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LIST OF SYMBOLS 

net force per unit length of vortex exerted on a right (left) -
displaced vortex 

force per unit length of vortex exerted on a right-displaced 
vortex by the left-displaced vortices in plane n at -x + nD 

.1. 

weak-field penetration depth 

field-dependent penetration depth 

weak-field coherence length 

field-dependent coherence length 

weak-field variational core radius parameter 

field-dependent variational core radius parameter 

vortex density in reduced units 

critical angle for flux-line cutting 

critical angle for instability at the origin 

critical angle for flux-line cutting (smallest angle for which 
f+ ~ 0 for all 0 ~ x ~ DJ./2) 

critical angle gradient in reduced units 

longitudinal critical current density in reduced units 
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CHAPTER I. INTRODUCTION 

The electrodynamic behavior of a current-carrying type II supercon-

ducting wire subjected to a longitudinal magnetic field is still not com-

pletely understood, despite a large number of experimental and theoretical 

investigations. 1- 27 Above a certain critical current I , a longitudinal 
c 

1 · d b · has been observed. 12 •14 •21 •
22 

vo tage accompan1e y a paramagnet1c moment 

A macroscopic theory of a nearly force-free arrangement of helical 

vortices2•12 has been developed which can account for the moment but not 

for the voltage. The voltage produced cannot be described as a flux-flow 

voltage generated by an inward-collapsing array of helical vortices, be-

cause this would lead to an ever-increasing buildup of longitudinal mag-

netic flux.l2,13,18,19 Fl 1 . . 12' 16' 23 '26 ( h . . d ux- 1ne cutt1ng t e 1ntersect1on an 

cross-joining of adjacent nonparallel vortices) has been proposed as a 

mechanism to explain the coexistence of the voltage and the moment. A 

12 16 description by Walmsley ' suggests that the flux lines can be split·up 

and rejoined in such a way that the azimuthal component of the flux moves 

radially in towards the axis while the axial component remains static. 

Clem23 proposed a model to explain the simultaneous appearance of the 

voltage and the moment. In his description, helical vortices periodically 

nnc.leate at the surface, and as they move inwards they cause .the initially 

existing longer pitch vortices to experience spiral-vortex-expansion in-

stabilities. Flux-line-cutting processes occur, and helical vortices of 

intermediate pitch are produced, some of which exit at the surface. If, 

on the average, there are equal numbers of exiting and entering vortices, 
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a steady-state voltage is produced, while the averaged longitudinal moment 

remains unchanged. 

' A specific cyclic flux-line-cutting model was presented in reference 

27 for slab geometry. In this model, an infinite superconducting slab of 

finite width w, oriented perpendicular to the x axis and subjected to an 

applied field and current in the z direction, as shown in Figure 1, is 

considered. Planes of parallel vortices are assumed to form a vortex 

array similar in ~orne respects to that shown in Figure 2. In each plane, 

vortices are parallel to the net·local .field. A plane of vortices enter-

ing from a surface at x = ±w/2 moves inwards, where it meets another vor-

tex plane with smaller angle between the vortices and the z axis. After 

flux-line cutting, a plane of intermediate tilt angle is formed~ which 
.• 

separates into two planes, one of which exits at the surface. Similar 

motions allow pairs of vortex planes deeper in the·slab simultaneously to 

undergo flux-line cutting. In steady state, fluxoid conservation dictates 

that, although no net z flux is transported, a net y flux is transported 

across the slab in the x direction. 27 By Faraday's law, a nopvanishing 

time-averaged electric field (or a voltage) in the z direction is pro-

duced. The model also permits the calculation of the magnetic flux densi-

ty, the macroscopic electric current density, and the paramagnetic moment. 

For simplicity, the above model assumes that flux- line cutting occurs 

spontaneously. That is, no critical angle difference between the vortices 

in adjacent planes needs to be exceeded for flux-line cutting to occur. 

However, a threshold value for the angle difference is implied in Brandt, 

Clem, and Walmsley's work. 26 For small angles, the structure might remain 

- -~ 
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•Figure 1. Infinite superconducting slab of. width w, oriented perpen­

dicular to the x axis and subjected to an applied field and 
current in the z directio~. 
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Figure 2. Infinite array of vortex planes whose instability is investigated in this thesis. The 
intervortex spacing in each plane is D .l-' the intr~planar spacing is n 11 , and the angle 
between vortices in adjacent planes is ~a. (Scale is greatly expanded in x direction.) 
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in metastable equilibrium, but at higher angles the structure might under-

go spontaneous flux-line cutting. 

