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ABSTRACT

The need for Receiver Operating Characteristic (ROC) analysis
is indicated by a discussion of the limitations of "accuracy" and
of "sensitivity" and "specificity" as indices of diagnostic detec-
tion or discrimination performance. The concept of a variable
decision threshold is shown to lead in a natural way to the ROC
curve as a means for specifying diagnostic performance. Practical
techniques for measuring ROC curves are described, and directions
for possible generalizations of conventional ROC analysis are
indicated.

INTRODUCTION

How can we measure the quality of diagnostic information and

. diagnostic decisions in a meaningful way? That basic question
 has become increasingly important in recent years as an abundance

of new diagnostic tests has been introduced and as government and
the public grow ever more insistent that the medical community
must justify the costs and possible risks of diagnostic procedures.

‘The question must be addressed; it will not go away.

The fundamental relationships between the physical properties
of a diagnostic medical image (such as resolution, contrast, and
statistical fluctuations) and the ability of a human observer to
properly detect and interpret relevant image features are poorly
understood. In real diagnostic tasks, these relationships are
undoubtedly complicated by problems of complex background struc-
ture, normal anatomical variations, and observer training. Thus,
at present, one cannot confidently predict the diagnostic perfor-
mance of a medical imaging procedure from knowledge of its
physical characteristics. Instead, one must objectively measure
the diagnostic detection performance that can be achieved by
human observers who view images made with real medical imaging
systems. Hopefully, the data obtained in this way ultimately
* Much of the text of this paper is taken from: Metz, C.E.,

Basic Principles of ROC Analysis, Seminars in Nuclear Medicine
8: 283-298, 1978.
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will contribute to an improved understanding of the visual process
in diagnostic medicine. For now, these data -- if properly
collected -~ can provide an empirical quant1tat1ve descr1pt1on of
diagnostic imaging system performance.

Any meaningful approach to the evaluation of d1agnost1c per-
formance must inevitably involve many complex technical and social

‘i$sues, and one cannot reasonably expect that the typical physicist

or physician should master all of the subtleties involved. Still,
the basic concepts upon which diagnostic performance analysis rests
are quite straightforward and need not be regarded as mysterious.
Although these concepts are (unfortunately) often clothed in
seemingly occult jargon -- because of the need for concise and pre-
cise terminology--5 the principles themselves are mostly formalized

~common sense or at least can be recognized as reasonable when

explained in plain language. '
This paper will attempt to guide the reader through the bas1c

;princ1p]es of an approach that provides a structure for the mean-
jlngfu] evaluation of diagnostic techniques. Although this approach

is essentially quantitative, its merit does not depend only upon

'g'the use of numbers. The approach focuses attention on the issues

“involved in diagnostic evaluation and diagnostic decision-making,

- and the reader will 1likely find that he has informally considered

W

some or all of these issues already. To the extent that this is

. true, the reader may find himself in the position of Moliere's

gentleman who was pleased to Tearn that he had been speak1ng prose
for years.

DILEMMAS IN EVALUATING DIAGNOSTIC TESTS

What does "Accuracy" Mean?

. < - ’ . . .
Y 7 Any assessment of diagnostic performance seems to require

some comparison of diagnostic decisions with "truth." Perhaps
the simplest measure of diagnostic decision quality is the frac-

. tion of cases for which the physician is correct, which is often

called "Accuracy." Although we are willing to accept that high
accuracy is good (all other things being equal -- and that's the
catch), the number can be very misleading. In screening for a
relatively rare disease, for example, one can be very accurate
simply by ignor1ng all evidence and ca1]1ng all cases negative.
If only 5% of patients have the disease in quest1on a physician .
who always blindly states that the disease is absent will be
right 95% of the time!

Accuracy is of limited usefulness as an index of diagnostic
performance because disease prevalence affects the resulting num-
ber so strongly, and no mathematical "correction"or"normalization"
for disease prevalence can redeem this index in a meaningful way.
One might be tempted to. suppose that, though this be true, "Accu-

- racy" should be meaningful at least as an index for comparison of




diagnostic techniques applied to a given population in whichdisease
prevalence 1is known and fixed. Here, too, the index is limited,
however. Two diagnostic modalities can yield equal accuracies

but perform differently with respect to the types of correct and
incorrect decisions they provide; the incorrect diagnoses from one
-might be almost all false negatives (misses), while those from

the other might be almost all false positives (false alarms).
Clearly, the relative usefulness of these two tests for patient
management could be quite different in various situations.

Though accuracy provides a single simple number for diagnostic
performance, it is often too simple and must be interpreted with
considerable caution. The limitations of this index force us to
. introduce some complexity into our evaluation scheme: we must
. sort out the effect of disease prevalence, and we must score: -

- separately the various kinds of r1ght and wrong diagnostic
dec1s1ons -

Sort1ng Things Out

\ Both of the obV1ous Timitations of the accuracy 1ndex can be
' overcome by def1n1ng decision perfornance 1n terms of the pair o;
indeces: ‘

Number of true positive (TP) decisions

‘ B SENS;TIVITY Number of actually positive cases !
and - SPECIFICITY = Number of true negative (TN) decisions

Number of actually negative cases

* In effect, sensitivity and specificity represent two kinds of
~accuracy: the first for actually positive cases and the second for
“actually negative cases. One must note carefully that the terms
"positive" ‘and "negative" in these definitions concern some '
particular.disease state; this disease state must be specified-
clearly in calculating and quoting sens1t1v1ty and specificity
‘values. For simplicity, these indices require that all possible
states of health and disease be classified into two_categor1es
These categories can be defined in any way that is convenient and
meaningful for the problem at hand, but they must be made explicit.
" For example, patients could be cIass1f1ed as having one or more
. tumors (mangnant or ben1gn) or no. tumor, as having ma11gnant
tumors or no maiignant tumor, etc.

Accuracy, or the fraction of all cases that is dec1ded
correctly, is related to sen51t1v1ty and spec1f1c1ty by the simple
formula:

ACCURACY = [SENSITIVITY ]- [F?act1on of all cases that ]
is actually positive

+ [SPECIFICITY ] x ] Fraction of a1l cases that
is actually negative.




