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ABSTRACT 

The need for Receiver Operati ng Characteristic (ROC) analysis 
is indicated by a dist:ussion of the limitations of "accuracy" and 
of "sensitivi ty" and "specificity" as indices of diagnostic detec­
tion or discrimination performance. The concept of a variable 
decision threshold is shown to l ead in a natural \'lay to the ROC 
curve as a means for specifying di agnostic performance. Practical 
techniques for measuring ROC curves are described, and directions 
for possible generalizations of conventional ROC analysis are 
indi cated. 

INTRODUCTION 

How can we measure the quality of diagnostic informati on and 
~ diagnostic decisions in a meaningful way? That basic question 
\ has become increasingly important in recent years as an abundance 

of new diagnostic tests has .been i ntroduced and as governn\ent and ~ 
the public grow ever more insistent that the medi cal communi ty 
must justify the costs and possi ble risks of diagnostic procedures. 

' The question must be addressed; it will not go away. 
The fundamental relationships between the physical properties 

of a diagnostic medical image (such as resolution, contrast, and 
statistical fJuctuations) and the abili ty of a human observer to 
properly detect and interpret rel evant image features are poorly 
onderstood. In real di agnostic tasks, these rel ationships are 
undoubtedly complicated by problems of complex background struc­
ture, normal anatomical vari ations, and observer training. Thus , 
at present, one cannot confidently predi ct the diagnostic perfor­
mance of a medical imaging procedure from knowl edge of its 
physical characteristi cs . Instead, one must objectively measure 
the diagnostic detection performance that can be achieved by 
hurnan ob~erv~rs who vi ew images made \•lith real medical imaqing 
systems . Hopefully, the data obtained in th{s way ultim~tely · 

* Much of the text of this paper is taken from: Metz, C.E., 
Basi c Pri ncipl es of ROC Analysis, Seminars in Nuclear Medicine 
8: 283-298, 1978. 
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will contribute to .an improved understanding of the visual process 
in diagnostic medicine. For now~ these data -- if properly 
collected -- can provide an empirical quantitative description of 
diagnostic imaging system performance. 

Any meaningful approach to the evaluation of diagnostic per­
formance must inevitably involve many complex technical and social 

·issues, and one cannot reasonably expect that the typical physicist 
or physician should master all of the subtleties involved. Still, 
the basic concepts upon which diagnostic performance analysis rests 
are quite strQightforward and need not be regarded as myster·ious. 
Although these concepts are (unfortunately) often clothed in 
seemingly occult jargon -- because of the need for concise and pre­
cise terminology--, the principles themselves are mostly formalized 

·common sense or at least can be recognized as reasonable when 
explained in plain language. · 

This paper will attempt to guide the reader through the basic 
·principles of an approach that provides a structure for the mean-
. ingful evaluation of diagnostic techniques. Although this approach 

.. is essentially quantitative, its merit does not depend only upon 
~ the use of numbers. The approach ·focuses attention on the issues 
·· involved in diagnostic evaluation and diagnostic decision-making, 

.. and the teader will likely find that he has informally considered 
i- some or all of these issues already. To the extent that this is 

true, the reader may find himself in the position of Moliere's 
gentleman wfio was preasecr to Tearn that he had been speaking prose 
for years. 

DILEr~MAS IN EVALUATING DIAGNOSTIC TESTS 
-.:-. 

·· What does 11 Accuracy11 ~1ean? 

\ '~-- .... 
'· ·.· Any assessment of diagnostic performance seems to require 

iome comparison of diagnostic deciSions with 11 truth." Perhaps 
the simplest measure of diagnostic decision quality is the frac-

. tion of cases for which the physician is correct, which is often.· 
called "Accuracy... Although we are \'lilling to accept that high 
accuracy is good (a 11 other things being equa 1 -- and. that's the 
catch), the number can be very misleading. In screening for a 
relatively rare disease, for example, one can be very accurate 
simply by ignoring all evidence and calling all cases negative. 
If only 5% of patients have the disease· in question, a physician. 
who always blindly states that the disease is absent will be 
right 95% of the time! 

Accuracy is of 1 imited useful ness as an :index of d.i agnostic 
performance because djsease prevalence affects the resulting num­
ber so strongly, and no mathematical "correcti on"or"norma 1 i zation" . 
for disease prevalence can redeem this index in a meaningful way. 
One might be tempted to suppose that, though this be true, "Accu-

. ~ .racy11 should be meaningful at least _as an index for comp~.rison of 

:.· 
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diagnostic techniques applied to a given popul~ti6n in whichdisease 
prevalence is known and fixed. Here, too, the index is limited, 
however. Th'O diagnostic modalities can yield equal accuracies 
but perform differently with respect to the types of correct and . 
incorrect decisions they provide; the incorrect diagnoses from one 
might be almost all false negatives (misses), while those from 
the other might be almost all false positives (false alarms). 
Clearly·, the relative usefulness of these two tests for patient 
management could be quite different 1n var1ous s1tuations. 

Though accuracy provides a single simple number for diagnostic 
performance, it is often too simple and must be interpreted with 
considerable caution. The limitations of this index force us to 
introduce some complexity into our evaluation scheme: we must 
sort out the effect of disease prevalence, and we must score·;. · 
separately the various kinds of right and wrong diagnostic 
decisions. 

Sorti~g:Things Out 

\ Both of the obvious limitations of the accuracy index can be 
·\overcome by defining decision performance in terms of the pair of 

indeces: · · · · · 
\.. 
\.-

and ·-
SENSITIVITY 

SPECIFICITY 

= Number of true positive (TP) decisioris 
Number of actua11y pos-itive cases 1 

= Number of true negati~e (TN) decisi6ns 
Number of actually negative cases 

In effect, sensitivity and specificity represent two kinds of 
.:·aCcuracy: the first for actually positive cases and the second for 
· a~t~ally negative cases. One must note carefully that the terms 
"positive .. ·and 11 negative" in these definitions concern some 
~articular~disease state; this disease state must be spe~ified 
clearly in calculating and quoting sensitivity and specificity 
values. For simplicity, these indices require that all possible 
states of health and disease be classified into two.categories. 
These categories can be defined in any way that is convenient and 
meaningful for the problem at hand, but they must be made explicit. 
For example, patients could be classified as having one or.more 
tumors (malignant or benign) or no. tumor, as having malignant 
tumors or no malignant tumor, etc. · · 

Accuracy, or the fraction of all .cases that is decided 
correctly~ is related to sensitivity and specificity by the simple 
formula-: · ·. · 

ACCURACY = [SENSITIVITY J x 

+ [sPECIFICITY } x 

[
Fraction of all cases that J 
is actually positive 

[
Fraction of a 11 cases that J 
Js actually negative. 
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The reader should think through the proof of this relationship as 
a simple exercise in the sort of manipulation that is used 
repeatedly in our approach. . Notice that accuracy is defined as: 

so 

ACCURACY = # correct decisions 
# cases 

[

#True Pos1tivej 
ACCURACY = decisions 

# cases 

: [# True ~o~itive ] = dec1s1ons 
. # actually 

· positive cases 

+ 
.

