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LIST OF SYMBOLS
net force per unit length of vortex exerted on a right (left) -

displaced vortex -

force per unit length of vortex exerted on a right-displaced
vortex by the left-displaced vortices in plane n at -x + nDl

weak-field penetration depth

field-dependent penetration depth

weak-field coherence length

field-dependent coherence length

weak-field variational core radius parameter
field-dependent variational core radius parameter
vortex density in reduced units
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CHAPTER I. INTRODUCTION

The electrodyqamic behavior of a current-carrying type II supercon-
ducting wire subjected to a longitudinal magnetic field is still not com-
pleteiy understood, despite a large number of experimental and theo;etical
investigati’ons‘.l—27 Above a certaiﬁ critical current IC, a longitudinal
voltage accompaniéd by a paramagnetic moment has been observed.lz’la’Zl’22
A macroscdpic theory of a nearly force-free arrangement of helical

2
’ has been developed which can account for the moment but not

vortices
for the voltage. The voltage produced cahnot be described as a flux-flow
voltage generated by an inward-collapsing array of helical vortices, be-
cause this'would lead to an ever-increasing buildup of longitudinal mag-

netic flux.12’13’18’19 12,16,23,26

Flux-line cutting (the intersection and
cross-joining of adjacent nonparallel vortices) has been proposed as a
mechanism to explain the coexistence of the voltage and the moment. A

» 1

description by Walmsleyl suggests that the flux lines can be split up
and rejoined in such a way that the azimuthal component of the flux moves
radially in towards the axis while the axial component remains static.
Clem23 proposed a model ‘to explain the simultaneous appearance of the
voltage and the moment. In his description, helical vortices periodically
nucleate at the surface, and as they move inwards they cause the initially
éxisting longer pitch vortices to experience spiral-vortex-expansion in-
stabilities. Flux-line-cutting processes occur, and helical vortices of

intermediate pitch are produced, some of which exit at the surface. If,

on the average, there are equal numbers of exiting and entering vortices,



a steady-state voltage is produced, while the averaged longitudinal ﬁoment
remains unchanged.

A specific cyclic.flux-line-cutting model was presented in‘reference
27 for slab geometry. In this model, an infinite-superconducting slab of
finite width w, oriented perpendicular to the x axis and subjected to an
applied field and current in the z direction, as shown in Figure 1, is
considered. Planes of parallel vortices are assumed to form a vortex
array similar in some respects to that shown in Figure 2. In each plane,
vortices are parallel to the.net-local_field. A plane of vortices eﬁter—
ing from a surface at x = *w/2 moves inwards, where it meets another vor-
tex plane with smaller angle between the vortices and the z axis. After
flux-line cutting, a plane of intgrmediate tilt angle is formed, which
separates into t&g planes, one of which exits at the sufface.. Similar
motions allow pairs of vortex planes deeper in the 'slab simultaneously to
undergo flux-line cutting. 1In steady state, fluxoid conservation dictates
that, although no net z flux is transported, a net y fqu is transported
across the slab in the x direction.27 By Faraday's law, a ﬁopvanishing
time-averaged electric field (or a voltage) in the z direction is pro-
duced. The model also permits the calculation of the magnetic flux densi-
ty, the m&croscopic electric current density, and the paraﬁagnetic moment .

For simplicity, the above model assumes that flux- line cutting occurs
spontaneously. That is, no critical angle difference betwéen the vortices
in adjacent planes needs to be exceeded for flux-line cutting to occur.
However, a threshold value for the angle difference is implied in Brandt,

Clem, and Walmsley's work.26 For small angles, the structure might remain
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<Figure 1. Infinite superconducting slab of width w, oriented perpen-
dicular to the x axis and subjected to an applied field and
current in the z direction. <
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Figure 2. Infinite array of vortex planes'whose instability is investigated in this thesis. The
intervortex spacing in each plane is D, , the intraplanar spacing is D", and the angle
between vortices in adjacent planes is Ao.. (Scale is greatly expanded in X direction.)



in metastable equilibrium, but at higher angles the structure might under-
go spontaneous flux—linelcutting.

In order to interpret magnetization and a.c. loss measurements in
hysteretic superconducting specimens containing nonparallel vortices with
different angles, LeBlanc and co-workers2 -31 proposed the existence of a
critical angle gradient, analogous to the critical current density in the
critical state model. 1t is possible that such a quantity_has its expla-
nation in flux-line cutting, which would redistribute magnetic flux until
the angle gradient becomes equal to the critical angle gradient.

