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ABSTRACT

This report is a qualitative assessment of the public and worker risk involved with the operation of
a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and
operations, tanker truck deliveries and end-use vehicle fueling; it does not treat the risks of LNG vehicles
on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes
and Effects Analysis and historical operating experiences. The event trees were drawn to depict possible
sequences of mitigating events following the initiating events. The phenomenology of LNG and other
vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and
analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of
procedures and training, station design, and the dissemination of “best practice” information throughout the
LNG community.

iii







SUMMARY

This report is a qualitative assessment of the public and worker risk involved with the operation of a
liquefied natural (LNG) vehicle refueling facility. A cryogenic fuel for vehicles is very different from the
petroleum fuels presently in use. LNG rapidly evolves gas, it can cause cryogenic burns from skin contact
and exposure can cause brittleness in many engineering materials. This study includes facility maintenance
and operations, tanker truck deliveries and end-use vehicle fueling; it does not treat the risks of LNG
vehicles on roadways. The qualitative risks have been outlined in Tables 1-2 and 1-3.

The report gives a description of refueling facilities visited and identifies the technologies involved
for system familiarization. Then accident initiating events are identified by using a Master Logic Diagram,
a Failure Modes and Effects Analysis and historical operating experiences. The event trees were drawn to
depict possible sequences of mitigating events following the initiating events.

The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed
by LNG usage. Physical parameters, methane flammability and LNG issues such as weathering, rollover
and geysering are discussed. Distinctions in phenomena between LNG peak-shaving plants and refueling
stations are explained and evaluated.

Based on the risk modeling and analysis, recommendations are given in the conclusions section.
These recommendations to improve the safety of LNG refueling stations are in the areas of procedures and
training, station design (especially leak pathway analysis) and fostering the dissemination of “best practice”
information throughout the LNG community.







FOREWORD

This risk assessment cites several past incidents in the use and handling of liquefied natural gas. We
have relied on literature searches, the US Department of Transportation database, and the memory of
experts in the LNG field to gather information on these incidents. If any readers of this report know of
incidents not cited and can provide information on such incidents, they are invited to contact Dr. Steve
Herring, 208-526-9497, sth@inel.gov or Lee Cadwallader, 208-526-1232, lcc@inel.gov.

Furthermore, if any readers can suggest other members of the LNG community to whom this report
should be sent, please notify us at an address listed above. '
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Qualitative Risk Assessment for An LNG Refueling
Station and Review of Relevant Safety Issues

1. INTRODUCTION

1.1 Background

As part of the efforts currently under way to increase the use of natural gas in transportation
applications, technology is being developed to enable the widespread use of liquefied natural gas (LNG) as
a fuel. LNG, as a cryogenic liquid, has inherently different characteristics than the gasoline and diesel fuel
we are accustomed to using. These differences include the rapid evolution of a gas which is lighter than air
at room temperature, the potential for cryogenic burns and changes in materials properties at low
temperatures. The safe handling and use of LNG requires training and technology development. One of
these technology development activities includes the performance of safety assessments for LNG systems.
Such assessments can assist in the identification and prioritization of potential system weak points and
associated improvements.

A failure modes and effects analysis (FMEA) has been performed for LNG-fueled trucks (ATA,
1995). Our study documents a qualitative risk assessment for LNG refueling stations, part of the necessary
infrastructure for an LNG-based trucking industry.

Risk assessment is a particular type of safety analysis aimed at: a) identifying accident scenarios of
potential concern, and b) determining the probability and consequences of these scenarios (Kaplan and
Garrick 1981). In a quantitative risk assessment, scenario probabilities and consequences are quantified
and treated in a formal mathematical framework. In a qualitative risk assessment, scenarios are prioritized
based on qualitative assessments of the absolute or relative probabilities and consequences. Qualitative
risk assessment (of which FMEA is one form) is often a useful prelude to quantitative risk assessment, as it
can identify scenarios where analysis resources should be focused. Both qualitative and quantitative risk
assessment enable the prioritization of system design and operations alternatives based on an explicit
consideration of accident likelihood and severity.

1.2 Objectives and Scope

The overall objective of this study is to generate safety lessons and insights useful to the
development of LNG refueling stations. The specific objectives of this study are threefold:

J To identify and characterize public and worker risk and safety issues associated with the
operation of LNG refueling stations for long-haul trucking

. To summarize the current state of knowledge regarding LNG safety

. To develop recommendations concerning:

- Improvements to current design and operational practices




- Areas requiring additional research and/or analysis.

The study scope is limited to activities within the boundaries of refueling stations. However, it does
include some issues generic to alt LNG handling activities. It does address issues not directly associated
with the process of refueling trucks (e.g., fuel storage, station refueling, truck maintenance). The study
also addresses current station designs and operational practices. Credit for improved practices since past
accidents (e.g., the Cleveland tank failure in 1944) is taken as appropriate. Conversely, no credit is taken
for potential future improvements in equipment or practices (e.g. in nozzles, instrumentation or interlocks).
Finally, it should be noted that the analysis is performed at a generic level; hazards (e.g., storms) and faults
(e.g., refueling errors) believed to be relevant to most (if not all) stations are addressed, but system-specific
detailed faults (e.g., failure of a particular piping segment or relief valve) are not treated. This generic
approach provides common lessons and insights for the industry but may not be detailed enough to support
detailed system improvement studies.

1.3 Summary of Technical Approach

The approach employed in this study follows the general steps followed in most risk assessment
studies. An example description can be found in (ASME 1995). A detailed description of a number of
LNG stations can be found in GRI (1996).

In the system definition phase, data was gathered through site visits to three separate refueling
facilities in addition to an extensive literature search. Information was collected on typical system design
and operations, past events involving LNG, and LNG phenomenology relevant to accident occurrence and
mitigation. Special attention was paid to the review of the phenomenological data (e.g., concerning LNG
flammability and dispersion) in order to sce if concerns raised in an earlier report (GAO 1978) and a recent
memo reiterating these concerns (Hunt 1996) are still warranted.

In the model construction phase, event trees (ANS 1980) were constructed to represent possible
scenarios following an initial fault (an "initiating event"). The event tree "top events", whose successes and
failures define the different possible scenarios, are based on the generic safety functions defined in (Siu
et al 1995). The initiating events were identified using a variety of methods, including master logic
diagrams, FMEA, review of past studies, and review of past events. The initiating events were grouped to
keep the analysis tractable; grouping was performed based on considerations of accident magnitude and
recoverability. The full set of initiating events considered is shown in Table 1-1. (Note that these initiators
are defined in terms of LNG releases instead of the root causes of the releases.)

In the model analysis phase, accident scenarios leading to onsite ignition or offsite release were
identified using the event trees constructed in the previous phase. Qualitative arguments concerning the
likelihood of failure events and pairwise comparison of scenarios were then employed to identify the
scenarios likely to dominate the risk from a given initiating event. Additional qualitative arguments based
largely on accident phenomenology, event timing, and magnitude were then made to prioritize these
potentially dominant scenarios.




1.4 Summary of Results

The key results of this study are as follows.

. Sixteen potentially risk significant scenarios leading to an onsite fire or explosion and eight
potentially risk significant scenarios leading to a large offsite release have been identified (see
Tables 1-2 and 1-3). A number of differences in the operational practices and siting of the
three facilities visited can affect the likelihood and consequences of these scenarios and need
to be addressed (see below).

. Of the four safety issues raised in the Hunt memo, available data shows that two, the
possibility of unconfined vapor cloud fires/explosions and the adverse effects of direct
exposure to LNG vapor, are credible and of potential concern in this study. Additional study
is needed to determine the quantitative risk significance of these issues. The other two issues,
structural failure due to LNG exposure and the physical effects of a rapid phase transition of
LNG in water, appear to be of lesser concernto the refueling station.

Table 1-1. Initiating events treated in analysis.

Description Identifier

LNG release due to construction accident, isolable CAl
LNG release due to construction accident, unisolable CAU
LNG release due to external event EE
Hose failure HF
Driveaway _ OD
Filling error OF
LNG release due to maintenance error OM
Pipe failure, isolable PFI
Pipe failure, unisolable PFU
Seal failure, isolable SFI
Seal failure, unisolable SFU
Storage tank failure ST
Truck fuel tank failure TTF
Tanker truck tank failure TTT
LNG release due to vehicular accident VA
Valve failure VF




Table 1-2. Potentially dominant scenarios: large LNG release onsite.

Initiating
Event Scenario Description
CAI Isolable release due to construction accident, guaranteed failure of early recovery efforts,
ignition, failure of late recovery efforts
CAU Unisolable release due to construction accident, guaranteed failure of early and late recovery
efforts, ignition
EE Release due to external event, failure of early detection, guaranteed failure of early and late

recovery efforts, ignition

OD Driveaway, failure of early recovery efforts, ignition, failure of late recovery efforts

OF Release due to error during tank filling process, failure of early recovery efforts, ignition,
failure of late recovery efforts

OM Release during maintenance due to error, failure of early recovery efforts, ignition, failure of
late recovery efforts

oM Release during maintenance due to error, failure of early detection, guaranteed failure of early

recovery efforts, ignition, failure of late recovery

SFI Isolable seal failure, failure of early detection, guaranteed failure of early recovery efforts,
ignition, failure of late recovery efforts

SFU Unisolable seal failure, guaranteed failure of early and late recovery efforts, ignition

ST Storage tank failure, guaranteed failure of early and late recovery efforts, ignition

TTF Truck fuel tank failure, guaranteed failure of early and late recovery efforts, ignition

TTT Tanker truck tank failure, guaranteed failure of early and late recovery efforts, ignition

VA Release due to vehicular accident, guaranteed failure of early and late recovery efforts, ignition
VFI Isolable valve failure, failure of early recovery efforts, ignition, failure of late recovery efforts
VFI Isolable valve failure, failure of early detection, guaranteed failure of early recovery efforts,

ignition, failure of late recovery efforts

VFU Unisolable valve failure, guaranteed failure of early and late recovery efforts, ignition




Table 1-3. Potentially dominant scenarios: large LNG release offsite.

Initiating
Event Scenario Description
EE Release due to external event, failure of early detection, guaranteed failure of early and late
recovery efforts, failure of containment
oD Driveaway, failure of early recovery efforts, failure of late recovery efforts, failure of
containment
OF Release due to error during tank filling process, failure of early recovery efforts, failure of late
recovery efforts, failure of containment
OM Release during maintenance due to error, failure of early recovery efforts, failure of late
recovery efforts, failure of containment ,
ST Storage tank failure, guaranteed failure of early and late recovery efforts, failure of
containment i
ITT Tanker truck tank failure, guaranteed failure of early and late recovery efforts, failure of 1
containment 1
VA Release due to vehicular accident, guaranteed failure of early and late recovery efforts, failure
of containment
VFU Unisolable valve failure, guaranteed failure of early and late recovery efforts, failure of
containment

The recommendations stemming from this study concerning refueling station design and operational
practices are as follows,

. Improvements should be made in procedures and training with respect to operational practices
(e.g., tank venting, use of grounding wires, use of personal protective equipment), improper
responses to alarms, and the performance of maintenance.

. Station designs should account for: a) the possibility of LNG leakage along unexpected
pathways (e.g., past seals) to enclosed spaces, and b) the possibility of complete LNG
inventory losses. For example, methane detectors should be provided in all enclosed spaces,
facilities should be designed to prevent the buildup of methane in all enclosed spaces
(assuming a leak), and of appropriately sized bund walls completely surrounding the main
LNG storage tank(s) should be provided.

. The dissemination of best practices among stations should be strongly supported.

These recommendations are based on field observations at three different LNG refueling stations and
on information gathered from a number of papers and reports. To ensure that these recommendations are
applicable to the range of refueling stations across the country, and to better define the degree of risk
associated with the operation of these stations, the following studies are recommended.

. Additional facilities should be visited; the observations from these visits should be integrated
with the results of this study.




. An in-depth review of LNG accident/event reports (case studies) should be performed to:
(a) provide a stronger link between experiential data and the failure scenarios identified in the
risk assessment, and (b) identify historical failure mechanisms which are less likely or no
longer relevant, due to advances in codes and standards, construction practices, operational
practices, and so forth.

