
SAND—89-0761

DE90 000895 Distribution
UC-706

The Phase Gradient Autofocus Algorithm: An Optimal 
Estimator of the Phase Derivative

P. H. Eichel 
Division 9115

Sandia National Laboratories 
Albuquerque, NM 87185

Abstract

The phase gradient algorithm represents a powerful new signal processing technique with 
applications to aperture synthesis imaging. These include, for example, synthetic aperture 
radar phase correction and stellar image reconstruction. The algorithm combines redun­
dant information present in the data to arrive at an estimate of the phase derivative. In 
this report, we show that the estimator is in fact a linear, minimum variance estimator of 
the phase derivative.
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I. Introduction

We have recently presented a new non-parametric autofocus technique, the Phase Gra­
dient Autofocus (PGA) algorithm for phase correction of Synthetic Aperture Radar (SAR) 
imagery [1]. Independently, several investigators in the optical astronomy community have 
begun using essentially the same algorithm, the Phase Gradient (PG) algorithm, for stel­
lar image reconstruction [2]. The phase gradient algorithm as presented in those papers 
appears somewhat ad-hoc in that no formal treatment is made of the specific manner in 
which redundant information (aperture phase error for the SAR case, and object phase 
for the stellar imaging case) is combined to arrive at the estimate of the phase derivative. 
In this paper we show that the form of the estimator described in those papers is in fact 
the solution to a minimum variance estimation problem. Such formalism not only lends 
credibility to the basic algorithm, but provides additional insight into the behavior of, and 
several extensions to, that algorithm.

The phase gradient estimation problem for SAR imagery is very similar to that for 
stellar image reconstruction. Several differences between the two problems are manifest. 
First, for SAR imagery, the point spread function due to the phase error is redundant but 
the target data varies throughout the image while in speckle imaging, the underlying stel­
lar image is constant but the speckle noise and atmospheric phase varies from exposure to 
exposure. Furthermore, the SAR image is complex while only intensity data are collected 
by the speckle imaging technique. Phase gradient estimation is fundamentally two dimen­
sional in speckle imaging while only one dimensional processing is typically required in 
radar. However, several colleagues have recently demonstrated two dimensional processing 
for SAR images [3], and presented a more powerful method of estimating 2-D phases from 
2-D phase differences using fast elliptic PDF solvers [4]. Finally, the estimator is shown to 
be unbiased where the signal-to-noise ratio is high, as is typical in SAR. In stellar imaging, 
however, additional terms must be added to make the estimator unbiased [2].

II. Signal and Noise Model

We will present the derivation of the minimum variance estimator for the phase deriva­
tive in the context of SAR processing. However, its application to the speckle imaging 
problem is direct. Because the speckle noise model used in this development is character­
ized by random, independent, complex sinusoids, the 2-D gradient estimation problem is 
separable. Therefore, only a 1-D derivation is presented here.

We will model the range compressed phase history data in the following way. Let each 
range bin be composed of a single complex exponential modulated by a phase error plus 
speckle noise. The targets and noise are independent from range bin to range bin, but the 
phase error function is common to all (a 1-D phase error). Thus, each range bin can be 
expressed as (the independent variable t represents aperture position in SAR):

g{t) = ae3{wot+Mt» + n(t) (1)
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where ae-’*u'0<+^'^^ is a complex sinusoid due to a hard target of magnitude a and doppler 
frequency u>o that has been modulated by the phase error (f>c(t). The additive speckle noise 
n(t) is modelled in the conventional manner as the sum of random complex sinusoids with 
Rayleigh distributed magnitudes and uniformly distributed phases [5]:

M
n(t) - ^2 6mei(u'’"t+em) (2)

where the bm are independent, Rayleigh distributed random variables, and the 9m are 
independent and uniform on [0,27r].

We have at our disposal a method of measuring the instantaeous phase derivative of 
g(t) for each range bin k as:

Im {gk(t)gt(t)}
\9k(t)\2

The question to be resolved here is how to combine these measurements from the many 
range bins to form the best estimate, in some sense, of the common phase error function 

The approach will be to form the best estimator in the sense of minimum variance. 
We will demonstrate that the PG and PGA algorithms are in fact linear unbiased minimum 
variance (LUMV) estimators for 4>c(t). To do this, we first show that, given the above model 
of the phase history data, the measurements given by Eq. (3) can be expressed as a linear 
system of signal plus noise. We then derive the first and second order statistics of the noise 
process. Finally, we solve for the LUMV estimator.