The reader should think through the proof ofAthis-relationship as
a simple exercise in the sort of manipulation that is used
repeatedly in our approach. Notice that accuracy is defined as:

ACCURACY = # correct decisions
‘ # cases
so ‘ ’
# True Positive - T # True Negative
Y = decisions _ decisions _
ACCURACY = | # cases 3 o 8 ~# cases i
- [# True Positive | ‘ ( # actually ]
- decisions Cx positive cases
# actually i # cases J‘
-_positive cases :
# True Negative] = [ # actually ]
decisions o negative cases
# actually ‘ # cases

. -—

negative cases

.- and the relationship is proven. A little arithmetic and a little
- common sense go a long way in this field! '

{

"At this point, we must introduce some additional terminology
that is commonly used in the approach we are taking. True Positive

Fraction (abbreviated "TPF" is simply the same thing as "Sensi-

~ Tivity," and True Negative Fraction)(abbreviated "TNF") is simply

the same as "Specificity.”" As one can see from the definitions of
“Sensitivity" and "Specificity," the terms TPF and TNF are more
directly descriptive of the concepts involved and, for this writer

" at least, are a lot easier to remember. These new terms suggest

iwo‘other«definitions:

FALSE POSITIVE # False Positive decisions

n

, FRACTION (FPF) # actually negative cases.
and . : ,
FALSE NEGATIVE _ # False Negative decisions
FRACTION (FNF) # actually positive cases

Note that FPF and FNF represent, respectively, the fractions of
actually negative cases and of actually positive cases that are
decided incorrectly.

If we presume that all cases are diagnosed as either positive
or negative (with respect to a specified disease), then, for
either actual state, the number of correct decisions plus the
number of incorrect decisions must equal the number of cases with




" that actual state. Thus it is easy to show that the various frac-
tions defined above must be related by o

TPF + FNF = 1

and

TNF + FPF = 1

 (The reader should prove these relationships as an exercise.)
Because of these constraints, one can always compute FNF from

. knowledge of TPF, for example, sn it is necessary only to specify
one fraction from each of the above relationships in order to fix
all four types of decision fractions. :

~ One additional set of notations must be defined before we

proceed. It is common to denote the four decision fractions de-
fined above by using the symbols of conditional probabilities,
because each decision fraction represents an estimate of the
probability (or relative -frequency) of a particular kind of
decision, given that (or conditional on the fact that) an indivi-
~dual case actually has a part1cu]ar health or disease state. Let
“D" represent the Bisease in quest1on and let "T" represent the

.. result of a diagnostic Test, i.e., a particular decision. Then

.- FPF, for example, is equivalent to the conditional probability .

ﬂP(T+[D ), which is read as "the probability of a positive test,
given the absence of disease.” Similarly, TPF is often denoted by

 P(T+|D+); FNF by P(T-|D+); and TNF by P(T-|D-). Note that the use
“ of~conditional probability notation makes explicit the kinds of

test .results (decisions}; F; and~actual-disease states, D, that"~: ~

are in the numerators and denominators of the definitions of the
four kinds of .decision fractions. Also, this notation emphasizes
that-all four dacision fractions are cond1t1ona1 on (i.e., are.
'fnorma11zed with respect. to) actual disease states.
.Finally, the prevalence of disease in the popu]at1on subjected
tO'the diagnostic test (or for which diagnoses are to be made) can
be' reprasented by P(D+), the prior probability of the actual
. presence of the disease in a case from the popu]at1on studied.
Similarly, P(D } =1 - P(D+) represents the prior probability

that disease is actually absent in a case from the studied popu-
‘lation. :
The re}ationah1ps among the various quant1t1es that we've .
defined so far are summarized in Table I. Note, in particular,
the sense in which thinking of the conditional probabilities as
fractions helps one to remember the def1n1t1ons and the relation-
ships.

Apples and Oranges

The concepts defined in the previous section allow us to sepa-
rate out the effect of disease prevalence and to score separately
the performance of a diagnostic test or a diagnostic decision maker
with respect to actually positive and actually negative cases.




o

TABLE I. Definitions of, and re]ationshfps among, the various
decision performance indices described in the text. (Metz, Ref. 3)

‘

Definitions: ,
TPF = SENSITIVITY = P(T+|D+)
FPF = 1-(SPECIFICITY) = P(T+|D-) ‘
TNF = SPECIFICITY = P(T-|D-)
FNF = 1-(SENSITIVITY) = P(T-|D+)
Disease Prevalence = P(D+) = 1 - P(D-)

-Relationships

© TP + ENF = P(T+|D+) + P(T-|D+) = 1

INF + FPF = P(T-|D-) + P(T+|D-) = 1

ACCURACY = SENSITIVITY x P(D+)
+ SPECIFICITY x P(D-)

TPF x P(D+) + TNF x P(D-)

P(T+|D+) x P(D+) + P(T-|D-) x P(D-)

In order to see how these concepts can be applied to a collection

of diagnostic decisions, consider the following hypothetical situa-"""

tion. Suppose that 1,200 cases from a defined population have
been subjected to some diagnostic test "A" and that the actual

- health or disease state for each case has been determined later by

“biopsy, follow-up, or some other means. Suppose that 200 actually

positive cases were ultimately found in the population studied and

- that the dijagnostic test to be evaluated yielded 140 true positive -
" (1P) decisions, 60 false negative (FN) decisions, 900 true nega-
tive (TN) decisions, and 100 false positive (FP) decisions. These
~data can be summarized by the "decision matrix" shown in Table II.

Note that summing across rows yields the number of cases with an
actual health or disease state, while summing in a column yields
the total number of times that the corresponding decision was
made. Note also that the values for TNF, FNF, and Accuracy
obtained using the relationships summarized in Table I are the

_'same as those that would be obtained using the definitions of

these quantities directly. ,

We see from the calculated indices that this test, used as
it has been used here, is more "accurate" for actually negative
cases than for actually positive cases, since TNF is greater than
TPF--even though more actually negative then actually positive
cases were decided incorrectly. The latter observation is not
paradoxical, but merely reflects the preponderance of actually




TABLE 2. Dec¢isjon data and calculated indices
for hypothetical Test "A". (Metz, Ref. 3).

Test Result
iDiagnosisi

Positive (T+) Negative (T-)
Actual State | - | 200
Positive (D+) 140 60 actually +
~ (TP) (FN) cases
 Negative (D-) 100 900 1 ;gggally -
-(FP) () cases
240 960 . 1200 :
~ + decisions - decisions . total cases
EvCalcu1ated Indices
140 . _ . _ _
TPF = 200 0.70; FNF = 1-TPF = 0.30 - |
C 100 poye e Cn- | S
FPF = 1000 _0 1073 TNF = 1-FPF = 0.90
. p(o+) = 290 = 0.17;5 P(D-) = 1-P(D+) = 0.83

200
.ACCURACY = TPF x p(n+) + TNF x P(D-)

0.87

\ k ,
negative cases. in the population studled recall that TPF, TNF,
- etc., represent "rates” and not "numbers of cases.

B The decision fractions allows us to predict how the “Accuracy"
jndex would change if this same test were applied (in the same
‘way) to a popu]at1on with a different prevalence of disease,
P(D+). If the various decision fractions are kept constant but .
~ P(D+) is increased to 0.6, for example, then "Accuracy" would be
(6.7) x (0.6) + (0.9) x (0.4) = 0.78. This value is lower because
the test is less accurate for actually positive cases, and these
have become more frequent.