J A detailed review on post-1978 experimental data relevant to predicting LNG hazards should
be performed to provide a more definitive picture of what is known concerning LNG
dispersion and ignition under realistic accident conditions. This is needed to determine the
risk significance of the two Hunt memo issues of potential concern (i.e., unconfined vapor
cloud fires/explosions and direct exposure to LNG vapor).

Additional discussion on these insights and recommendations is provided in Section 5.
1.5 Overview of Report

Section 2 of this report describes typical LNG refueling station system design and operational
characteristics, as observed in the three site visits performed in this study. Section 2 also discusses relevant
industry experience and reports concerning LNG accidents. Section 3 discusses the qualitative risk
assessment; it presents the methods and assumptions used to obtain the results shown in Tables 1-2
and 1-3. The section concludes with a summarization of station-specific features observed in the site visits
which are relevant to the risk assessment results. Section 4 summarizes currently available information on
LNG behavior under normal and accident conditions, and addresses issues identified in the GAO study and
the Hunt memo. Section 5 provides a number of concluding remarks and recommendations. Details
underlying the analysis (e.g., an FMEA for a refueling system, initiating event models, event trees, accident
scenarios) are provided in Appendices A-D.




2. SYSTEM CHARACTERISTICS

This section describes general design and operational characteristics of LNG refueling stations. This
description is based on visits to three separate facilities. Facility Number 1 is a temporary, restricted
access, remotely sited refueling facility servicing a privately owned and operated fleet of buses and utility
vehicles. Both LNG and compressed natural gas (CNG) fueled vehicles are serviced. The main LNG
storage tank has a 13,000 gallon capacity. A permanent refueling station 1s being built nearby, but is not
included in this analysis. Facility Number 2 is a publicly accessible self-service refueling station which
services both LNG and gasoline fueled vehicles. It used a 10,000 gallon parked trailer tank for the LNG at
the time of our visit. The station is located in a semi-rural site (the nearest houses—trailers and factory
built homes—are about 200 feet away). Facility Number 3 is a restricted access combined LNG/CNG
facility servicing a fleet of public transit vehicles. It has three 20,000-gallon storage tanks and has an
urban location.

To provide a perspective on the safety characteristics of LNG and LNG handling, this section also
discusses information on historical accidents involving LNG.

2.1 System Design

This section describes a typical LNG refueling system. Many of the details (e.g., the parameter
values) are derived from the system at Facility 1 (see Figure 2-1). Comments on variations in design are
provided as appropriate within the text. '

The basic system centers around a large storage tank of around 13,000 gallon capacity held at an
average pressure of 30 to 150 psig (many storage tanks operate at the 40 psig range). The LNG is
maintained at about -260°F at atmospheric pressure and about -128°F at 40 psig. The storage tank is
mounted on steel supports rather than buried underground. (Most petroleum fuel tanks are buried,
apparently to protect them from the heat of hot days and fires at the site, and vehicle collisions.) A berm or
dike (either metal, concrete, or carth) several feet in height is provided around the LNG storage tank as an
impoundment area in case there is a tank leak (see 49CFR193.2149). In such a case the berm is intended
to confine the liquid while it vaporizes, and to ensure that the vapor rises in the immediate area of the tank.

The storage tank is double walled, with a stainless steel inner tank that withstands cryogenic
temperatures, and an outer wall of mild steel that cannot withstand cryogenic temperatures. Both the inner
and outer vessels may use stiffening rings to give structural strength. The inner tank is supported or
suspended inside the outer vessel using low thermal conductivity materials such as stainless steel. The tank
annulus is evacuated to low pressure (on the order of 10° Torr) to reduce convective and conductive heat
transfer from the ambient temperature outer vessel to the inner vessel. Some form of solid insulation, such
as layers of foil sheeting (multilayer insulation) or perhaps granular pearlite (older technology), is used in
the annulus to retard radiant heat transfer from the outer vessel to the inner vessel walls. The storage tank
nner vessel is protected by pressure relief valves (usually set at 110% of design pressure) and rupture disks
(usually set at 120% of design pressure) in case of overpressure. The annulus is also protected against
overpressure by a rupture disk that opens at a pressure level of perhaps 5 to 7 psig. This protection
prevents inner vessel buckling if the annulus is pressurized. '

A thermally insulated pipe from the storage tank connects to a smaller volume pressure tank
(300 gallons in one facility; 500 gallons in another). The pressure tank is similar in design to the storage
tank; it has a vacuum insulation annulus and pressure relief protection. The pressure tank houses a
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submerged centrifugal pump. The pump keeps the saturated LNG in the pressure tank at a high enough
pressure (¢.g., under 200 psig) to fill a vehicle fuel tank, which usually operates between 110 and 180 psig.
(Note that the vehicle fuel tank relief valves at facility 1 are set at about 235 psig—vent to vehicle stack—
and 350 psig—vent to vehicle fuel tank compartment. If a high pressure pump is selected, scenarios where
the pump pressurizes the pressure tank past the setpoint of the vehicle’s first relief valve may be possible.
Generally, the pressure pumps have only a 60 to 85 psi differential pressure.) Refueling flow rates are up
to 50 gallons/minute; to refill a vehicle can require on the order of 4 minutes dispensing time. The vehicle
LNG tanks at Facility 1 are kept over 10% full to avoid completely emptying the tank; the remaining LNG
keeps the tank at cryogenic temperatures. If the tank warms to room temperature, it is called a 'hot tank',
and must be recooled to cryogenic temperature by refilling with LNG; much boiled LNG is vented in this
cooldown process; fortunately the time to warm an empty tank can be long (perhaps a day). If the refueling
station also services CNG-fueled vehicles, the boiled LNG may be routed to the compressors of the CNG
fueling system (instead of venting to the atmosphere).

Pneumatic or solenoid operated flow control valves are used between the storage and pressure tanks.
From the pressure tank, valves control flow to the vehicle fill line. There is also a reverse flow check valve
in this section of piping to stop any flow from the vehicle tank to the pressure tank. The flexible metal fuel
transfer hose has a special nozzle fitting with a two-handle positive locking clamp and a pintle-operated
flapper valve so that the fill line must be connected to a vehicle before LNG can flow past the valve and
into the vehicle fuel fill line. The vehicle fill line also has an anti-reverse flow valve. Operators can use a
small diameter vent line to purge gas from the vehicle fuel tank ullage (the space above the liquid). This
process reduces the tank pressure and can speed up the refueling process. The vented natural gas is routed \
up the small stack that protrudes on the top of the vehicle. \

From the pressure tank, a pipe routes a small portion of LNG to a vaporizer that boils the LNG to
saturated vapor conditions in a finned vaporizer attachment which uses heat from the ambient air. This
type of vaporizer is called an ambient vaporizer. The boiled natural gas is returned to the ullage of the
station’s storage tank to maintain its pressure as the liquid level in the tank lowers during vehicle fueling
operations.

Other valves are used for filling the storage tank, for isolating tank instrumentation, for taking LNG
samples (to test for composition and purity), and for pressure relief protection of any pipe that could suffer
LNG 'lock in'. ('Lock in' is a term that means the trapping of a cryogen in an enclosed volume such as a
pipe section between two closed valves. If the liquid boils without pressure relief, the trapped volume of
LNG will increase in pressure up to 9000 psig in warming from —260°F to +70°F.)

2.2 Station Operations

2.2.1 Station Refueling

Since none of the facilities visited have natural gas liquefaction facilities on site, replenishing the
LNG inventory in the storage tank is accomplished by deliveries from a tank truck. The rate of delivery
naturally depends on the station usage; for the facilities visited, the delivery rates vary from around once
per day to once or twice a month. The transfer process nominally proceeds as follows (see Figure 2-1).
This description is based on discussions with facility #1 personnel and review of station design diagrams.

At Facility 1, the tank truck uses a flexible hose for the bottom fill operation, the liquid hose
connected at connector FC-4. (Valve V-25 must be opened. Note that an alternative is to top fill the




storage tank through connector FC-1.) The tank truck centrifugal pump is used to pump LNG into the
system. The tank truck pressure is on the order of 40 psig, so pumping is needed to pressurize the LNG to
system pressures. The transfer generally is performed using 4 inch diameter lines that can provide ﬂow in
the 400 to 500 gpm range. Fuel transfer is metered when leaving the tank truck.

With proper flow velocity, there is adequate mixing of the new liquid emerging from the bottom
sparger with the existing liquid in the stcrage tank, so LNG stratification by temperature (i.e., rollover)
concerns are avoided. As the liquid level increases, the storage tank gas pressure increases and vapor
collapse occurs.

Depending on the facility, fuel delivery is performed by the delivery truck driver or by a dedicated
facility refueling technician. In either case, the fueler is supposed to wear personal protective equipment
(PPE) consisting of cryogenic gloves, shield glasses/face shields, and, perhaps, a rubber apron. Remotely
operated emergency shut off valves are provided to stop flow in case of a hose breach or loss of hose seal.
Tank trucks are bonded to dissipate static electric charge buildup when fluid flows. A bonding wire to the
system and a grounding wire to the earth may be provided to ensure proper dissipation of static electricity
for the fuel transfer.

2.2.2 End User Vehicle Refueling

As in station tank filling, end use vehicle refueling requires both filling of the fuel tank with liquid
and venting of the tank ullage. Depending on the facility, refueling can be performed by the vehicle driver
or by a dedicated technician. At Facility Number 2 (the self-service station), the nominal procedure is as
follows.

The driver pulls his or her vehicle up next to the LNG island, turns off the engine, sets the parking
brake, and gets out. The driver then authorizes the refueling at a keycard reader about 8 feet from the
pump, dons personal protective equipment (gloves, safety glasses, apron), opens the fuel door on the
vehicle, attaches the grounding wire, removes the nozzle from the pump, attaches it to the fill connection,
and then stands back to wait while refueling occurs.

As part of the automatic refueling process, the Facility 2 system uses the (single) refueling hose to
alternately vent and fill the vehicle fuel tank. It has a 30 to 45 second cycling time before starting to vent
or fuel. In addition, the system automatically vents the nozzle and hose before and after use, so that no
LNG is present during attachment and disattachment of the nozzle. The system will also automatically try
to cool down a warm tank, that is, it will cycle through a vent, fill, vent pattern. The system will go
through this cycle 3 times before it automatically turns off. Sometimes the system interprets the pressure
spike when LNG enters a warm tank as an indication that the tank is full and thus a tank may not fill all the
way. In such a situation, to finish refueling, the driver has to use the keycard to reauthorize fueling.

Upon completion of refueling, the driver detaches the nozzle and grounding wire, replaces these
within the fuel pump barriers, closes the fuel door, takes off the PPE, gets in the vehicle and drives away.

This same basic process is also used at Facilities 1 and 3, although there are some differences due to:
(a) system design differences (e.g., Facility 1 does not require automatic venting), and (b) the use of trained
fueling technicians at Facility 3. The technicians typically work in shifts and are supervised. As compared
with drivers who refuel their own vehicles, they might be expected to better adhere to procedures and safety
regulations and avoid short-cuts (because of the nature of their training and supervision). We note that
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deviations from this expectation were observed during sample site visits (e.g., involving the use of
grounding wires). '

Some safety-relevant variances from the nominal procedure observed by or related to the authors
during this study's site visits are as follows:*

. Engines left running during refueling

. Parking brakes not set

o Lack of use of PPE

. Lack of use of grounding wire

. Manual operation of fuel tank vent valve to cool off the fuel tank and speed up refueling

. Failure to remove hose followed by driveaway. Note that hose breakaway sections are a
routine component at the stations visited. These devices limited the amount of LNG lost in the
driveaway events.

Regarding the use of grounding wires, it is not clear that these are necessary for safe operation of the
system. (Some industry professionals question whether there is any risk since they have not seen static
electricity buildup or arcing for non-grounded systems.) However, situations where they are
administratively required but ignored by users may reflect a poor general attitude towards safety.

