I/O or
Direct Memory Access (DMA) in triggered or autonomous
•nodes.

In any of the three nodes of operation, (W-Mode,
R-Mode and LK-Mode), the SNOOP Word Counter <WC) can be
used to supervise a DMA data transfer. For this pur­
pose,, the function F(19) loads the HC with the two's
coaplenent of the nuaber of 16-bit words to be trans­
ferred. After each transfer cycle, the HC is incremen­
ted ̂ and an external DCH trigger Is sent to the crate
controller to Initialize the next transfer cycle, when
the WC overflows, the OVERFLOW control sets the DCH-flag,
which in turn activates the L-line (if LAM has been en­
abled using P(26)>, and the transfer stops. The HC is
especially convenient for DMA transfers froa the 168/E

meaory—it la not required for LM-Mode transfers to
the 168/E data aenory.

In addition to a WC overflow, the SNOOP L-line can
also be activated by an Interrupt Request (XNT.REQ)
froa the 168/E Interface. The ZNT.REQ flip-flop Is set
true by a Write Status Register F(20) coanand with U4
(bit-3) in the status register. A SNOOP nodule with the
INT.REQ.set is expecting an interrupt and will set its
LAM' if an interrupt request is received fron a 168/E
interface.

The SNOOP is currently a double width CAHAC nodule
with external connectors on the front panel for the 50
wire cable to the 168/E Interface and the DCH trigger
cable. It has a single LED which is gated on whenever
the SNOOP Is active. The Function Decoder uses a
32*8 bit FROM, which substantially reduced the nuaber
of IC's which would have been required with conventional
line decoders.

TAILE I: SHOOP / IHTERFACE FUNCTIOKS

FUNCTION AB TYPE* SYMBOL DESCRIPTION

0 1 S/I RDM Read Data Memory

0 (S/I RDM Reed Dete Memory end
Increment Addresi Reg.

1 1 S/I RPM Read Progrsn Memory

1 0 S/I RPM Read Program Menory and
Increment Address Reg.

4 1 S/I RPC Read Program Counter
i 0 S/I RSR Read Status Register
6 1 S/I RAR Read Address Register
0 0 S/I RDSR Read Device Select Reg.
10 S Clear Look-At-Me (LAM)
16 1 S/I WDM Write DBta Memory

16 0 S/I UDM Write Data Memory and
Increment Address Reg.

17 1 S/I HPM Write Program Memory

17 0 S/I BPM Write Program Memory and
Increment Address Reg.

19 s • Load Word Counter
20 1 S/I WPC Write Program Counter
20 0 S/I VSR Write Status Register
22 1 S/I WAR Write Address Register
22 0 S/I HDSR Write Device Select Reg.
24 s Disable LAM
26 s Enable LAM
27 s TLM Test Listen Mode (Q-Line)
28 s SIM Set Listen Mode
30 S CLM Clear Listen Mode
31 I LM Listen Mode Data Transfer

S - SHOOP Module I - Interface Board

I68/E Interface

For the SNOOP module, It la aufficient to decode
functions Into-three categories; READ, WRITE and
CONTROL. However, the Interface Board aust decode and
proceaa 17 of the 24 coanands in Table !• Function pro­
cessing by the 168/E Interface can be classified In
tour categories:

1) Device Selection,
2) Address Register,
3) Status Register,
4) Data I/O (Memory and Progress Counter).

In the Listen Mode, F(31) is generated by the SNOOP
nodule and executed on the Interface Board to writ*
data memory and increment the Address Register (the sub-
address and function linen are Inhibited in this node).
The rest of the Interface functions in Table I are part
of the CAHAC instruction aat for the SNOOP Module. A
block diagram of the ? J/E Interface is shown in Pig. 3.

The 5N00P and Interface can control up to eight
168/E processors, and Device Selection refers to identi­
fication of the processor (s) referenced by a CAHAC cost-
mand. Although all the 168/E Interface Boards have
identical construction and are exchangeable, only one
Master Board la loaded with the IC's necessary to re­
ceive and decode the device selected. The 50-wlre flat

cable Includes eight device selection lines which con­
nect the Master Board with other .Interface Boards in a
Daisy chain (See Fig. 1). Each Interface Board has a
DlP-swltch which selects one of these eight lines and
defines the interface-processor nuaber (0-7). There are
two procedures for selecting a 168/E Interface Board;

1) The CAHAC instruction selects the board using
subaddress bits Al, A2 and A4. Functions
F(0, 1, 4, 6, 16, 17, 20, 22) can use this
type of selection.

11) The Interface is preselected by function
F(22)>A8 which loads the 8-bit Device Select
Register (DSR) with its corresponding inter­
face number (DSR- 1 selec'ts Interface #0) .

When'the DSR is non-zero the CAHAC subaddress lines
(AL, A?., A4) are inhibited. The DSR must be used for
Listen Mode data transfers since the subaddress lines
are inhibited on the SNOOP nodule in this mode of oper­
ation. By using the DSR data can be transferred simul­
taneously to any combination of processors.