Often we wish to ¢ omgare diagnostic tests. Suppose that the
same population of cases used to evaluate Test "A" were studied
using a .different test, Test "B", with the results shown in
Table III. Comparison of Tables II and III clearly shows that
these two tests are performing very d1fferent1y—-though the
"Accuracy" indices are the same! Test B is performing worse than
Test A for actua]ly positive cases--TPF is lower and FNF is

‘:'hlgher~—but it is performing better for actually negative cases-- . . ..




TABLE III. Decision data and calculated indices
for hypothetical test "B". (Metz, Ref. 3). .

f Test Resuif
- {Diagnosis)

4 Positive (T+) Negative (T-)
Actual State .

- ‘ : 200 ‘
Positive (D+) 80 120 actually +
' : (TP) (FN) cases

Negative (D-) 40 960 1000
o _ (FP) - (TN) actually -

: , ) cases

120 - 1080 1200

' + decisions . - decisions total cases
s Calculated Indices ’

. 80 . . -
TPF = 55p = 0-405 FNF - 1-TPF = 0.60

S 80 _ o FPF = 0 95
FPF = Jggg =005 TNF - 1:FPF = 0.95
- P(D+) = 505 = 0.17; P(D-) - 1-P(D+) = 0.83

0
- 'ACCURACY = TPF x P(D+) + TNF x P(D-) = 0.87
v T o :
i v o . . .
- - INF is_higher and FPF is Tower. The "Accuracy" indices are equal
because this "trade-off" in performance is just balanced by the
. disease prevalence, P(D+), that we have used in our example. It
- should be clear that, in many applied situations, Tests A and B
- (as_:used here) are not of equal value: If the implications of a
“false positive decision for subsequent patient management are bad
and overriding, the Test A is worse, and if the implications of a
‘false negative decision are bad (and overriding), then Test B is
worse. :
What to do? How can we balance the apples and oranges of TPF
and FPF (or, equivalently, of TPF and TNF)? We could at this point
attempt to incorporate into our analysis "weights" for the good and
bad of the various types of correct and incorrect decisions.
First, however, let us consider a further complication, which will
suggest a solutfion to the present dilemma.
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~each kind of decision is equal to the area under a
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The Implicwt Variable f

‘ “In the use of almost any d1agnost1c test, test data do not .
' necessarily 7211 into one of two obviously defined categories that.g
can be uviqn iy ascr1bed to the presence or absence of the d1sease ;
~in question.: "
L For diagnostic tests that y1e1d a s1ng1e number as a resu]t-- :

"~ such as 24 hour thyroid uptake, various blood serum assays, etc.--'
the distributions of result values in actually positive and in~
actuaily negative patients overlap, and no single "threshold" or
"decision criterion" can be found which separates the populations .
cleanly. Otherwise the test would be perfect! Usually a threshold
'value must be chosen arbitrarily, and different choices will yield
different frequencies for the various kinds of correct and incor-
rect decisions. For example, if high results tend to indicate the
presence of disease but the distributions of test result values in
actua11y negative and in actual}y positive patients overlap, as
":shown in Figure 1, then increasing the threshold value will make




;both false positive and true positive decisions less frequent, but
‘will also make both true negative and false negative decisions

‘more frequent. A threshold value must be selected that is believed

.to yield an appropriate compromise between these gains and losses.
Similarly, diagnostic tests which yield results that must be

judged subjectively, such as imaging studIes, usually require that

. some "confidence threshold" be established in the mind of the
“decision maker. If an image suggests the possibility of disease,
how strong must that suspicion be in order for the image to be
called "positive?" The confidence threshold than an observer
adopts undoubtedly depends upon many things--his "style," his

. estimate of prior odds or probability, and his assessment of the
consequences of the various possible correct and incorrect deci-

~sions--and the concept of a confidence threshold may be hard to
quantify. Still, in most situations, a confidence threshold can
be varied, and the various decision fractions will vary with it.

: Recogn1z1ng the arbitrary nature of decision threshold selec- -
~* tion might seem to complicate our problem even more. Aside from

- the "apples and’oranges" of TPF and FPF, how can we compare Tests

% Aland B if the data in Tables II'and-III could be changed simply
- 5 by arbitrarily selecting different threshelds or by using a
- different set of considerations in making a subjective decision?

We resolve this dilemma by intentionally forcing the decision

@ threshold to vary and by observing the resulting changes in the

:V&Y"I OUS decision fT‘&Ct] ons.

THE INSIGHT PROVIDED BY RECEIVER
OPERATING CHARACTERISTIC ANALYSIS

Vary1ng the Variable

i \l If we. exp]1c1t]y ‘change the dec¢ision threshold by re1nterpre—?
o tlng the results of a quantitative test using a new threshold of

; abnormality or by having the observer re-read a set of images .
i vrequiring that he be more (or less) certain that a case is posi-
- tive before calling that case "Positive," then we will obtain a

: different set of decision fractions. If we change the decision

. threshold again to a new level, we will obtain yet another set of

. decision fractions. Since TPF and FPF together determine all four
decision fractions, we need only keep track of how these twio

* fractions changD as the decision threshold is varied.

‘ If we imagine that the distributions of test results (or, for
subjective tests, the distributions of some quantity like "esti-
mate of the likelihood of disease, given the test information")
are of the form shown in Figure 1, then we see that lowering the
decision threshold, for example, must increase both the TPF and
FPF. After some thought one should realize that whatever the
form of the distributions, TPF and FPF must increase or decrease

.- together as the decision threshold is changed.
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1f we expT1c1t1y change the deC1510n threshcld severa] t1mes
-asvdescribed above, we will obtain several different pairs of TPF
and FPF.. These pairs can be plotted as the "y" and "x" coordinate
wvalues of points on a graph 1ike that shown in Figure 2. The axes
of this graph both range from zero to one because these are the
1imits of possible TPF and FPF values. Sincé we can imagine.
repeatedly changing the decision threshold and obtaining more and °
more points on this graph, and since TPF and FPF must always change
together in a way determined by the test result distributions, we
see that the points representing all possible combinations of TPF
and FPF must 1ie on a curve. This curve is called the "Receiver
Operating Characteristic" or "ROC" Curve for the diagnostic test,
since it describes the inherent detection characteristics of the
test (or, for subjective studies, the observer-test comb1nat1on}
and since the "receiver" of the test information can "operate"
any point on the curve using an appropriate decision threshold
Figure 2 shows three possible operating points that might corres-
pond to use of "strict” threshold (case called "positive" only if
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judged almost definitely positive), a "moderate" thresho]d or a
“relaxed" threshold (case called "positive" if any suspicion of
dijsease).