Manual operation of the fuel tank vent valve was observed at one of the facilities visited. This was
done by drivers to avoid having to wait for the system to automatically cycle or to avoid having to
reauthorize fueling (a lengthy process). No formal instructions or even encouragement had been given on
the use of vent valves; the process had been spread by word of mouth. As a result, misuse occurred. Some
drivers used the vent valve to excess (just to make sure the system wouldn’t cycle to venting); considerable
quantities of LNG (condensed vapor cloud several feet in diameter) were observed coming out of the truck
vent pipes. Some drivers used the vent valve at the wrong time (resulting in no effect and no change in
system performance); they used it because they had heard it sped things up, but they really didn’t
understand what they were doing.

Driveaway events, in which the vehicle is driven away while the fill line is still connected and which
are relatively common events at conventional fueling stations, have not yet been observed at Facility
Numbers 1 or 2. They have been observed at Facility Number 3. The hose is provided with a coupling
designed to break if a driveaway occurs. Isolation valves are also provided to prevent significant fuel loss
from the station or from the vehicle. Events involving vehicle driveaway with the grounding wire still
attached have been observed at Facility Number 2; these have resulted in essentially no damage to the
grounding wire clamp or the vehicle.

a. The variances on this list are not necessarily common occurrences; however, they have been observed by this study's authors
or by station personnel interviewed by the authors,
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2.2.3 Other Activities

The variety of non-refueling activities taking place at the refueling station depends on the roles
played by the station. For example, Facility Number 1 is essentially dedicated to LNG/CNG vehicle
refueling; other vehicle activities (e.g., vehicle maintenance) occur well away from the refueling island. At
Facility 2, the LNG station is co-located with a gasoline station/convenience store. However, the

" convenience store personnel do not operate the LNG station. The maintenance shop is located about five
miles from the station. Facility Number 3 is a full service LNG/CNG refueling facility; the maintenance
shops are onsite.

Maintenance of the station systems depends on the expertise and commitment of the station
personnel. Station personnel were unaware of written procedures, checklists, or worksheets for operations
or maintenance. Preventative activities can involve regular walkdowns of the system and regular
examination of system parameters monitored by the computer. Other maintenance activities include
dealing with valve stem packing leaks (tightening) and nozzle leaks (replacement). Lessons are often
learned by trial and error; facilities with years of experience (e.g., Facility Number 3) may have smoother
operations.

2.2.4 Incident Response

The LNG fueling facilities visited have methane detectors and manual emergency shutdown devices
that trigger remote alerts to surveillance personnel (on site or nearby). Designated staff affiliated with the
fueling facility are trained to respond to alarms. Their responses may range from simply resetting the
system following an erroneous shutdown, to using special fire extinguishers (e.g., Purple K—potassium
bicarbonate) to put out small fires. For larger incidents, emergency response teams will need to be called
m.

Fire departments local to LNG stations may have been specifically trained to contain a spill or fire.
Since water and traditional extinguishers can exacerbate an LNG fire, response teams need to be properly
prepared. Training programs for fire emergency management are provided by several organizations across
the country. To aid firefighters, LNG stations must display a placard designed by the NFPA. The placard
is required by U.S. DOT regulations. The placard is a four-part diamond showing the type of hazard being
faced.

Responses to incidents will vary frem facility to facility. Some potential concerns with incident
response include:

. Manual overriding of alarms or emergency shutdown signals
. Possibly delayed responses to emergencies
. Lack of training/procedures for a major leak.

Regarding the first issue, the emergency shutdown buttons have been accidentally actuated a number
of times at one of the facilities visited, due to their poor location. (One such accidental actuation was
observed during the site visit.) The station users have been informed that they may use the reset button
once; if the system trips off again, they are to leave the station and call the designated response personnel.
Such a response procedure, while understandable in motivation, may lead to an incorrect action in the event
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of a real emergency. (Operator neglect and/or override of alarms due to previous false alarms has been a
prime contributor to a number of significant oil spiil events, as described by Siu et al, 1995.)

Regarding the second issue, one of the sites visited is monitored remotely. However, the designated
response personnel may be 5 to 20 miles away, depending on the time of day and the activities at the
station. Clearly, delays in notifying the response personnel and in getting these personnel to the site may be
long enough to preclude effective action (in the event of a major incident). There have been times when an
emergency shutdown has occurred and the station alert signal (a flashing red light) has been on but the
response personnel were not notified.

Regarding the third issue, two of the facilities visited appear to have no written procedures for
emergency response and no equipment such as protective suits or self-contained breathing apparatus. The
staff at one facility, when asked what they’d do in response to a major leak, candidly replied, “Run.”

2.3 Industry Experience

This section summarizes information collected on LNG refueling station events and on events
potentially relevant to LNG refueling stations. It also discusses information collected from a number of
safety studies relevant to this study.

2.3.1 Experiences at Refueling/Maintenance Facilities

Based on interviews conducted during the site visits, none of the facilities visited have experienced a
major LNG accident. Discussions with industry representatives showed that there have not been any major
LNG accidents at refueling stations. Some of the common events experienced include system leaks (e.g.,
valve stem packing leaks and fuel transfer nozzle leaks) and driveaways. One facility visited had
experienced a spill of 200 gallons of LNG; this involved a vehicle fuel tank union coming loose. The spill
pooled underneath the vehicle but eventually dissipated into the atmosphere without igniting. There was no
collateral damage to the vehicle or its tires.

One disadvantage of LNG (as compared with CNG) is the current inability to odorize the fuel.
Odorant may not be a benefit at a refueling site where small leaks will regularly occur, but odorant in a
vehicle fuel system would be an advantage for detection by the operator or passengers. The LNG industry
relies on methane detectors since odorant is not practical. Because the unodorized vapors are difficult for
humans to detect, gas leaks in confined areas are particularly dangerous. In 1993, technicians performing
maintenance on an LNG-fueled bus noticed a fuel leak. When they removed a floorboard to access the fuel
system, a significant amount of gas from vaporizing LNG accumulated in the bus compartment. The on-
board methane detection system was triggered, and shut down the bus as designed. The technicians,
however, decided to override the system and attempt to drive the bus out of the maintenance garage. When
the ignition switch was turned, a circuit breaker arc ignited the accumulated methane inside the bus,
resulting in a small explosion. The technicians were not injured but the bus windows were destroyed.

This event provides further illustration of the potential seriousness of the problem discussed in
Section 2.2.4 and by Siu et al (1995): neglect and/or overriding of alarms, which may be habitual and even
sanctioned, sometimes leads to serious consequences. It should be noted that following this event, several
preventative measures were implemented at the company that owned the bus. Self-venting roof hatches
were installed in all LNG buses. Vehicle equipment inspection and maintenance programs were formalized.
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Training and procedures were implemented for safe practices. These measures have been duplicated by
other programs.

Other incidents reported by the industry (NGV 1996) have involved minor injuries due to cryogenic
liquid burns from LNG during refueling and superficial burns from methane vapor flash fires during fuel
system dismantling. In one case, an untrained worker received cryogenic burns to his hands while handling
the LNG refueling components. Another instance resulted in a worker's beard being singed when methane
was released from a dismantled LNG fuel system and was ignited.

A risk assessment has been performed for indoor refueling of mass transit buses (SAIC 1990).
Although the study deals with diesel and CNG rather than LNG, it is of interest because it addresses
refueling issues. Note that CNG tanks are not insulated, whereas LNG tanks are double-walled steel
cryogenic storage vessels. Normally the vacuum insulation has a temperature difference of about 200°K
and maintains the fuel as a liquid for several days. During a fire the temperature difference would be as
much as 1200°K, shortening the hold time by a factor of about six. Industry tests have shown that short-
duration (10-15 minute) fires do not increase the fuel pressure.

The five postulated accident scenarios compared in the SAIC study were:

L. A CNG bus with one-quarter full tanks is brought in for maintenance and is exposed to a fire
in the shop (careless disposal of smoking materials or an industrial fire).

2. A bus with full CNG tanks is brought in for maintenance and is exposed to the same fire
postulated in scenario 1. This bus vents much more gas due to full tanks.

3. A bus is refueled inside a dual fuel shop (CNG and diesel fuel present). The bus leaks CNG

and an ignition source is present.

4, A CNG bus is refueled inside a dual fuel shop (CNG and diesel fuel present); the bus is
segregated from the diesel portions of the shop. The bus leaks CNG and an ignition source is
present,

5. The same scenario as number four but with a dedicated indoor CNG refueling area.

Scenario 3 was found to be the most likely. The parameters most affecting the probability of this
and the other scenarios were the human error and relief valve failure rates. (The analysis used generic
failure rates from a variety of sources—apparently none of which include LNG or CNG industry
experience—when quantifying the likelihoods of the scenarios.) The study made the following
recommendations:

. Develop redundant safety systems to keep refuelers from introducing ignition sources
. Ensure that operators are regularly trained and tested

. Develop faster responding gas detection systems

. Ensure proper maintenance of redundant ventilation and exhaust fans

. Establish uniform indoor refueling standards and strictly enforce these standards.
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Attempts to collect raw data on events at gasoline service stations and truck stops have been
unsuccessful to date. No gasoline station operating experience reports or data compilations were found in
the literature. Contact with the US Department of Transportation (USDOT) revealed that they do not
collect these data. A detailed search for events (e.g., through reviewing data collected by fire departments
or insurance companies, or through reviewing newspaper accounts) was judged to be beyond the scope of
this study.

2.3.2 LNG Truck Tankers

One refueling station accident of potential concern involves LNG truck tankers, as these carry
considerably more LNG (on the order of 10,000 gallons) than a typical LNG fuel tank (on the order of
200 gallons). While this study has not identified any information on significant truck tanker accidents at
refueling stations (see the previous section), information is available on truck tanker highway accidents.

LNG truck tanker highway accidents are not common events, due to the relatively low amount of
volume transported. The GAO report cites 11 accidents occurring over the time period 1971-1977 (GAO
1978). Of these accidents, one involved the release of about 20% of the truck tank inventory and another
involved the release of about 5%. The rest of the accidents apparently had little or no release. None of the
11 accidents involved ignition of the LNG (although one of the events involved a gasoline fire). The GAO
report does report a number of propane tanker truck accidents that did lead to release and ignition.

A continuation of this risk assessment would be to investigate the transportation of other cryogenic
fluids, such as nitrogen, oxygen, and hydrogen, to determine the safety of highway transport. Initial review
of the USDOT transportation incident log indicates that there have been few cryogen transport accidents.

A quantitative risk assessment has been performed in 1991 on the transport of propane, gasoline,
ethyl alcohol, and hydrogen on selected highway segments (Kazarians 1997). In that study, the overall
truck accident frequencies range from 6 x 107 per vehicle-mile-year to 1 x 10° per vehicle-mile-year, based
on route-specific data. The conditional probabilities of spills given an accident, of ignition (immediate and
delayed) given a spill, and explosion given delayed ignition are shown in Tables 2-1 through 2-4. (These
probabilities reflect an outdoor environment; different probabilities are used for accidents in tunnels.) The
probabilities are based either on experiential data or engineering judgment; the study uses the results of
earlier transportation risk studies on gasoline (Rhoads 1978) and propane (Geffen 1980) to provide some of
the bases for its assumptions.

Table 2-1. Conditional probabilities of spills, given a truck accident.

Fuel Small Spill* Large Spill* Total
Propane 0.075 0.025 0.10
Gasoline 0.09 0.07 0.16
Ethyl alcohol 0.09 0.06 0.15
Hydrogen 0.06 0.02 0.08

(Kazarians 1997)

a.  "Small spills" involve 10% of tank inventory, "Large spills" involve 100% of tank inventory.
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Table 2-2. Conditional probabilities of immediate ignition, given a spill.

Fuel Small Spill* Large Spill*
Propane 0.25 0.75
Gasoline 0.15 0.50
Ethyl alcohol 0.20 0.60
Hydrogen 0.50 0.90

(Kazarians 1997)

a. "Small spills" involve 10% of tank inventory, "Large spilis" involve 100% of tank inventory.