In order to interpret magnetization and a.c. loss measurements in 

hysteretic superconducting specimens containing nonparallel vortices with 

. 28-31 d1fferent angles, LeBlanc and co-workers · proposed the existence of a 

critical angle gradient, analogous to the critical current density in the 

critical state model. It is possible that such a quantity has its expla-

nation in flux-line cutting, which would redistribute magnetic flux until 

the angle gradient becomes equal to the critical angle gradient. 

The purpose of this thesis is to investigate the threshold for flux-

line cutting in slab geometry. In the second chapter of this thesis, a 

mathematical model, based on the London model and the Ginzburg-Landau 

theory, for calculating the force on a test vortex in the vortex array is 

presented. The parameters to be used and some electromagnetic properties 

are described briefly. An instability analysis is given and the determi-

nation of the threshold value for the interplanar angle difference is 

discussed. Chapter III presents numerical calculations of the forces and 

critical angles where the Newton's method is employed. Chapter IV shows 

the results of calculations for forces, critical angles, critical angle 

gradients, and critical current densities. The dependence of the critical 

angle upon the vortex density and the intervortex and interplanar spacings 

is also examined. The significance of the results and cqnclusions is 

given in Chapter V. 
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CHAPTER II. MATHEMATICAL MODEL 

In the limit that the penetration depth A is much large than the co-

-+ 
herence length~ (A>>~), it is found that the flux density h(r) and 

self-energy £s associated with an isolated straight vortex directed along 

the z-axis are given approximately by32 

(2-1) 

and 

(2-2) 

where r is the radial coordinate in cylindr~cal coordinates, K
0 

is the 

modified Bessel function of order zero and ¢
0 

= hc/2e = 2.07 x 10-7 G-cm
2 

is the flux quantum. For two parallel straight vortices with separation s 

and tilt angle ~a as shown in Figure 3 the interaction energy per unit 

length of vortex can be derived as26 

(2-3) 

Integrated along the line element, dy/sin a, the interaction energy be-

comes 

. 2 
E (~a, s) = (¢

0
/SrrA) cot ~a • exp(-s/A) em (2-4) 

·which is valid provided ~a~ 0. When ~a= 0, from (2-3) the interaction 

energy per unit length is 

(2-5) 

The interaction energies in Eqs. (2-4) and (2-5) are electromagnetic in 

nature. 
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Figure 3. Two parallel straight vortices with separation s and tilt 
angle 6.a.. 
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In an approximation to the Ginzburg-Landau theory, an attractive 

"condensation energy" or "core energy" is included in the interaction 

energy between two parallel straight vortices. For ~~ = 0, its magnitude 

. 26 
l.S 

(2-6) 

per unit length. From Eqs. (2-3) and (2-7), for ~a= 0, the total 

interaction energy per unit length is 

(2-7) 

which vanishes when K = 1//2 as expected. Here K is the Ginzburg-Landau 

parameter defined to be the ratio A/~. Eq. (2-7) gives rise to a force 

per unit length as 

f(O, s) = -o£(0, s)/os 

= (~~/8TI2 A~) • [K1(s/A)- /2 K K1 (s/2/~)] (2-8) 

For ~a I 0, the core interaction energy per unit length is similar to 

Eq. (2-3) with ~a = 0 and A replaced by ~/12. Integrated along the line 

element, the interaction energy becomes 

(2-9) 

From Eqs. (2-4) and (2-9), the total interaction energy becomes 

E(~a, s) = (~~/8TIA sin ~a)•[cos ~a exp(-s/A)- (12K)-1exp(~s12/~)] 

(2-10) 

which gives rise to a force 

2 2 ~ 
F(~~. s) = (~0 /8TIA sin ~~)[cos ~a exp(-s/A)- exp(-sv-2/~)] (2-11) 
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At s = 0, Eq. (2-11) shows a cusp, in contradiction to the expected 

result that the force decreases continuously to zero over the fluxline 

core radius.. The expressions for the forces in Eqs. (2-8) and (2-11) are 

only approximations in the limit of vanishing core radius. By introducing 

26,33 a core radius parameter ~v the c~sp of the force at s = 0 can be 

smeared out. The value of ~v is found by a variational method that mini-

mizes the free energy. It satisfies 

<12AJr; )[1- Ko2(t,;. /A.)/Ko2<t,; /A.)]l/2 
v v v 

(2-12) 