Conventional ROC curves of the kind described here (in which

- two actual states are possible and in which two decision alterna-
tives are available) inevitably must pass through the lower left
(FPF = 0, TPF = 0) corner of the graph because one can adopt a

:threshold so strict that almost all tests are called negative, and
"the curve must pass through the upper right (FPF = 1, TPF = 1)

. corner of the graph because one can adopt a threshold so relaxed
that almost all tests are called positive. Also, if the test
provides information to the decision maker, the intermediate

"points on a conventional ROC curve must be above the major diagonal
(i.e., lower left to upper r1ght d1agona1) of the ROC space,
because in that situation a "positive" decision should be more
probable when a case is actually positive than when a case is

_actually negative--i.e., P(T+|D+) should be greater than P(T+|D-).

- Finally, one can show theoret1ca]]y that, if the decision maker

. knows the underlying probabi]ity density functions and uses test

Y information in a "proper" way, the slope of the ROC curve must

.~ steadily decrease (i.e., it must become less steep) as one moves

* up and to the r19ht of the curve.

What.the Curve Means

§
. Essentwally, a- conventional- ROC curve describes the compro--—:
:mises that can be made between TPF and FPF--and hence among the
relative frequencies of true positive, false positive, true nega-
tive, and false negative decisions--as a decision threshold is
- varied for a given test. By appropriate choice of the decision
" threshold,  a decision maker or observer can operate at (or near)
any desired compromise that lies on:the curve. Since the ROC
. curve is a-graph of TPF versus FPF, both which are independent from
disease prevalence when a fixed decision threshold is used, the ROC
curve does not depend upon the prevalence of disease in a popu]a-
tion to which the corresponding test may be applied.* Thus ROC
analysis provides a description of disease detectability that is-
" ijndependent from both d1sease prevalence and decision thresho]d
effects.

* The curve may depend on the spectrum of disease states classi-
fied as "actually positive," however. If early disease is harder
to detect than advanced .disease, for example, then the ROC curve
will depend on the mixture of early and advanced actually positive
cases studied. Thus cases in the actually positive component of a
study population must be chosen so as to represent the population
- at large to which the conclusions of the study will be applied.
Similarly, the actually negative component should appropr1ate1y
-reflect the relative frequency of norma] variants.




We will discuss later the issue of optimal choice of an
operating point on an ROC curve, but a few comments seem appropriate
here. If disease prevalence is very low, then False Positive Frac-

. tion (FPF) must be kept small. Otherwise, almost all positive
decisions will be false positive decisions, and these diagnoses

will burden the health care system and patients with many unneces--

‘sary follow-up examinations and/or treatments. Also, if conse-
‘quences of a false positive decision are overridingly bad, perhaps
because h1gh -risk surgery would then be done unnecessar1]y, FPF

must again be kept small. In either or both situations, the deci-
sion-maker should operate on the lower left part of the ROC curve
to keep FPF small, even at the expense of a low TPF and correspond-

ingly h1gh FNF. Conversely, if the same test with the same ROC

curve is app11ed to a population in which disease prevalence is
high and/or in which the need for finding actually positive cases
is of overriding importance, then the decision-maker should adjust

‘his decision threshold to operate higher on the curve, accepting

a higher FPF in order to keep TPF high and FNF low. The ROC

."'curve shows the extent to which FPF must be increased, for example,

in order to increase TPF to any required level.
For diagnostic tests in which the test resu]t must be judged

‘subjectively, an ROC curve describes the decision performance of
-an observer-test combination. Clearly, disease detectability can
‘be poor if the test provides little information, or if the observer

-is not skilled in interpreting the information provided, or both.
‘Because it gives an empirical description of decision perférmance,
.ROC analysis of subjective diagnostic tests cannot reveal whether

the technology or the individual human is performing badly. How-

. ever, ROC analysis of the decision performance of several indivi-

duals using a single diagnostic test can indicate the extent to

‘which usefu]ness of the test depends upon individual skill and/or
=exper1ence - A more subtle issue related to performance of the

decision maker, as opposed to the test, concerns his ability to
hold fixed his decision threshold. Variations in.use of the deci-

:sion threshold from decision to decision cause decision performance A
"to be ‘degraded, with a consequent effect on the measured ROC curve?

This effect of threshold inconsistency on the measured ROC curve is

‘appropriate and desirable, because any aspect of decision-making

behavior that degrades decision performance should be included in
an empirical analysis of the observer-test combination.

Dilemmas Reso]ved

We can now resolve the dilemmas that we faced in attempting to
compare the hypothetical Tests A and B on the basis of the decision
performance data shown in Tables II and III. From the perspective
of ROC analysis, the combination of TPF and FPF obtained there for
each test merely represents one point on the ROC curve for each
test. By varying the decision threshold for one test, we could

. change the combination of TPF and FPF in such a way that the TPFs

for both tests are made equal, allowing comparison of the two
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points in an ROC space, with possible
o ' ROC curves on which these points cou]d lie.
o e (Metz, ref. 3) :
resu1t1ng FPFs or we cou]d make the FPFs for both tests equal,
permitting comparison of the two TPFs. More directly, we could
measure the two curves and compare the curves themselves.

Figure 3 shows an "ROC" space" in which are plotted two
points corresponding to the two combinations of TPF and FPF found
- for Tests A and B on the basis of the data given in Tables II and

III. If we were to measure ROC curves for the two tests by chan-
ging (consistently) the two decision thresholds, the ROC curves.
might turn out to be those shown by the solid 1ines. If these
- curves were found, we could conclude that Test A offers greater .
detecLab111ty of the disease in question than does Test B, because
for any given FPF the TPF provided by Test A is greater, and for

any given TPF.the FPF provided by Test A is less.

Alternatively, we might find that the two ROC curves are
(essentially) the same, such as the dotted curve in Figure 3. In
that case we would conc]ude that the two tests provide equal

“detectability of the disease in question, because the tests can be




made to perform 1dent1ca]]y by choosing the two decision thresholds
appropriately.
In genera] we may conclude that better decision or detection

performance is 1nd1cated by an ROC curve that is higher and to the
‘left in the ROC space. It is conceivable (though not common) that
two ROC curves may cross (and possibly recross). In such a case
"the relative quality of decision performance provided by the two
tests in question must be judged in the context of the diagnostic -
situation to which they will be applied, because disease prevalence
and Lhe costs and benefits of the consequences of the various types

of decisions determine the part of an ROC curve on wh1ch a deci-:
sion-maker should operate.?

