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Fengld H, Price, Wolfgang R. Wawersik, Davié W, Hanp L & J=ffvzy A, Zirzow
' Sandia Netional Laboratories™
£lbuguerque, New Mexico 87185

ABSTRACT

Triaxial coﬁpression and extension experiments have been run on rock-
salt samples from three Strategic Petroleum Reserve (SPR) domes, Seventeen
quasi-static tests were loaded at mean stress rates of .66-1.0L psi/sec
(4.5-7.2 kPa/sec), co;fining pressures of 14.5-2000 psi (O.l-l3f8 }Pa) and
temperatures of 22-lOO°C. Eleven of the test specimens were from Bryan
Mound, Texas, and three each were froﬁ Beyou Choctaw, Louisizna, and West
Hackberry, Louisiana.

In general, the resulting mechanical data from the three domes are
similar, and they are consistent with previously published data., Ultimate
sample .strengths are directly related to confining pressure (least principal

stress) and indirectly related to temperature, whils ductility increases
b

with both pressure and temperature.
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not necessarity i or imply its { or favoring by the United
States Goverament or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

This work was supported by the U. S. Department of Energy {(ZOE) under
Contract DE-ACOL-T76-DPO0789. :

A -
A U, S, DOE Facility.

1-2
TETRIGUTION OF THIS DOCUMERT IS URLIARTEB




31T OF CONTE

List of Symbols and Conventions ....eeee..

of Tables ... .vvveennn

=
}a
L2}
ct

.
.
.
.
.
-
.
.
.
.
.

n
ct

-
.

Oof Figures .....iveiiiererininnoenana
B £3 7% ke TS Ta v 1 o o NI

-

Tescripti

[
()
3

Site and Sample

Brb’an BOUNG v uvvevenrenannoeenncosaes
West Hackberry .......iiiveecncennnse
Experimental Techniques ..........;.......
Sample Preparation .......c..ocevee.s
Testing Apparatus and Procedures ....
Experimental Results ......veeinncencensns
Test Conditions ....vivevienverennsne
Test Data ..vvvvreineiinnreenecnnnnns
Summery and Conclusions .......vevveraness

References tiiee it ererosnnerooesononanes




\

SYiZR

QLS ANT CORVENTIONS

LIST OF
:1"1’ 92’ _43
el,'ez, e3
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(change in length/current coni-
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olumetiric strein

ot

Principel stress difference or differential
stress

Principel strain difference or differentia
.strain

Maximum differential stress
Ultimete differential stress
Natural strain wvalues corresponiing to

(cl = 53)

m

Elastic moduli (Young's modulus, Poisson's
ratio, shear modulus, bulk modulus)

Temperature

Experimental data are given in both English and metric units, but are

plotted in English units consistent with SPR project reguests.
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QUASI-STATIC ROCK MECHANICS TATA FOR ROCKSALT FROM

Roneld H, Price, Wolfgenz R. Wawersik, David W. Hannum & Jeffrzy &, Zirzow
Sendia National Laboratories

-

Albuguercue, NHew Mexico 9718¢

The U, €. Strategic Petroleum Reserve (SPR) program is actively
storing crude oil within selt Gomes along the Texas-Louisiana coastline.
Mechanical properties on rocksalt are needed to aid in the design éhd
certification of the storage caverns. In the latest series of short-term
deformation experiments, seventeen saxples from three separate SPR domes
were tested under qugsi-static loading conditions. These tests on Bayou
Choctaw, Bryan Mound and West Hackberry core were.designed to evaluate
the effects of changes in cenfining pressure, temperature and loading
conditions on mechanical behavior as a part of a lcng-range effort to
(1) establish the mechanical fesponse of rocksalt from different SFR
sites and (2) assess the fracture potential of rocksalt withnin the walls

of the storage caverns.

SITE AND SAMPLE PREPARATION

Gensral

Bayou Choctaw, Bryan Mound, and West Hackberry domes are all diapiric
structures formed from Jurassic salt rising into the Cenezoic sedimentary
units of the Texas-Louisiana coastline along the Gulf of Mexico. The
gamplcs used in mechanical testing are from raw core approximztely L4 in

(10.2 cm) in diameter taken during drilling at potential ceaverr sites.