. [ _u_T_r.....;u;:...::e:..::....:.N-=-e-=-ga=..:t.:..;:i=-v-e J decisions 
# cases 

[ # actually · ]. 
positive cases 

# cases 
X 

·: [# True ~e~ative ]. . · ·· 
+ dec1s1ons x 

# actually 
negative cases · 

[ 

# actually 
negative cases 

# cases ] 
\.. \.·'and the relationship is proven. A little arithmetic and a little 

· common sense g_9 a long_ way in this field! 1 

· -At this point~ we must introduce some additional terminology 
that is commonly used in the approach we are taking. True Po~itiVe 
Fraction {abbreviated "TPF" is simply the same thing as "Sensi­
tivity," and True Negative Fraction)(abbreviated "TNF") is simply 
.the· $arne as "Specificity." As one can see from the definitions of 
"Sensitivity" and "Specificity~" the terms TPF and TNF are more 

. directly descriptive of the concepts involved and, for this \'iriter 
~t least, are a lot easier to remember. These new terms suggest 
two other-definitions: 

FALSE POSITIVE 
FRACTION (FPF) 

a·nd 
FALSE NEGATIVE 
FRACTION {FNF) 

= 

= 

# False Positive decisions 
# actually negative cases. 

# False Negative decisions 
# actua~ly positive cases 

Note that FPF and FNF represent, respectively, the fractions of 
actually negative cases and of actually positive cases that are 
decided incorrectly. · 

If we presume that all cases are diagnosed as either positive 
or negative {with respect to a specified disease), then, for 
either actual state, the number of correct decisions plus the 
number of incorrect decisions must equal the number of cases with 
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· that actual state. Thus it is easy to show that the various frac­
tions defined above must be related by 

and 
TPF + FNF = 1 

TNF + FPF = 1 

• (The reader shoul~ prove these relationships as an exercise.) 
Because of these constraints, one can always compute FNF from 

. knowledge of TPF, for examplP.. ~o it is necessary only to ~pccify 
one fraction from each of the above relationships_in order to fix 
all four types of decision fractions. 

One additional set of notations must be defined before we 
proceed. It is common to denote the four decision fractions de­
fined above by using the symbols of conditional probabilities, 
because each decision ·fraction represents an estimate of the 
probability (or relative-frequency) of a particular kind of 
decision, _given that (or conditional on the fact that) an indivi-
:dual case actualiy has a particular· health or disease state. Let 
"D" represent the Disease in question, and let 111" represent the 
result of a diagnostic Test, i.e., a particular decision. Then · 
FPF, for example, is equivalent to the conditional probability . 
P(T+ID-), which is read as"the probability of a positive test, 
given the-absence of disease ... Similarly, TPF is often denoted by 

. P(T+jD+); FNF by P(T-ID+); and TNF by P(T-jD-). Note that the use 
~__ . .of··conditional probability notation makes explicit the kinds of 

-test .res·u1 ts (deci·stonst·;' l·; anrr--'a-ctucrt~ cfi·sease states, D, that· ... ·.·: 
are in the. numerators and denominators of the definitions of the · 
four kinds of decision fractions. Also, this notatioh emphasizes 
.that··all· four decision fractions are conditional on (i.e., are 

·:normalized with respect. to) actual disease states. 
'·.finally, ·the prevalence of disease in the popul~tion subjected 

to ~he diagnostic test (or for which diagnoses are to be made) can 
be' r·epresen.te.d .by P(D+), the prior probability of the actual 

. presence of th~disease in a case from the population studied. 
Similarly, P(D-) = 1.- P(D+) represents the prior probability 
thatdfsease is. actually absent in a case from the studied popu­

-1 ati on. 
The relationships among the various quantities that we've 

defined so far are summarized in Table I. Note, in particular, 
the sense in which thinking of the conditional probabilities as 
fractions helps one to remember the definitions and the relation­
ships. 

Apples and Oranges 

The concepts defined in the previous section allow us to sepa­
rate out the effect of disease prevalence and to score separately 
the performance of a diagnostic test or a diagnostic decision maker 
with respect to actually positive and actually negative cases. 

. -~..:-·~ .: . . ': 

-· -··· -·· --··-.- ··~·-· .. ····· --··----·--·-:- .. _ ... -· --
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TABLE I. Definitions of, and relationships among, the various 
decision performance indices described in the text. (Metz, Ref. 3) 

Definitions: 
TPF = SENSITIVITY * P(T+jD+) 
FPF = 1-(SPECIFICITY) = P(T+ID-) 
TNF = SPECIFICITY = P(T-jD-) 
FNF = 1-(SENSITIVITY) = P(t-j_D+) 
Disease Prevalence = P(D+) = 1 - P{D-) 

-Relationships 
TPF + FNF = P(T+ID+)+ P(T-jD+) ·= 1 
TNF + FPF = P(T~jD-) + P(T+ID-) = 1 
ACCURACY = SEN?ITIVITY x P(D+) 

+ SPECIFICITY x P(D-) 
= TPF x P(D+) + TNF x P(D-j 
= P(T+jD+) x P(D+) + P(T~jD-) x P(D-) 

\.. 
\. 

In order to see hm-1 these concepts can be applied to a collection 
of diagnostic deci"Sions, consider tne following hypotnetical situa-'· ·· 
tion~· Suppose that 1,200 cases from a defined population have 
been subjected to some diagnostic test 11 A11 and that the actual 
health or disease state for each case has been determined later by 

·.biopsy, follow-up, or some other means. Suppose that 200 actually 
p6sitive cases were ultimately found in the population studied and 

. tha.t the diagnostic test to be evaluated yielded 140 true positive 
· 1tP) decisions, 60 false negative (FN) decisions, 900 true nega-
. tive (TN) decisions, and 100 false positive (FP) decisions. These 
· clata can be surrunarized by the .. decision _matrix .. · shown in Table II. 
Note that summing across rows yields the number of cases with an 
actual health or disease state, while summing in a column yields 
the total number df times that the corresponding deci~ion was 
made. Note also that the values for TNF, FNF, and Accuracy 
obtained using the relationships summarized in Table I are the 

_·same as those that would be obtained using the definitions of 
these quantities directly. 

We see from the calculated indices that this test, used as 
it has been used here, is more 11 accurate 11 for actually negative 
cases than for actually positive cases, since TNF is greater than 
TPF--even though more actually negative then actually positive 
cases were decided incorrectly. The latter observation is not 
paradoxical, but merely reflects the preponderance of actually 
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TABLE 2. Decision data and calculated indices 
for hypothe~ical Test 11 A11

• (Metz, Ref. 3). 