Figure 4 displays ROC curves obtained in an experiment

designed to evaluate the relative visual detectability of small,

low contrast objects that is provided by four different rad1ogra-
phic screen-film systems. Each graph shows the ROC curves obtained
by a single observer. These results are of particular interest .
= in that the (RP, TF-2) and (RP/R, PS) systems provide very differ-
“ent detectability but have essentially the same speed--and hence
."-require the same patient exposure. The (RP, PS) and (RP/R, TF-2)
\ systems require :approximately twice and one-half the exposure of
~ the other systems, respectively. Thus these ROC curves show that
the (RP, TF-2) system is clearly superior to the (RP/R, PS) system
© for detection of such objects, and they indicate the gain or loss
\- in detectability that can be achieved by 1ncreas1ng or decreas1ng .
- patient exposure by a factor or two. .

PRACTICAL CONSIDERATIONS
The Rating Method Trick ‘

_ ~. As we- have seen, an ROC curve can be‘generated by varying the
dec151on threshold that defines the "cut point" between results

¢ ascribed to (though not necessarily due to) actually "positive"

-and actually "negative" cases. ‘

_ Data from a diagnostic test that yields a single quant1tat1ve
value for each case can easily be rescored as "positive" or "nega-

tive" by using various decision thresholds. A number of points

on the corresponding ROC curve can be plotted in this way, and a

smooth curve can be drawn through or fitted stat1st1ca11y to

_ the points.

This approach is often 1mpract1ca1 for d1agnost1c tests that
must be interpreted subjectively, however, because human observers
may not find it possible to associate a cont1nuum of numerical
values with their subJect1ve impressions of certa1nty The
simplest way of expressing a diagnostic decision in terms of
"positive" or "negative", even though that decision may have been
reached by comparison of a subjective impression with a decision
threshold. These binary (two-valued: yes or no) decisions cannot
~be reanalyzed to determine what the decision maker would have said
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Fig. 4, ROC curves generated by (A) observer 3, a senior radiolo-
-gist; (B) observer 4, a physicist; and (C) observer 5, a physicist.
“These curyes were obtained in a radiographic signal detection ex-
periment describad elsewhere.!! The signal was the radiographic
image of a 2-mm diameter Lucite bead, and noise resulted from the
radiographic mottle of the following diagnostic screen-fiim combi-
nations: RP-Kodak RP X-omat medical x-ray film (normal speed);
RP/R-Kodak RP Royal X-omat medical x-ray film (fast speed); PS-
DuPont Cronex Par Speed Screen (medium speed); and TF-2-Radelin TF-
2 Screen (fast speed). Open and solid symbols of a given shape in-.
" dicate independent trial runs with the same observer and the same .
set of images. Each trial run consisted of approximately 100
observations. Note the reproducibility of the:curves from - =
observe; to observer for this simple detection task. (Metz et.al.

Ref. 16). ‘ '



if he had used a different confidence thresho]d, however, Thus,
an ROC curve can be generated from subJectlve "yes-no" response

. data only by requ1r1ng the decisijon maker to "re-read" the entire

P

set of cases several times,- using a different decision threshold
each time. This repeated’ "yes-no" approach is clearly burdensome
and usually impractical.

A practical technique for generating response data that can
be used to plot an ROC curve in such a subjective Judgement situa-
tion is called the "Rating Method" and was developed in exper1men-
tal psychology.” Essentially the method represents a compromise
between accepting a "yes-no" response and requiring that the
decjsion maker select a value from a continuous scale to represent

_his confidence that the case in question is positive. Instead, the
observer or decision maker is-:required to select one of several
"ratings" or categories of confidence to represent his judgement

. based on the information provided by the diagnostic test (and per- -
haps on other supplementary information available to him). These

:categaries can be given qualitative labels such as: (1) "definitely

or almost definitely negative," (2) "probably negative;" (3) "pos-
"sibly positive,” (4) "probably positive," and (5) "definitely or
"almost definitely positive." The use of five categories seems to
represent a reasonable compromise between the needs of ROC analysis
.and the precision with which an observer .can be expected to repro-

. duce his ratings. We show below that use of N categor1es will

3y1e1d (N-1) non-trivial points. on the ROC curve.
“The rating data obtained in this way are used to compute

“points on the ROC curve as follows.

First, only those responses in the category corresponding to

- highest certainty that a case is positive are-scored as "positive"
i decisions, and.the rest are scored as "negative" dec¢isions. Thus
: for the category labels listed above, responses in category "5"

- only would.be scored as "positive" decisions at this stage of

.data analysis. These "decisions" are then compared with the actuall

- presence or-absence of disease for each case, and TPF and FPF are

. calculated. This combination of TPF and FPF is plotted as a point
~in the ROC space and can be 1nterpreted as the ROC curve operating -
~point correspond1ng to use of a "strict"” decision: threshold, with
 which a case is called positive. if and only if the the decision

maker is certain or almost certain that the case in question is

“actually positive.

Next, the rating scale response data are rescored, this time
1ntrepret1ng as a positive decision a response in e1ther of the
two categories corresponding to greatest certainty that a case is
actua]ly positive. - Thus for the labels listed above, a response
in ejther category "5" or category "4" is scored as a positive :
decision.- The resulting values for TPF and FPF are then calculated .
and plotted in the ROC space. This point represents an ROC curve
operating point correspondlng to the use of a less strict decision
threshold, that is, corresponding to the situation in which the

“decision maker would call a case "positive" if he judges that the




Table IV. Simulated rating scale data and
calculation of ROC points. = =~ " ..

" 'RATING SCALE DATA- , : :
: - Confidence Rating:

2.1 3 4 5

~Actually (+) cases | 5. -6 ] .5 |12 22 T = 50
- Actually (-) cases || 30 | 19 | 8 | 2 1 ¥ =60

‘Eﬁtkies show number of caéeéifdf WH{qh'indiéated raffhg'Was used.

'CALCULATION OF ROC POINTS

3 A. - (5) = b decision

TPF ='22/50 = 0.44
= 1/60 = 0.02

B. (5 or 4) = "+" decision

= (22+12)/50 = 0.68
FPF = (1+2)/60 = 0.05

;AC; ;(5,-4, cr 3) = 4" decision-' - S b

wn

TPF = [22+12+5)/50 = 0.78
“FPF = (1+2+8)/60 = 0.18 A
D. (5, 4, 3, or 2) = "+" decision
- CTPF = (22+12+5+6)/50 = 0.90
" FPF ?A(1+2+8+19)/60 = 0.50

case s at least probab]y positive.