Then Eq. (2-12) becomes 

F(~a, S) = [A<I>~/(8nA.2sin ~a) ]{cos ~a exp(-S/A.) - exp(-s/2n) 1% (2-13) 

where 

s 

and 

which is a normalizing constant. Eq. (2-7) is modified in the same way 

which gives 

f(O, S) (2-14) 

At larger induction or smaller K, say b = B/Hc2 > 0 .. 3 or K < 2 where 

B is the magnetic induction, the vortex cores overlap and the London model 

fails. 34-37 It has been shown that · A. and t,; should be replaced by field-

dependent quantities such that the repulsive part of the ·force field 

varies over a range of A.B A./(1 - b)i/Z and the attractive part. varies 

over a range of ~B = ~/(1- b) 1/ 2 . Accordingly, we in addition replace 

1/2 
the core radius parameter by ~vB = ~v/(1 - b) . 
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In the vortex state, the interaction between the vortices leads to a 

periodic lattice structure when ~a = 0. It has been found that the tri-

38 angular lattice usually has minimum free energy. For the type II super-

conducting slab described in Chapter I, however, the vortices do not form 

a perfect lattice but instead must have an arrangement similar to that of 

the model array of Figure 2. In this model, the vortices in plane n at 

x = nD point in the direction of the unit vector $ = ~ cos a + y sina n .L n n n 

where a = ~a: 
n 

The macroscopic flux density and current distributions generated by 

this array can be calculated as follows. The flux density contribution of 

vortex plane n averaged over a distance n 11 parallel to the plane and 

perpendicular to $ is approximated by 
n 

b (x) = $ (¢
0

/2A D )exp(-lx- x I/AB) 
n n B 11 n 

The vector sum of contributions from all vortex planes is 

+ + 
b(x) = 2: b (x) 

n 
n 

+ + 

(2-15) 

(2-16) 

The macroscopic B(x), the average of b(x) over several interplanar separa-

tion D , is most conveniently evaluated by converting the sum in Eq . 
.l. 

(2-16) to an integral over n, which yields 

(2-17) 

Here, ~(x) = i cos ~ + y sin kx, k = ~a/D .l. and B0 = ¢0;n
11 

D J. , which is 

the average flux density when ~a = 0. The corresponding macroscopic 

averaged supercurrent density is 



+ -+ 
j (x) = ( c/ 41T) V'xB 

-+ 
(ck/41T)B(x) 

11 

(2-18) 

Macroscopically, the array appears to be in equilibium, because the 

-+ -+ 
macroscopic Lorentz force density vanishes (j x B/c = 0), and the array 

can be said to be force free. Moreover, the array appears to be micro-

scopically in equilibrium, because on each vortex axis, the local current 

-+ 
density j generated by all the other vortices is parallel to the axis, 

such that j x l
0
/c = 0. However, the array can be perturbed by thermally 

induced fluctuations, which propagate through the medium and lead the 

array away from the force-free configuration. 

Sketched in Figure 4 is the perturbation considered in this thesis. 

Alternate vortices in each of the planes are assumed to be displaced to 

new positions (solid circles) a distance.x < D~/2 from their initial 

positions (+); the remaining vortices are assumed to be displaced in the 

opposite direction to new positions (open circles) a distance x from their 

initial positions (+). 

The force f+(x) per unit length of vortex exerted on a right-dis-

placed vortex, say, vortex a in Figure 4, can be calculated by generaliz-

ing the force between two vortices to forces from vortex planes. 

For ~a ~ 0, the force f(~a, SB) per unit length of vortex exerted on 

a vortex by a plane of vortices of separation d11 is obtained from Eq. 

(2-13) which gives 

(2-19) 
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Figure 4. Sketch of perturbation whose instability is investigated in 

this thesis. Starting from initial positions (+), half the 
vortices move through +x to new positions (solid circles) and 
half move through -x to new pos~tions (open circles). Repul-, 
sive interaction between vortices (arrows) can lead to un­
balanced destabilizing for.~es. 
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where L = d
11 

/sin b.a. and SB = (s
2 

+ t;~B) 1 / 2 . For IJ.a 

unit length of vortex is given by Eq. (2-14), i.e., 

0, the force per 

(2-21) 

where the field-dependent AB has been used. 

Now, consider the force f+(x). The vector sum of the forces from 

vortices b and c at distance 2~1 from vortex a vanishes by symmetry, as 

do all similar vector sums of the forces from pairs of in-plane vortices. 