Table 2-3. Conditional probabilities of delayed ignition, given a spill.

Fuel ~ ____Small Spill® Large Spill®
Propane 0.68 023
Gasoline 0.04 0.05
Ethyl alcohol 0.04 0.04
Hydrogen 0.45 0.09°

(Kazarians 1997)

a. "Small spills" involve 10% of tank inventory, "Large spills” involve 100% of tank inventory.

b. Total contribution from scenarios involving: a) ignition when the vapor cloud edge is over the population edge, and b)
ignition when the vapor cloud center is over the population center.
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Table 24. Conditional probabilities of explosion, given ignition.

Fuel All Spills
Propane 0.33
Gasoline —
Ethyl alcohol —
Hydrogen 0.50

Kazarians, 1997

a. "Small spills” involve 10% of tank inventory, "Large spills" involve 100% of tank inventory.

This fuel transport risk assessment does not analyze LNG truck tanker accidents. The limited GAO
data on LNG truck accidents discussed above indicate that the LNG spill probability may be less than or
equal to the propane spill probability (where a release occurs in roughly 10% of all reportable tanker truck
accidents and a large release occurs much less frequently). The physical characteristics of LNG tanks (low
pressure, stainless steel, double walls®) also provide an argument that the LNG spill probabilities should be
lower than those for propane. (A similar argument is used in the risk assessment to reduce the large spiil
probability for ethyl alcohol tank trucks.) However, this argument cannot as yet be supported by the data.

Regarding ignition, the fuel transport risk assessment does not strongly distinguish between the
various fuels considered with respect to immediate ignition. (The ignition probabilities do not vary by
orders of magnitude.) On the other hand, it states that gasoline and ethyl alcohol do not "demonstrate much
vapor dispersion” and therefore employs order of magnitude lower delayed ignition probabilities for these
fuels. It should be emphasized that since the report's ignition probabilities appear to rely heavily on
engineering judgment; further investigation is needed to determine if these probabilities accurately reflect:
(a) current event experience, and (b) the appropriate ignition probabilities for LNG.

More recently, GRI (1994) has published a report on safety issues of LNG fueled vehicles. Areas
with higher cryogenic leakage risk are differentially cooled sections, areas where hose or seal chafing can
occur, areas where pipes or hoses could be stressed, sections that trap cryogens (cryogens boil and build
pressure), and areas near relief valves. The report observes that LNG spills tend to occur in systems that
are initially being cooled down, during fuel transfers, and during LNG sampling. LNG releases can lead to
fires and vapor cloud deflagrations. The report also points out that breathing cold vapors from LNG
evaporation or boiling can damage the lungs.

b. Note that the double wall design provides an additional defense against immediate releases due to impact. However, it does
not provide complete redundancy; if the outer wall fails, air will leak in and the LNG will heat up, boil, and eventually escape
out of the tank relief valves.
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2.3.3 Other LNG Experience

This section discusses experiences with LNG and other cryogens used for automotive fuel. Since
LNG has been used for a fuel gas (i.¢., household use in stoves, water heaters, and furnaces; industrial use
as a heat source), there is a breadth of experience in the literature. Two notable events involving LNG are
the Cleveland tank failure and explosion in 1944 and the Cove Point leak and explosion in 1979.

In the Cleveland event (October 20, 1944), a cylindrical storage tank owned by the East Ohio Gas
Company cracked and failed, releasing 144,000 ft* (10° gallons) of LNG. Most of the LNG vaporized and
dispersed, but some LNG overflowed the bund wall and entered the surrounding storm sewers. (The wall
had been designed assuming that the LNG release would be relatively slow, resulting in a slowly rising pool
level and significant evaporation. Thus, it was not sized to contain the entire tank inventory, nor was it
designed to prevent overflow by the LNG wave resulting from the rapid, catastrophic tank failure.) The
dispersing gas ignited from multiple ignition sources and the flames ignited gas in the sewers. The fire
caused failure of the supports of another tank, whose inventory was added to the fire. Flames over
2,800 feet high were reported, and there was destruction over a quarter mile radius from the cylindrical
tank. 128 people died in this event and hundreds more were injured. Property damage was estimated to be
over $6.8M in 1944 dollars (BOM 1946).

Lessons from this event include: (a) the need to site large quantities of LNG more remotely, (b) to
not use 3.5% nickel steel for tanks, (c) to build higher bund walls, and (d) to preclude ignition source
contact with flammable gas clouds (Zabetakis 1967).

In the Cove Point accident (October 6, 1979), a submerged pump for LNG transfer began leaking
past an electrical power wire penetration. Natural gas vapors leaked into a conduit and accumulated in an
electrical junction box located in a switchgear building some distance away from the leak. Although the
site had methane detectors, there were nore in the building. When plant personnel performed a routine
operating check in the switchgear room, they noted leaking vapor. Two operators decided to remove power
from the pump so that it would not start and make the leak worse. The operators opened the motor starter
and an electrical arc from the control circuit apparently ignited the methane gas, killing one man and
injuring the second. There were no offsite consequences. As a corrective action, ventilated cabinets were
installed to route any gas to a non-hazardous location and disperse any leaks to the atmosphere (PAR
1980).

This event, while less severe than the Cleveland accident, is notable because the natural gas vapors
propagated along an unanticipated pathway into a confined space. Another gas leakage event occurred in
an LNG plant in Montreal in 1972. Here, the gas leaked through an air line into the plant control room and
ignited (Van Horn and Wilson 1977). Design guidelines were revised after the Montreal and Cove Point
accidents to preclude future occurrences.

A report on LNG plant operating experiences gives insights into the types of events and accidents
that have occurred in peakshaving plants. These plants deliver natural gas fuel when needed to augment
the natural gas supply to meet the peak usage demand for residential and commercial usage. Peakshaving
plants store LNG during seasons of low demand and distribute gas to the pipeline distribution system
during seasons of high demand. Some of the components used at these facilities are similar to those used in
refueling stations. A major difference is that a peakshaving plant handles and vaporizes very large
quantities (up to a billion cubic feet of gas per day) of LNG. Another difference is that pipeline quality gas
stored at a peakhaving plant contained higher percentages of ethane and propane than the fuel used for
LNG vehicles.
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Reviewing peakshaving plant experiences can give insights into component faults. The off-normal
cvents that have occurred at peakshaving plants are: cold spots in storage tanks due to insulation settling,
failure of tank foundation heating systems, vaporizer fires, small leaks from valve stems, piping gasket
leaks, pump leaks, gas sensor false alarms (due to high winds, and sensor deterioration), false alarms of
thermal radiation sensors, damaged thermal sensors during venting operations, fire protection system
freeze-up due to cold weather, a few major leaks of gas (over 100,000 cubic feet of gas), electrical
equipment fires not involving natural gas, and a few natural gas fires involving vaporizers (Welker and
Schorr 1979). Due to the facility differences discussed above, some of the phenomena discussed for
peakshaving plants, e.g. vaporizer fires or tank foundation heating system failures, are not pertinent to
LNG refueling stations. However, these experiences do indicate a need for routine maintenance of gas
sensors, seals and the rest of the LNG confinement boundary.

It is important to note that some of these events are not directly relevant to refueling stations. For
example, the refueling stations considered in this study do not use large foundation tanks for storage.
Instead, they use pressure vessel tanks mounted above ground. As another example, the vaporizer used at
peakshaving plants to quickly heat up LNG employs a combustion process and undergoes high thermal and
pressurization stresses. The vaporizers for refueling stations are passive ambient-temperature vaporizers
and deal with small quantities of LNG. The vaporizers in refueling stations are used to bring the liquid
close to saturation, rather than to produce large quantities of room temperature vapor.

Finally, Table 2-5 lists a number of accidents involving the transportation and handling of LNG.
This table includes the 11 LNG trucking accidents referred to in Section 2.3.2. Many of the other accidents

Table 2-5. Additional events involving transportation/handling of LNG.

Methane Progress, December 25, 1964

Fire at the forward vent riser ignited by lightning during unloading at the receiving terminal resulted in a
six-hour delay in unloading. Prompt crew reaction extinguished the flaring without damage. (Frondeville
1977)

Jules Verne, Voyage 2, 1965

During loading, LNG tank was overfilled, causing a liquid spill from vent riser. A foreign object jammed
in the float track prevented proper indication of liquid level by liquid level gage. The tank cover and a deck
stringer plate fractured. (GAO 1978), (Frondeville 1977)

Methane Progress Voyage 14, May 1, 1965

At disconnection of loading arms, LNG spilled from ship’s crossover line. Seating of the liquid leading
valve was prevented by a piece of a failed Teflon valve facing that lodged between valve disc and seat. The
drip pan overflowed due to water being projected onto it. A minor deck plating crack occurred. (GAO
1978)

Polar Alaska, November 19, 1969

During LNG loading at Kenai, Alaska, gas leaking was detected at the No. 1 cargo tank primary barrier on
the 71,500 m®> Gas Transport membrane LNG carrier. Invar strakes creased in numerous locations. Cable
trays broke loose and caused damage. The vessel continued in service without using the No. 1 cargo tank
and the damage was repaired at a later date. (Harris 1993)

19




Table 2-5. (continued).

Methane Princess, Voyage 182, May 30, 1971

Liquid nitrogen loading line relief valve opened and spilled liquid nitrogen through the combined vent line
onto the foredeck. Some cracking in deck plating occurred. Relief valve had been imporperly reset at
annual survey to a lower than specified pressure setting.” (Harris 1993)

Waterbury, Vermont June 25, 1971
A truck had a tire blowout, hit some rocks by the road, punctured a hole in the tank and spilled 20 %.
There was no fire and the remainder of the load was dumped. (GAO 1978)

Warner, New Hampshire August 28, 1971
The driver of a truck drove off the road due to driver fatigue. The truck overturned, cracking fittings on the
truck. There was a small gas leak, but no fire. (GAQ 1978)

North Whitehall, Wisconsin October 8, 1971
An LNG transport truck was in a head-on collision with another truck. There was a gasoline and tire fire,
but no loss of the LNG cargo. (GAO 1978)

Methane Progress, Voyage 193. October 31, 1971
A liquid nitrogen storage tank was inadvertently overfilled, causing discharge through the tank vent valve
and combined vent line onto the foredeck. Main and second deck plating were cracked. (Frondeville 1977)

Raynham, Massachusetts October 1973
An LNG truck sideswiped a parked car. The truck brakes locked and the trailer overturned. There was no
LNG cargo on board and no fire occurred. (GAO 1978)

Junction of Interstates 80 and 95, Fort Lee, New Jersey 1973
A driver could not negotiate a turn off. The resulting rollover demolished the tractor and caused $40,000
damage to the LNG trailer. No fire occurred. (GAO 1978)

Route 40, Hamilton Township, New Jersey February 18,1974
Faulty brakes on a truck caused a wheel fire. A check valve cracked and 5% of the LNG load leaked out.
The report is unclear whether the LNG ignited or not. (GAO 1978)

McKee City, New Jersey February 21, 1974
A loose valve on a truck leaked LNG during a transfer operation. (GAO 1978)

Massachusetts, July 16, 1974
A one-inch globe valve (nitrogen purge valve) was overpressured during cargo loading and spilled
approximately 40 gallons of LNG. The sudden pressure rise occurred when the cargo loading valve closed

because of a momentary electrical power interruption after generator switchover. The liquefied natural gas
cracked the canopy deck. (GAO 1978)

Chatanooga, Tennessee January 1976
A transport truck carrying LNG overturned due to an oil spill on an exit ramp. There was no fire. The
truck was righted and continued delivery of its cargo. (GAO 1978)
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Table 2-5. (continued).