‘This procadure is then repeated, successively intefpreting as:

a "positive" decision a rating in any of the three categories of
highest certainty that a case is positive (here, "5" or "4" or
"3" = "ppsitive"), then a rating in any of the highest four' cate-
gories, etc. When finally any response is scored as a "positive"
decision, both TPF and FPF become equal to 1.0, so the last .

plotted operating point is always in the upper right corner of the

ROC graph. A smooth curve is then drawn through or fitted statis-
tically to the plotted points to yield the measured ROC curve.
Table IV shows an example of rating scale data (generated by
computer simulation) and. the calculation of ROC operating points
from those data., Figure 5 displays the calculated operating
points on an ROC graph, together with the + 1 standard deyiation

error bars estimated from the data (by the method explained in the

“next section) and the maximum 1ikelihood ROC curve estimated from
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Fig.. 5. Simulated rating scale data with the ..

actual (broken) and fitted (solid) ROC curves =~
-the data {using a procedure referenced in the next section). Also
shown, by a broken line, is the actual ROC curve from which the
rating scale data were generated by computer simulation. The. dis-
creﬁanﬁy between the actual and estimated ROC curves is typical
of that which can be expected if about 50 trlals of each k1nd are
used to measure—-an ROC curve. , -

Curve Fitting

The Rat1ng Method y1e1ds several po1nts in the ROC space that

" represent experimental estimates of operating points on a single

ROC curve. Because the number of cases that can be included in

any ROC experiwent is limited by practical considerations, each

plotted point is subject to statistical error. .
Standard deviations of the variations that can be expected in

any one. plotted operating point--if the experiment was repeated

using a different set of the same number of cases--can be estimated

by the expressions®:*

* The denominators inside the square roots are of the form (N-1).
rather than N here to yield "unbiased" estimates of vamance.. '
In practice, this is usually a m1nor issue.




: TPF X (1-TPF) - N
( # actua]]y pos1t1ve cases) - 1.

STD. DEV. (TPF) =

and

FPF X (1- FPF) )

STD. DEV. (FPF) = ( # actually negative cases) -1

These express1ons can be used to plot + 1 or 2 standard deviation .
error bars vertically and horizontally around the experimental
- points in ‘the ROC space in order to provide a visual impression of

the reliability of the points.®> Note that: (1) the standard devia-

tions depend on the p051t1on of a point in the ROC space, being

largest when TPF or FPF is close to 0.5; (2) the standard deviation

of TPF is inversely related to the number of actually positive

‘cases used in the experiment; and (3) the standard deviation of FPF

‘is related to the number of actually negative cases used. Since

precision of TPF and FPF are usually equally important, it is cus-

. -tomary to attempt to use rough]y equal numbers of actually positive -

. and actually negative cases in an ROC experiment. These estimates

' of ROC point reliability can be used as a guide in drawing a smooth’

y curve that passes appropriately through or near the plotted points.

. Often a smooth curve fitted subjectively by eye provides an adequate
. estimate of the. full ROC curve.

(P If a more objective curve fitting procedure is desired, some
assumption must be made regarding the functional form of the curve
to be fit to the data. An assumption commonly used in experimental
psychology is that the ROC curve is of the same functional form as

. would be generated from two "Gaussian" or "normal" probability

. distributions centered at different positions on the decision axis,
and with possibly different standard deviations, as shown in
‘Figure 1. -Fach decision is assumed to be made by comparing the
decision variable outcome (position on the horizontal axis) with .
some decision threshold and deciding "positive" if the threshold

R

is exceeded. Although the applicability of this underlying theore-

- tical model cannot be proven even for idealized exper1menta] situa-
tions, various theoretical arguments can be made in its behalf
the Titerature of experimental psychology contains much empirical
evidence that curves of the functional form predicted by this model
provide good fits to ROC data from experiments in wnich decisions
are based on subjective judgements.

The ROC curves predicted by this theoretical model depend on
two parameters: the distance between the centers of the two normal
distributions. on the decision axis, expressed in units of the
standard deviation of one of the d1str1but1ons, and the ratio of
the standard deviations of the two distributions. Various combina-
tions of these two parameters yield different ROC curves, and one
combination can usually be found that fits experimental ROC data
quite well. Conveniently, the ROC curves predicted by this theore-

-—t1ca1 model graph as straight lines if they are plotted on a pair
~of transformed coord1nate axes that are linear not with respect




“to TPF and FPF, but instead with respect to
.the standard deyiates corresponding to the TPF and FPF values¥*.
Graph paper with these transformed "double probability" coordinate
'sca]es is available** and can be used to plot the RQC data points
"in such a way that a stra1ght line can be fit to the points, The
'slope and one axis intercept of this fitted straight line then -
:correspond to the two parameters of the underlying theoretical
‘model, and these can be used to summar1ze the detectability of
‘disease described by the ROC data.®
, If an objective statistical curye-fitting procedure is
‘desired, conventional "least- squares" fitting of a straight line
on a "doub]e -probability" graph is not appropriate because the
assumptions implicit to conventional Teast-squares methods (equal
“yariance vertically, no variance horizontally) are not valid for
‘ROC data. Instead, a special "maximum 1ikelihood" curye-fitting
ccomputer program shou]d be used, which finds the pair of model
parameters that make the observed RQOC data most likely (i.e.,
“least un11ke]y) Different programs are available for ROC data
. .generated in "yes-no" experiments’ or in rating-method experiments?
L "~ The maximum-1ikelihood programs mentioned above provide, as
i~ a by-product, estimates of the variances and covariance of the two
% ROC curye parameters. These can be used to construct a test of -
- the statistical significance of apparent differences between a
. measured ROC curve and an assumed curve or between two ROC curves

"\ measured from statistically independent data. Statistical testing
-can be.done. either in terms. of- a-single index- of detectability - -~ =

i derived from the two curve parameters, or in‘:terms of the two
- parameters simultaneously using an appropriate Chi-square statistic
i With two degrees of freedom, :

Truth, Cases, and Common Sense

N\ A fundamental aspect.of almost any objective approach to the
. eyaluation of diagnostic decision-making--whether in terms of
" Accuracy, Sensitivity and Specificity, or ROC analysis--is the need
. for a sufficient number of cases in which the actual state of
- health or disease has been determined. Diagnostic "truth" must be
" known in order to score the quality of each decision,- and enough
" cases must be used to ensure acceptable statistical precision in
the measured performance indices. Although these requirements are

. * Consider a normal distribution with standard deviation equal to
1.0, centered on Z = 0. The transformed coordinates mentioned
aboye represent the yalues of £ such that the areas under this
distribution to the left of Z correspond to TPF and FPF respec-
tiyely.