13



14

Bayou Choctaw (BC)

The Bayou Choctew cozme is located in Iberville Parish in souti-centrzl
Louisiana. The large piercement structure is almost circulsr in horizontal
cross-section. The three BC cores tested were from depths 2°7--2581 ft
{765.1-786.7 m) ir. érillkole 132, All of the samples contai:i:zd mediun
mean grain sizes of .31-.5% in (8-15 mm) with low standerd deviations of
.16-.28 in (&4-7 =), Althougn no chemical and mineralogicel sample data
were zvaileble, the sazmples appeared to be primerily (> 90%) halite
(sodium chloride) with the predominant impurity prbbably being anhydrite.
No preferential orientations of elongated grains or impurities were ob;
served within any of these particular rocksalt specimens.

Bryan Mound (BM)

The Bryan Mound dome occurs within Brazoria County, Texas, one half
mile from the coast of the Gulf of Mexico. This structure is also quite
circular, with a relatively flat top at an approximete depth of 1100 f't
(335 m). Evperimental samples were obtained frox the three drillholes
107C (1 sample), 110A (6) and 1105 (L), 2t depth intervals of £512 ft

(756.6 m), 2683.5-2692 ft (817.9-82:.7 m) end 3723-3728 £t (1135-1136 n),

-~

respectively. Grain sizes varied between .032 in (1 mm) and 1.7 in (43 mx)
with an overall mean grazin size of approximaitely .33 in (8.5 mm). Three
samples (110A4/2688.5, 1104/2692, 1108/372-) exhibited distinet color
banding at very low angles to the specimen zxes (i.e., approxirately
vertical). These dark and light gray anisotropies reflect variations in
impurity contentl. Mineralogical data from EM drillholes 1074, 107C,

1082 end 109B reflect a halite content of at least 93%, with anhydrite

as the dominant impurity (< 6%)1.



West Hackberry (WH)

West Hackberry dome is an irregularly shaped diapir located in Cameron
Parish in southwestern Louisiana., The three WH test samples ware from tie
depth interval 2290-2294 ft (698,0-699.2 m) in drillkole 108. TIarge
veriations in grain sizes (range: < .039-2.6 inj; < 1-65 mm) vwers observed
in all samples. No mineralogical data from these samples were available;
however, these cores were the darkest of the cores tested, probably
reflecting a higher concentration of impurities (perhaps up to 10% anhydrite).

There were no preferred orientations of grains or impurities noted.

EXPERIMENTAL TECHNIQUES

Sample Preparation

All tests were performed on right circular cylinders. Raw cores
were cut to an approximate length of 7.25-8.25 in (18.4-21.0 cm) on a
band §aw,'then experimental samples were machined to desired diameter
(compression samples: 3.5 or 4.0 in (8.9 or 10 cm); extension samples:
3.5 in (8.9 cm)) and & length or 7.0-5.0 in (13-20 cé). The specimen
enas were machined rlet and parallel to within I.0.00l in (+ .025 mm),
The cores were turned using a tungsten carbide braze tool, Carboloy AX-8,
Type 883. By using this technique, samples were obtained with sharp edges
and minimal chipping or plucking of graina. |

Prior to tesfing, all specimens were coated with a ,01-.02 in (.25-.5 mm)
thick layer of RTV silastic (RTV 108) to fill small surface pits. Each
sample was then placed between vented steel end-caps and enclosed in &
flexible jacket of Viton or Neoprene.

Testing Apparatus and Procedures

All mechanical tests were conducted on two identical triaxial apparatus2

that are designed for gquasi-static and creep experiments both in triaxieal

15
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. - - ot . con (s = a 5 ). Tnes
compression (cl >, V3) and triaxial extension (“l . > 3) These
machines are capable of testing samples of up to 4.0 in (10.8 cm) in

diameter and 8.25 in (21.0 cmz) in length, et conlining pressurss up to

. ~ oy N LA
-10.0 kpsi (69.0 MPz) and tewperetures up to 250 C.

Axial forces were genereted bty & cylindricel, hydraulilc rsu, anc

measured by an external loed cell., Fluild pressure was spplisd using

silicone fluid and weas roriiored with stanieard transiucers. Axiel defor:

-

tion of the sample was deterxzined with two dizzetrically opposad LVDT's
(linear variable differential trensformers), by subiraciing out the calib
system deforzations within the active gauge length. Iateral deformetion

was determined by means of one disk gauge3 mounted at the central cdiamete

alo the specimen axis or measured diletometrically. A detailed dis-
. Y

‘cussion of the technigues and data reduction procedures is given in an

earlier reportu.