Actual State 
Positive (D+) 

Negative (D-) 

Test Result 
(Diagnosis) 

Positive T+) 

140 
(TP) 

100 
· (FP) 

240 
+ decisions 

60 
(FN) 

900 
(TN) 

960 
- decisions 

200 
actually + 
cases 

1000 
actually -
cases 

1200 . ; 
total cases 

\ Calculated Indi~es 

\. 
TPF = ~cig · = 0.70; FNF = 1-:TPF = 0.30 

FPF = ~ggO =~ o~·lO;· TNF =· 1-FPF = o.-90 

P(D+) =~~go·= 0.17; P(D-) = 1-P(D+) = 0.83 

'.ACCURACY= TPF x P(D+) + TNF x P(D-) = 0.87 

\ ., .. ,.. ·., 

gegative cases. in the population studied; recall that TPF, TNF,. 
etc., represent 11 rates•' and not 11 numbers of cases ... 
~- · The decision fractions allows us to predict how the 11 Accuracy 11 

index would change if this same test were applied (in the same 
way) to a population with a different prevalence of disease, 
P(D+). If the various decision fractions are kept co-nstant but. 
P(D+) is increased to 0.6, for example, then 11 Accuracy 11 \'tould be 
(0.7} x (0.6) + (0.9) x (0.4) = 0.78. This value is lower because 
the test is less accurate for actually positive cases, and these 
have become more frequent. 

Often we wish to compare diagnostic tests. Suppose that the­
same population of cases used to evaluate Test 11 A11 were studied 
using a .different test, Test 11 B11

, with the results shown in 
Table Iii. Comparison of Tab.les II and III clearly shcM·s that 
these two tests are performing very differently--though the 
11 Accuracy11 indices are the same! Test B is performing worse than 
Test A for actually positive cases--TPF is lower and FNF is 

---~higher--but ·it i-s performing· better .for· ac-tual-ly negative. cases-- . _ .. 
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TABLE III. Decision data and calculated indices 
for hypothetical test "B" .. (Mett,. Ref. 3) •. 

Actual State 

Positive (D+) 

.Negative (D-) 

.. 
Test Result 
(Diagnosis) 

Positive· (n-) Ne 

80 
(TP) 

40 
{FP) 

120 
+ decisions 

ative (T-) 

200 
;120 actually + 
(FN) ca·ses 

960 1000 

(TN) actually -
cases 

. ~ . 

1080 1200 

\. 
decisions. total cases 

·, Calculated Indices 

· TPF ·~ 2gg '·'= 0.40; FNF - 1-TPF = 0. 60 

FPi= ,; 16~0 ::c-·· n. 04; rNF - l;..FPF. = o. 95 · 

200 .. ~(D+) = 1200 = 0.17; P(D-) - 1-P(D+) = 0.83 

'ACCURACY= TPF x P(D+) + TNF x P(D-) = 0.87 
\''< 

. TNF is. higher and FPF is lower. The "Accuracy .. indices are equal 
b-ecause this "trade-off" in performance is just balanced by the · . 

. ~disease prevalence, P(D+), that we have. used in our example. It 
~should be clear that, in many applied situations, Tests A and B 
{as :~sed here) are not of equal value: If the implications of a 

· false positive decision for subsequent patient management are bad 
and overriding, the Test A is worse, and if the implications of a 
false negative decision are bad (and overriding), then Test B is . 
worse. 

What to do? How can we balance the apples and oranges of TPF 
and FPF (or, equivalently, of TPF and TNF)? We could at this point 
attempt to incorporate into our analysis 11 Weights".for the good and 
bad of the various types of correct and incorrect decisions. · 
First, however, let us consider a further complication, which will 
suggest a solution to the present dilemma. 



DISTRIBUTION FOR 
ACTUALLY ·NEGATIVE 
CASES ONE POSSIBLE 

DECISION 
THRESHOLD 

DECISION AXIS ~ 

DISTRIBUTION FOR 
ACTUALLY POSITIVE 
CASES 

. . · TEST RESUl!.T VALUE·, OR SUB_JECTIVE . : .... · · . . . . ] 
[JUDGEMENT OF LIKELIHOOD THAT CASE IS POSITIVE 

Fig. i. T~-10 hypothetical distributions of a quantity 
on which decisions are based, showing one possible · 

decision threshold. The conditional probability of 
·· .. · ·each kind of decision is equal to the area under a 
:·di-stribution on one side of the threshold •. {Metz:. Ref. 3} 

. \ -~ •.. 

The Implicit Variable . 

. ·.!n. the us.e of almost any diagnostic test, test data do:not · · · 
n~cessarily fall into one of two obviously defined· categories that.· .. 
can be uniqueiy ascribed to the presence or absence of the disease .· 
in question. · · 

.Fo.r diagnostic tests that yield a single number as a result:-- · 
·such as 24 hour thyroid uptake, various blood serum assays; etc.--· 
the distributions of result values in actually ptisitive and in· 
actually negative patients overlap, and no single "threshold" or 
"decision criterion" can be found which separates the populations. 
cleanly. Othen-lise the test \..rould be perfect! Usually a threshold· 
value must be chosen arbitrarily, and different choices will yield 
different frequencies for the various kinds of correct and incor~ 
rect decisions. For example, if high results tend to indicate the 
presence of disease but the distributions of test result values in 
actually negative and in actually positive patients overlap, as 

-shown in Figure 1, then increasing the threshold value will make 
·' 



1' 

-----------~ 

both false positive and true positive decisions less frequent, but 
. will also make both true negative and false negative decisions . 
_more frequent. A threshold value must be selected that is believed 
. to yield an appropriate compromise bet\·Jeen these gains and losses. 

Similarly, diagnostic tests which yield results that must be 
judged subjectively, such as imaging studies, usually require that 

. some "confidence threshold" be established in the mind of the 
· decis1on maker. If an image suggests the possibility of disease, 

how strong must that suspicion be in. order for the image to be 
called "positive?" The confidence threshold than an observer 
adopts undoubtedly depends upon many things--his "stYle," his 

. estimate of prior odds or probability, and his assessment of the 
consequences of the various possible correct and incorrect deci-

. sions--and the concept of a confidence_ threshold may be hard to 
quantify. Still, in most s·ituations, a confidence threshold can 
be varied, and the various decision fractions \'/ill vary with it .. 

.• Recognizing the arbitrary nature of deciSion threshold selec- · 
~ tion might seem to complicate our problem even more. Aside from 
. the "apples and oranges" of TPF and FPF, how can v1e compare Tests 

,. A~and B if the data in Tables II·and~III could be changed simply 
\by arbitrarily selecting different thresholds or by using a 
. different set of considerations in making a subjective decision? 

\-:: We resolve this dilemma by intenttonally forcing the decision 
(threshold to vary and by observing_ the resulting changes in the 
~various decision fractions. 

:·. 

THE INSIGHT PROVIDED BY RECEIVER 
OPERATING CHARACTERISTIC ANALYSIS 

Varying the Variable 
. ..... ·. . ·. 

, \<If we~.explicitl.Y ·change the deCision threshold by reinterpre- · _ 
·· i ting the results of a quantitative test using a new threshold of 

abnormality or by having the observer re-read a set of images. 
requiring that he be more (or less) certain that a case is posi­
t'ive before calling that case "Positive," then we will obtain a 
different set of decision fractions. If we change the decisiori 
thresho 1 d again to a ne\'1 1 eve 1 , \'ie wi 11 obtain yet another set of 
decision fractions. Since TPF and FPF together determine all four 
decision fractions, we need only kee~ track of how these two 
fractions change as the decision threshold is varied. 