The purpose of this thesis is to investigate the threshold for flux-
line cutting iﬁ slab geometry. In the second chapter of this thesis, a
mathematical model, based on the London model and the Ginzbufg—Landau
theory, for calculating the force on a test vortex in the vortex array.is
presented. The parameters to be used and some electromagnetic properties
are described briefly; An instability analysis is given and the determi-
nation of the threshold value for the interplanar angle difference is
discussed. Chapter III presents numerical calculations of the forces and
critical angles where the Newton's method is eﬁployed. Chaptér IV shows
the results of calculations for forces, critical angles, critical angle
gradients, and critical curfent densities. The dependence of the critical
angle upon the vortex density and the intervortex and interplanar spaciﬁgs
is also examined. The significance of the results and conclusions is

given in Chapter V.



CHAPTER II. MATHEMATICAL MODEL

In the limit that the penetration depth A is much large than the co-
>
herence length £ (A >> &), it is found that the flux density h(r) and
self-energy € associated with an isolated straight vortex directed along '

the z-axis are given approximatelﬁ by32

B(r) = (0,/2m 0K, (/N2 | (2-1)
and

e, = (64707 In(x/E) (2-2)
where r is the radial coordinate in cylindrical coordinates, K, is the

0
modified Bessel function of order zero and ¢0 = hc/f2e = 2.07 x 10-7 G—cm2

is the flux quantum. For two parallel straight vortices with separation s
and tilt angle Aa as shown in Figure 3 the interaction energy per unit

length of vortex can be derived a526
2 2,2
eL(Aa, s) = (¢0/81r A )Ko(s/A) cos Ao . (2-3)

Integrated along the line element, dy/sin o, the interaction energy be-

comes
E, (Au, s) = (¢(2)/81r)\)cot Aa + exp(-s/A) O (2=4)

"which is valid provided Ao # 0. When Aa = Q,.from (2-3) the interaction

energy per unit length is
2 2.2 ,
Sen(0r 8) = (0/BT AIKy(8/2) (2-5)

The interaction energies in Eqs. (2-4) and (2-5) are electromagnetic in

nature.



'Figure 3. Two parallel straight vortices with separatidn s and tilt
angle Aa. : ~



In an approximation to the Ginzburg-Landau theory, an attractive

"condensation energy' or '"core energy" is included in the interaction

energy between two parallel straight vortices. For Z\a = 0, its magnitude
. 26
1s

V0, ) = ~(0o/81A)K (sV2/E) (2-6)

per unit length. From Eqs. (2-3) and (2-7), for Aa = 0, the total

interaction energy per unit length is
2,22 _
£(0,8) = (63/8T°A°) [Ky(s/A) = K (sV2/E)] (2-7)

which vanishes when Kk = l//f as expected. Here Kk is the Ginzburg-Landau
parameter defined to be the ratio A/&. Eq. (2-7) gives rise to a force
per unit length as

£f(0, s)

-9e(0, s)/9s

(02/87°2%) + (K (s/0) - V2 k K, (s/2/E)] (2-8)

For Aa # 0, the core interaction energy per unit length is similar to
Eq. (2-3) with Aa = O and A replaced by £/V/2. Integrated along the line

element, the interaction energy becomes
V_(ha, s) = ~[(92/8MA sin da)//2 x] exp(-sv2/€) (2-9)
From Eqs. (2-4) and (2-9), the total interaction energy becomes

E(Aa, s) = (¢g/8nx sin Aa)+[cos Aa exp(-s/A) - (V2k) Yexp(-sV/Z/E)]
‘ (2-10)

which gives rise to a force

F(Aa, s) = (¢§/8ﬂ12s1n Ac) [cos Ao exp(-s/A) - exp(-svV2/E)] (2-11)



At s = 0, Eq. (2-11) shows a cusp, in contradiction to the expected
result that the force decreases continuously to zero overAthe fluxline
core radius. The expressions for the forces in Eqs. (2-8) and (2-11) are
only approximations in the limit of vanishing core ra&ius; By introducing

a core radius parameter EV 26,33

the cusp of the force at s = 0 can be
smeared out. The value of EV is found by a variational method that mini-

mizes the free energy. It satisfies
¢ = (ENDL - Ko e Y (2-12)
Then Eq. (2-12) becomes
F(ha, S) = [A05/(8TA7sin Ao} l{cos Au exp(-S/A) - exp(-SVZ/E)1E (2-13)
where |
s = (s7 + g)1/2
and :

