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1. Introduction

The presence of skew quadrupole fields will linearly couple the x and y motions. The

x and y motion can then be written as the sum of two normal modes1 which have the

tunes v\ and v% which are different from the tune, vx,vy, in the absence of the skew

quadrupole fields. New beta functions, /3i and 02, can be defined2 which are the beta

functions of the normal modes and which are different from /3X and j3y, the beta functions

of the unperturbed accelerator.

This paper presents analytical perturbation theory results for v\,v%. The results for

1/1, V2 are first found correct to lowest order in the skew quadrupole fields. The results for

v\, vi are then carried one step further to include the next higher order terms in the skew

quadrupole fields. Results for fi\, /?2 will be given in a future paper.

These analytical results show that for the higher order shift in tune the important

harmonics of the skew quadrupole field are the harmonics near vx + vy. However the

harmonics closest to vx + vv do not contribute to the higher order tune splitting, \u\ —1/21,

as they shift v\ and 1/2 about equally. This results in a lack of a dominant harmonic for the

higher order contribution of \v\ —1/21, which complicates the understanding and correction3

of the higher order contribution to \v\ —v\\.

Analytical results are found for the residual tune splitting which is the \v\ — 1/21 that

remains after the driving term of the nearby difference resonance has been corrected.
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2. Lowest Order Solution for the Motion and the Tune

The equations of motion can be written as

•^2 +

M2+Vl)rly==by(s) V
i i

* = Pxr}x, V = Pfay

9x = Jds(l/ux!3x) = i,z/vz

By = J ds{l[vyily) = ll>ylvy

The skew quadrupole field is described by a\ (s). On the median plane, the field Bx is

given by

Bx = —BQ aj x ,

where BQ is the main dipole field, p is the radius of curvature in the main dipole.

To simplify the solutions of Eq. (2.1), we introduce Cx and Cy such that

r\x — Cr + c.c.
(2.2)

Tly = (>y + cc-

Cx and Cy also satisfy Eq. (2.1). In addition, when a\ = 0, the solution for C^Cj, is

d = Aexp(iux6x)
(2.3)

C y = B ( i 6 )

We are looking for a solution of Eq. (2.1) which is valid when ux, vy are close to the coupling

resonance vx — vy — p, p being some integer. The solution for Ci,Cy will be assumed to

have the form
Cx = As exp (ivx>s6x) + ^2Ar e xP (ivz,T8z),

, = Bs exp (ivy,,ex ) + Y^BT exp {ivVtT9v) . (2.4)

vx,s - vytS - p .
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The AT are assumed to be small compared to As, and the BT small compared to Bs. vx,s,

i/y^s will give the z/-values of the normal modes. The normal mode i/-values are v\, V2

and we assume v\ —* vx and vi —> vy when a\ —• 0, then vx<s —> ux for the v\ mode, and

VyiS —* vy for the vi mode, when a\ —» 0. The justification for choosing this form for the

solutions, and the choice of the vx>T and the vv>T present will come out of the solution one

finds using this form.

The i/I|r and vy,r for r ^ s will be seen to have the form

VX,T = vx,3 + n
(2.5)

VVS = Vy,s + m

where n, m are integers. This could be assumed from the beginning. An alternative

procedure is not to restrict ux>T and Vy,r, and to make the exp(ivx>T0x) an orthogonal set

by choosing vXyT = (2TT/T) q, q is some integer and T is some very large angle, and treating

pyir similarly. Putting Eq. (2.4) into Eq. (2.1) and using the orthogonal property, one

finds

(i£ r - vl) Ar = -2vx Y^, bz (t>x,r, vVf) BT

("»,»• ~ vv)Br ~ ~2vv ̂ 2 bv K-r' v*s)A*'

1 [T ,
= zf I MxPx {PxPv¥ («I /P) exp [i (-vx,r0x

py (pxfa)l iailp) exp [i {-v9,rB,= ̂  J
In Eq. (2.6) we assume BT « Bs, AT « A3 for r ^ s and find the first order results