If we imagine that the distributions of test results (or, for 
subjective tests, the distributions ofsome quantity like "esti­
mate of the likelihood of disease, given the test information") 
are of the form shm'ln i.n Figure 1, then we see that lm'!ering the 
decision threshold, for example, must increase both the TPF and 
FPF. After some thought, one should rea 1 i ze that \·Jhatevet' the 
form of the distributions, TPF and FPF must increase or decrease 

__ together as the decision threshold is change·d. 
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Fig. 2. A typical conventional ROC curve, . 
. show.ing. threa possible operating points. (Metz, Ref. 3) · 

lf we explicitly change the decision threshold several times 
··as' described above, we will obtain several different pairs of WF 
and FPF .. These pairs can be plotted as the 11Y11 and 11X

11 coordinate 
values of points on a graph like that shm11n in Figure 2. The axes 
of this_ graph both range from zero to· one because these are the 

.l.imits of possible TPF and FPF values. Since we can imagine ... 
repeatedly changing the decision threshold and obtaining more and · 
more· points on this graph, and since TPF and FPF must always change 
together in a way determined by the test result distributions, ve 
see that the points representing all possible combinations of TPF 
and FPF must He on a curve. This curve is called the "Receiv,er 
Operating Characteristic" or "ROC 11 Curve for the diagnostic test., 
since it describes the inherent detection characteristics of the 
test (or, for subjective studies, the observer-test combination) 
and since the "receiver" of the test information can "operate" at· 
any point on the curve using an appropriate decision threshold. 
Figure 2 shm'ls three possible operating points that might corres­
pond to use of 11 strict" threshold (case called "positive" only if 
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judged almost definitely positive), a "model1 ate" threshold~ or a 
"relaxed" threshold (case called .. positive" if any suspicion of 
disease). . . . 

Conventional ROC curves of the kind described here (in which 
t\-10 actual states are possible and in which two decision alterna­

. tives are available) inevitably must pass through the lower left 
(FPF = 0, TPF = 0) corner of the graph because one can adopt a 

.threshold so strict that almost all tests are called negative, and 
:the curve must pass through the upper right (FPF = 1, TPF = 1) 
corner of the graph because one can adopt a threshold so relaxed 
that almost all tests are called positive. Also~ if the test · 
provides information to the decision maker~ the intermediate 

·points on a conventional ROC curve must be above the major diagonal 
(i.e., lower left to upper right diagonal) of the ROC space, 
because in that situation a "positive" decision should be more 
probable when a case is actually positive than when a case is 

_actually negative--i.e., P(T+ID+) should be greater than P(T+ID-) . 
. :Finally, one can show theoretically that, if the decision maker 

-. knows the underlying probability density functio,ns and uses test · · · 
\_information in a "proper" way, the slope of the ROC curve must 
. .-steadily decrease (i.e., it must become less steep) as one moves 

· up and to the right of the curve .. 
\- . 

What. the Curve r·1eans 
\. 

. . Essentially, a- convent}enal· ROC curve describes the compro---··' -. 
:mises that can be made between TPF and FPF--and hence among the 

··relative frequencies of true positive, false positive, true nega­
tive, and false negative decisions--as a decision threshold is 

··:varied for a given test. By appropriate choice of the decision 
' threshold,'· a· decision maker or observer can operate at (or near)· 
~my desired compro1ilise that 1 ies on :the curve. Since the ROC 

. cu~ve is a-graph of TPF versus FPF, both which are independent from 
~isease prevalence when a fixed decision threshold is used, the ROC 
curve does· not depend upon the prevalence of disease in a popula­
tion to which the corresponding test may be applied.* Thus· ROC 
analysis provides a description of disease detectabillty that is 

·independent from both disease prevalence and decision threshold 
effects. -

* The curve may depend on the spectrum of disease states classi­
fied as .. actually positive," hovtever. If early disease is harder 
to detect than advanced.disease, for example, then the ROC curve 
will depend on the mixture of early and advanced actually positive 
cases studied. Thus cases in the actually positive component of a 
study population must be chosen so as to represent the population 

_at large to which the conclusions of the study will be applied. 
Similarly, the actually negative component should appropriately 

-_reflect the relative frequency of normal variants. 

·.~-:.: ·. 



t-:. 

I. 
·l 
!: 

l 

We will discuss later the issue of optimal choice of an 
operating point on an ROC curve, but a few comments seem appropriate 
here. If disease prevalen.ce is very low, then False Positive Frac-

. tion (FPF) must be kept ~njall. Otherw.ise, almost all positive-­
decisions will be false positive decisions, and these diagnoses 
·will burden the health care .system and patients with many unneces­
·sary follow-up examinations and/or treatments. Also, if conse­
quences of a false positive decision are overridinbly bad, perhaps 
·because high-risk surgery would then be done unnecessadly, FPF 
must again be kept small. In either or both situations, the deci­
sion-maker should operate on the~lower left part of the ROC curve 
to keep FPF small, even at the expense of a low TPF and correspond­
inbly high FNF. Conversely, if the same test with the same ROC 
curve is applied to a population in which disease prevalence is 
high and/or in which the n~ed for finding actually positive cases 
is of overriding importance, then the decision-maker should adjust 

·his:decision threshold to operate higher on the curve, accepting 
a higher FPF in order to keep TPF high and FNF low. The ROC 

··curve shows the extent to which FPF must be increased, for example, 
in order to increase TPF to any required level •. 

\. For diagnostic te~ts in which the test result must be judged 
· subjectively, an ROC curve describes the decision performance of 

·. an observer-test combination. Clearly, disease detectabil ity can 
t be poor if the test provides little information, or if the observer 

:is n()t skilled. in interpreting the information provided, or both. 
·Because ft· gives an empfrfcal description of decision perr6rmance~·· · · 
~ROC analysis of subjective diagnostic tests cannot reveal whether 
the technology or the individual human is performing badly. How­
ever, ROC analysis of the decision performance of several indivi~ 
.d~als using a single diagnostic test can indicate the extent to 
whicn usefulness of the test depends upon individual skill and/or 
·experience. 1 · A more subtle issue related to performance of the 
decision maker, as opposed to the test, concerns his ability to 
~old fixed his decision threshold .. Variations in.use of the deci­

. sion threshold from decision to decision cause decision performance 
·~o be ·degraded, with a consequent effect on the measured ROC curve~ 
This effect of threshold inconsistency on the measured ROC curve is 
·appropriate and desirable, because any aspect of decision-making 
behavior that degrades decision performance should be included in 
an empirical analysis of the observer-test combination. 

