

Neutron Capture Cross Sections for ^{86}Sr and ^{87}Sr at Stellar Temperatures*

MASTER

UCRL--94158-Rev.1

DE86 012354

R. W. Bauer
G. J. Mathews
J. A. Becker
R. E. Howe
R. A. Ward

University of California
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, California 94550

1. Introduction

Recent work on s-process nucleosynthesis has focused attention on the investigation of capture cross sections for nuclei in the mass region near the $N=50$ closed neutron shell.¹⁻³ Of special astrophysical interest are (i) the analysis of the s-process branching through ^{85}Kr as a monitor of stellar neutron density and temperature and (ii) the investigation of the possible chronometric pair ^{87}Rb - ^{87}Sr as an independent measure of the age of the galaxy. For both problems the capture cross sections of the two pure s-process nuclei ^{86}Sr and ^{87}Sr have to be known to an accuracy of 5% or better. The current investigation of the neutron capture cross sections for ^{86}Sr and ^{87}Sr was undertaken to extend recent measurements by Walter and Beer² to energies below 3.5 keV, where strong resonances are known to exist, and to explore the discrepancy in the results of the Maxwellian averaged capture cross section of ^{87}Sr at $kT = 30$ keV as reported by previous investigators.^{2,4,5}

2. Experiment and Analysis

The neutron capture cross sections for $^{86,87}\text{Sr}$ have been measured from 100 eV to 1 MeV at the Livermore Electron Linear Accelerator. Neutrons with a continuous energy distribution were produced in a tantalum target bombarded by 100-MeV electrons. The capture events and their flight times were recorded by detecting the prompt gamma-ray cascade with two CsI_6 scintillators located 11 m from the neutron source. A Li_2glass scintillator was used to monitor the neutron flux. The background was determined experimentally utilizing the "black resonance" technique. Details of the experimental setup have been presented in previous reports.⁶⁻⁷ We applied a weighting function to our data such that the resultant efficiency of the capture gamma-ray detectors is independent of the gamma-ray spectrum. Corrections have also been applied for neutron multiple scattering and self-shielding, and for gamma-ray attenuation. The strontium

*This work performed under the auspices of the U. S. Department of Energy and by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

gaw

cross sections have been normalized to a standard gold cross section revised to agree with the latest measurements by Macklin, et al.⁸ Figure 1 gives an example of our cross section results for ^{86}Sr .

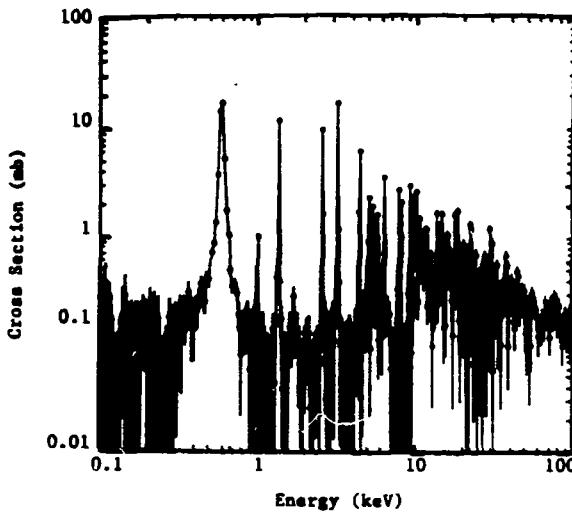


Fig. 1

Measured capture cross sections of ^{86}Sr , displaying strong resonances at 0.588, 1.370, 2.592, 3.247 and 4.496 keV, and an approximate $1/v$ decrease above 20 keV

3. Results

The Maxwellian averaged neutron capture cross sections have been calculated for stellar temperatures ranging from $kT = 10$ to 100 keV. Our cross sections at 20, 30, 40 and 50 keV are found to be in excellent agreement with those reported by Walter and Beier.² At $kT = 30$ keV we obtain 70 ± 4 mb for ^{86}Sr , and 97 ± 5 mb for ^{87}Sr . Combining our results with those reported previously,^{2,4,5} we recommend Maxwellian averaged capture cross sections at $kT = 30$ keV of 70 ± 3 mb for ^{86}Sr , and 93 ± 4 mb for ^{87}Sr . These latter values have been used to analyze the branching in the s-process flow at the unstable nucleus ^{85}Kr . This branching can be used as a possible measure of the neutron density during the s-process by comparing the $\sigma \cdot N$ values for ^{86}Sr and ^{87}Sr with the corresponding value for ^{88}Sr . There exists also the additional possibility to use the ^{87}Rb - ^{87}Sr isobaric doublet as a chronometric pair based on the long half-life of ^{87}Rb . Utilizing analyses of the capture flow based on an exponential distribution of neutron exposures including the temperature dependence of all beta decays and neutron captures, we find a good fit to the branching through ^{85}Kr can be obtained for all temperatures. The optimum conditions correspond to a mean neutron exposure of $\tau_0 = 0.40(\pm 0.06) (kT/30)^{1/2} \text{ mb}^{-1}$ (where kT is in keV), and an average neutron density of roughly $n_n = 4.7(\pm 0.7) \times 10^7 (kT/30) \text{ cm}^{-3}$. It appears

that this branch requires a slightly larger exposure and a lower-density neutron source than the heavier s-process nuclei. This might be attributed to production in low-mass AGB stars.⁹

The data are still too uncertain to be used for a reliable evaluation of the ^{87}Rb - ^{87}Sr chronometric pair. However, we can infer from these data an upper limit (95% confidence) to the age of the universe of $\leq 14 \times 10^9$ years (for a constant rate of nucleosynthesis) which is consistent with other chronometers.

References:

1. F. Käppeler, H. Beer, K. Wissak, D. D. Clayton, R. L. Macklin and R. A. Ward, *Ap. J.* 257, 821 (1982)
2. G. Walter and H. Beer, *Astron. Astrophys.* 142, 268 (1985)
3. G. Walter, B. Leugers, K. Käppeler, G. Reffo, and F. Fabbri, *Nucl. Sci. Eng.* (to be published)
4. G. C. Hicks, B. J. Allen, A. R. de L. Musgrave, and R. L. Macklin, *Austral. J. Phys.* 35, 267 (1982)
5. R. L. Macklin and J. H. Gibbons, *Ap. J.* 149, 577 (1967)
6. B. L. Berman and J. C. Browne, *Phys. Rev. C* 7, 252 (1973)
7. J. C. Browne and B. L. Berman, *Phys. Rev. C* 23, 1434 (1981); 26, 969 (1982)
8. R. L. Macklin, *private communication* (1982). See also Z. Y. Bao and F. Käppeler, *KFK Report* (February 1986)
9. G. J. Mathews, R. A. Ward, K. Takahashi, and W. M. Howard, *Proc. Fifth Moriond Workshop on Astrophysics, Les Arcs*, ed. J. Audouze and N. Mathieu, publ. Reidel, Amsterdam, p. 277 (1986)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.