The vector sum of the forces from the two planes of right-displaced vor-

tices at distanceD~ to the right and to the left of vortex a also vanish-

es by symmetry, as do all similar sums of forces from pairs of vortex 

planes. Therefore 

f + (x) = ~ f +n (x) 
n=-m 

(2-22) 

where f+n(x) is the force in the x direction per unit length of vortex 

exerted by all left-displaced vortices in plane n. For n = 0, we obtain 

from Eq. (2-22) 

00 

(A¢~/2n2A~) L [K1 (SmB/AB)- KI2K1 (smB/2/~B)]x/SmB m=l 
(2-23) 

where 

SmB {(2x) 2 + [(2m- l)D ]
2 

+ ~ 2 }1/ 2 
11 vB 

and, for n :f 0, we obtain from Eq. (2-20) 

:l. :l. = (A¢0/16·fi'ABDII ) [cos(nb.a.)exp(-XnB/AB) - exp(-XnB/2/~B)] 

where • (2x- nD )/X B (2-24) 
~ n 



14 

Although the force f+(x) is calculated for vortex a in Figure 4, the net 

force is the same for any right-displaced vortex by symmetry. Moreover, 

the net force f_(x) in the x direction per unit length of vortex exerted 

on a left-displaced vortex as shown by open circles in Figure 4 obeys 

The stability of the vortex array against the perturbation of Figure 

4 depends upon the sign of f+(x). Iff+< 0 for small x, the structure is 

stable to small perturbations; if f+ > 0, it is unstable. If f > 0 for 
+ 

·all x ~ D~/2, the structure not only is unstable but also is driven 

towards flux-line cutting in the plane x =·D~/2, where right-moving vor­

tices (solid circles) meet left-moving vortices (open circles). 

To examine the case of small perturbations, we make a Taylor's series 

expansion of f+(x) about the origin, which gives 

(2-25) 

Since 

by symmetry, we have 

(2-26) 

For small x, 

(2-27) 

When f~(O) < 0, Hooke's law applies and f+(x) is actually a restoring 

force which tends to pull the right-displaced vortices back to their ini-

tial positions (+). When f~(O) > 0, f+(x) drives the right-dis~laced 

vortices further away to the right. Therefore 
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f~(O) = 0 . (2-28) 

gives the critical angle, t:J.a·, for the instability of the array to small 
c 

perturbations. 

For the case that f+(x) > 0 in the region 0 < x < x (x < D /2), 
s s .1. 

f+(x) < 0 in the region x < x < x (x < D.l./2), and f+(x) > 0 in there-
s u u . 

gion x < x < D /2, the structure is unstable at x = 0 to small perturba-
u .1. 

tions and is driven to the position x where it is stable. Hence, the 
s 

instability at x = 0 does not necessarily lead to flux-line cutting but 

does so only when f+(x) > 0 for all x < D.l./2. The_ initial angle for flux-

line cutting, t:J.a , for this particular case is then defined as the small~ em 

est angle for which f+(x) ~ 0 for all 0 ~ x ~ D.l./2. At this angle the 

region_ x < x < x has shrunk to zero width such that x = x 
s - u s u 

x and 
m 

f'(x) = f (x) = 0. In this case, we define t:J.a as the angle which + m + m co 

makes f~(O) = 0. 
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CHAPTER III. NUMERICAL CALCULATIONS 

For the numerical calculations of f+(x) and j described in Chapter 
ell 

II, reduced (dimensionless) quantities denoted by tildes are used. The 

usual Ginzburg-Landau conventions39 are employed in which length is meas­

ured in units of A, magnetic field in units of /2Hc = K<j>
0

/2TIA2, energy per 

unit volume in units of H
2

/4TI, force per unit l~ngth in units of H
2

A/4TI = 
c c 

2 2 3 3 
K <!>0/32TI A , and current density in units of ci2Hc/4TIA. 