A

(ME 1K, (B, /M)

which is a normalizing constant. Eq. (2-7) is modified in the same way

' which gives
£0, ) = (a62/ (BT A TIK (S/0) - V2 « K (SV2/E)] § ST

At larger induction or smaller kK, say b = B/Hc2 > 0.3 or K < 2 where

B is the magnetic induction, the vortex cores overlap and the London model

34-37

fails. It has been shown that A and & should be replaced by field-

depéndent quantities such that the repulsive part of the force field

varies over a range of AB = A/(L - b)l/2

1/2

and the attractive part. varies

Accordingly, we in addition replace
/2

over a range of £B = E£/(1 - b)

the core radius parameter by EVB = EV/(l - b)l
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In the vortex state, the interaction between the vortices leads to a
periodic lattice structure when Ao = 0. It has been found that the tri-
angular lattice usually has minimum free energy.38 For the type II super-
conducting slab described in éhapter I, however, the vortices do th form
a perfect lattice but instead must have an arrangement similar to that of
the model array of Figure 2. In this model, the vortices in plane n at
xn = nl}; point in the direction of the unit vector $n = Z cos an + § sinOLn
where o = nlo..

The macroscopic flux density and.current distributions generated by
this array can be calculated as follows. The flux density contribution of

vortex plane n averaged over a distance D" parallel to the plane and

perpendicular to $n is approximated by |

gﬁ(x) = $n(¢0/2ABD")exp(—|x - xn|/AB) (2-15)
The vector sum of contributions from all vortex planes is

T = I B (x) | | (2-16)
The macroscopic g(x), the average of g(x) over several interplanar separa-

tion Dl, is most conveniently evaluated by converting the sum in Eq.

(2-16) to an integral over n, which yields
-> A 2
B(x) = By$(x)/[1 + (kAg) ") (2-17)

Here, a(x) = 2 cos kx + ¥ sin kx, k = Aa/D_L and B0 = ¢0/D”DL , which is
the average flux density when Ao = 0. The corresponding macroscopic

averaged supercurrent density is
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=~

3(x) = (c/4m)VxB

]

(ck/4m)B (%) (2-18)

Macroscopically, the array appears to be in eguilibium, because the
macroscopic Lorentz force density vanishes (§-# ﬁ/c = 0), and the array
can be said to be force free. Moregver, the array appears to be micro-
scopically in equilibrium, Becausé on each vortex axis, the local current
density‘g generated by all the other vortices is parallel to the axis,
such that 3 X $0/c = 0. However, the array can be perturbed by thermally
induced fluctuations, which propagate through the medium and lead the
array away from the force-free configuraﬁion;

Sketched in Figure 4 is the perturbation considered in this thesis.
Alterhaté vor;ices inAeach of the planes are assumed to be'qisplaced to
new positions (solid circles) a distance‘x < D;/Z from their initial
positions (+); the remaining vortices are assumed to be displaced in‘the
opposite direction to new positions (open circles) a distance‘x from thg}r
initial positions (+). | |

The force f+(x) per unit length of vortex exerted on a right-dis-
placed vortex, say, vortex a in Figure 4, can be calculated by generali?—
ing the force between two vortices to forces from vortex planes.

For Ao # 0, the forcé f (Ao, SB) per unit length of vortex exerted on
a vortex by a piAne of vortices of separagion d"_ is obtained from Eq.

(2-13) which gives

f(Aa, S_) = F(Aa, SB)/L (2-19)

B

(A¢(2)/81T)\]23d" ) [cos Ao exp(-S5/A) - exp(—Svif/gB)]si (2-20)
B
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e

plane

n=-2

Sketch of perturbation whose instability is investigated in

Figure 4.

Starting from initial positions (+), half the

vortices move through +x to new positions (solid circles) and

half move through -x to new positions (open circles).

this thesis.

Repul-

sive interaction between vortices (arrows) can lead to un-

balanced destabilizing forces.
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_ , _ 2, .2 \1/2
where 1 = d” /sin Ao and SB = (s + ng) .

unit length of vortex is given by Eq. (2-14), i.e.,

For Ao = 0, the force per

£(0, ;) = (A¢(2)/8ﬂ2)\§)[Kl(SB/>\B) -2k Kl(sB/i/gB)];—B - (2-21)
where the field-dependent AB has been used.

Now, consider the force f+(x). The vector sum of the forces from
vortices b and c at distance qu from vortex a vanishes by symmetry, as
do all similar vector sums of the forces from pairs of in-plane vortices.
The vector sum of the forces from the two planes of right-displaced vor-
tices at distance D, to the right and to the left of vortex a also vanish-

es by symmetry, as-do all similar sums of forces from pairs of vortex

planes. Therefore

o .