Dalton, Georgia November 1975

The driver of a transport truck carrying LNG swerved to avoid a pedestrian, hit a guard rail and rolled
over and down an 80-foot embankment. There was $18,000 damage to the trailer, but apparently no fire.
(GAO 1978)

Pawtucket, Rhode Island September 16, 1976
A car hit an LNG trailer at the landing wheels, caused the trailer to overturn. There was no LNG loss or
fire. (GAQ 1978)

Connecticut Turnpike March or April 1977
An LNG truck was parked at the side of the turnpike with a blowout when it was hit in the rear by a tow
truck. There was no leak or fire. (GAO 1978)

Arzew, Algeria March 30, 1977

An LNG spill of 1500 m’ occurred at the Camel plant, attributed to the rupture of a aluminum-cast valve
body on a transfer line during the night. A plant operator was frozen to death, and the contingency plan
was put into action. The LNG cloud had dissipated at dawn without further casualty. (Frondeville 1977)

Waterbury, Connecticut July 1977
A “single wall” LNG trailer was hit in the rear by a tractor-trailer, knocking the axle off. In this case the
controls were under the tank. There was no loss of cargo. (GAO 1978)

El Paso Paul Kayser, June 29,1979

After taking avoiding action to prevent a collision in fog at 22:30 hours the 125,000 m* Gaz Transport
membrane LNG carrier ran on to rocks and grounded in the Straits of Gibraltar when loaded with

95,500 m® of LNG. The bottom shell and double bottom were extensively damaged over almost the full
length of the cargo spaces. The invar membrane was indented but remained liquid-tight. There was no
cargo spillage. The vessel was refloated on July 4 and on July 11 the transfer of the cargo of LNG to sister
ship El Paso Sanatrach was completed. The damaged ship was then gas-freed, inerted and towed to Lisbon
for temporary repairs. Later the vessel proceeded under her own power to the ships’s original building
yard at Dunkerque for full repair work. (Harris 1993)

LNG Taurus, December 12, 1980

The 126,750 m* Moss spherical tank LNG carrier grounded in strong winds at Mutsure anchorage, near
the end of a loaded voyage from Bontang, Indonesia to Tobata, Japan. Approximately 40 % of the double
bottom was breached and open to the sea. Severe weather conditions with gale force winds and 3 m waves
around the vessel hampered the salvage operations. Fuel from the bunkers was transferred to a barge and
the damaged ballast spaces were pressurized. The vessel was refloated on December 16 and then towed to
Tobata where the full cargo of LNG was discharged on December 18. (Harris 1993)

Tenaga Satu, June 1983

Cargo pump defects caused damage to the No. 1 cargo tank on the 130,000 m’ Gaz Transport membrane
LNG carrier. Approximately 110 m® of the invar primary barrier was renewed and patches fitted at
Yokohama, Japan in June 1984. (Harris 1993) '
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Table 2-5. (continued).

Ramdane Abane, February 9, 1984 ,

During the discharge of Algerian LNG at Montoir, France a cargo leak was noted through the No. 5 cargo
tank membrane on the 126,190 m® Gaz Transport membrane LNG carrier. The vessel was taken to the
roads for gas-freeing and inspection. Several suction manifolds were also found to be cracked. Repairs
were later carried out at St. Nazaire, France. (Harris 1993)

Isabella, June 14, 1985

A cargo valve failed on the 35,491 m® Gaz Transport membrane LNG cairier at the beginning of the LNG
discharge at Barcclona, Spain after a voyage from Skikda, Algeria. LNG from the No. 1 cargo tank
overflowed onto the main deck, causing severe cracking to the steelwork. The tank was discharged without
further incident. Extensive repairs were required resulting from the spill. (Harris 1993)

Tellier, February 15, 1989

Moorings broke on the 40,081 m® Technigaz membrane LNG carrier, due to 160 km/hr winds, during LNG
loading at Skikda, Algeria. Four terminal loading arms were damaged and LNG leaked to the main deck
causing extensive damage to the steclwork and upper primary and secondary barriers in the No. 3 cargo
tank. The vessel delivered LNG to Fos, France on February 16. Steelwork repairs were carried out at
Marseilles and the ship returned to service in June with one of the five cargo tanks out of commission.
Permanent repairs to the containment system were completed at Marseilles in October 1990. (Harris 1993)

a. This event does not involve LNG, but provides a representative failure scenario involving a cryogenic liquid.

in this table involve LNG tanker ships; they are included because: (a) some of the failure modes (e.g.,
overfilling, isolation valve failures, lightning strikes, high winds) appear to be generally relevant to a
refueling station, and (b) they show that more often than not, the consequences of the accidents are limited
in scope (e.g., some deck plate cracking).

Table 2-6. Nomenclature used in Figure 2-1.

Component ID Component Type Notes
FCV-103 Valve Pump inlet
FCV-104 Valve Pump vent
FCV-105 Valve Recirculation
FCV-106 Valve Saturation coil feed
FCV-107 Valve Dispensing

V-1 Valve Top fill

V-2 , Valve Hose drain

V-8 Valve Liquid phase
V-9 Valve Vapor phase
V-10 Valve LI-1 equalization
V-11 Valve Full trycock
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Table 2-6. (continued).

Component ID Component Type ‘ Notes
V-12 Valve Manual vent

V-13 Valve Isolation pump inlet
V-14 Valve Isolation pump vent
V-15 Valve Saturation isolation
V-16 Valve Saturation pressure
V-17 Valve Manual vent pump sump
V-18 Valve Dispensing drain
V-19 Valve Vacuum gauge tube
V-20 Valve Safety selector
V-21 Valve Evacuation

V-22 Valve Stack drain

V-23 Valve Auxiliary top fill
V-24 Valve Transport return
V-25 Valve Transport suction
V-26 Valve N2 purge

V-27 Valve Sample isolation
V-28 Valve Sample vent

V-29 ~ Valve » Sample purge

V-30 Valve Top fill isolation
V-31 Valve Vehicle fill isolation
V-32 Valve PSV-101A test
V-33 Valve PSV-101B test
V-34 Valve PSV-105B test
V-35 Valve PSV-105A test
V-36 Valve PSV-104C test
V-37 Valve PSV-104B test
CV-1 Check valve Fill

Cv-2 Check valve Saturation return
CV-3 Check valve Discharge
PSV-101A Safety valve Inner vessel
PSV-101B Safety valve Inner vessel
PSV-101C Safety valve Saturation pressure
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Table 2-6. (continued).

Component ID Component Type Notes
PSV-102A Safety valve Pump sump
PSV-102B Safety valve Dispense line
PSV-103 Safety valve Transport suction line
PSV-104A Safety valve Top fill line
PSV-104B Safety valve Top fill line
PSV-104C Safety valve Saturation return line
PSV-104D Safety valve Saturation return line
PSV-105A Safety valve Pump vent line
PSV-105B Safety valve Pump feed line
PSE-101A Rupture disk Inner vessel
PSE-101B Rupture disk Inner vessel
PSE-101C Rupture disk Outer vessel
PSE-102 Rupture disk Pump sump
E-101 Saturation coil —

F-1 Filter Transfer line
TC-1 Vacuum probe —

PDI-101 Liquid level indicator —

PDT-101 Liquid level transmitter —

M-1 Meter —_

P-101 Pump —

PI-101A Pressure indicator Inner vessel
PI-101B Pressure indicator Saturation
PI-102A Pressure indicator Pump Sump
PI-102B Pressure indicator Dispenser
PT-101A Pressure transmitter Inner vessel
PT-101B Pressure transmitter Saturation
TT-102 Temperature sensor —

TH-1 Transfer hose -

FC-1 Connection Top fill

FC-2 Connection Vehicle fill

FC-3 Connection Transport return
FC-4 Connection Transport suction
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Table 2-6. (continued).

Component ID Component Type Notes
C-1 Connection Sample cylinder
C-2 Connection Sample vent
C-3 Connection Sample purge
C4 Connection Vehicle vent
C-5 Connection N2 purge

0O Connection to vent stack —

N Vent to atmosphere —
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3. QUALITATIVE RISK ASSESSMENT

3.1 Introduction

This section documents the results of a qualitative risk assessment performed for a generic LNG
refueling station and summarizes the approach used to obtain these results. The objectives of this
assessment are to:

. Identify accident scenarios relevant to a broad spectrum of stations
® Determine which of these scenarios may be significant risk contributors.

Potential risk significance is determined through qualitative assessments of scenario relative
likelihood and consequences. The scenario consequences are expressed in terms of the following potential
outcomes: a large LNG release, onsite ignition of a large LNG release, and a large LNG offsite release.
The analysis does not directly address public and worker health consequence measures (e.g., severe injuries
and fatalities). However, these can be directly related to the three outcomes identified, especially when a
quantitative analysis is performed. The analysis also does not address offsite ignition, as this would require
treatment of offsite features {e.g., traffic, industry, population) judged to be beyond the scope of this study.

It must be emphasized that the results of this qualitative risk assessment are relative. The potentially
dominant scenarios identified are believed to be more risk significant than other scenarios studied. Thus,
the study results should be helpful to station designers and operators. However, a quantitative analysis is
needed to determine if the scenarios identified are risk significant in an absolute sense; such an analysis is
needed when supporting policy decisions.

3.2 Approach

Serious accidents can often be viewed as the culmination of a sequence of failures involving humans,
hardware, or both. Such a sequence consists of an initial fault, an "initiating event", followed by failures of
safety barriers (either engineered or natural) that would otherwise limit the severity of the accident. For
example, in the 1944 Cleveland tank accident, the initial storage tank failure was followed by the failure of
the bund wall to perform its intended function. The subsequent ignition of the gas and the failure of the
second storage tank can also be viewed as failures of safety barriers, even though an engineered mitigating
system was not involved.

Given this view of accidents, it can be seen that event trees, which graphically depict the different
possible sequences of safety barrier successes and failures following an initiating event, provide a natural
means to model accident scenarios. Event trees were introduced to risk assessment in the landmark Reactor
Safety Study (also known as WASH-1400) performed by the U.S. Nuclear Regulatory Commission
(USNRC 1975). Since that study, event trees have been used in many risk assessment applications. A
number of transportation risk assessment studies use event trees, ¢.g., (Rhoads 1978), as does a recent
investigation of oil spill accidents (Siu et al. 1995).

An example event tree for scenarios initiated by an operator tank filling error is shown in Figure 3-1.
The safety barriers challenged following the initiating event are listed at the top of the tree; these are called
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"top events”. Each node in the tree represents a safety barrier challenge; the path leading to the right of the
node represents success of the safety barrier, while the path leading down from the node represents failure.

Figure 3-1 shows that the event tree is an inductive diagram; it shows what happens afier a given
initiating event. Clearly, therefore, the qualitative risk assessment must include multiple event trees, each
one corresponding to a different initiating event. Furthermore, efforts must be spent to ensure that the list
of initiating events considered is reasonably complete. If an initiating event is not addressed, the analysis
will not treat the risk contributions from scenarios associated with that initiating event. On the other hand,
analysis resources can be exhausted if too many initiating events are treated. Practical risk assessment
requires a balance between the desire for completeness and available resources.

With these issues in mind, the steps employed in this study to perform the qualitative risk assessment
are as follows:

1. Develop list of initiating events
a. Identify candidate initiating events
b. Group initiating events

2. Develop event trees

a. Identify event tree "top events"

b. Identify dependencies between top events and initiating events
c. Develop accident scenarios
3. Analyze accident scenarios

a. Identify scenarios leading to severe consequences
b. Identify potentially dominant scenarios

c. Determine refueling station characteristics affecting likelihood of dominant scenarios.
3.3 Initiating Event Identification

3.3.1 Candidate Initiating Events

As in many studies and recommended in the Probabilistic Risk Assessment (PRA) Procedures Guide
(ANS 1980), this study employs a variety of methods to identify candidate initiating events, i.¢., initiating
events that might be treated in the analysis. The principal method used is the Master Logic Diagram
(MLD). Other methods used include Failure Modes and Effects Analysis (FMEA), event sequence and
task analyses, operating experience review, and review of other relevant studies.

A MLD is a logic diagram which is used to deduce how a single top event can be caused by
underlying events (ANS 1980). MLDs are similar to fault trees in that they are deductive in nature. They
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are different in that they do not generally show all of the conditions that must arise for the top event to
occur. (In other words, they do not generally include "AND" gates.)