In r.educed units, we have 

00 

f+(~) E 
n=-oo 

f+n(~) 

00 

= E f+n (x) + f+O(~) (3-1) 
lnl=l · 

For n :f 0, 

2 3 2- -
[2TI r A/(K o

11 
)] •[cos(nlla)exp(-XnB) 

(3-2). 

where 

r = (l - b)l/2 

and 

Here, 

b (3-3) 

with 

For n = 0, 
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00 

(16Tir
4A/K

2
) E [K1 (smB)- KI2K1(SmBK/2)]~/SmB m=l 

(3-4) 

00 

(3-5) 

where 

4 2 -(16Tir A/K )[Kl (SmB) (3-6) 

and 

For larger lnl or m, the corresponding exponential or modified Bessel 

function terms drop off dramatically. The infinite series can be approxi-

mated by finite series as long as enough terms are kept. The maximum 

index for lnl in the finite series~ N, is obtained whenever 

2 3 2- - 6 N - -[2TI r A/(K D 11 )]exp(-SNB) < 10-. E f+n(x) 
lnl=l 

(3-7) 

and the maximum index for m, M, is obtained whenever 

(3-8) 

To .solve for the root, the cri·tical angle !:lo. , of the nonlinear equa­
c 

tion 

f~(O, !:lo.) = 0 (3-9) 

- 40 where !:lo. is a parameter of f ~' we use Newton's method. In this method, w~ 

start with an initial trial value, 6.o.
0

, then calculate f~(O, 6.o.0) and 

df~(O, !:la)/d(!:lo.) evaluated at 6.o.0 • Let 

g(!:lo.) = df~(O, !:lo.)/d(!:lo.) (3-10) 

The next trial value for 6CI. :t8 fnnnd by the formula 
c 
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(3-11) 

The procedure is then repeated to generate a sequence ~a2 , ~a3 , ... which 

converges quadratically' to ~a . The general formula for the k-th itera-
. c 

tion is given by 

(3-12) 

In the computer program, we use two criteria for stopping the iteration. 

That is, with a tolerance 

we require that 

(3-13) 

and 

(3-14) 

be satisfied to give an approximate root, ~a , for ~a • 
n c 

From Eqs. (3-1), (3-2), and (3-5), it follows that 

00 

f~(O, ~ak) = (16wA/K
2

) E K1 (smB0)/SmBO 
m=O 

00 

2 E KI2Kl(SmB012K)/SmBO - (16TIA/K ) 
m=O 

00 
2 2-

) ] E exp( -XnBOK/2) ({rnDJ.) 
2x080K/2 - ~!]/ + [8TI A/(K Dll 

n=l 

-3 
xnBO 

2 2-
00 

) ] E - - 2-[8TI A/(K Dll cos(~~)exp(-XnBO)[(rnDJ.) XnBO 
n=l 

(3-15) 
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where s
1

, ... , s
4 

represent the four corresponding infinite series on the 

right-hand s·ide and 

00 

2 2- - 2-
[81T A/(K D11 )] E n[(rnD) X BO 

n=l .1. n 

(3-16) 

The infinite series are again approximated by finite series for the 

evaluation of s
1

, ... , s
5

. We require that the last term in each finite 

series ignoring cosine and sine factors be less than 

10-6 x (finite series)i 

where i = 1, .•. , 5. However, a second cutoff criterion for each series 
.. 

is employed in the limit that ~v + 0. Let ~s 1 represent the sum of the 

terms to be neglected in sl, i.e., 

CC! 

~s 1 = (16TIA/K
2

) E K1 (s.rnBO)/SmBO 
m=M

1
+l 

(3-17) 

where M1 is the maximum index in the finite· series approximation to s
1

. 

The upper limit of ~s1 is found to be (Appendix A) 

[4TIA/(r2M
1

K2n2)]K
0

(2rM
1
D.) 

II II 
(3-18) 
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-6 The second criterion requires that Eq. (3-18) be less than 10 times the 

approximate finite series .. A similar cutoff procedure is used for s
2

. 

For s
3

, s
4

, and s
5

, the upper limits for each series, called Ls
3

, Ls
4

, and 

LS 5 can be calculated (Appendix B) to be 

and 

2 2-
-[BTI A/(K ~I )][exp(rD }cos flak- 1]/ 

- 2 . - 2 
{[exp(rD~)cos flak- 1] + [exp(rD~)sin flak] } 

[8TI
2A/(K2D )][exp(2rD~) 

II 

- 2 - 2 . 
{[exp(rD~)cos flak- 1] + [exp(rD~)sin flak]} 

(3-19) 

(3-20) 

(3-21) 

provided that~ ~ 0. The·second cutoff criterion for each series then v 

requires that the last term ignoring cosine and sine factors in each 

finite series approximation be less than 

where i = 3, 4, and 5. 
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CHAPTER IV. RESULTS 

The forces per unit length of vortex in reduced units expected on a 

- - -right-displaced vortex a,re plot ted for D .L < 0. 62, D .L = 0. 62, and D .L > 0. 62 

in Figures 5, 6, and 7, respectively, for K 10 and n11 /D.L = 13. The 

angles selected are indicated by points a - k shown in Figure 8. 