£0 = T 1 _(x | (2-22)

where f+n(x) is the force in the x direction per unit length of vortex
exerted by all left-displaced vortices in plane n. For n = 0, we obtain
from Eq. (2-22)

o]

£ 00 = (Ad)é/an)\;) IR, (S /Ag) - VIR (S _o/2/E ) Ix/S 5 (2-23)

m=1
where

2 }1/2

spp = (207 + [2m - D 17+ £l

and, for n # 0, we obtain from Eq. (2-20)

£, (x) = (A¢é/l6'ﬂ')\§D" ) [cos(nho)exp(-X_p/A;) ~ exp(-X_V2/E.)]

where . (2x - nDL)/XnB (2-24)

~ 2 . .2 .1/2
XnB = [(2x - nDl) + ng]
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Although the force f+(x) is calculated for vortex a in Figure 4, the net
force.is the same for any right-displaced vortex by symmetry. Moreover,
the net force f (x) in the x direction per unit length of vortex exerted
on a left-displaced vortex as shown by open circles in Figure 4 obeys
£ (x) = —f+(x).

The stability of the vortex array against the perturbation of Figure
4 depends upon the sign of f+(x). If f+ < 0 for small x, the structure is
stable to small perturbations; if f+ >0, it is unstable. If f+ > 0 for
-all x < D, /2, the structure not only is unstable but also is driven
towards flux-line cutting in the plane x ='DL/2, where right-moving vor-
tices (solid circles) meet left-moving vortices (open ciréles).

To examine the case of small perturbations, we make a Taylor's series

expansion of f+(x) about the origin, which gives

_ : 1.2, ‘ _
f+(x) = f+(0) + xf+(0) +5x f+(0) + ... (2-25)
Since
f+(0) =0
by symmetry, we have
f.(x) = x£'(0) + 1 xzf"(O) + | : (2-26)
+ + 2 +
For small X,
~ ! -
£.(x) = x£1(0) (2-27)

When f;(O) < 0, Hooke's law applies and f+(x) is actually a restoring
force which tends to pull the right-displaced vortices back to their ini-
tial positions (+). When fL(O) >0, f+(x) drives the right-displaced

vortices further away to the right. Therefore
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£1(0) = 0 | - (2-28)
‘ gives the critical angle, Aaé, for the instability of the array to small
perturbations. |

For the case that f+(x) > 0 in the region 0 < x < xs(xS < DL/Z),
f+(x) < 0 in the region X < x < xu(xu < D#/Z), and f+(x) > 0 in the re-
gion X, < x < DL/Z’ the structure is unstable at x = 0 to small pérturba-
tions and is driven to the position X where it is‘stable. Hence, the
instability at x = 0 does not necessarily lead to flux-line cutting but
does so only when f+(x) > 0 for all x < DL/Z. The initial angle for flux—
line cutting, Aacm, for this particular case is then defined as the small-
est angle for which f+(x)‘z 0 for all 0 < x S_DL/Z. At ;his angle the

. x < x has shrunk to zero width such that x =x = x_and

region x
ssT—. u s u m

] — = . . . ' .
f+(xm) = f+(xm) 0. 1In this case, we define Aaco as the angle which

makes f;(O) = 0.
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CHAPTER III. NUMERICAL CALCULATIONS

For the numerical calculations of f+(x) and'EC" described in Chapter

11, reduced (dimensionless) quantities denoted by tildes are used. The

usual Ginzburg-Landau conventions39 are employed in which length is meas-
ured in'units of A, magnetic field in units of /EHC = K¢0/2ﬂA2,.gnergy per
unit volume in units of HZ/4N, force per unit 1éngth‘in units of Hik/&ﬂ =

3

K2¢§/32ﬂ AB, and current density in units of c/ch/éﬂl.

In reduced units, we have

f+(X) = iw f_,_n(X)
= I f+n(§) + E+0(§) (3-1)
|nf=1 -
For n # O,
G = (2<% )]-[cos(nAﬁ)ex (-X ) - exp(-X _kv/2)]*
+n I P 0B P '
(2% - ng_)/inB : ‘ S (3-2)
where
r=(-nt?
and
s 2 - ~ 2  $2.1/2
X.nB = [r (nDL - 2x)" + Ev
Here,
b = By/H_, (3-3)
with
By = $o/D D
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x o~ 4, 2. < ~ o~ ~ = '
£,o(x) = (16mr A/x) mzl (K (S ) - K/Exl(smBK/E)]x/smB (3-4)
= 3 §$O(§) : (3-5)
m=1
where
) = (16nr4A/K2)[Kl(§mB) - KJixl(EmBKJE)];/EmB ‘ (3-6)
and .
S,p = FPLED% + (2n - 1Y + B2