. ** "Double Integrated Normal Chart," available as item Y4,23] from
the Codex Book Co.,.P. 0. Box 366 Norwood, Massachusetts
. 02062
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somet1mes tedious to satisfy in clinical situations, ROC analysis
is no more demanding in this regard than other objective methods
of evaluation analysis. ‘In short, the qua11ty of diagnostic

decisions cannot be determfined if the correct answers are not known,

The problem of establishing "truth" is straightforward in
evaluation studies that use artificial test samples or -"phantom"
1mages, but this:problem can be exceedingly tedious and frustrating
in studies employing actual clinical cases. The definition of
"truth" is ultimately a philosophical issue, of course, and opera-
tional standards for diagnostic truth must be established for the
purposes of evaluation analysis; these must take into account the
goals of the evaluation study, potent1a1 sources of bias, and

‘common sense. In short, standards of truth need not be "perfect"
but must be considerab]y more reliable than the tests to be eval-
-uated; judgments of truth should be independent from information

provided by the tests to be evaluated;® and:one must balance
thoughtful reflection on the potent1a] errors and difficulties of

such evaluation studies against the useful, even if 11m1ted, jnfor-

mation that they can provide,
In the.selection of cases to be included in an eva]uat1on

.study, due consideration must be given to include an appropriate
.. -spectrum of disease characteristics in the sample case population,
.- because the conclusions drawn from the study are app]1cab]e only

to, and cannot be defined more specifically than, .the sample

. population.®°1%.

The various issues that should be considered in designing a -

‘study for the evaluation of diagnostic medical imaging procedures
. are discussed in a general protccol currently in the Tinal states
~of preparation.*

No simple answer exists to the question of how many cases are

‘necessary for meaningful conclusions to be drawn from an ROC analy- .
'sis of decision performance, but several issues should be consi~

&ered
First, no matter what means may be used to infer the s1gn1f1j

“cance of apparent differences between ROC curves, the required

precision of measured ROC points will depend upon the magnitude
of the differences that actually exist. More cases are needed to
demonstrate subtle differences in d1agnoqt1c performance than
gross differences.

Second, statistical variations in ROC data and fitted ROC
curves are due to at least two factors: the extent to which the
limited number of cases used in an ROC experiment represents the
total population of such cases at large, and the extent to which
diagnostic test results and subjective diagnostic judgements are

* This document is currently in the final stages of preparation by
Bolt, Beranek and Newman, Inc., Cambridge, Mass, under National
Cancer Institute Contract NO1-CB-64010 (”Standard Protocol for

“~Evaluation of Imaging Techniques in.Cancer Diagnosis": John A.
 Swets, Principal Investigator).
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reproducible. Although the cumulative effects of these two sources
of variation can be expressed in terms of binomial and multinomial
statistics and can be est1mated by the expressions for standard
‘deviations quoted above, /the relative magnitude of the individual
effects has not been studied and their interaction is not under-
stood. The fact that both of these two effects do occur unques-
‘tionably complicates the issue of interpreting apparent differences
‘between measured ROC curves, however. Because of these two sources
.-of statistical variation, an observed difference between the deci-
.sion performance of two diagnostic tests acting on the same sample
‘population may in fact be more significant than an assumption of
sample independence would suggest: If the limited case sample
‘is atypically difficult for one test, it may be atypically diffi-.
cult for the other also. In this situation, the ROC curves for
the two tests should vary up and down together if they are applied .
to different population samples of the same limited size. Thus
"error bars" computed on the basis of the~independent sample .
“assumption may be unduly "pess1m1st1c concerning the significance
.. of differences between curves in this situation. :
i - Because no generally accepted statistical test yet exists for
" demonstrating the quantitative statistical significance of apparent
.. differences between ROC curves, the number of cases required to
\.. achieve significance cannot be predicted. This state of affairs
.is certainly unsatisfactory, and current theoretical efforts hold |
.promise for better statistical technigues in the future. Mean- ™ =
vhile, common sense and expérience suggest that meaningful qualita-
tive conclusions can be drawn fron RCC experiments performed with
. as few as about 100 ciinical cases® or experzmeﬂta] images.

GENERALIZED RECEIVER OPERATING CHARACTERISTIC METHODS
" The convent1ona1 ROC methods that we have described up to th1s”
point apply to situations in which actual states of health and
disease are grouped into two categories and in which two decision
alternatives are available to the decision maker. In this section
we sketch how these methods can be generalized to apply to more
~compiicated decision-making situations.

The most fundamental property of the ROC approach is that it
describes the trade-offs that are available among the conditional

. frequencies of various types of correct and incorrect decisions.
By viewing the approach in this broad way, we can see that a
generalized ROC approach would account for the ways in which the
frequencies of certain types of decisions must vary with the fre-
quencies of other types of decisions as one or more decision
thresholds is changed.:

Consider first the situation in which the decision maker must
not only call an actua]]y posit1ve case positive, but must also
state where the case is positive in order to receive credit for a

—fully "true positive" decision. If localization of disease to
within the proper image quadrant is requ1red then five actual




PoL (S|n:xc. A)

o 02 04 S
B 108 - -
< © B i e 8 “n"-’ éu N
< ----------- '
> | PP 06 .
g 1 :
3 ;
E @ .
04 404 o,
& Ls
| -
g
) 40.2
| Y ! ' 1 1 ‘ ' ’r 0 .
(o] 02 04 . 06 08 0.
- PplS|nixe, A) |

Fig. 6. Conventional ROC curve and genefa1izéd o
curve for detection and localization task.
(Starr et al., ref 12) :

state: and c°c1510n a]ternat1ves are avaz]able "no disease,"

"disease in upper Teft quadrant,” etc. We have shown theoretically ;L J
}.and experimentally®?>!? that decision performance in this more ’
~complex.task can be.predicted from knowledge of the conventional

ROC curve measured for the two-alternative "detection-only" task
and that the resulting generalized ROC curve is a curved line in

three-dimensional space, which can be plotted as two curves on a

two-dimensional graph.

Typical results obtained using this generalized ROC approach12 '

.are shown in Figure 6,. The solid symbols of different shape repre-

sent conventional ROC data points obtained from separate viewing
sessions by the same observer (viewing the same image set, which
consisted of 50 signal-plus-noise and 50 noise-only images). The
solid curve was fit to these data points and was used to predict -

. the Tower, broken curve, which should represent observer perfor-

mance when the image quadrant containing the signal must be speci-
fied. The open symbols show data obtained in an experiment in
which both detection and localization were requ1red and agree with
the predicted broken curve. .



Another situation of interest is. that for which more than one
lesion, for example, may be actually present and for which the
observer must, in effect, icount the lesions present. We have shown
that, if the possible lesions are similar, decision performance
in-this "multiple signal"” task can again be predicted from know-
ledge of the conventional ROC curve (measured when zero or one
lesion may be present) and that the generalized ROC curve is a
curved 1ine in mu]t1d1mens1ona1 space which can be -plotted as a
set of two-dimensional graphs.®

These two studies have shown that decision performance in some .
multi-alternative tasks employing medical images can be related
uniquely and predictably to decision performance in a simple two-
alternative task, which is measured by a conventional ROC curve.
Thus, in these situations, the conventional ROC curve provides a
sufficient conceptual and experimental description of decision
performance.