("*,« - VD A' = -2uxbx (wx,«, vy,s) Bs

{Vl,S ~ Vl) B3 = -IVyby (l/j,,,, I/I>5) AS

{vl<T - vl) AT = -2vxbx (ux>T, vyi3) Bs

(vy,r ~ VD BT = ~2vyby ("y,r, vx>s) As

The first two equations in Eq. (2.7) are homogeneous equations for As and B3, and

the f-values vx<3, vv^ are determined by requiring the matrix of the coefficients of ^4.,, Bs
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to vanish. This gives

("r,a -
 Vl) iVls ~ "») = 4vzVy\Av{vx.3,Vy,3) |2

Av (i/,,,, vVtt) = -?- I ds (/?„ fl,)* (aj/p) exp [i (-!/,,,», + v^9y)\ (2-8)

Vx,s - Vy,s = P

Eq. (2.8) can be simplified by assuming that ux,vy are close to the resonance line vx3 —

vy3 — p and vx>3 ~ vx and vVtS ~ vy. Keeping terms of lowest order only, one gets

{vx,s - vx) {vy,s - vy) = \Av (i/IiS, I/J,,,) |2

(2.9)
VX,3 - Vyt, = P

Eq. (2.9) has two solutions for uXiS, vVi3. We denote by v\ the value of t/Xj3 that goes to vx

when ai —* 0, and 1/2 the value of vyt3 that goes to vy when a\ —• 0. The solutions can be

written as

(2.10)

vx = (vx + Vy + p)/2,Vy = (vy + vx-p)l2

For the ±, the + sign is used when vx > uy + p for v\ and the opposite sign for v2. In

Av (vXi3, vy>3), vx,s has been replaced by T7X, and vy<3 by Vy, which introduces a higher order

error that can be neglected.

From Eq. (2.10) one finds

- * +\Av(»x,Vy)\
2\ ( 2 _ n )
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3. Higher Order Shifts in v\ and V2

To find a higher order result for v\ and vi, one has to find higher order equations for

AS,BS by putting the lower order solution for Ar,BT,r ^ s, given by Eq. (2.7) into Eq.

(2.6).

Eq. (2.7) for AT,Br can be somewhat simplified by assuming that vx,vy are close to

the resonance line vx,s = Vy,s +P so that one can assume that vx>s — vx and vy<s ~ vv and

then
. -2uxbx(Vx,r,uy<3)

(n + ux+vy){n-p)

_ ~2uyby(uy,r,vx,s)

where ux<T = uVlS + n and vy>r = vXiS + n.

Putting these results for Ar, BT in Eq. (2.6) one finds the improved equations for

AS,BS

iy\ s~vl- Ax) As = -2uxbx (J/ I IS, uy>s) Bs,
(3.2)

( l A ) B 2 h ( ^ A

Ax =

Ay =

da ax {MyY exp [i ((n -

[i ((n - vx) 6y + vxex))

Eq. (3.2) gives the equation for vx^ and uVtS

« . ~ "2 - A*) (»£, - «/J - Ay) = 4i/,i/v|Ai/ (i/*,,, i/,i8) |
2

(3.3)
^i,» = Vy,s + P

Eq. (3.3) was obtained by using the result for Ar, BT which is first order in a\. By

iterating Eq. (2.6) one can find a result for AT, BT to second order in cti which will change

Eq. (3.3) by replacing Av by

(3) (3.4)
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where Av^ is third order in a\. By going one step further and iterating Eq. (2.6) to find

results for Ar, BT to third order in a] will change Eq. (3.3) by replacing Ax, Ay by

Ay -» Ay + A<4)
(3.5)

where Ai , Ay are fourth order in a\. One can write down all these higher order terms.

However, the expression Eq. (3.3) keeping terms up to second order in a\ is probably

sufficient here.

One should also note that in Eq. (3.3) vZt, and vy>3 also occur implicitly in Au (vx>s, vy>s)

which complicates the solution of Eq. (3.3) for vXjS and vVsS. Solutions can be found

depending on the size of Av and the distance from the resonance line vx = vy + p.

One interesting case is when a 2 family a\ correction system is used to make Av = 0,

and when vx,vy are very close to the resonance line vx — vy = p, so that v\ = vx and

i/2 = vy with an error that is second order in a\. Very close to the resonance line, so that

in Eq. (2.10) (vx — vy — p) /4 can be neglected compared to |A*/|2, then the above can be

achieved by making Av(l7x,17y) = 0 as shown in Eq. (2.10).