Dilemmas Resolved 

~1e can now resolve the dilemmas that we faced in attempting to 
compare the hypothetical Tests A and B on the basis of the decision 
performance data shown in Tables II and III. From the perspective 
of ROC analysis, the combination df TPF and FPF obtained there for 
each test merely represents one point on the ROC curve for each 
test. By varying the decision threshold for one test, \'/e could 

~~.change the combination of TPF and FPF in such a way that the TPFs 
for both.tests are made equal, allowing comparison of the two 
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Fig. 3. The decision fractions resulting 
. from the data on Tbls. 1 and 2 plotted as 

points in an ROC space~ with possible 
ROC curves on which these points could lie~ 

, '·· · (Hetz ~ ref •. 3) 

resulting FPFs,. or we could make the FPFs for both tests equal, 
permitting comoarison of the two TPFs. More directly, we could 
measure the two curves and compare the curves themselves. 

Figure 3 shmvs an "ROC 11 space .. in which are plotted bm 
points corresponding to the two combinations of TPF and FPF found 
for Tests A and B on the basis of the data given in Tables II and 
II I. If we \<Jere to m~asure ROC curves for the bm tests by chan­
ging (consistently) the two decision thresholds, the ROC curves 
might turn out-to be those shovm by the solid lines. If these 
curves were fourid, we could conclude that Test A offers greater 
detectability of the disease in question than does Test B, because 
for any given FPF the TPF provided by Test A is greater, and for 
.any given TPF.the FPF provided by Test A is less. . 

Alternatively, we might find that the two ROC curves are 
(essentially) the same, such as the dotted curve in Figure 3. In 
that case \'le would conclude that the two tests provide equal 

--detectability of the disease in question, because the tests can be 
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made to perform identically by choosing the two decision thresholds 
appropr.i ately. · 

ln general, .we may conclude that better decision or detection 
performance is indicated by. an .ROC curve that is· higher and to the 

:left in the ROC space. It is conceivable (tho~gh not common) that 
two ROC curves may cross (an~ possibly recross). In such a case 

·the relative quality of decision performance provided by the bJo 
tests in question must be judged in the context of the diagnostic 
situation to \thich they will be applied, because disease prevalence 
anti Lhe costs and benef1ts of the consequences of the various types 
of deci~ions determine the part of an ROC curve on which a deci-: 
sian-maker should operate. 3 · 

Figure 4 displays ROC curves obtained in an experiment 
designed to evaluate the relative visual detectability of small, 
lm~ contrast objects that is provided by four different radiogra­
phic screen-film systems. Each graph shows the ROC curves obtained 
by a single observer. These results are of particular interest . 

•· in that the (RP, TF-2} and (RP/R, PS) systems provide very differ­
·ent detectability but have essentially the same speed--and hence 

. ··require the same .patient exposure. The (RP, PS} and (RP/R, TF-2) · 
\ systems require :approximately· blice and one-half the exposure of 
· the other systems, respectively. Thus these ROC curves show that 

the (RP, TF-2) system is clearly superior to the (RP/R, PS) system 
v for detection of such objects, and they indicate the gain or loss 
\. .. in detectability that can be achieved by increasing or desreasing 

patient exp_osure by a facto.r or two. · 

PRACTICAL CONSIDERATIONS 

The Rating Method Trick 
:·. ... . 
, ·-.. As we- have seen, an ROC curve can be generated by varying the 

ge,cision threshold that defines the"cut point" between results 
·ascribed to (though not necessarily due to) actually "positive" 
. and actually "negative" cases. 

·. Data from a diagnostic test that yields a. single quantitative 
. value for each case can easily be rescored as "positive" or "nega­

tive" by using various decision thresholds. A number· of points 
on the corr~sponding ROC curve can be plotted in this way, and a 
smooth curve can be drawn through or fitted statistically to 

.. the points. . . 
This ·approach is often impractical for diagnostic tests that 

must be interpreted subjectively, however, because human observers 
may not find it possible to associate a continuum.of numerical 
values \'lith their subjective impressions of certainty. The 
simplest way of expressing a diagnostic decision in terms of 
''positive" or "negativ.e", even though that decision may have been 
reached by comparison of a subjective impression with a decision 
threshold. These binary (two-valued: yes or no) decisions cannot 

·~be reanalyzed to determine what the decision maker would have said 
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Fig.· 4. ROC curves generated by (A) observer 3, a senior radiolo­
.· g.1sti {B) observer 4~ a· physicist; and (C) observer 5, a physicist. 
These curves were obtained in a radiographic signal detection ex- · 
periment described els~where. 11 The signal was the radiographic 
image of a 2-mm diameter Lucite. bead, and noise resulted from the 
radiographic mottle of the following diagnostic screen-film combi­
nations: RP-Kodak RP X-omat medical x-ray film (normal speed); 
RP/R-Kodak RP Royal X-omat medical x-ray film (fast speed); PS­
DuPont Cronex Par Speed Screen (medium speed); and TF-2-Radelin TF~ 
2 Screen (fast speed). Open and solid symbols of a given shape in-. 
dicate independent trial runs with the same observer and the same 
_set of images. Each trial run consisted of approximately 100 
observations. Note the reproducibility of the·curves from ~ . 
observer to observer for this simple det~ction task. (Metz et.al. 
Ref. 16). 
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if he had used a different confidence threshold, however. Thu~, 
an ROC curve can be generated from subjective ''yes-no11 ·response 
data· only by requiring the deci~ion maker to .. re--read" the entire 
set of cases several time~, using a different decision threshold 
each time. This repeated' "yes-·no" approach is clearly burdensome 
and usually impractical. 

A practical technique for generating response data that can 
be used to plot an ROC curve in such a subjective judgement situa­
tion is called the ''Rating f1ethod 11 and was developed in experimen­
ta 1 ·psycho 1 ogy. '* Essentially the method represents a compromise 
between accepting a ''yes-no" response and requiring that the 
decision maker ·select a value from a continuous scale to represent 
his confidence that the case in question is positive. Instead, the 
observer 6r 4ecision maker is·required to select ·one of several 
11 ratings" or categories of confidence to represent his judgement · 

. based on the information provided by the diagnostic test (and per-
haps:·on other supplementary information available to him). These 

; categories can be given qu~litative labels such as:· (1) 11definitely 
·or almost definitely negative," (2) 11 probably negative;". (3) 11 pos­
. sibly positive, .. (4) ~·probably positive, .. and (5) "definitely or 

\.almost definitely positive." The use of five c~tegories seems to 
represent a reasonable compromise between the needs of ROC analysis 
and the precision with which an observer.can be expected to repro-

\ .. duce his·ratings. We show below that use of N categori~s will 
. yield (N-1} non-trivial points .. on the ROC curve. ·. 1 

. ·•• ·. 

. · 'The rating data obtained in this \'lay are used to compute 
·points on the ROC curve as follows. 
, First, only those responses in the category corresponding. to 

· ;·highest certainty that a case is positive are-sCored as "positive" 
\ deci~ions, arid. the rest are·scored as "negative" decisions. Thus 
i for the category 1 abel s 1 i sted above, responses in category "5" 
:;·o'1lY would.be scored as 11 positive 11 decisions at this stage of ,· 
. data analysis. These 11decisions" are then compared \'lith the actual 

·: presence_ or·- absence of disease· for each case, and TPF and FPF are 
~ calculated. This combination of TPF and FPF is plotted as a point 
: i'n the ROC space and can be interpreted as the ROC curve operating 
··point corresponding to use of a ."strict" decision: thr!?shold, with 
:which a case is called positive.if and only if the the decision 

maker is certain or almost certain that the case in question is 
·actually positive. 