For larger |n| or m, the corresponding exponential or modified Bessel
function terms drop off dramatically. The infinite series can be approxi-
mated by finite series as long as enough terms are kept, The maximum

index for |n| in the finite series, N, is obtained whenever

6

[2n°r2A/ (<D | )lexp(-Sg) < 10~ I
' In

N
T £, (x) (3-7)
,|=l +n :

and the maximum index for m, M, is obtained whenever

6 M ~m ~
I £ (x) ' (3-8)

M~ -
£10(x) < 10 +0
m=1

To solve for the root, the critical angle Aac, of the nonlinear équa—
tion |

£1(0, Aa) = 0 | | (3-9)
where Aa is a parameter of %_L,‘we use Newton's mc-,zthod.z’0 In this method, we

start with an initial trial value, Aa then calculate EL(O, Aao) and

0’

df;(o, Aa) /d(Aa) evaluated at Ao Let

.
B(A0) = aF1(0, Ao)/d(An) (3-10)

The next trial value for Aac»is found by the formula
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= _ F1 o _
Aul = Aao f+(0, Aao)/g(Aao) (3-11)

The procedure is then repeatéd to generate a sequence Aaz, Aa3, ... which
converges quadratically to Aac. The general formula for the k-th itera-
tion is given by

Aak+l Aak f+(0, Aak)/g(Aak) (} 12)
'In the computef program, we use two criteria for stopping the iteration.

That is, with a tolerance

e =10

we require that
|£,€0, 2o )| < ¢ (3-13)
and |

~ N -4
£} (0, Aan)/g(Aan)l <10 € (3-14)

be satisfied to give an approximate root, Aan, for Aac.

From Eqs. (3-1), (3-2), and (3-5), it follows that

~ ) 2 et ~
L —
f+(0, Aak) = (16mA/k") § Kl(s

m80’ / SuBo
m=0

2, < <
- (16mA/K°) T K/Exl(smBo/EK)/smBo

m=0
+ [énzA/(KZB )] s (-X_. «V/2) [ (rob )2~ /2 - E2/
S n=1 eXPL~44B0 D) Xm0 ._ v]
~3
XnBO
- [SNZA/(KZB )] ; cos (nha, Yexp(-X_..) [ (rnD %%
! [ He? P 20Bo 1+’ %hBo

~2.,~3
- gv]/xnno (3-15)
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=8, +5,+ S, +5,

where Sl’ cees 84 represent the four corresponding infinite series on the

right-hand side and

5,50 = Ux(2m - DB, 12 + E2)Y/2
s ~ 2 x2.1/2
Xapo = [(4mD) " + &y

§(Aak) is found to be

[+

Bboy) = (87°A/(<Dy )] T nl(end) F gy - Elsintndeyexp (X go)
33
anO
- s, | o (3-16)

The infinite series are again approximated by finite series for the

12t SS' We require that the last term in each finite

series ignoring cosine and sine factors be less than

evaluation of S

10-6 x (finite series)i

where 1 = 1, ..., 5. However, a second cutoff criterion for each series
is employed in the limit that év -+ 0. Let Asl represent the sum of the
terms to be neglected in Sl’ i.e.,

«

. ) . .
. AS. = -
A 1 (16mA/k7) . L Kl(SmBO)/SmBO (3-17)
m=M, +1
1
where M1 is the maximum index in the finite series approximation to Sl'
The upper 1limit of Asl is found to be (Appendix A) .
[4TA/ (£2M, %D2) 1K (2eM, ) (3-18)
1 01y o -
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The second criterion requires that Eq. (3—18)Vbe less than 10_6 times the

approximate finite series.. A similar cutoff procedure is used for S

9°
For S3, SA’ and SS’ the upper limits for each series, called LS3, LSA’ and
LS5 can be calculated (Appendix B) to be
Ls, = [81T2A/(l<213” )1k/Z exp(-rkvZD, ) (3-19)
LS, = ~[812A/(k*D )]lexp(rD )cos da, - 1]/
4. I * k
{1 D,)cos A 112 + [exp(zD, )sin Ao, 1%} (3-20)
exp(rD, ) cos oy = [exp(rD, )sin ak]
and
LS, = [8n2A/(.<25” )]lexp(2rD,) - 1lexp(xD,)sin Ao,/
{[exp(rﬁ Ycos Ao, - l]2 + [exp(rﬁ )Ysin Aa ]2}A (3-21)
] k . W

~

provided that &v -+ 0. The second cutoff criterion for each series then
requires that the last term ignoring cosine and sine factors in each

finite series approximation be less than

10-6 X ]LS. I
i

where i = 3, 4, and 5.
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CHAPTER IV. RESULTS

The forces per unit length of vortex in reduced units expected on a

right—disﬁlaced vortex are plotted for 5_L< 0.62, BJ_= 0.62, and 5; > 0.62

in Figures 5, 6, and 7, respectively, for k = 10 and D" /D, = /33 The
angles selected are indicated by points a - k shown in Figure 8.