Data transfers to/from the 168/E program or data
memory are executed under supervision of the Address
Register. This register has two modes of operation:

i) Static Address. Function F(22)«A8 loads the
Register and one of the commands A8*(F(0) +
F(l) + F(16) + F{17)) is used to transfer
data to/from the corresponding location In
the processor memory.

ii) Incrementing Mode. The Address Register is
loaded with the initial memory location and
the commands A8«(F(0) + F(l) + F(16> + F(17))
increment the Address Register after each 1/0
transfer.

For reading or writing Che Address Register, the memory
location is defined in hslfword units. The 16B/E pro­
cessor has a 32-bit word length (for data memory) while
the CAMAC SNOOP module and consequently the 168/E In­
terface use a L6-bit word length. For user's conven­
ience and system versatility, each word in memory is
divided into upper and lower halves (most sipiificant
and least significant half), with the selection made by
the least significant bit-0 («W1) of the 16-bit
address. Bits 1-12 of the address select one of the
4K program or data memory addresses on each memory
board, while bits 13- 15 select one of the eight possi­
ble memory boards. On the 168/E Interface the 16-bit
Address Register has the least significant bit duplica­
ted in a flip-flop which is clocked at the same time as
the Address Register. This extra bit controls alterna­
tively the transfer to/fron the upper and lower halves
of a word, while the Address Register is incremented
after two 16-bit transfers.

An 8-bit Status Register on the 168/E Interface
Board provides the communication path between the host
computer and the processor. Using this register as de­
fined In Table II, a program on the host computer con­
trols the 168/E processor and determines its status.
Function F(4)<A8 Reads the Status Register (RSR), and
F(20)*A8 Writes the Status Register (WSR). Only bits
2 and 3 arc important for mderstanding the SNOOP and
Interface operation. By setting blt-2-0, the host
computer takes control of the 168/E backplane — this
must be done before memory I/O instructions. Bit-3
enablea/disables the Interrupt Request (INT.REQ) flip-
flop on the SNOOP module which issued the WSR command.
If Bit-3 is set in the Status Register the 168/E Inter­
face will set-the INT.REq line In Fig. 3 when the pro­
cessor executes a HALT instruction.

The block diagram in Fig. 3 shows the 16-line data
path between the 50-vire flat cable and the 168/E
processor bus. The Interface Board is located In the
crate with the processor and communicate*, with It
through the backplane of the crate.

- 3 - ?*_
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

<^TSE

LMtUSTEW-MOOE)

"t^

IWCH.ADOH.REG.,

(•'UNCTION

DECODER

mi
ADDR.

LINES

o
ARLlAPPR. REG. LOAD)

RITE DATA MEM. PLS.

HWHTE WPG. MEM. PLS,

LOAD PROS. COUHTEft

OEV. SEL 1-8 f.

K3H
a

DEVICE
SELECT

REG.
IOSR)

(«-6IT
AOOR.

8-BIT
STATUS

REG.
|5R)

W P C 1 y

TO DATA MEMORY

TO PROGRAM MEM.

OM-ADDR. LIMES

PM-AODR, LINES

Figure 3. 168/E Interface Block Diagram

Data which originates in the Program Counter, Program
Memory. Data Memory, and Address Register, is aelected
by eight Dual 4-line to 1-line multiplexers (MUX.).
The 16 output lines fron the MUX. are OR-ed with the
8 Status Register data lines and sent to the flat cable
through 6T3B line receivers/drivers.

The 168/E Interface .is constructed on a 32-DE-HEX
wire-wrap board. Decoding the F-lines on the Interface
instead of on the SNOOP simplifies the construction by
reducing the number of lines required in the flat cable

TABLE II: 168/E STATUS REGISTER

BIT TYPE DESCRIPTION STATE

0 WRITE
ONLY Start 168/E Frogran execution 1 - Start

1 READ/
VRITE

Single Step or
Continuous Run Mode

0 • Single Step
1- - Continuous

2 SEAS/
WRITE

Control of 168/E backplane -
•ource of addreea information

0 - Interface
1 - 168/E CPU

3 READ/
WRITE

Enable/dleable Interrupt! when
168/B executes HALT Instruction

0 - Disabled
1 - Enebled

* READ
ONLY

Set when 168/E executes a
HALT instruction

0 - No Halt
1 - Halt

5 READ
OHLY,

Indicates when 168/E is
executing* instructions

0 - Stopped
1 - Running

6 READ
OKLY

Indicates whan 168/E
DC power Is on

0 - DC off
1 « DC on

and the number of SNOOP drivers and Interface receivers.
To further minimize the number of IC's required, the
Interface uses three 32* 8-bit PROM'a instead of the
more common Line Decoders. The 3-phase 168/E clock
circuit, which is driven by a 20 MHz crystal oscilla­
tor, is built on the Interface Board. This solution
has some advantages as far aa the interconnection
between the Interface and Processor is concerned.

Summary

The SNOOP module and 168/E Interface have
been built and tested using 168/E diagnostic
routlnea which execute on a NOVA 840. The
system operates as designed in both the
conventional Read/Write Modes and in the
Listen Mode.

Acknowledgments

We would like to thank R. H. Fall and
P. r. Kunz for their assistance in implement­
ing this interface to the 168/E Processor.

References

C. V. Cautia at al., SLAC-POB-2233 (1978),
(to bt published in Nuclear Physics B).
P. F. K u u « t al., SLAC-PUB-2198 (1978),
papar presented at the 11th Annual Micro­
programming Workshop, 1978.