Next, the rating scale response data are rescored, this time 
intrepreting as a positive decision a response in either of the 
t\'10 categories corresponding to greatest certainty that a case is 
actually positive.· Thus for the labels listed above, a response 
in either category 11 5" or category "4" is scored as a positive 
decision. T.he resulting valu.es for TPF and FPF are then calculated· 
and plotted in the ROC space.· This point represents an ROC curve 
operating point correspo~ding to the use of a less strict decision 
threshold, that is, corresponding to the situation in which the 

·-decision maker would call a case "positive" if he judges that the 

~ -.- -~-- . 
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Table JV. Simulated rating scale data and 
~alculation of ROC poi~ts. ~: · .. 

. 'RATlNG SCALE DATA 
Confidence Rating: 

1 '2· 3 

. -Actually {+) cases 5. .6. .5 12 22 1: = 50 

.. Actually. {-) cases 30 · 'l9 8 2 1 t = 60 
; . . 

·Entries show number of cases for wnich·indicated rating was used. 

CALCULATION OF ROC POINTS 

.. A. {5) = 11+" decision 
TPF =·22/50 = 0.44 
FPF = 1/60 = 0.02 

\ .. B. (5 or 4) = 11+11 decision 
TPF = (22+12)/50 = 0.68 

\.-. 
FPF = (1+2)/60 = 0.05 

c~ . (5, -4, or 3) ;:; 11+i1 decision­
TPF = (22+12+5)/50 = 0.78 

.--FPF =. (J+2+8)/60 = 0.18 
·o. ·{5. 4, 3, or 2) = 11+11 decision 

·TPF = {22+12+5+6)/50 = 0.90 
· .. ,· FPF =. {1+2+8+19)/60 = 0. 50 ' ·.. . 

.case is· at least probably positive. . . 
1 ·This procedure is then repeated, successively interpreting as 

a 11 positive11 decision a rating in ~ of the three categories of 
highest certainty that a case is positive (here, 11 511 or 11 411 or 
11 311 = "positive11

), then a rating ·in any of the highestfour· cate­
gories, etc. When finally~ response is scored as a 11 positive11 

decision, both TPF and FPF become eq~al to 1.0, so the last 
plotted operating p9int is always in the upper right corner of the · 
ROC graph. A smooth curve is then drawn through or fitted statis­
tically to the plotted points to yield the measured ROC curve. 

Table IV shows· an example of rating scale data (generated by 
computer. simulation) and. the calculati~n of ROC operating points 
from those data. Figure 5 displays the calculated ope~ating 
points on an ROC graph, together with the + 1 standard deviation 
error bars estimated frorri the data {by the-method explained in the 

__ next section) and the maximum likelihood ROC curve estimated from 
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DATA POINTS: AS CALCULATED USING RATING 
SCALE DATA FROM 50 ACTUALLY (+) TRIALS 
AND 60 ACTUALLY (-) TRIALS. 

ERROR BARS: ± I STD. DEV. AS ESTIMATED FROM 
DATA POINTS. 

SOLID CURVE: MAXIMUM LIKELIHOOD ESTIMATE OF 
THE ROC CURVE. 

BROKEN CURVE : THE ROC CURVE FROM WHICH 
THE DATA WERE,IN FACT, GENERATED. 
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Fig .. -5. Simulated rating scale data with the 
actual (broken) and fitted (solid) ROC cu~ves 

the data (using a procedure referenced in the next section). Also 
shown, by a broken line, is the actual ROC curve from which the 
rating scale data were generated by computer simulation. The. dis­
creiJancy between the actual and estimated ROC curves is typical 
of that which can be expected if about 50 trials of each kind are 
used-to· measure--an· ROC curve. 

Curve Fitting 

The Rating Method yields several points in the ROC space that 
· represent experimental estimates of operating points on a single 

ROC curve. Because the number of cases that can be included in 
any ROC experiment is'limited by practical considerations, each 
plotted point is subject to statistical err~r. · 

Standard deviations of the variations that can be expected in 
any one plotted operating point.;..-if the experiment \'las repeated 
using a different set of the same number of cases--can be estimated 
by the expressions 5 :* 

* The denominators inside the square roots are of the form (N-1). 
_rather than N here to yield "unbiased" estimates of variance .. 
In practice, this is usually a minor-issue. 
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These expressions can be used to plot + 1 or 2 standard deviation 
error bars vertically and horizontally-around the experimental 
points in the ROC space in order to provide a visual impression of 
the reliability of the po·ints. 5 Note that: (1) the standard devia­
tions depend on the position of a point in the ROC space, being 
largest when TPF or FPF ts close to 0.5; (2) the standard deviation 
of.TPF is inversely related to the number of actually positive 
·cases used in the experiment; and (3) the standard deviation of FPF 
'is related to the number of actually negative cases used. Since 
precision of TPF and FPF a~e usually equally important, it is cus-

. _tomary to attempt to use roughly equal numbers of actua1ly positive 
·.and actually negative cases in an ROC experiment. These estimates 
\of ROC point reliability can be used as a guide in drawing a smooth· 
-\~urve that passes appropriately through or near the plotted points . 
. ·Often a smooth curve fitted .. subjectively by eye provides an adequate 
\- ·estimate of the. full ROC curve. 
\-.· If a more objective curve fitting procedure is desired, some 

assumption must be made regarding the functional form of the curve 
to be· fit to the data. An assumption Gommonly used in experimental 
psychology is that the ROC curve is of the same functional form as 

. would be generated from two 11 Gaussian 11 or 11 normal 11 probability 
distributions centered at different positions on the decision axis, 
and ·\~_ith possibly different standard deviations, as shown· in 

·.fi,gure 1. · .. Each decision is assumed to be made by comparing the 
"de'Fision variable outcome (position on the horizontal axis) with . 
some decision threshold and deciding 11 positive 11 if the threshold 
rs exceeded. Although the-applicability of this underlying theore-. 
tjcal model canntit be proven even for idealized experimental situa­
tions, various theoretical arguments can be made in its behalf 
the literature of experimental psychology contains· much empirical 
evidence that curves of the functional form predicted by this model 
provide good fits to ROC data from experiments in \'lhich decisions 
_are based on subjective judgements.· 

The ROC curves predicted by this theoretical model depend on 
two parameters: the distance between the centers of the two normal 
diStributions. on the decision axis, expre~sed in ubits of the 
standard deviation of one of the distributions, and the ratio of 
the standard deviations of the two distributions. Various combina­
tions of these two parameters yield different ROC curves, and one 
combination can usually be found that fits experimental ROC data 
quite well. Conveniently, the ROC curves predicted by this theore-