A common aspect of the tasks used in these two studies is that
the decision maker can be assumed to base his selection of one of
several decision alternatives on the repeated comparison of a

" single kind of judgement against a single decision threshold.  In

the "multiple-signal” detection task, for example, he is assumed
to try to detect lesions in various parts of an image by repeating
a similar judgment process and then "adding up" the number of

E lesions that he has Yfound."

-An- appropriate-theoretical-model-Ffor what- we- m1ght ca]] a w- -
"~ "simultaneous. detection and differential diagnosis" task.is less
clear.!® For example, suppose that the decision maker is confronted
with a population of cases, each one of which may be actually
"negative," "positive with disease A," or "positive with disease B!
No fully general multi-alternative ROC approach is yet available
to .measure.and describe decision porfornance in. this task. An
approach that may suffice at present is the measurement of ‘three
conventional ROC curves, either by grouping the actual states into
two alternatives -in the three possible ways or by deleting cases
vith one actual state in each of three decision experiments.
Theoretical and experimental efforts to deal with this impor-
tant situation within the context of ROGC analysis are continuing.

IMPLICATIONS FOR MEDICAL DECISION-MAKING

~In performing a diagnostic study, one pays a price (in terms
of money, risk of complications, and/or radiation exposure) to gain
information that should be of benefit in subsequent patient manage-
ment. ROC analysis provides a means of measuring and describing
diagnostic detectability in terms of the combinations that can be
achieved among the relative frequencies of true positive, false
positive, true negative, and false negative decisions. Thus,
through ROC analysis one can determine the information that a.
. diagnostic test can provide. The term "information" here can be
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§1nterpreted either in the loose sense of "detectab111ty" or in the

‘technical sense developed by Shannon.!®21¢

With disease detection performance specified by RCC analysis,

.several important questions remain, however. In a particular
‘diagnostic task, which is the best of the poss1b]e combinations

: among the various decision frequencies, that is, what is the best -
-operating point on the ROC curve? How can one judge whether the
~diagnostic information purchased. by the use of a diagnostic test
“is (expected to be) worth .the price paid? And how can a diagnostic
. test best be used within the context of a diagnostic strategy?

. These questions can be addressed, at least conceptually, by com-
"bining ROC analysis with the techniques of cost/benefit analysis
-and decision analysis. Discussions of this approach can be .found

‘ elsewhere.

3917

SUGGESTIONS FOR FURTHER READING

Introductory discussions of ROC ana]ys1s for diagnostic evalu-

f iat1on have been-published by Swets'®, Turner'®, and by McNeil and’
“colleagues

20221 " and these papers are recommended for the addition-

al perspect1ve that they provide. Other introductory papers by

. - Swets?? and by Swets and Green??® trace the development of ROC ana-
7 1ysis in experimental psychology and indicate applications in other
< fields. We have published elsewhere a partially technical discus-
- sion of the. ROC approaeh to diagnostic evaluation that includes . ... .
: examples of the various techn1ques

17 and also a concise summary

fw1th an extensive bibliography.?

A recent introductory book by Egan25 clearly 1]]ustrates the.

- mathematical relationships among various decision strategies,

. . decision variable distributions, and the corresponding ROC curves
- Signal Detection Theory and Psychophysics by Green and Swets®

- cantinues as the standard comprehensive reference work on ROC

- techniques. Finally, a]though it does not consider the implica-
~tions of ROC analysis for optimizing diagnostic strateg1es, a

classic book by Raiffa2®provides an excellent introduction to the.

- principles of decision analysis.

Voo pw
L] . [ ] L] .

REFERENCES

1. D. A. Turner, E. W. Fordham, J. V. Pagano, et al, Rad1ology
121, 115 (1969).

2. D. J Goodenough, C. E. Metz, in C. Raynaud, A. E. Todd-
Pokropek, Information Processing Scintigraphy (CEA, Orsay,
France, 1975).

C. E. Metz, Sem. Nucl. Med. 8, 283 (1978).

D. M..Green, J. A. Swets, S1gna1 Detection Theory and Psycho—
phys1cs (Krieger, Huntington, NY) p 99.

Ibid., p. 401.

Ibid., p. 61

D. D. Dorfman, E. Alf, Psychometrika 33 117 (1968).




. 26.

D. D. Dorfman, E. Alf, J. Math. Psych. 6, 487 (1969).

? F. )Ransohoff A. R. Feinstein, N. Engl J. Med. 299, 926
1978

C. . E. Metz, S. J. Starr, L. B. Lusted, in G A. Hay, Medical
Images Format1on Perception and Measurement (Wiley,

London, 1977) p. 220.

D. J. Goodenough, Rad1ograph1c Application of Signal Detec—

tion Theory (PhD Thesis) (U. Chicago, Chicago, 1972).

S. J. Starr, C. E. Metz, L. B. Lusted, et al, Radiology 116,

553 (1975). :

S. J. Starr, C. E. Metz, L. B Lusted Phys. Med. Bio] 22,
376 (1977).

C. E. Metz, S.:J. Starr L. B. Lusted, Rad1ology 121, 337
(1976).

C. E. Shannon, Y. Weaver, The Mathematical Theory of Commun-
jcation (Univ. of I1linois Press, 1949). _

% E. )Metz D.Jd. Goodenough, K. Rossmann Rad1o1ogy 109, 297
1973 ;

C. E. Metz, S. J. Starr, L. B. Lusted et a], in C. Raynaud

A. E. Todd-Pokropek, Information Process1ng in Sc1nt1graphy
(CEA, Orsay, France, 1975) p. 420.

J. A. Swets, Invest. Radiol. 14, 109 (]979)

D. A. Turner, J. Nucl. Med. 19, 213 (1978).

B. J. McNeil, E. Keeler, S. J. Adelstein, N. Engl. Med.

- 17, 439 (1976) |
. - B. J. McNeil, 'S. J. Adelstein, N. Engl. J. Med. gggﬁ 2]] s

(1975). ‘
J. A. Swets, Science 182, 990 (1973). :
J. A. Swets, D. M. Green, in H. L. Pick et al, Psychology,

. from Research to Practice (Plenum Press, New York 1978)
T op. 311.

C. E. Metz, S. J. Starr, L. B. Lusted,in Medlcal Radionuclide -
Imaging, Vol. 1. (IAEA, Vienna, 1971), p. 491. 4 !
J. P. Egan, Signal Detection Theory and ROC Ana1y51s
(Academic Press, New York, 1975). ’
H. Raiffa, Decision Ana]ySIS Introductory Lectures on
Choiges under Uncertainty. (Addison-Wesley, Reading MA,
1968). S ' )