Figures 3-2 through 3-4 show the MLDs developed for this study. The top events, shown in
Figures 3-2 and 3-3 respectively, are "Serious Onsite Injury and/or Fatality" and "Serious Offsite Injury
and/or Fatality". All of the branches in the diagrams represent "OR" gates. For example, Figure 3-2
shows that a serious onsite injury and/or fatality can involve an acute injury or fatality or a chronic injury.
An acute injury or fatality, in turn, can involve asphyxiation, trauma, thermal burns, or cryogenic burns.
The triangles in the diagram represent transfers to another tree (Figure 3-4); the diamonds represent events
that can be (but are not) further defined.

Both Figures 3-2 and 3-3 show that LNG releases are a major (if not sole) contributor to the top
event. They both transfer to Figure 3-4, which identifies several potential failures (hardware, human, and
external) that may lead to a release. It should be emphasized that these failures may lead to an LNG
release; they do not necessarily guarantee the occurrence of the release. The additional failures that must
occur before a release can happen are identified in the event tree analysis, discussed in Section 3.4 below.
Note also that the failure events are defined generically. This allows the broad application of this study's
results to different refueling stations.

To supplement the MLD analysis, an FMEA® was performed on the system shown in Figure 2-1
(Facility Number 1). This FMEA is provided in Appendix A. It shows that there are a number of single
point failures (primarily involving relief valves) which can lead to releases of LNG to the environment.
Event sequence and task analyses (defining the sequence of actions taken during station and end user
vehicle refueling), reviews of past events, and reviews of other studies were also performed to supplement
the MLD.

Regarding other studies, Williamson and Edeskuty (1983) defined several hazards which involve or
influence the occurrence of initiating events:

. Storage tank failures

. Unloading and transfer leaks

° Corrosion of dissimilar metals in systems and foreign material induced corrosion
. Collisions of transport vehicles

. Vaporization system failure

. Fires and explosions

. Gas-air vapor cloud dispersion

c. A Failure Modes and Effects Analysis (FMEA) is an inductive exercise which postulates the failure of every system
component and determines the consequences of these failures.
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. Temperature extremes

. Personnel exposure (cryogenic temperatures and flames)
. Human factors

. Reactivity of cryogens.

Melchers and Feutrill (1995), in their report on an ongoing risk assessment on LPG-fueled vehicles,
identify the following initiating event classes:

° Cold catastrophic failure of a tank (due to metal fatigue, corrosion, or overfilling)

. Flame impingement on a tank

J Impact by vehicles

. Negligent action by operators or drivers (driveaways, uncoupling hoses with valves open, etc.)
o Poor maintenance (unrepaired hose wear and tear, or valve spring corrosion, etc.)

. Vandalism and attempts at fuel theft.

Selected results of these other studies have been integrated into the LNG release MLD shown in
Figure 3-4 as appropriate.

3.3.2 Initiating Event Grouping

In order to keep the analysis tractable, the candidate initiating events shown in Figure 3-4 were
grouped. (While two of the candidate events shown in Figure 3-2 (i.e., chronic injuries due to occupational
exposures to toxins and carcinogens) are not included in Figure 3-4, these events are believed to be of lesser
significance and are not further addressed in this study.) The groups were distinguished based on:

o Potential impact on the safety functions modeled in the event trees (see Figure 3-1 and
Section 3.4)

. Potential impact on the likelihood of recovery efforts

] Potential magnitude of releases.

For example, all internal failure causes for the storage tank (i.e., design, manufacturing, installation,
and maintenance errors; overpressurization; fatigue; embrittlement) are grouped together because the
particular failure cause is not expected to affect the likelihood of recovery, ignition, containment, and so
forth. Operator errors leading to release are grouped together because they imply the immediate presence
of an operator during the event; this should increase the chances for recovery. Events potentially involving
multiple tanks (e.g., driveaway accidents which could involve both the storage and vehicle tanks) are
distinguished from other events because they can lead to larger releases of LNG.
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Table 3-1 lists the initiating events resulting from this grouping process and provides a map relating
these initiating events to the candidate initiating events (MLD failure causes) shown in Figure 3-4. Note
that some of the candidate initiating events appear under more than one initiating event. This is because
some of the failure causes (e.g., impact) can arise from different sources (e.g., tornadoes, vehicle crashes).

Table 3-1. Initiating events and mapping to MLD failure causes.

Initiating Event
Identifier Description MLD Failure Causes Included
CAI Construction Storage tank failure, external causes: impact, other mechanical
ﬁgf;g?:t’ Pipe/hose failure, external causes: impact, crushing, other mechanical
Seal failure
NOTE: "Other mechanical” includes digging and drilling
CAU Construction Storage tank failure, external causes: impact, other mechanical external causes
Accident, (e.g., digging, drilling)
Unisolable Pipe/hose failure, external causes: impact, other mechanical external causes
(e.g., digging, drilling)
Seal failure
NOTE: "Other mechanical" includes digging and drilling
EE External Event Storage tank failure, external causes: impact, heatup and overpressurization,
support failure
Truck fuel tank failure, external causes: heatup and overpressurization
Pipe/hose failure, external causes: impact, crushing, heatup and
overpressurization, support failure
Seal failure
NOTE: Includes effects of earthquakes, floods, storms, non-LNG fires, aircraft
impact, lightning strike, non-LNG explosions, etc.
HF Hose Failure Pipe/hose failure, internal causes: DMIM error, overpressurization,
fatigue/wear, embrittlement
Operations error, filling error: hose misplaced
0D Driveaway Operations error, other error: driveaway
OF Filling Error Pipe/hose failure, external causes: crushing
Operaticns error, filling error: hose connection error, valve lineup error, tank
venting error, overfilling error
NOTE: Hose crushing due to vehicle driveover
OM Maintenance Operations error, maintenance error
Error NOTE: Addresses maintenance-induced leaks
PF1 Pipe Failure, Pipe/hose failure, internal causes: DMIM error, overpressurization,
Isolable fatigue/vvear, embrittlement
PFU Pipe Failure, Pipe/hose failure, internal causes: DMIM error, overpressurization,
Unisolable fatigue/wear, embrittlement




Table 3-1. (continued).

Initiating Event
Identifier Description MLD Failure Causes Included
SFI Seal Failure, Seal failure: DMIM error, overpressurization, fatigue/wear, embrittlement
Isolable
SFU Seal Failure, Seal failure: DMIM error, overpressurization, fatigue/wear, embrittlement
Unisolable
ST Storage Tank Storage tank failure, external causes: support failure
Failure Storage tank failure, internal causes: DMIM error, overpressurization, fatigue,
embrittlement
TTF Truck Fuel Truck tank failure, internal causes: DMIM error, overpressurization, fatigue,
Tank Failure embrittlement
Active component failure; truck relief valve fails to close
TTT Tanker Truck Truck tank failure, internal causes: DMIM error, overpressurization, fatigue,
Tank Failure embrittlement
Active component failure; truck relief valve fails to close
VA Vehicular Storage tank failure, external causes: impact
Accident . .
Truck tank failure, external causes: impact
Pipe/hose failure, external causes: impact
VFI Valve Failure, Active component failure: relief valve fails open, vent valve fails open, isolation
Isolable valve fails to close
VFU Valve Failure, Active component failure: relief valve fails open, vent valve fails open, isolation
Unisolable valve fails to close

Appendix B presents fault trees for each of the initiating events as applied to a generic refueling

station. Unlike an MLD, the fault trees identify all necessary and sufficient conditions for the occurrence
of the top event.

3.4 Event Trees

3.4.1 Safety Barrier Definitions

An event tree, as discussed earlier, is a graphical representation of the possible scenarios that may

follow an initiating event. The different scenarios are defined by successes and failures of safety barriers
(called "top events" because of their placement in the event tree), both natural and engineered, that can
prevent the initiating event from progressing to a major accident.

The top events considered in this study are adapted from those identified in a study on oil spill events

(Siu et al. 1995). They are defined in terms of functions rather than engineered systems, in order to allow
their application to a wide variety of facilities. They are also defined qualitatively, in keeping with the
qualitative nature of this study. The top events are:

Early Detection (ED): Detection of the release within a few minutes of its occurrence




. Early Recovery (ER): Early (within a few minutes) termination of the release before most of
the source inventory is lost

. Secondary Impact Prevention (SI): Prevention of ignition or other additional effects (e.g.,
large releases from additional sources)

° Late Recovery (LR): Late (several minutes or more) termination of the release before most of
the source inventory is lost

. Release Containment (RC): Containment of the release in the vicinity of the release.
3.4.2 Dependencies

In order to develop the possible sequences following an initiating event, dependencics between the
initiating event and the top events, as well as those between the different top events, must be identified.

Consider the event tree shown in Figure 3-5, which models the possible sequences following a
release caused by a severe external event (EE).? It can be seen that the EE event tree has a number of
branches labeled "GF"; this denotes a "gunaranteed failure." This reflects the modeling assumption that an
external event severe enough to directly cause a large LNG release is also severe enough to greatly inhibit
recovery efforts. Other assumed effects of the different initiating events on the top events are documented
in the initiating event-to-safety barrier dependency matrix shown in Table 3-2.

Figure 3-5 also shows that given failure of early detection (ED), early recovery (ER) is guaranteed to
fail. This is an example of a top event-to-top event dependency. The full dependency matrix for top event
interactions is shown in Table 3-3.

Both Tables 3-2 and 3-3 represent generic dependency relationships. It is possible that additional
dependency relationships exist for particular facilities. For example, in situations where subsequent
failures can lead to releases from additional tanks (top event SI), the combined inventories may be large
enough to overwhelm existing berms, depending on the sizing of the berms. The characteristics of the three
facilities visited with respect to the event tree top events are discussed in Section 3.5.

3.4.3 Scenario ldentification

Using the relationships shown in Tables 3-2 and 3-3, event trees have been developed for each of the
initiating events identified in Table 3-1. The full set of event trees is shown in Appendix C. Figures 3-1
and 3-5 show representative event trees for tank filling errors (OF) and external events (EE), respectively.

d. The "external events” (i.e., events involving faults external to the system) treated by this tree include natural phenomena
(e.g., earthquakes, floods, windstorms, lightning) and non-LNG fires. A number of other external events (e.g., construction
accidents) are treated using different event trees.
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Table 3-2. Initiating event-to-top event dependency matrix.

Top Events

IE ED ER SI LR RC
CAI GS GF (1) —_ —_
CAU GS GF (§5) GF —
EE 2) GF 3 GF 4
HF &) (6) — — —
OD GS — — — @)
OF ) (6) — — —
OM ) — 9) — —_
PFI —_ -— — — —_
PFU — GF — GF —_
SF1 — -— — —_ —
SFU — GF — GF _
ST — GF — GF _—
TTF — GF — GF (10)
TTT —_ GF — GF —
VA GS GF (1) GF —
VFI — -— — — —
VFU — GF _ GF .

a. Descriptions of the Initiating Events are in Table 3-1.

ED
ER

SI

LR

RC

Early Detection: Detection of the release within a few minutes of its occurrence

Early Recovery: Early (within a few minutes) termination of the release before most of the source inventory is
lost

Secondary Impact Prevention: Prevention of ignition or other additional effects (e.g., large releases from
additional sources)

Late Recovery: Late (several minutes or more) termination of the release before most of the source inventory
is lost

Release Containment: Containment of the release in the vicinity of the release

GS = Guaranteed Success
GF = Guaranteed Failure
Other Notes:

WD~

© ® N o

1.

Presence of construction activities increases likelihood of ignition sources.
Many external events can reduce the likelihood of early detection (e.g., due to loss of power, distraction).
Ignition sources are more likely for some external events (e.g., thunderstorms).

External events can decrease or increase likelihood of containment success. Examples: earthquake fails dike;
storm disperses LNG vapor.

Presence of personnel increases likelihood of early detection.

Presence of personnel increases likelihood of early recovery.

Truck release may be close to site boundary.

Time to detection depends on size and location (e.g., in yard or in confined space) of leak.
Presence of maintenance activities increases likelihood of ignition sources.

Containment success likely, given size of fuel tank. (Only containment problem arises if the release occurs near/at
site boundary.)
Accident environment increases likelihood of ignition sources.
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Table 3-3. Top event-to-top event dependency matrix.