Onco the samples were jacketed and placed in the vessel, the experi-
mental sequence was initiated. For elevated temperature/pressure tests a
hydrostatic confining pressure of 500 psi (3.4 MPa) was applied to thre
sample while the sample-vessel system was healed. When the appropriate
test temperature was reached, the fluid pressure was changed to the
desired experimental level. The deviatorié stress loading was then
started by increasing either (1) the axial 8tress in a compression test
or (2) the fluid pressure in an extension test. rThe loading paths were
not smooth ramps, but a series of fast (< 2 sec) loading steps followed
by four minutes of constant load. For every test, the initial stress
increments were 250 psi (1.7 MPa). This loading technique resulted in
an initial stress rate of 1.04 psi/sec (7.17 kpa/sec). Decrezses in the
stress rates of compfession.tests were caused by increases in specimen

area with radial sample strain,

rated

L%



Test Conditions

The seventeen mechanical tests in this series included triaxial com-
pression and extension experiments at mean stress rates of .i-1,04 psi/sec
(4.5-7.2 kpa/sec), temperatures frox 22 to 100°C 2nd least Trincipal
stresses from 1L.5 (atmospheric pressure) to 2000 psi (0.1 to 13.8 MNPa),
These ranges of pressures znd temperstures were chosen since, under
these conditions, rocksalt is pressure sensitive ana prone to macroscopic
failure. Table I is a matrix of experiments illustrating .the specific
sets of experimental conditions covered. The test/sample notation used
in Table I and throughout this report consists of the following: dome,
drillhole number/depth in feet (meters)/test type (C-compression, E-
extension).

Test Data

' TheAreader should note that the data presented in this report, and
that referred to from earlier studies, have not been segregated by domzl
site. This procedure appeared justified because the scatter in the results
of samples from different locations was within that observed for samples
from the same location deformed under identical conditions.

The experimental data curves are presented in Figures 1 through 7.
Example plots of deviatoric stress versus time and versus axial strain
are given in Figures 1 and 2A, respectively. The first 'graph illustrates
the stepped loading path used in this test series. Figures 2B-7 are
plots involving a combination of differential stress, differential strain
and/or volumctric strain. The graphs have been chosen to exemplify (1)
reproducibility of results (Figure 2), (2) effect of I3 changes in com-

pression (Figures 3 and 4), (3) effect of g, and T changes ir compression

3
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Least Principal Stress (psi/MPa)

Table I

Matrix of Experiments

Temperature (°C)
22 %0 100

14.5,0.10 BC 19A/25810766.7)/C - WH 108/2294(699.2)/C BM 110B/3728(1136.2/C
BV L10A/2686.5(819.4° /C :
BV 110B/372k(1135.0),C

25C/1L.72 BM 110A/2687(819.0)/C
BM 110A/2691(820.2)/E

500/5.45 BM 107C/2512(765.6)/E BC 19A/2579(786.C)/E BM 110A/2685(818.3),C
WH 108/2291(698.3)/C BM 110B/3723(1134.73/C

1500,/1C.3 110A/2692(820.5) /i BM 110A/2633.5(817.9)/C

110B/3725(1135.6)/E

g

2000/13.8 BC 19A,2575(785.1)/E
WH 108,2290(698.¢)/C



(Figure 5), (L) effect of o, changes in extension (Figure 6) and (5) com-

3
parison of compfession and extension at constant 33 and T (Figure*7).

Test data at maximum differential stresses and the elastic constants are
summarized in Tables II and III, respectively. ©Six samples tssted did not
reach ultimate strength (see Table II), and therefore the mexirum value is
given, The maximum differential stresses reported are the absolute peak
stresses attained throughout the stepped loading history of each sample.
The maxirum strains correspond directly to the valves at the mexmium dif-
ferential stress.

The summary plots in Figures 8-11 illustrate the effects of 03 and T
on differential stress and axial strain (i.e., greatest principal strain)
in compression and extension. As noted on the graphs, most of.the data
points plotted are actual ultimate stresses and axial strains at failure.
The maximum data are included for completeness, but are only lower bounds
on the appropriate ultimate stresses and strains.