III. The Noise Process

We begin by examining the noise process n(t) for any one range bin. Without loss 
of generality in what follows, we will shift the hard target to zero doppler by complex 
multiplication of g(t) by e~JUJot and change variables uim = u>'m — lj0. We denote the in- 
phase and quadrature-phase components of n(t) as:

nq(t)

Re{n(t)} = 6ro cos (u;m< + 0m)
m

Im{n(t)} - J3&msin(u;m<+ 0m) (4)

Since the bm axe independent and identically distributed (iid), they have equal variances. 
Furthermore, the Rayleigh distribution is a-integrable for some a > 2 (i.e., a = 3), Thus, 
the Central Limit Theorem is applicable to the sums rii(t) and ng(t), so n,-(t) and n,(t) are 
assumed to be Gaussian distributed. We can immediately prove the following properties:
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1. = ng(t) = 0

E{ni(t)} = 5l£{&m}£{cos(u;mf + 0m)}
m

= o (5)

ng(t) is similar.

2. + = J2ni(r) = iln,(r) = r//2EmCOs(u;mT)

cos (wm(* + t) + 9m) Yl b\ cos (wj* + 0i)|

= 77 {cos + t) + 0m) COS (wmt + 0m)}
m

= »; E {1/2cos (oJmr) 4- l/2cos(u;m (2t + r) + 20m)}
m

= J7/2^cos(wmT) (6)
m

The first step results from: .E {cos (u;m(f + r) + 0m) cos (w/t + 0j)} = 0 W m ^ l. 
ng(t) is similar.

3. (1) + (2) imply that n,(t) and ng(t) are wide sense stationary.

4. n,(t)2 = ng(t)2 = Rn, (0) = Mr,

5. n,-(<) and ng{t) are jointly Gaussian.

Cin,(t) + C2n,(t)
= T. bm (Ci cos (u:mt + 0m) + C2 sin(u>mt 4- 9m)) VCi,C2 (7)

m
The Central Limit Theorem applies here as well. Therefore, since C'in.(t) + C2n7(t) 
is Gaussian V Ci,C2, this implies that ni(t) and ng(t) are jointly Gaussian.

6. n,-(<) Emd n,(t) axe orthogonal.

E{n,(t)n7(<)} = E|^6mcos(a;mt+ 0m)5l6/sin(a;/< + 0/)|

= 0 (8)

7



since £ {cos(-) sin(-)} = 0.

7. (1) + (5) + (6) imply rii(t) and nq(t) are independent.

Next, we perform a change of variables to express the noise process in the form of 
magnitude and phase:

n(t) = rii(t) + jnq(t) = a(<)eJ^n(‘) (9)
where : a(t) = [n?(t) + n£(t)] /

<f>n(t) = tan-1 —Tli

It may be easily proved (see Papoulis [6]) that, since rii{t) and nq{t) are independent 
and Gaussian, the amplitude a(f) is Rayleigh distributed, the phase is uniformly
distributed, and a(t) and (j>n(t) are independent. Thus, the phase history data may be 
written:

9(t) ae

ae

I j+nU)+ a(t)eJ

1 H------- eJa
(10)

The instantaneous phase of g(t) will be denoted as <f>(t) and is given by:

= lg(t) = <?ie(t) + tan 1
Jm jei(0n(t)-^(‘)) J

1 + amiJc («)-*«(*))}
(11)

In what follows, the t dependence in <*(£), and <frn(t) will be implicitly understood
but occasionally omitted for clarity. If we assume a high signal/noise, then: a/a •C 1 and 
we have the following approximation:

a K J

We will return to this assumption later. Let us denote:

V(t) =
a ^ J

(12)

(13)
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so,

m = Mi) + V(t) (14)

Thus, the instantaneous phase of the range compressed data g(t) is equal to the desired 
phase error function plus an additive noise term. Since our processing technique actually 
extracts the phase derivative (Eq. (3)), we have:

Mi) = Mt) + V(t) (15)

We now require the first and second order statistics for V(t). The difficulty lies in finding 
the variance. To do this, we solve for the autocorrelation function for V(t), determine 
its power spectrum, find the power spectrum for V(t), and finally integrate to get the 
variance. Rewriting Eq. (13),

Vr(t) = o'- J
= 1/a Im

— 1/a Im ^n(t)e~^c^J

= 1/a Im {(nt(t) + jnq(t)) (cos (<f>t(t)) + j sin (&(<)))}
= l/a [w9(<) cos (<j>t(t)) + ni(t) sin (^t(t))] (16)

The autocorrelation of the phase noise V(t) is then:

Rv(t) = -^rE {[n^t + t) cos (<f>c(t + t))+ Tii(t + t) sin (4>c(t + t)))- 
a*

[n9(t) cos (<f>c(t)) + n,(t) sin (^£(t))]}
= ^ [j2n,(r)JE?{cos(^e(i + r))cos(^£(t))} + Rn^E {sin(fait + T))sin(<^£(t))}]

= ^^(^{cos^e^ + r)-^))} (17)

where the second step results from the fact that n,(t) and nq(t) are independent, zero 
mean, and the third because i2n,(r) = Rn^r). If we denote:

h(r) = E {cos (<f>t(t -I- t) <ji£(t))} (18)
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then:

-Rv(t) = —i2„,(r)/i(r)

1
a*

? Y,cos (a,'"r) h(r) (19)

The power spectrum of the process V(t) is therefore:

£„(/) = r{Rv(r)}

JL
2a?