-In Figure 5, for the angle ~a corresponding to case a, the force f+ 

is always positive and increasing with displacement. From the instability 

analysis described in Chapter II vortices are unstable at x = 0 and are 

driven to undergo flux-line cutting in the plane x = D.L /2. For the angle 

~a corresponding to case b, the slope of the force at x = 0 is zero. This 

determines the critical angle, ~a , for that particular D.L value. For 
c 

case c, ~a < ~ac, the force f+ is negative near the origin. This gives 

rise to a restoring force for small perturbations to stabilize the per-

turbed right-displaced vortices. Therefore flux-line cutting does not 

occur for case c for small perturbations. 

In Figure 6, for case e the curve is rather flat over a certain range 

of displacements and then goes up. For this reason the corresponding ~a 

is the critical angle for D.L = 0.62. For case d, ~a > ~a and for case f, 
c 

~a < ~a , which correspond respectively to unstable and stable vortices 
c 

for small perturbations. The forces are weaker than in Figure 5. 

In Figure 7, five curves are shown in which curves for cases g, j, 

and k correspond to cases d, e, and f, respectively, in Figure 6. For 

case j, the angle ~a corresponds to ~aco' when f~(O) = 0. For case i, 

initially unstable vortices at x = 0 become stable at x = 0.195 D .L where 

-the curve intersects the f+ = 0 line. For case k, the slope of the force 
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K= 10 -0.1.=0.62 
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.. 

0.1 0.2 - - 0.3 0.4 0.5 
X/ D.1. 

-Reduced f.orce F vs. x for the angles b.a = 33.5°, 32.1 o, and 
30.5° at points d, e, and f of Figure 8; K = 10, D~ = 0.62, 
emit n . /n = /3. 

II" ~ 
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. Figure 7 .. Reduced force F vs. x for the angles ~CJ. = 62°; 60.5°, 59.5°, 
~8.) 0 , and 56° at points g, h, i, j, and k of Figure 8; K = 16, 
D .1. = 1. 2 , and D II /D .1. = /3. 
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-f+ is positive at x = 0 while it is zero at x = 0.32 D~, where f+ is also 

·zero. This determines 6a , the critical angle for flux-line cutting. em 

·For 6a > 6acm' as in case g, f+ > 0 for all 0 < x < D~/2 and any insta­

bility is driven towards flux-line cutting. 

Critical angles (in degrees) vs. D~ for K = 10 and n
11 

ID~ = /3 are 

plotted in Figure 8 with 6a indicated by a dashed curve. Flux-line 
co 

cutting occurs for those angles above the solid curve. For angles below 

the solid (D~ ~ 0.62) or dashed curves (D~ > 0.62), vortices are stable at 

x = 0 to small perturbations. For angles between the solid and dashed 

curves, vortices are unstable at x = 0 but stable at some displacement 

less than D~/2 such that flux-line cutting does not necessarily occur. 

The points.indicate the angles appearing in Figures 5, 6, and 7. In the 

following figures for 6a vs. D, orb, k vs. b, and k XB vs. b, the short c ~ c c 

dashed lines have the same meaning as in Figure 8 and D
11 

/D·~ = /3 unless 

indicated in the figures. 

Critical angles vs. D~ for different K values are plotted in Figure 

9. Along the curves, f~(O) = 0. Here the 6a curves are neglected. em It 

can be seen for low K material that flux-line cutting is more probable and 

that the critical angle is depressed considerably. Stable vortex arrays 

are associated with larger iritervortex spacings and smaller interplanar 

angles. 

The results of Figure 9 are replotted in Figures 10 and 11, which 

show the dependence of 6ac on b for different K values, where b = B
0

/Bc 2 

It is seen that 6a is a monotonically decreasing 
c 
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Figure 11. ·!:J.ac vs. b for ~ll /D .I..= 13 and K. = 0. 75, 0.8, and 1. 

'-.. 



30 

function of b. For a fixed b, when K > 1.5, ~a is higher for lower K 
- c 

materials, but for K ~ 1 the opposite behavior is observed. 