In Figure 5, for the angle Ao corresponding to case a, the force E+
is always positive and incréasing with displacement. From the instability
analysis described in Chapter II vortices are unstable at x = 0 and are
dri?en to.undergo flux-line cutting in the plane x = D, /2. For the angle
Ao corresponding to case b, the slope of the force at x = 0 is zero. This
determines the critical angle, Aac, for that particular D; value. For
case ¢, Ao < Aac, the force E+ is negative near the origin. This gives
rise toAa restoring force for small'perturbations to stabilize the per-
turbed right-displaced vortices. Therefore flux-line cutting does not
occur for‘case c for small perturbations.

~ In Figure 6, forlcase e the curve is rather flat over a certain range
of displacements and then goes up. For this reason the corresponding Ao
is the critical angle for'ﬁL = 0.62. For case d, Ao > Aac and for case.f,
Ao < Aac, which correspond respectively to unsfable and stable vortices
for smali perturbations. The forces are weaker than in Figure 5.

In Figure 7, five curves are shown in which curves for cases g, j,
and k correspond to cases d, e, and f, respecti?ely, in Figuré 6. For
case j, the angle Aa corresponds to Aa.,, when E;(O) = 0. For case i,
initially unstable vortices at x = 0 become stable at x = 0.195 Dl_where

the curve intersects the f+ = 0 line. For case k, the slope of the force
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Redﬁced-force ? (or E+ as in the text) vs. x for the angles
Ao = 18°, 16.3°, and 14° at points a, b, and c of Figure 8;
< =10, D, = 0.4, and D /D, = V3. |

Figure 5.
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© Figure 6. Reduced force F vs. ¥ for the angles Aa = 33.5°, 32.1°, and
30.5° at points d, e, and f of Figure 8; « = 10, D, = 0.62,
and D /D = /3.
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. short-dashed and solid curves is explained in the text.

. : The behavior of £ (x) vs. %
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Aioe

=10 and D /Dy = Y3. The meaning of the
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~

f+ is positive at x = 0 while it is zero at x = 0.32 D

~

1 where f+ is also

‘zero. This determines Aucm, the critical angle for flux-line cutting.

‘For Ao > Aacm, as in case g, f >0 for all 0 < x < DL/Z and any insta-

+

bility is driven towards flux-line cutting.

plotted in Figure 8 with Aaco indicated by a dashed curve. Flux-line

Critical angles (in degrees) vs. 51 for Kk = 10 and D /Dl = /3 are

cutting occurs for those angles above the solid curve.‘ For angles below
the solid (51_3 0.62) or dashed curves (IN)_L > 0.62), vortices are stablg at
x = 0 to small perturba;ions. For angles between the solid and dashed
curves, vortices are unstable at x = 0 but stable at some‘displa;ement
less than DL/Z such that fiux—line cutting does not necessérily occur.

The points indicate the angles appearing in Figures 5, 6, and 7. 1In the

or b, i vs. b, and k X vs. b, the short
1 c c' B

following figures for Aac vs. D
dashed lines have the same meaning as in Figure 8 and Dll /D'L= /3 unless
indicated in the figures.

Critical angles vs. BL for different ¥ values are piotted in Figure
9. Along the curves, f;(O) = 0. Here the Aacm curves are neglected. It
can be seen for low K material that flux-line cutting is more probable and
that the critical angle is depressed considerably. Stable vortex arrays
are associated with larger intervortex spacings and smaller interplanar
angles.

The results of Figure 9 are replotted in Figures 10 and 11, which
show the dependeﬁce of Aac on b for different kK values, where b = BO/%:

2
with BO = ¢0/qul . It is seen that Aac is a monotonically decreasing



Figure 9. Aa. vs. 61 for D /D_L = /3 and various values of K. Thé short dashes are des¢ribed in

the text.

.



Figure 10. Ao, vs. b = Bg/Bc2, where Bg = ¢g/D D and B,y = ¢0/2ﬂ62, for D- /D = /3 and k = 1.5,
A i < TS L
.2, 3, 4, and 10.

8¢



Figure 11. ‘Aa_vs. b for D, /D = /3 and x = 0.75, 0.8, and 1.
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function of b. For a fixed b, when k > 1.5, Aac is higher for lower K
materials, but for k < 1 the opposite behavior is observed.