-tical model graph as straight lines if they are plotted on a pair 
·-of transformed coordinat~ axes that ~re linear not with respect 
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)-to TPF ancff"PF~ .. buf-instead with re·spect to 
.the standard deviates corresponding to the TPF and FPF values*. 
Graph paper with these transformed "double probability" coordinate 
_scales is av~ilable** an~ can be·used ~6_plot the ROC data points· 
·in such a wa,y that a straight 1 ine cari be fit to the points. The 
:slope and one axis inter~ept of this fitted straight line then · 
:correspond to the two parameters of the underlying theoretical 
·model, and these can be used to summarize the detectability of 
disease described by the ROC data. 6 

If an objective statistical curve-fitting procedure is 
·desired, conventional ''least-squares" fitting of a straight line 
on a "double-probability.._ graph is ·not appropriate beca-use the 
assumptions implicit to conventional least~squares methods (equal 
variance vertically, no variance horizontally) are not valid for 

_ROC data. Instead, a special "maximum likelihood" curve-fitti_ng · 
:computer program should be used, \·lhi ch finds the pair of model 
parameters that make the observed ROC data most likely (i.e., 

::least unlikely). Different programs are available for ROC data 
, generated in "yes-no" experiments 7 or:- in rating-method experiments~ 

.: The maximum-likelihotid programs mentioned above provide, as 
\:·a by-product, estimates of the· variances and ·covariance of the two 
\ ROC curve parameters. These can be used to construct a test of -

, ~the statistical significance of apparent differences between a 
:._'measured ROC cur~e and an assumed curve or between two ROC curves 
·\:measured from statistically independent data. Statistical testing 

:can be. dane. e-'ither. in terms.- o.f- a--si-ng-le· i-nde-x- of detectabil ity·--- ·· · 
; derived from the t\1/0 curve parameters, or in·:terms of the two 
~parameters simultane6usly using an appropriate Chi-square statistic 

.) \~ith two degrees of freedom. 

Truth, Cases, and Common Sense 

\ ~'-- A fun-damental aspect .of almost~ objective approach to the 
eyaluation of diagnostic decision-making--whether in terms of 

-Accuracy, Sensitivity and Specificity, or ROC analysis--is the need 
. for a sufficient number of cases in which the actual state of 
: health or disease has been determined. Diagnostic "truth" must be 
: known in order to score the qua 1 i ty of each decision,- and enough 
:cases must be used to ensure acceptable statistical precision in 

the measured performance indic~s. Although these requirements are 

* C9nsider a normal distribution with standard deviation equal to 
1.0~ centered on ~ ~ o. The transformed coordinates mentioned 
above represent the y~lues of ~ such that the areas under this 
distribution to the left·of ~correspond to TPF and FPF, respec­
tively. 

** "Double Integrated Normal Chart," available as item Y4 231 from 
the Codex Bo6k Co., .P. 0. Box 366, Norwood;Massachuset~s 
02062 
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sometimes tedious to satisfy in clinical ~ituations, ROC analysis 
is no more demanding in this reg~rd than. other objective methods 
of eyqluation analysis. 'lh short, the quality of di_agnostic 
decisions cannot be determined· if the· correct ans\-Jers are not known. 

The problem of establishing "truth" is straightforward in 
_evaluation studies that use artificial test samples or -"phantom" 
images, but this=problem can be exceedingly tedious and frustrating 
in studies employing actual clinical cases. The definition of · . 
"truth" is ultimately a philosophical issue, of course, and opera­
tional standards for diagnostic truth must be established for the 
purposes of evaluation analysis; these must take into account the 
goals of the evaluation study, potential sources of bias, and 
common sense. In short, standards of truth need not be."perfect" 
but must be considerably more reliable than the tests to be eval­
uated; judgments of truth should be independent from information 
provided by the tests to be evaluated; 9 and'one must balance 
th(>ughtful reflection on the potentia 1 errors and di ffi cul ties of _, 
such evaluation studies against the useful, even if limited, infor- · 
mation that they can provide. 

~ In the. selection of cases to be included ii an evaluation 
study, due consideration must be given to include an appropriate 

.. spectrum of disease characteristics in the sample case population, 
~-because the conclusions drawn from the study are applicable only 

to, and cannot be defined more specifically than,,the sam~le • 
popul~tion. 9 ' 10 . · 

The various issues that should be considered in designing a 
study for the evaluation of diagnostic medical imaging procedures 

. ire discussed in a general protocol currently in the final states 
of. Pt::eparation. * · 

No simple answer exists to the question of how many cases are 
·n~cessary for meaningful conclusions to be dra\-Jn from an ROC analy­
sis of decision performance, but several issues should be consi­
d-ered .. 

, ·First, no matter. what means may be used to infer the signifi­
cance of apparent differences bebJeen ROC curves, the requfreo 
precision of measured ROC points will depend upon the magnitude 
of the differences that actually exist. More cases are needed to 
demonstrate subtle differences in diagnostic performance than. 
gross differences. 

Second, statistical variations in ROC data and fitted ROC 
curves are due to at least two factors: the extent to \'lhich the 
limited number of cases used in an ROC experiment represents the 
total population of such cases at large, and the extent to which 
diagnostic test results and subjective diagnostic judgements are 

* This document is currently in the final stages of preparation by 
Bolt, Beranek and Newm~n, Inc., Cambridge, Mass. under National 
Cancer Institute Contract NOl-CB-64010 ( 11 Standard Protocol for 

~-Evaluation of Imaging Techniques in. Cancer Diagnosis'': John A. 
_ Swets, Principal Irivestigator). · 
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reproducible. Although the cumulative effects of these two sources 
of variation can be expressed in terms of binomial and multinomial 
statistics and can be estimated by the· expressions for standard 
deviations quoted above, ,-fhe relative magnitude of the individual 
effects has not been studied and their interaction is not under-

: stood. The fact that both of these bto effects do occur unques­
:tionably complicates the issue of interpreting apparent differences 
between measured ROC curves, however. Because of these two sources 
of statistical variation, an observed difference between the deci­

.sion performance of t\-10 diagnostic tests acting on the same sample 
population may in fact be more significant than an assumption of 
sample independence would sugg~st: If the limited case sample 
~is atypically difficult for one test, it may be atypi.cally diffi-. 
·cult for the other also. In this situation, the ROC curves for 
the t\-10 tests should vary up and dm-1n together if they are applied 
to different population samples of the same limited size. Thus 
11 error bars 11 computed on the basis of the· independent sample 

·assumption may be unduly 11 pessimistic 11 concerning the significance.· 
of differences between curves in this situat"ion. 

\ Because no generally accepted statistical t'est yet exists for 
demonstr~ting the quantitative statistical significance of apparent 

·. differences between ROC curves, the number of cases required to 
\.achieve significance cannot be predicted. This·state of affairs 

:is certainly unsatisfactory, and curr-ent theoretical efforts ~old 
>promfse for better statEticar techniques in the future. Mean-· ., ·•· 
while, common sense and experience suggest that meaningful qualita-
tive conclusions ~an be drawn from ROC experiments performed with 
~s few as about 100 clinical cases 1 or experimental images. 11 

GENERALIZED RECEIVER OPERATING CHARACTERISTIC r1ETHODS 
,~ \ . 