*1

*H(f)
}

(20)

If the processing bandwidth —u>m < Stt/ < u>m is wide enough to capture nearly all the 
energy in then:

where:

M
I

m=—M

M foo
E » / WW = MO)
_ J —oo

h(0) = E {cos + 0) - 4>c(t))} 
= 1

(21)

(22)

and so we have:

Sy(f) = V
2a2

After differentiation, the power spectrum of the process V(t) is:

(23)

SvU) = l;27r/|25„(/) 
27r2r//2

O'*
(24)

We thus have finally:
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V'(t)
rW

Rm = / Sy(f)dfJ—W
2^ f fdf

4tt2t)W3
Za2

Co „ a A^W3
# c°-~r~ (25)

where ±W = is the processing bandwidth.

Equation (25) tells us the noise variance. We can immediately calculate the expected 
value of the noise:

-E{^(*)} = |^^sin{<^„(t) + + ^^cos{^„(t) + ^e(<)} + ^f(t)]|

= 0 (26)

and show that the signal and noise are uncorrelated:

E{V{t)Ut)} = E^-Sm{4>n(t) + Ut)}Mi)

+ COS {<f>n(t) + <M*)} [^n(<) + 4>c{tj\ <M*) j

= 0 (27)

Both of these result from the fact that </>„(<) is uniformly distributed and independent of 
</>t(<). Consequently:

£{^(()} = £:{*t(t)} + £{v(0}

= E{Mt)} (28)
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so that the phase derivative processor output for each range bin is unbiased. In summary, 
we have shown:

£{!>} = 0 

= §

E{vi,} = 0
£{4 = E{i,}

IV. The Linear Minimum Variance Estimator

Now, let us return to the estimation problem. We are given K range bins of data:

9k(t) = Ofce^c(t) + nk(t) ke [1, A"] (29)

We assume the noise is uncorrelated from range bin to range bin, but with the same 
statistics. is common to all range bins, but the target magnitude ak varies. For each
9k{t)i we have a processor that extracts the instantaneous phase derivative:

w<)-—— 1,1 (30)

But from Eq.(15), the processor output for each range bin is simply the desired phase 
derivative of the phase error function plus additive noise. Also, recall that a(t)/a •C 1, so 
that from Eq.(10), \gk(t)\2 == a].. We may thus write:

M*) = = Mt) + Vk(i) ke[l,K] (31)
ak

Where the assumption of high signal-to-noise ratio is not valid, an additional term is 
required to compensate for the bias in the denominator [2]. Writing Eq.(31) in vector 
form:

4 = H<k + V (32)

where:
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$

H

V

i™ {9i(*)9i(t)} !a\

. Im {9K(i)9K(t)} /aK . 
' 1 1

is K x 1
1

W)
is K x 1

L vK(t) J

is K x 1

The covariance matrix of the noise process is (from Eq.(25)):

R-v = Co

i
=?

0

0

(33)

A linear unbiased minimum variance (LUMV) estimator for ^>£(t) is given by [7]:

k(i) = -i -2 , (34)

where is the variance of 4>(t), and is the mean. In both the PGA and PG algorithms,
it is assumed that we have no knowledge of the statistics of That is, we treat it as a 
deterministic but unknown function. This is conventionally represented as:

0
0

in which circumstance Eq. (34) becomes:

l,(t) = [HTRvIH]'1H7'Rv1i

(35)

(36)

Substituting, we find:
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^c(*) = [11...1] 1
’ al

1o ' 1' 
1

Co o
___

1 aK . . 1.

-1

[11---1] J_ 
Co

a;

0

K T -1

L^o *:=i .

J_
Co

a,

Imig^tyKt)} /a*

a]<\[lm {^(t)^(<)} /a2K 

F Im {gri^g^t)} /a\
aJ<] :

Im {gK(t)gjc(t)} /“k .
K
Y,*l

U=1
'A'

-1 K
£ Im {gk(t)9;(t)}
Jt=l

Efai I™ {gtWgW)}
EL M‘)l!

(37)

which is precisely the form of the estimator in the PGA and PG algorithms. We have thus 
shown that the phase derivative estimator used in those algorithms is in fact a minimum 
variance estimator. That is, no other linear estimator could do as well as this in the mean 
square sense.