For Ao = 0, three vortex structures with different ratios of D /DL~

Il
are plotted in Figure 12. The ratio D” /D.L = V3 as shown in Figure 12a
is that found for the steady-state flux-line cutting model of Clem27 by
requiring minimum entropy production. The case D" /DL = 2/3 corresponds
to a triangular lattice with a nearest-neighbor vector perpendicular to

the vortex planes as shown in Figure 12b. Shown in Figure 12c¢ is the case

b /D

i L= 2/3 corresponding to a triangular lattice with a nearest neighbor

vector parallel to the vortex planes.

Figure 13 exﬁibits the critical angles for different4ratios of D”/D_L
as functions of b with two different « valges.-'The curves show that Aac
depends primari}y upon b or K rather than ;he ratios of DII /DL.

In Figure 14, the reduced critical angle gradient, Ec’ is plotted as
a function of b for each k value, where

k_ =t /D . (4-1)

~

This quantity also gives the critical value of the reduced wave number k
in the equation for the macroscopic flux density ﬁ(x) given by Eq. (2-18).
Shown in Figure 15 is icXB vs. b for different Kk values. Eq. (2-18)

gives the magnitude of flux density as
> 2
B(x) = By/[1 + (kKA1 (4-2)

Here, B, is independent of k. Thus B(x) 1is reduced by a factor [1 +

0

(iXB)z] from the constant value of B The bigger EXB is the more B(x) is

0°
reduced. The peaks of the curves shift to higher b for decreasing K

values.
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Figure 12,
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o | jl
(b)
D,/D,=2/7
(c)
D/D,=2//3

and (c) 2/V3.
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The reduced longitudinal critical current density EC“ vs. b deter-
mined by Eq. (2-19) is plotﬁed in Figure 16. There is a maximum value for
each parametetr K. ' These peaks tend to shift to:the right for lower k. The

critical current density decreases rapidly as K decreases,'which implies

that flux-line cutting occurs more easily in low Kk materials.
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CHAPTER V. DISCUSSION AND CONCLUSIONS

In this thesis, the stability of the vortex array in a slab geometry

is analyzed. Numerical calculations of the force exerted on a vortex in a
perturbed array exhibit the existence of a threshold for flux-line cut-
ting.' For angles exceeding the critical value, the array is driven
towards fluk—liné cutting for small perturbations. The critical angle
gradient, kc’ can be employed to express the threshold for flux-line cut-
ting. It is of interest to compare our kC with LeBlanc and co-workers'
empirical expressionzg-31 for the critical angle gradient. Their empiri-

cal expression is

~ k(T)T (B :
%=t ()2()’COS¢ )

B
where ¢ is the angle fhat ysrticgs make with tﬁe z-axis, B is the mag-
netic induqtion, k(T) is a adjustable temperature dependent parameter and
Fp(B) is the volgme pinning force function. Fp(B) has been'found empiri-

cally as

F(8) = a(mB(L - (3/8_,) 1" | (5-2)

where 0 is a temperature dependent parameter, n, £, and m are real num-
bers, usually taken to be small positive integers or half integers.

In Figure 14, our kC vanishes as B approaches B;z. This is in quali-
tative agréement with Eq. (5-1), in which Fp(B) vanishes as seen from Eq.
(5-2). However, by Egqs. (5-1) and (5-2), the empirical d¢/dx vanishes for

ideal, pinning-free superconductors, in contrast to the predicted exist- .
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ence of a nonzero critical angle gradient under the pinning-free assump-
tion of our model.

Timms and Walmsley16 ﬂave stated that pinning sites of appropriate
size can reduce the cutting "activation energy" to a dramatic extent.
~This favors the occurrence of flux-line cutting. Thus the critical angle
gradient in irreversible materi&ls is expected to be smaller than in
homogeneous materials. But by Eq. (5-1), the opposite result is pre-
dicted. Further theoretical and experimental work is needed to clarify.
how pinning affects a vortex arrayon the verge of flux-line cutting.

Ciose to b = 1, where the:self-field of the current is'negligible,'
the longitudinal critical current density or the depairing critical cur-
rent density of a bulk type-II‘superconductor_in reduced units is calcu-
lated via Ginzburg-Landau theory to be6’9’_lo’ll

3/2

Y - 2 A
JC” = 0.385(1 - b) /'sA(l f 1/2k™) o (5-3)

where BA = 1.1596 for the equilaterial triangular lattice.

The values of jc given by Eq. (5-3) are somewhat less than our

i

calculated Ec + for kK > 1. 1In a theoretical calculation which would take

l
into account the depairing effect, the calculated kC and Aac should be
smaller than those of the present theory.