The conventional ROC methods that we have described up to this·· 
~oint apply to situations in which actual states of health and 
(Fsease are grouped into two categories and in which two decision 
ilternatives are.available to the decision maker. In this section 
we sketch how these methods can be generalized to apply to more 

. complicated decision-making situations. 
The most fundamental property of the ROC approach is that it 

describes the trade-offs that are available among the conditional 
frequencies of various types of correct and incorrect decisions. 
By viewing the approach in this broad \·Jay, we can see that a 
generalized ROC approach would account for the ways in which the 
frequencies of certain types of decisions must vary with the fre­
quencies of other types of decisions as one or more decision 
thresholds is changed.· 

Consider first the situation in which the decision maker must 
not only call an actually positive case positive, but must also 
state where the case is positive in order tQ receive credit for a 

·-fully 11 true positive .. decision. If localization of disease to 
within the proper image quadrant is ~equired, then five actual 
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Fig. 6. Conventional ROC curve and generalized 
curve for d~tection and localization task. 

·(Starr et .. al.., ref. 12} 

states and decision alternatives are available: "no disease," 
11 d~sease· in upper left quadrant, .. etc. We have shown theoretica_1ly 
.and experimenta1ly12

'
13 that decision performance in this more / · 

· cbmplex.task can_be_predicted from knowledge of the conventional 
ROC curve measured for the two-alternative "detection-only" task 
and that the resulting generalized ROC curve is a curved line in 
·three-dimensional space, which can be plotted as two curves on a 
two-dimensional graph. . 

Typical results obtained using this generalized ROC approach 12 

. are shown in Figure 6.,. The solid symbols of different shape repre­
sent conventional ROC data points obtained from separate viewing 
sessions by the same observer (viewing the same image set, which 
consisted of 5.0 signal-plus-noise and 50 noise-only images}. The 
solid curve was fit to these data points and was used to predict 
the lower, broken curve, which should represent observer perfor­
mance when the image quadrant containing the signal must be speci­
fied. The open symbols show data obtained in an experiment in 
which both detection and·localization were required and agree with 
the predicted broken curve. · 
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Another situation of interest is· that for which more· than one 
lesion, for example, may be actually present and. for which the 
observer must, in effect, ~aunt the lesions present. We have shown 
that, if the possible lesions are similar, decision performq.nce 
in ·this "multiple signal" task can again be predicted from know­
ledge of the conventional ROC curve (measured when zero or one 
lesion may be present) and that the generalized ROC curve is a 
curved line in multidimensional space, which can be·~lotted as a 
set of two-dimensional graphs. 14 · 

These t\-10 studies have shmvn that decision performance in some 
multi-alternative tasks employing medical images can be related 
uniquely and predictably to decision performance in a simple t\vo­
alternative task~ which is measured .by a conventional ROC curve. 
Thus, in these situations, the conventional ROC curve provides a 
sufficient conceptual and experimental description of decision 
performance. 

A common aspect of the tasks used in these b.ro studies is that 
the decision maker can be assumed to base his selection of one of 
several decision alternatives on the repeated compar"i$on of a 
single kind of judgement against a single deciston threshold.· In 
the "multiple-signal" detection task, for example, he is assumed 
to try to detect lesions in various parts of an image by repeating 
a similar judgment process and then "adding up" the number of 
lesions that he has ufound." 1 

-An app-rop-ria-te-theo-re'ti-ea·l--mo-Efel-·for· wha-t--we··might call a ··'· 
"simultaneous·.detection and differential diagnosis" task .. is less 
cleat. 1 ° For example, suppose that the decision maker is confronted 
with a population of cases, each one of which may be actually 
"negative," "positive with disease A," or "positive \vith disease B~' 
No fully general multi-alternative ROC approach is yet avai.lable 
to ~easure:and describe decision performance in this task .. An 
approach that may suffice at present is the measurement of three 
conventional ROC curves, either by grouping the actual states into 
two alternatives in the three possible ways or by deleting cases 
With one actual state in each of three decision experiments. 

Theoretical and experimental efforts to deal with this impor­
tant situation within the context of ROC analysis are continuing. 

IMPLICATIONS FOR MEDICAL DECISION-MAKING 

·In performing a diagnostic study, one pays a price (in terms 
of money, risk of complications, and/or radiation exposure) to gain 
information that should be of benefit in subsequent patient manage­
ment. ROC analysis provides a means of measuring and describing 
diagnostic detectability in terms of the combinations that can be 
achieved among the relative frequencies of true positive~ false 
positive, true negative, and-false negative decisions. Thus, 
through ROC analysis one can determine the information that a 
diagnostic test can p1·ovide. The term "information" here can be 
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interpreted either in the loose sense of 11 detectability 11 or in the 
technical sense developed by Shannon. 15 ~ 16 

With disease detection performance specified by ROC analysis, 
. several important questions remain~ hd\•1ever. In a particular 
diagnostic task, which i~ the best of the possible combinations 
~among the various decision frequencies, that is~ what is the best· 
· operating point on the ROC curve? How can one judge whether the 
; diagnostic information purchased. by the use of a diagnostic test 
· is (expected tu be) worth .the price paid? And how can a diagnostic 
. test best be used within the context of a diagnostic strategy? 
. These questions can be addressed·~ at least conceptually~ by com­
. bining ROC analysis with the techniques of cost/benefit analysis 

· • and decision analysis. Discussions of this approach can be.found 
:· el se\'lhere. h 17 · 

SUGGESTIONS FOR FURTHER READING 

Introductory discussions of ROC analysis for diagnostic evalu­
!; ati on have been· pub 1 i shed by Sv1ets 18 ~ Turner19 ~ and by fkNei 1 and· 

~~ colleagues 20 ~ 21 ~ and these papers are recommended for the additidn­
\ al perspective that they provi.de. Other introductory papers by . 

> : Swets22 and by Swets and Green 23 trace the development of ROC ana­
~·~ lysis in experimental psychology and indicate applications in other 
\~fields. We have published elsewhere a partially technical discus-

sion.of the. ROC appr.oa.e:h. to diagnostic evaluation that include$ . 
:examples of the various techniqu~s 17 and also a concise summary 
·'with an extensive bibliography. 2 ~ · 

· . A recent introductory book by Egan 25 clearly illustrates the. 
·:mathematical relationships among various decision strategies, 
. decision variable distributions, and the corresponding ROC curves. 
·Signal Detection Theory and Psychophysi"cs by Green and Swets~. 
- coritinues ·as the standard comprehensive reference Nork on ROC / 
:techniques. Finally~ although it does not consider the implica-
. tions of ROC analysis for optimizing diagnostic strategies~ a 
c;;lassic book by Raiffa 26 provides an excellent introduction tothe 

·principles of decision analysis. 
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