Top Events

IE® ED ER SI LR RC
ED — €)) — — —
ER — — ) 2 05
SI — — — — —
LR — — — — 3)
RC — —_ — — —
a. Descriptions of the Initiating Events are in Table 3-1.
ED Early Detection: Detection of the release within a few minutes of its occurrence
ER Early Recovery: Early (within a few minutes) termination of the release before most of the source inventory is

lost
SI Secondary Impact Prevention: Prevention of ignition or other additional effects (e.g., large releases from

additional sources)
LR Late Recovery: Late (several minutes or more) termination of the release before most of the source inventory

is lost
RC Release Containment: Containment of the release in the vicinity of the release

GS = Guaranteed Success
GF = Guaranteed Failure

Other Notes:

1 Failure of ED guarantees failure of ER.

2 Success of ER makes top event irrelevant

3. Success of LR makes top event irrelevant.

4 Top events appear in rough chronolo&icél order; only dependencies of later events on earlier events are modeled.

The accident scenarios for each initiating event follow directly from the event trees. For example,
Scenario 3 of the EE event tree (Figure 3-5) involves the occurrence of the external event (EE), successful
early detection (/ED), guaranteed failure of early recovery (ER'), successful prevention of secondary
impacts (/SI), guaranteed failure of late recovery (LR'), and successful containment of the release (/RC).
The Boolean representation of this sequence of events is:

Scenario 3 = EE*/ED*ER'*/SI*LR'*/RC

where the asterisk (*) denotes the logical AND operator, the slash (/) denotes success, no slash denotes
failure, and the prime (') denotes a guaranteed event.




3.5 Scenario Analysis

3.5.1 Scenarios with Severe Consequences

The event trees in Figures 3-1 and 3-5 show the assumed consequences of each accident scenario. A
"large release” is one that poses a significant hazard to onsite and offsite personnel. Depending on the site
characteristics, this is generally on the order of several hundreds of gallons.® The other consequences are
self-explanatory.

Appendix D provides lists of all of the scenarios leading to large releases, large releases ignited
onsite, and large releases which go offsite. These lists have been constructed simply by collecting all of the
relevant sequences from each event tree.

3.5.2 Potentially Dominant Scenarios

The numerous scenarios listed in Appendix D are not all equal contributors to risk. Two scenarios
leading to the same undesired consequences (€.g., onsite ignition of a large release) will have different
contributions if their likelihoods differ.

Tables 3-4 and 3-5 show the lists of high consequence scenarios believed to be the most risk
significant in terms of onsite ignition (of a large release) and large offsite release, respectively. This list has
been developed by employing pairwise qualitative comparisons of scenarios within each event tree. The
comparisons generally take advantage of the observation that, generally speaking, failures (human or
hardware) are far less likely than successes.! Thus, the risk contribution from one scenario is usually
assumed to dominate that from another if: a) both scenarios lead to the same consequences, and b) the first
scenario involves fewer failure events than the second. For example, in comparing the first construction
accident scenario (CAI) with the second (CAU), both lead to onsite ignition of a large release of LNG.
However, the latter scenario (CAU) involves the failure of spill containment. From the standpoint of large
release occurrences, therefore, the first scenario should dominate the latter.

Exceptions to this dominance assumption are as follows:

. For the external events (EE) scenarios, it is assumed that failure of early detection (ED) is
more likely than success, due to the impact of the external event on facility hardware and
operators.

. For the maintenance (OM) and isolable pipe (PFI), seal (SFI), and valve (VFI) failure
scenarios, it cannot be determined if scenarios involving the success of early detection (/ED)
and the failure of early recovery given an initiator (ERJIE) are significantly more likely than

e. Truck fuel tank releases, while generally involving smaller quantities, are modeled as being capable of leading to "large
releases” because they can occur close to the site boundary.

f. This rule does not cover situations where failure is guaranteed because of previous occurrences during the scenario.




“'s1seq SLIOUSS ¥ UO WU 19589] JO 9q 0 Jeadde sotreusss papeys (4]

"p39IURIENS 2IN[TR)/SSI0ONS SILIPUT () SWILLJ “DINTE] SAYROIPUT YSB]S OU SSI00NS S2YeIIPUI (/) Use[g )

:S9ION

9SEI[1 27} JO AJIUISIA ST UT ISBIDI A1) JO JUDWUTEIUOD) :JUSWUIBIUOD) ISBI[Y od

150] ST AIOJUSAUY 20I10S Y} JO 1SOUI 910Jaq 9SLS[21 A} JO UOHBUTULIS} (SIOUI JO SAMUIW [RIDASS) 3187 :A10A033Y 2je] a1
(s90mos [eUONIPPR WO $3582[21 95Ie| “§'2) S1901J° [BUOHIPPE IS0 JO UONIUBI JO UOTIUSAIL] UOHUAAL] 1oedur] ATepuoddg IS
150] ST AIOJUSAUI 50INOS I} JO ISOU DI0JOq 3581 Y JO UOHEBUIULIS} (SIINUII MI] B UNIM) ARy :A104005Y Ajreq q4q
30USLMO0 ST JO SINUILE M3] B UTYILM SEI]DI A1) JO UONI3)2(T :U010s( Alreq ad

‘1-€ 9]Qe L, Ul I8 SludAT Sunenruy ay) Jo suonduossp e

(aAeA JO Aiqerosy) uSisop walsAs wo spuadop AyIqissod  OW/ AT IS NME 4/ NAA

SOATRA JUDA pue Jorjal Aq sainjref yuiod-oSwis moqre sudisoq DWW/ 0 W1 IS 94 a4 1dA

SOAJBA JUSA pue Ja11a3 Aq sarnprey Jurod-o13urs moppe sudisoq DWW/ a1 IS 33 qa/ IHA

211 DN'T POAJOAUT DABY PAMIIASI SJUSAD JONK) DN Ou ‘ATepunoq amnssaid [1ef 0) YSnOU2 210A3S 9Q SN DY/ I'T IS N3 Q¥ VA
un|rey 9ATeA JOT[aI AQ SoueutwOp Ay DW/ M1 IS &§d a¥/  1LLL

QINJIE 9ARA JOUpI AQ ddueuswop 30adxg W/ W1 IS M3 a¥ 4lL

JOLID INC Aq 20ouBuiIop 30adxa {(SI0WAUR pasn Jou) [391S [MOIU 046" ¢ pakojdwia yuel pueppAd) DWW/  H1 IS M3 i/ IS
(s3ea] [e3s Jo AIqeost) ugisop wiosAs uo spuadap ANpIqissod W/ 4T IS Mg Q@ n4ES

uoiso[dxa ‘xodea Jo uoneiSur ‘Uo1o)ap A[IES OU ‘AINJIBY 8IS PIAJOAUT JUIAD JUIO] 240D DY/ a1 IS 44 az IAS

AJOI] ST AI9A002I “UOTINDISP AMIBI UDALD) DY/ a1 IS Jq  aw/ 148

SJU9AS J0feWl UMOUY OU ‘AJYITUn AjoApeyor axe sainrey ourpadid satssed W/ 41 IS N3 ¥ Ndd

SIUOAS Jofewr umowy ou ‘A[axIjun AjaAaneyar ore sarnjre] surpadid aalssed DY/ a1 IS N3 ad 1dd

SJuaAs Jolewr umouy] ou ‘ApaxIun AppAnerar aie samrey surpadid sarssed DW/ W1 1S a4 qd/ 1dd

Sunuresy st Ansnpui ‘soyseordde paziprepuels ou ‘sampasoxdouzomo] DY/ W1 IS M4 ad WO

Sururesy s1 Ansnpur ‘sommpa001d ou ‘snq HN'T 10J PIAISSGO U23q sey uoisojdxs paziexo1 DY/ a1 IS aqa  ad/ WO

ANIQIPaID OLIeusos deorpul samjre) jurtod o[3uis pue ‘syuaad Suryiaao preoqdrys ‘seonoerd Sunuoa yue], O/ |1 IS g4 aq/ d0
ST[IdS JTewIS POAJOAUT ATUO dARY ({]€ JOU JT) JSOUWI SUOuUIuod A[PANRISX 918 sAemeaAld DW/ W1 IS a4 ax ao

JuedyIugIs oq 0} Jurpanyox Suump mMooo Jsnu ey DY/ W1 IS 44 qa/ dH

PAAISSqO Ud3q sey Suneoy Juk} ‘uoISnoy ul pooyy s31e[ o) anp uonmugi pue samyrey sugadid sugosen DWW IS e ad qJ4
‘syuduodwiod uone)s Surongas pue judwdinbo uononIsUo UoIMIaq SUOISI[[OD ‘oourlsut 104 O/  ¥1 IS Nd Q¥ 0vd
‘sjusuoduwos uones Surpongar pue judswdmbs UONONNSU0D UG SUOISI[[OD ‘QOUBISUT IO DY/ a1 IS 34d Qqa/  IVO

S3ION SJuaAY QO,H dI

"UONIUSI 9JISUO pue 95ea[a1 HNT 93J8] SOUBUDS JUBUIWOP A[[eiiud)od ‘- djgel




's15eq SL19US3 B U0 UINU0Y JISSI| Jo aq 03 Jeadde soLreuss papeys
"PIBIURIENG SIN[IB)/SSIOINS $3YeoTpul () SUILLJ ‘2InfIe] SAILOIPUI YSB[S OU ‘SSH00NS S31BIIPUI (/) YSelS

9SBO[O1 9Y) JO AJTUIOTA DY) UT I58]3] Y} JO JUSWUIRIUO)) :JUSUNIBIUOY) 3583y

150] 1 AIOJUSAUT 30IMOS 1) JO JSOUX DI0Jaq 2SEI[2I SY} JO UOHPUIULID) (SIOUI IO SINUIN [2I9AIS) 918 :AIOA0INY 21T
(s22mos [eUO)IppE WOLj S35BIJRI 3318 *'3'9) $199)J3 [BUONIPPE IO IO UONIUSI JO UOHULARL] UOHUSASIJ 1oedu ATepuosdg
180} SI AI0JUSAUL 30INOS I} JO ISOUI J10Jaq S| 1) JO UOTIBUTULIS) (SIJNUIL A3 B Uim) AJer] ‘A1oA000y Ay
0ULMIIO0 S}T JO SAMUIUL MIJ B UM ISBI[OI ) JO UO1J0213(] UONI)3(] Ajre

(1)
SIION
o}l
a1
IS
3
ad

“I~€ SIqeL ur ore sywaaq Suneniuy oy Jo suondusssq e

(oAreA Jo Liyiqerost) udisop woysAs vo spuadop Aypiqussod DY AT IS/ A dF/ NAA
poumborosespar prder pue a8ref K104 D4 W1 IS/ A @4 A
paumbor osesppr pider pueoBrer 194 D94 Y1 IS/ ¥ Q¥ 1A
I ONT POAJOAUT dARY POMIIAD] SIUSAD YonI) DNT OU ‘Arepunoq ainssaid Jrey o) ySnous axdass aqisnpy DY W1 1S/ M9 QY VA
Toud JNQ Aq eoueurmop 0adxy D9 M1 IS/ A A/ LLL
Joud [N Aq soueuruiop 30adxa {(310wAuR pasn Jou) [99)s [OTU %6 ¢ paordwd jue) pueoAdL) 9} I 0| IS/ wga awd/ LS
o110ads-anis st Anpiqissod ‘parnbai asesjar pider pue a8ref A10A o4 ¥1 IS/ 42 a¥/ n4as
ogoads-ans sy Anprqissod <parinbai asespar pides pue o8xe] K10A N 1 IS/ u4a ag S
ogwoods-onts st ANpiqissod ‘paxmbar oseopor prder pue daSref K104 D94 W1 IS/ YA @/ S
S1UdAS Jolewr umouy| ou ‘Ataxijun ApAnerar samnyiey surjadid sarssed ‘poxmbar asespar prder pue a81er A19A 9} I g | IS/ 43 dd/ NAd
SIUDAS Jolewr umouy ou SApaxyrpun A[oAnerar sanyrey suradid sasssed ‘parmbai asesfar pider pue a31e] A1oA od a1 YA G | as IId
S)U2A3 Jofewr uMouy ou Ajaxrjun A[pAnejor samnjrey sutjodid sarssed ‘pannbar aseajar pides pue s81ey A1oA o a1l 1S/ 44 ad/ I4d
Ay yesrofewr jowonodep Arey DY W1 IS/ M a3 WO
siqssod sreaddejuaay DY W1 IS/ ¥ d¥ WO
AIMqrpaId oueusds sjedrpul sarnyey Jutod 3j8urs pue ‘sjusad Surfiraao preoqdrys ‘ssonoead Sunusa jue], 9): ! a1 IS/ 34 ad/ d0
s[yids [rews paAjoAul A[uo aARy (Jje JOU JT) JSOWT ‘UOWW0D A[PANR[OI oTe sSABMBOATL] DY ¥1 IS/ a4 .ad/ ao
Jueotprudis 29 0) Jurjanyox Juump Ido0 Jsnul aInjrey ‘panmnbar ssespar a31e A10A o) | a1 1S/ 4 ag/ AH
019 “‘Suruiy3y] ‘auedsruny ‘opeuo) ‘pooyy 0} anp wsuodurod o sFewrep sapnyouf 10}: SN ¢ | ISy g asg d44
pormbor osespor prder pueosref A1 D4 4T IS/ M dF/ NV
pasmbor osespar pider pue ofref A19A.  Od Y1 IS/ WA @@/ VD
SIJON sjuaAg dog, 91