‘From considerations of fluxoid conservation as discussed by Clem27,

we see that, after vortices from the planes x = 0 and x = D undergo flux-

line cutfing and straightening, the resulting vortices make an angle Aa/2

]

relative to the z axis and have new values of the intervortex Spacing'D"

and the reduced vortex density b'. They are related to the initial D"

and h hy
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Dﬁ /D” = sec(Aa/2) > 1 (5~4)

and

b'/b = cos(Aa/2) < 1

By symmetry, oéher resulting vortices are in the planes at x = tDl/Z,
i3DL/2, iSDL/Z, ... with the corresponding angles o = *Aa/2, *3Aa/2,
iSAa/Z, ... Because the angle between the vortices in adjacent planes is
again Ao and the interplanar spacing is still D,, the resulting structuré
is very similar to the original one, except that the redu;ed vortex densi-=
ty b' is.smaller than bgfore. From Figures 10, 11, and 13, we see that
Aac is a monotonically decreasing function of b. Thergfore, the fesulfing
structure is closer to stability, with a higher critiﬁal angle:for the
next flux-line-cutting event. In fact, if Aac(b') > Ao > Ao(b), the new
structure is stable. If not, flux-line cutting occurs again and again,

(n) =b cosn(Aa/Z), for which

finally producing a stable structure with b
Aac(b(n)) > Ao > Aac(b) after a'total gf n flux-line-cutting events. Be-
cause the density of vortices in the final, stable structqre,is smaller
thanlthat in the initial structure, the stored energy in the vortex array
is also less. The energy difference is convertéd into heat via the viscous
motion of the vortices through the metal lattice. This shows that flux—‘
line cutting is an irreversible process.

In this work, we have considered only one perturbation as sketched in
Figure 4, which preserves the straightness of all vortices in each plane.

8,23

For instabilities involving the bending or curling of vortices, it is

possible that smaller critical values of Aac and kc occur, as in the case
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when the depairing effect is taken into account. Therefore, the values of
Aac and kC in this thesis represent upper limits to the-true values.
Experimenﬁs in slab geometry are often difficult to analyze because
of edge and demagnetization effects. Thus many related experiﬁents have
been performed not in slab geometry but in cylindrical geometry. It wouid
be desirable to extend the present approach to the latter. The present
fesults.are expected to be valid even in cylindrical geometry provided
that k;l is small by comparison with the radius of curvaturé of a>helica1
vortex. However, the concept of a critical angle gradient in slab geome-
tr& probably should be reﬁlaced bf that of a critical pitch gradient in
cylindrical geometry. The reason for this is that two helical'vortices of
the same pitcﬁ, when brought close to each other at the same radial
coordinate, are locally parallel‘to each other and therefore cannot reduce

their energy via flux-line cutting.
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APPENDIX A. DERIVATION OF EQ. (3-18)

Let

Cl = 161rA/»<2

Since.

SmBO = r(2m - l)D"

in the limit EV > 0, (3-12) becomes

oo}

bs =c; T K(rm- 1D ))/[x(m - DD, ]
m=m1+1

For D << 1, the sum can be replaced by an integral, and

M

dy Kl(y)'/y
L

y = r(2m - 1)5"A

and

For sufficiently large Yy
o1

AS < C _=.-—_l_.__ J‘w dv K ( )
1 ~ “12D, ry b 4y K ()
(IR TS 'Y

_ 2. 2~2 . ~
= (4ﬂA/r>M1K DII)KO(erlDﬂ )

which is Eq. (3-18).

(A-1)

(A-2)

(A-3)

(A-4)
(A-5)

(A-6)

(A-7).



45
APPENDIX B. DERIVATION OF EQS. (3-20) AND (3-21)

Let
C2 = 8n2A/(K25” )

In the limit that EV >0,

[+ o}

Ls, = -C, nil cos(nda, )exp(-rnD )

[}

_C2 Re Elexp(n(iAak - 1D )))

exp(rﬁ Jecosha, - 1

= -C — —
2'[exp(rD_L)cosAol.k - l)2+[e_xp(rD_‘_)sinA(xk]2

~

which is Eq. (3-20). In the limit that EV + 0,

o]
LS5 = Cz.nil n31p(nAak)exp(—rnD¢)

oo

[ £ cos(nAa )exp(-rnD,)]
n=1

d
= =C —_—
2 d(Aak)
By taking the derivative of (3-20) with respect to Adk, we have

LS5 = (SHZA/Kzﬁﬂ )[exp(Zrﬁl) - l]cxp(rﬁl)sln(Auk)/

{[exp(rﬁl)cos Aak - l]2 + [exp(rﬁl)sin Aak]2}2

Thus, Eq. (3-21) is derived."

(3-1)

(B-2)

(B-3)

(B-4)