For ~a = 0, three vortex structures with different ratios of o11 /D~ 

are plotted in Figure 12. The ratio o
11 

/D~ = 13 as shown in Figure 12a 

27 
is that found for the steady-state flux-line cutting model of Clem by 

requiring minimum entropy production. The case o
11 
/D~ = 213 corresponds 

to a triangular lattice with a nearest-neighbor vector perpendicular to 

the vortex planes as shown in Figure 12b. Shown in Figure 12c is the case 

o
11 
/D~ = 213 corresponding to a triangular lattice with a nearest neighbor 

vector parallel to the vortex planes. 

Figure 13 exhibits the critical angles for different. ratios of D 
11 

/D ~ 

as functions of b with two different K values. The curves show that ~a 
c 

depends primarily upon b or K rather than the ratios of o
11 

/D ~· 

In Figure 14, the reduced critical angle gradient, k , is plotted as 
c 

a function of b for each K value, where 

k = ~a /n. c c ... 
(4-1) 

This quantity also gives the critical value of the reduced wave number k 

. -+ 
in the equation for the macroscopic flux density B(x) given by Eq. (2-18). 

Shown in Figure 15 is kcAB vs. b for different K values. Eq. (2-18) 

gives the magnitude of flux density as 

B(x) (4-2) 

-Here, B0 is independent of k. Thus B(x) is reduced by a factor [1 + 
-- 2 . 

(kAB) ] from the constant value of B0 . The bigger kAB is the more· B(x) is 

reduced. The peaks of the curves shift to higher b for decreasing K 

values. 
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-The reduced longitudinal critical current density jell vs. b deter-

mined by Eq. (2-19) is plotted in Figure 16. There is a maximum value for 

each parameter K. These peaks tend to shift to the right for lo~er K. The 

critical current density decreases rapidly as K decreases, which implies 

that flux-line cutting occurs more easily in low K materials. 
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CHAPTER V. DISCUSSION AND CONCLUSIONS 

In this thesis, the stability of the vortex array in a slab geometry 

is analyzed. Numerical calculations of the force exerted on a vortex in a 

perturbed array exhibit the existence of a threshold for flux-line cut-

ting. For angles exceeding the critical value, the array is driven 

towards flux-line cutting for small perturbations. The critical angle 

gradient, k , can be employed to express the threshold for flux-line cut­
e 

ting. It is of interest to compare our k with LeBlanc and co-workers' 
c 

. 28-31 empirical express1on for the critical angle gradient. Their empir·i-

cal expression is 

E1. 
dx 

k(T)F (B) 
2 ± ----~p~-- cos ~ 

B2 
(5-1) 

where ~ is the angle that vortices make with the z-axis, B is the mag-

netic induction, k(T) is a adjustable temperature dependent parame~er and 

F (B) is the volume pinning force function. F (B) has been found empiri-
p p 

cally as 

F (B) 
p 

(5-2) 

where a is a temperature dependent parameter, n, ~. and m are real num-

hers, usually taken to be small positive integers or half integers. 

In Figure 14, our kc vanishes as B approaches BcZ' This is in quali­

tative agreement with Eq. (5-l), in which F (B) vanishes as seen from Eq. 
p 

(S-2). However, by Eqs. (5-l) and (S-2), the empirical d~/dx vanishes for 

ideal, pinning-free superconductors, in contrast to the predicted exist-
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ence of a nonzero critical angle gradient under the pinning-free assump-

tion of our model. 

Timms and Walmsley16 have stated that pinning sites· of appropriate 

size can reduce the cutting "activation energy" to a dramatic extent. 

This favors the occurrence of flux-line cutting. Thus the critical angle 

gradient in irreversible materials is expected to be smaller than in 

homogeneous materials. But by Eq. (5-l), the opposite result is pre-

dieted. Further theoretical and experimental work is needed to clarify. 

how pinning affects a vortex array on the verge of flux-line cutting. 

Close to b = 1, where the·self-field of the current is negligible, 

the longitudinal critical current density or the depairing critical cur-

rent density of a bulk type-II superconductor in reduced units is calcu­

lated via Ginzburg-Landau theory to be6 ' 9 ,lO,ll 

(5-3) 

where 8A = ·1.1596 for the equilaterial triangular lattice. 

The values of ] c. II given by Eq. (5-3) are somewhat less than our 

calculated j · for K > 1. In a theoretical calculation which would take 
c. II 

into account the depairing effect, the calculated kc and ~ac should be 

smaller than those of the present theory. 