This corresponds roughly to the situation when a 2 family a\ correction is used to

cancel the driving term of the nearby difference resonance, vx — vy = p. In this situation,

one can find the shift in vx>3 and vy>, due to the second order A r , Ay. Then in Eq. (3.3)

Av (ytjs, Vy,s) is not zero but differs from zero by terms of order a|, and thus |Ai/|2 is of

order a\. For this result, the previous observation, that higher order terms can only change

the Av term by Av^z\ a term of third order, is significant. As |Ai/|2 is of order a\, one

can treat it as being zero, and Eq. (3.3) becomes

(vl, - v\ - Ax) (vl - vl - Ay) = 0 , (3.6)

which gives the normal modes

V}=vz + —Ax

*l = Vy + IT-Ay .
ZVy

Thus for the case when Av = 0 and close to the resonance line, there is a second order

in a\ shift in the i/-values given by Axj2vx and Ayflvy. Eq. (3.2) for Ax and Ay show
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that the largest second order i/-shifts will come from harmonics in a\ close to vx + vy.

The driving terms bn and cn for n closest to vx + vy contribute most to the second order

i/-shifts.

One may also notice that &„, Cn? as given by Eq. (3.2), are just the usual stop-band

results for the vx + vy — n resonance but evaluated at particular points on the resonance

line. bn corresponds to the point n — vy, vy and c-n to the point ux, n — ux. For the n-values

corresponding to resonance lines closest to the unperturbed vx,vy, these points on the

resonance are not far apart and the bn and cn are about equal. Thus for the vx + Vy = n

lines closest to the unperturbed vx, vy, v\ and vi are shifted about equally and these bn,

cn do not contribute much to the residual \vi — V2\. This lack of a dominant harmonic for

the residual \vi — vi\ makes the correction of the residual \v\ — 1̂21 more difficult.

Eq. (3.7) has been checked4 by comparing these results with numerical computations

of v\,V2- For the case of vx = vy resonance line, p = 0, Eq. (3.3) may be solved for i/XiS,

vy<s and written as

(3.8)

^2 = ^

v\ is the mode that goes to vT when a\ —* 0, and V2 goes to vy. For the ± sign, the + sign

is used when vx > vy for v\ and the opposite sign for 1/2. One can derive Eq. (3.7) from

Eq. (3.8) when Ai/(I7,I') = 0, V = \ (i/x + vy), and close to the resonance line vx = vy.
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4. v—Shifts when vx, vy are far from the vx — Vy = p Resonance

In the derivation of the previous results, vx, vy were assumed to be close to the vx — vy =

p resonance line. When i/x, vy are far from the resonance line the results are less interesting

as the i/-shifts are of higher order and smaller. However, it is interesting to see how the

results for the v shifts in these two cases will fit together.

Up to Eq. (2.6), the previous derivation will hold when vx,Vy are far from the vx — vy =

p resonance line. Let us first consider the v\ mode where v\ —* vx when a\ —» 0. In this

case, it is assumed that not only the Ar are small compared to As, but also Bs is small.

To lowest order, Eq. (2.7) become

(.£. - ^) A, = 0

{?1,T ~ vl) Br = -2vybv (i/v>r, vx,s) A s

Vy,T = Vx,s + n .

Thus to lowest order, v\ = vx, and the tune shift is a higher order effect in a\. To find the

second order shift in v\, the result for BT in Eq. (4.1) is put into Eq. (2.6) and the A3

equation becomes

(«£, - „*) A3 = AXAS

v

(41.)

ca = -^-fdsai {fix09)v exp I» ((n - vx) 9y + vx6x)) .

This gives the shift in ux,

v\ = vl+~Kx. (4.26)

The A r is similar to the A^ in Eq. (3.2) except that we now do not assume that

ux — i/y=p and the sum over n is over all n. This result, Eq. (4.2b), can be obtained from

Eq. (3.3) if in Eq. (3.3) we assume that

(»l - *2y - Ay) C((»x-Pf- V%) ,

and not replace vx — uy by p in Eq. (3.2) for Ax.
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In the same way one finds for the 1/2 mode,

l/X = V -j- A y

yy exp [i ((n - vy) 9x + vy9y)] .
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