V. Discussion

There is a remarkable connection between the phase gradient estimation problem ad­
dressed here and the problem of analyzing the noise performance of a frequency-modulated 
communication system. In both cases, one is attempting to measure the phase derivative 
of a signal in the presence of additive, narrowband noise. The “carriers” in the SAR 
problem are the complex sinusoidal phase histories of hard targets, while in the stellar 
imaging problem they are associated with the sources being imaged. The “message” is 
the phase error function we seek which, in fact, does frequency modulate the “carriers”. 
(Phase modulation and frequency modulation are identical save for an integration of the 
modulating signal.) Of course, there is no concept of redundancy in FM while it was just 
such redundancy that was exploited in the current problem to give rise to a minimum 
variance estimator. However, the analysis of the noise process given here follows closely 
that originally developed for the FM problem.

It is natural to ask what else may be learned from the example of FM. In particular, 
we return to Eq. (12) and the assumption of high signal-to-noise ratio. A like assumption 
is made in the analysis of FM to arrive at a tractable expression for the noise spectrum. 
Where this assumption does not hold, an FM receiver exhibits a so-called threshold behav­
ior. That is, as the received SNR falls, the detector output suddenly experiences the onset
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of message mutilation at a threshold SNR. Experimentally, the author and his colleagues 
have observed a similar behavior in processing synthetic SAR imagery. Using simulated 
targets and noise, we have demonstrated that phase error estimation can only be accom­
plished above a certain threshold SNR, below which the phase error estimate is hopelessly 
garbled.

A second question is that of post-detection filtering. Because of the non-lineaxity of 
exponential modulation, the pre-detection bandwidth can be much larger than the message 
bandwidth. In fact, the pre-detection bandwidth is a function of the message amplitude as 
well as its frequency content. As a result, FM systems often employ a post-detection filter 
to improve the output signal-to-noise ratio. A similar strategy might be advantageous for 
SAR and speckle image processing. In the case of the former, the PGA algorithm uses an 
adaptive pre-detection filter but no post-detection filter. We are currently investigating 
the use of a post-detection filter for the situation where the statistics of the phase error 
process are known, such as power law spectra for ionospheric induced errors.

VI. Conclusions

In this paper, we have shown that the phase derivative estimator used in the Phase 
Gradient Autofocus algorithm for SAR image processing and the Phase Gradient algorithm 
for stellar image reconstruction is in fact a linear minimum variance estimator. Using a 
conventional speckle noise model, we have shown that the estimator is linear and unbiased, 
we have solved for the power spectrum of the noise process, and have derived the linear 
minimum variance estimator of the phase derivative given redundant observations. This 
was seen to be identical to the estimator used in the PGA and PG algorithms.

VII. References

1. ) P.H.Eichel, D.C.Ghiglia, C.V.Jakowatz, Jr., “Speckle processing method for synthetic 
aperture radar phase correction,” Optics Letters, 14, pp.1-3, (1989).

2. ) G.J.M.Aitken, R.Johnson, and R.Houtman, “Phase-gradient stellar image reconstruc­
tion,” Opt. Commun., 56, pp.379, (1986).

3. ) D.C.Ghiglia and G.A.Mastin, “Two dimensional phase correction of synthetic aperture 
radar imagery,” Accepted for publication in Optics Letters.

4. ) D.C.Ghiglia and L.A.Romero, “Direct phase estimation from phase differences using 
fast elliptic PDE solvers,” Accepted for publication in Optics Letters.

5. ) J.W.Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am., 66, 
pp. 1145-1150, (1976).

6. ) A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd Edition, 
McGraw-Hill, (1984).

7. ) J.Melsa and D. Cohn, Decision and Estimation Theory, McGraw-Hill, (1978).

15



Distribution:

D.C. Ghiglia, 1422
G. A. Mastin, 1422 
M.W. Callahan, 2340
B.C. Walker, 2345
B. L. Bums, 2345 
R.L. O’Nan, 2346 
W.H. Hensley, 2346 
M.J. Hicks, 2346
R.L. Hagengruber, 9000 
R.G. Clem, 9100
C. W. Childers, 9110 
J.M. Fletcher, 9115 
T.A. Bacon, 9115 
T.M. Calloway, 9115 
P.H. Eichel, 9115
C. V. Jakowatz, Jr., 9115 
M.S. Murray, 9115
H. M. Poteet, 9115 
M.B. Sandoval, 9115
D. M. Shead, 9115 
P.A. Thompson, 9115
D.E. Wahl, 9115 
R.D. Andreas, 9130 
L.D. Hostetler, 9133 
C.M. Hart, 9134

S.A. Landenberger, 3141 (5 copies) 
W.I. Klein, 3151 (3 copies)
C.L. Ward, 3154 (8 copies)
J.A. Wackerly, 8524