From considerations of fluxoid conservation as discussed by Clem
27

, 

we see that, after vortices from the planes x = 0 and x = D · undergo flux-

line cutting and straightening, the· resulting vortices make an angle ~a/2 

relative to the z axis and have new values of the intervortex sp~cing·D" 

and the reduced.vortex density b'. They are related to the initial D . II 

A.nd h by 



39 

sec(b.o./2) > 1 (5--4) 

and 

b'/b = cos(b.o./2) < 1 

By symmetry, other resulting vortices are in the planes at x = ±D£/2, 

±3D~/2, ±SD~/2, ... with the corresponding angles o. ±b.o./2, ±3b.o./2, 

±Sb.o./2, Because the angle between the vortices in adjacent planes is 

again b.o. and the interplanar spacing is still D~, the resulting structure 

is very similar to the original one, except that the reduced vortex densi~ 

ty b' is smaller than before. From Figures 10, 11, and 13, we see that 

b.o. is a monotonically decreasing function of b. Therefore, the resulting 
c 

structure is closer to stability, with a higher critical angle for the 

next flux-line-cutting event. In fact, if b.o. (b') > b.o. > b.o.(b), the new 
c 

structure is stable. If not, flux-line cutting occurs again and again, 

finally producing a stable structure with b(n) = b cosn(b.o./2), for which 

b.o. (b(n)) > b.o. > b.o. (b) after a total of n flux-line-cutting events. Be-
e c 

cause the density of vortices in the final, stable structure is smaller 

than that in the initial structure, the stored energy in the vortex array 

is also less. The energy difference is converted into heat via theviscous 

motion of the vortices through the metal lattice. This shows that flux-

line cutting is an irreversible process. 

In this work, we have considered only one perturbation .as sketched in 

Figure 4, which preserves the straightness of all vortices in each pla~e. 

For instabilities involving the bending or curling of vortices, 8 •23 it is 

possible that smaller critical values of b.o. and k occur, as in the case . c c 
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when the depairing effect is taken into account. Therefore, the values of 

~a and k in this thesis represent upper limits to the true values. 
c c 

Experiments in slab geometry are often difficult to analyze because 

of edge and demagnetization effects. Thus many related experiments have 

been performed not in slab geometry but in cylindrical geometry. It would 

be desir.able. to extend the present approach to the latter. The. present 

results.are expected to be valid even in cylindrical geometry provided 

-1 
that k is small by comparison with the radius of curvature of a helical 

c 

vortex. However, the concept of a critical angle gradient in slab geome-

try probably.should be replaced by that of a critical pitch gradient in 

cylind~ical geometry. The reason for this is that two helical vortices of 

the same pitch, when brought close to each other at the same radial 

coordinate, are locally parallel to each other and therefore cannot reduce 

their energy via flux-line cutting. 
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APPENDIX A. DERlVATION OF EQ. (3-18) 

Let 

Since. 

2 
161TA/K 

-
SmBO = r(2m - l)DII 

-
in the limit ~ ~ 0, (3-12) becomes 

v 

00 - -c1 E K1[r(2m- l)D II ))/[r(2m- l)D. 11 ) 

m=m1+1 

-For D 
11 

<< 1, the sum can be replaced by an integral, and 

where 

and 

~s1- ~ (c
1

/2D r) !
00 

dy K
1

(y)/y 
II- YM 

1 

y r(2m - i)D
11 

_ 

yMl = 2rM1D II 

For sufficiently large yM 
1 

Ml ( cl 
_l !00 dy Kl(y) - 2D.

11 
ryM YM 

1 1 

2 2-2 -(4nA/r M1K D II }K0 (2rM1D
11 

which is Eq. (3-18). 

) 

) 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7)-
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APPENDIX B. DERIVATION OF EQS. (3-20) AND (3-21) 

Let 

-In the limit that ~ ~ 0, 
v 

00 -
= -c2 E cos(~ak)exp(-rnD~) 

n=l 

00 --c2 Re E exp(n(ib.ak - rD ~)) 
n=l 

-c 2 

which is Eq. (3-20). 

00 

In the limit that ~ ~ 0, 
v 

-c2 E nsin(n~ak)exp(-rnD~) 
n=l 

00 

= -c2 d(~~k) [n:l cos(n~ak)exp(-rnD~)] 

By taking the derivative of (3-20) with respect to ~~. we have 

Thus, Eq. (3-21) is derived.· 

(B-1) 

(B-2) 

(B-3) 

(B-4) 