The experimental results presented here are consistent in tfends
and magnitudes with other published rocksezlt data, including two earlier
reports on domal rocksalt5’6. As shown in Figures 8 and 9, rockszlt is
pressure sensitive in the 14.5-2000 psi (0.1-13.8 MPa) range. As ex-

pected, within the range of o, values salt becomes distinctly stronger

3
with increased least principal stress. Ductility (greatest principal

strain to failure) is also directly related to O The effect of tempera-

3°
ture on strength and ductility is shown in Figures 10 and 11. At atmospheric
pressure, no trend of temperature dependence on strength is seen, while
ductility increases slightly with temperature. However, at higher pressures

(500 psi; 3.45 MPa and 1500 psi; 10.3 MPa), strength decreases with in-

creasing temperature. In compression, ductility increases with temperature,
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Table IT

Test Dzta at Maxinum Deviatoric 3%ress

Test Sample

Drillhole/Depth-Ft(m)/ 93 S T D A T D (O
Test Type psi(MPz) °c kosi(MPa) % % % A
BC 19A/2:81(736.7)/C 14.5(0.1) 22 3.74(25.8)* 3.01 2.12 6.1h -3.24
BM 110A/2686.5(819.4)/cC 14.5(0.1) 22 2.81(19.L)* 2.02 3.00 5.02 -3.99
BM 110B/372L:(1135.0)/C 14.5(0.1) 22 L.o2(27.7)* 3.10 L. 51 7.60 -5.91
BM 110A/2687(81g.0)/C 250(1.72) 22 6.05(L1.7)*  T.he .50 13.1 -3.62
BM 110A/2692(820.5)/C 1500(19.3) 22 9.54(65.8¥% 21,3 17.2 . 9.5 -5.10
WH 108/2294(699.2)/C 14.5(0.1) 60 2.79(26.17% L 27 L. 47 8.74 .66
WH 108/2291:€98.3)/C 500(3.45) 69 5.78(39.9 % 6.8 11.5 30.3 -4 22
WH 108/2290€98.0)/C 2000(13.3) 69 7.50(51.7 23.8 13.0 36.8 -2.24
BM 110B/3723(1136.2)/C 14.5(C.1) 106 Z.74(25.83% L. L5 5.62 10.1 -6.78
BM 110A/2685(318.3)/C 500(3.4%) 10C  £.32(36.7)* 23.6 15.2 383.9 -E.77
BM 110B/3723(113k4.7}/C 500(3.45) 10  &.L6(37.7)% 23.2 k.1 37.3 -£.12
BM 11CA/2683.5(817.9)/C 1500(10.3) 100  6.54(45.1) 32.4 18.3 50.7 -4, 80
BM 110A/26917820.2)/E 250(1.72) c2 6.62(L45.7) 3.5 8.67 R -1.59
BM 107C/2512765.6)/E - 500(3 .45 z2 7.43(51.2)* 5.22 9.61 14.8 0.830
BM 110B/3726[1135.6)/E 1500(1C.3" 2 8.46(58.3) £.27 12.1 18k 0.421
BC 19A/2579(786.0)/E . 500(3.45) 60 4.98(34.3) 3.49 7.25 Lo -0.305
BC 19A/2576(785.1)/E 2020(23.81 €0 o bk (Lh L) 6.65 11.9 18.5 1.46

¥ Actual u_timzte stress value.
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Test Sample

Drillhole/Depth-Ft(m)/

Test Type

BM
BM
WH
WH
BM
BM
BM

B

110A/2687(819.0)/C
110A/2692(820.5)/C
108/2291(698.3)/C
108/2290(698.0)/C
110A/2685(818.3)/C
110B/3723(1134.7)/C
110A/2683.5(817.9)/c
1¢7¢/2512(765.6) /E

a
measurel

b calculated

Elastic (Unloading) Constants

Tablé III

%3

psigMPa}
250(1.72)
1500(10.3)
500(3.45)
2000(13.8)
500(3.45)
500(3.45)
1500(10.3)

500(3.L45)

100

100
. 100

.22

Ea

'MEsiSGPaZ

4.57(31.5)
.36(37.0)
.37(37.0)
.68(39.2)
.57(31.5)
.92(33.9)

.11(28.3)

+ = = + i \n i

.91(33.9)

D
G

Mpsi(GPa)

1.80(12.4)

n

.05(1k.1)

N

.03(1k4.0)
2.31(15.9)

l_l

.79(12.3)

|oad

.92(13.2)
.48(10.2)

|

}—l

.85(12.7)

Kb

Mpsi(GPa)
3.31(22.8)

k.70(32.5)

=

.97(34.3)

.51(2u.2)
46(23.9)
.73(25.7)
.23(k2.9)

= 60w w w

.81(33.2)
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as has been previously published. Eguivalent data for extension are less
complete., The ultimete ¢ifferential stresses were feached in only two of
four experiments; however, the same trend of decreasing strength and in-
creasirg ductility with tempereture is suggested. Volumetri-~ s-.rzin
measurements are also influenced by least principal stress ern’ tesperaiturs

{see Tetle II}. Tilezizncy et fixed values of principal stress 2iffex

(I;

nce
decreases as pressure and/or temperature is raised.
As an earlier report” discussed, there are marked differences between

compression and extension results from tests at equivalent T and o In

-3‘
general, the extension samples are approximately the same Sstrengtn, but
reach far less greatest principal, differenticl and volumetric strains at
failure than the compression samples. These contrasting results are

attributed to distinctly different failure modes. All extension sampley

taken to failure broke suddenly along a single extension tracture (i.e.,

):

a fracture perpendicular to 4. ); whereus, Lhe cumpressisn opccimens te

3
to fail more stably by the formation of many mesoscopic (.5-3.0 inj
1.3-7.6 cm) shear and extension cracks preceding the loss of COJéSiOﬂ
on one or more macroscopic shear fractures. The volumetric strain data
presented here and from the two previous studies should prove to be sig-
nificant in the dévelopment of a general fractﬁre criterion for rocksalt.
The elastic (unloading):constants obtained in this test series are
presented in Table III. The Young's modulil znd Poissen's ratios fall
within the ranges of values previously published. These experimentally
measured values were uéed to calculaté the shear and hulk moduli, By
combining these data w1th those from two earlier reportss’é, weau eleodvic

constant§ were delermined for Bryen Mound, West Hackberry ancd overall SFR

rockszlt (Table IV). The stated value of E is 18 percent higher for West



Location

Bryan Mound

.West Hackberry

Overall

.Table IV

Mean Elastic Constantsa

Eb

Mpsi (GPa)

L,72 (32.6)
5.57 (38.4)
Lok (34.1)

v

.33
.30
.32

a Pata from references 5 and‘6 and this report.

Mean of measurei values.

¢ Calculated from E and v values,

GC K°
Mpsi (GPa) FMpsi (GPa)
1.77 (12.2)  4.63 (31.9)
2.1 (15.8) L. 6L (32.0)
1.87 (12.9) k.57 (31.5)

23
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Hackberry than for Bryan Mound. This result may be due to West Hackberry -

‘'samples containing a greater concentration of impurities (e.g., anhydrite)

than the Bryan Mound material,

SUMVARY AND CONCLUSIONS

he)

Seventeen cuasi-static experiments on rockéalt from three 37R sites
hzve been presented. The test results were reproducible and consistent
with previously published data. The minor variations in sample grain
si7zes and in composition did not appear to have an effect on strength and
behavior trends. As expected, specimen strength was directly related to
the least principal stress and inversely related to temperature; further-
more, pressure and temperature increases resulted in larger axial strains
to failure (ductility). While strengths in extension and compression were

similar, wltimate strains were substantially higher in compression than

in extension.,
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Figure 2B: [LiZferential stress-differential strain curves for samplss BC 19A/2581, Bi 110A/26E8.5 and
EM 110B/3724 d=formed in compression at 1Lk.5 psi and 2203,
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Figure 2C:
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ot

Figure 3A:
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Figure 3B:
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Differential stress-volumetric strain curves for samples WH 108/2294, wH 108/2291 and
WH 108/2290 deformed in compression at 14.5, 500, 2000 psi and 60°C.
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Figure 3C: Differential strain-volumestric strain curves for samples WE 108/229L, WH'108/2291 and
WH 108/2290 deformed in compression =zt 14.5, 500, 2000 psi and 60°C.



13

Figure bLA:

Ditferential Stress (kpsi)

- BM 1108-3728 ~C
) EM 1108B-3723 C
EM 110A/2683.5-C

X

1500 psi

. ﬂ;phl“*‘ﬁrkJ*Krﬂk
ﬁ(‘:ﬁ;: 500 psi |

o, noted on curves, T = 100°¢

3

' 4 . A l A '
J Ul \J L)

I 45 60 TS

Differential Strain (%)
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Figure 4C:
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Differential strain-volumetric strain curves for samples BM 110B/3728, BM 110B/3723 and
BM 110A/2683.5 deformed in compression at 14.5, 500, 1500 psi and 1000C.
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10 = EM 110A/2621/E

X BM 107C/2512/E
|

o <4

B
g 00 psi

£ o0 e
w £ =4
®
4
+2
[€2]
’_| -
«
v
ot
£ 4t
-
(M
O
q." o
-

2 -+ o, noted on curves, T

-
e A = A : A % b =
-3 -2 -1 (%} 1 c

Volumetric Strain (%)

Differential stress-volumetric strain curves for samples BM llOA/269l and BM 1070/2512
formed in extension at 250, 500 psi and 22 °c.

S

de-



of

Figure T7A:
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