"0)ISJJO 9SBO[21 HN'] 951e] :SOLIBUIOS JRUIWop A[[erudlod 'G-¢ 9|qel




scenarios involving the failure of early detection (ED) and the consequent
guaranteed failure of early recovery given an initiator (ER'IE). In other words, it
is not clear if

Probability{/ED*ER[IE} >> Probability{ED*ER'[IE}

where Probability{A|B} denotes the conditional probability of event A given event B and "IE"
refers to the initiating event.

Tables 3-4 and 3-3 also provide a preliminary comparison of scenarios for different initiating events.
Shaded scenarios in the table are believed to be generally less likely than unshaded scenarios; the bases for
the scenario classifications are provided in the notes column of the table. Note that the storage tank
scenarios (which involve internal failure causes—see Table 3-1) are not shaded. Although catastrophic
failures are believed to be very unlikely given current design and construction practices, the potential
consequences are believed to be large enough to warrant their inclusion in the group of more important
scenarios.

3.5.3 Station Characteristics Affecting Dominant Scenarios

Table 3-6 identifies a number of site-specific characteristics for each of the facilities visited relevant
to the likelihood of the initiating events considered in this study. Table 3-7 lists those characteristics
relevant to the success or failure of the event tree top events (i.€., the safety barriers). Comparing these
characteristics with the potentially dominant scenarios listed in Tables 3-4 and 3-5, it can be seen that
differences in design, operations, and siting might imply significant differences in risk.

For example, regarding station design, Facility Number 3 has an onsite vehicle maintenance shop
whereas the vehicle maintenance shops for Facilities I and 2 are a few minutes away. When looking
specifically at refueling station risk, therefore, Facility Number 3 is likely to have a higher risk contribution
from maintenance activities than the other two facilities. This potentially higher contribution could come
from a higher frequency of maintenance-induced releases (initiating event OM) as well as an increased
number of potential ignition sources (which affects the likelihood of top event SI). As another example,
Facility Number 2 does not have a bund fully surrounding the main LNG storage tank (a trailer tank);
while the tank is in a slight pit, it is not clear that, in the event of a full spill, the LNG will be fully
contained. This reduces the likelihood of success of top event RC.

Differences in operation also are expected to have impacts on the station risk. Some potentially
important factors include the frequency of refueling activities (Facility Number 3 is by far the busiest), the
degree of public access to the refueling area (Facility Number 2 is open to the public — the site has a
gasoline service station and convenience store; Facilities 1 and 3 are restricted access), the training of
personnel in fueling vehicles (Facility Number 3 uses specially trained refueling technicians; refueling at
Facility Number 2 is performed by the truck drivers, some of whom excessively vent their fuel tanks to
speed up the process), the location of designated emergency response personnel (depending on the time of
day, key staff for Facility Number 2 can be 20 to 30 minutes away from the station when an alarm sounds),
and the trained response of all personnel to emergencies (Facility Number 2 allows drivers one override of
the emergency shutdown system). These factors affect the frequency of operator errors (initiating events
OD and OF) and the likelihood of recovery and accident mitigation (top events ER, LR, and SI).

Finally, differences in siting may also have a significant impact on station risk. These differences
can affect the likelihood of release due to external events (e.g., earthquakes, fires, explosions, floods,
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windstorms, lightning strikes, aircraft impacts), the likelihood of ignition given a release, and the public
health and safety consequences of an accident. For example, the urban location of Facility Number 3
increases the availability of debris that may be driven by a severe storm. It also increases the availability
of potential ignition sources and increases the number of people potentially exposed to the consequences of
a major accident.

It should be cautioned that, as noted at the beginning of this section, these insights are relative.

Additional, quantitative analysis is neceded to determine if the factors identified above have a significant
impact on absolute risk.
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4. PHENOMENOLOGY OF LIQUEFIED NATURAL GAS

4.1 Introduction

The handling of liquefied natural gas in a refueling station has several aspects common to present
day fuels such as gasoline or diesel. With LNG, as well as with gasoline and diesel, all fuel transfers from
the storage tank to the vehicle tank are carried out in liquid form. There is some vapor present during the
transfer of gasoline and diesel, but the amount is very small and usually ignored. During the transfer of
LNG from the storage tank to the vehicle tank, however, there is a need to collapse pressurized vapors in
the ullage of the vehicle tank through the addition of colder liquid methane. If the vapors cannot be
collapsed, then they must be safely vented. Also, vapors formed during the cooling of the transfer hose and
nozzle must be recondensed or safely vented. Thus an LNG station is characterized by closed piping
systems and dedicated vent stack to a greater extent than is the case for gasoline and diesel where the
underground tanks have elevated vent stacks.

The principal hazard addressed in this report is the accidental combustion of the fuel. All fuels
require vaporization as part of the combustion process. All fuels require that the mixtures of air and fuel
vapor be within certain flammability limits in order that combustion can be sustained. All liquid fuels will
disperse on the ground or water surface if spilled and all liquid fuels require an input of heat for
vaporization.

Liquefied natural gas differs in several important ways from the more common liquid fuels, however.
Because it is a liquid at 112°K at atmospheric pressure, the LNG must be insulated from external sources
of heat. If spilled, the liquefied natural gas draws heat from the ground or water, from the air and from
solar insolation. The rate of vaporization is dependent on the heat available from the surroundings and on
heat transfer rate from those surroundings.

This section discusses the properties and behavior of LNG under nominal and accident conditions.
(A qualitative comparison of LNG, gasoline, and diesel properties is provided in Table 4-1.) The section
also addresses safety issues recently raised by Hunt (1996).

4.2 Properties of Liquefied Natural Gas

4.2.1 Physical Properties

The propertics of methane are compared to hydrogen and gasoline in Table 4-2. Note that natural
gas in the vapor form at nominal temperature and pressure (NTP) is about 6 times lighter than gasoline
vapors. Thus the vapors resulting from a spill of LNG will rise after being warmed by the surrounding

environment, while gasoline vapors will flow along the ground or water surface until dispersed by
diffusion.

An important ramification of the cryogenic nature of LNG is that a trapped volume, e.g. between
two valves in a pipe, the pressure increases as the fluid warms by heating from the surroundings. Good
insulation can slow the warming process, but eventually, the entire contents of the system will become high
pressure vapor if refrigeration is not restored. Thus, it is imperative that all potentially isolated sections of
piping and tankage be vented through a relief valve. The inclusion of a relief valve for any enclosed
volume is a standard practice of cryogenic design.
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Table 4-1. Comparison of LNG, diesel, and gasoline.

Fuel
Characteristic LNG Diesel Gasoline
Storage 112°K 300°K 300°K
temperature
(at 1 atm.) -260°F 60°F 60°F
Operating 150 psig 50 psig 50 psig
pressure '
Storage 100 psig Hydrostatic pressure only, Hydrostatic pressure
pressure 0.3 psig per foot only, 0.3 psig per foot
Storage Above ground tanks Underground tanks Underground tanks
location
Vapor I atmosphere Small 0.3 psi
pressure at
RT
Vapor Rises Settles Settles
bouyancy
Flammable 5-15% at 60°F — 1.2-8 % at 60°F
limits
Flash point of NA 100°F -50°F
liquids
Fluid behavior Cryogenic—small spills Like water - familiar Like water—familiar
evaporate quickly.
Large spills flow.
Fuel nozzles Closed connection Open to air connection Open to air connection
Routine Boiloff and venting Very little venting Little venting
releases from (minimized through
tanks .
design)
Fate of routine Disperses in Liquid sinks into ground Liquid sinks into ground
releases atmosphere, oxidizes, water, vapors contribute water, vapors contribute
greenhouse gas to smog to smog
Chemical Low reactivity Solvent Solvent
reactivity
Solubility Grease and oils have Solvent Solvent
low solubility at liquid
CH4 temps
Autoignition 1110°F 500-700°F 440-880°F
temperature
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Table 4-1. (continued).

Fuel
Characteristic LNG Diesel

Gasoline

vacuum insulated

Handling Not familiar Familiar
Movement Pressure differentials or Pumps
pumps

Odor Odorless unless odorant Distinct odor

chemical is added

Toxicity No Threshold Limit TLV = 400 ppm
Value (TLV)

Inhalation Simple asphyxiant, Irritant

hazard displaces oxygen

Small losses from
evaporation or spills.
Leaking underground

Storage tanks are well
sealed. At some
stations a significant

Fuel losses

fraction (up to 25%) storage tanks are a
can be lost in handling pervasive problem.
through venting warm

tanks *

Effects of fuel Greenhouse gas, Losses limited by EPA
losses transient fog rules on odor and
groundwater pollution
Noise Unfamiliar noises; gas _ Familiar
venting, compressors
for CNG.

Touch Cryogenic burns, Skin irritation, rashes
hypothermia for long
exposure
Visual Above ground tanks, Underground tanks
differences venting gases

the greenhouse gasses.

Spark ignition 0.3mJ 03mJ
energy
Tanks Double walled, steel, Single wall, uninsulated

a. Methane is 25 times more effective as a greenhouse gas than carbon dioxide, but produced less CO; in combustion than other
fossil fuels. Therefore, refueling losses will have to be limited to about 5% in order for LNG to have a net benefit in terms of

0.3mJ

Single wall, uninsulated

Familiar

Pumps

Distinct odor

TLV =500 ppm

Irritant

Small losses from
evaporation or spills.
Leaking underground
storage tanks are a
pervasive problem.

Losses limited by EPA
rules on odor and
groundwater pollution

Familiar

Skin irritation, rashes

Underground tanks




Table 4-2. Properties of hydrogen, methane and gasoline.

Property Hydrogen Methane Gasoline Units
Molecular Weight 2016 16.043 107 amu
Triple point pressure 0.0695 0.1159 — atm
Triple point temperature 13.803 90.68 180t0220 K
Normal boiling point (NBP) temperature 20.268 11.632 31010478 K
Critical pressure 12.759 45.387 245t027 atm
Critical temperature 32.976 190.56 54010569 K
Density at critical point 0.0314 0.1604 0.23 g/em’
Density of liquid at triple point 0.077 0.4516 — g/cm’
Density of solid at triple point 0.06865 0.4872 — g/em’
Density of vapor at triple point 125.597 251.53 — g/em’
Density of liquid at NBP 0.0708 0.4226 0.7 g/em’
Density of vapor at NBP 0.00134 0.00182 0.0045 g/em
Density of gas at NTP 83.764 651.19 4400 g/m’
Density ratio: NBP liquid to NTP gas 845 649 156
Heat of fusion 58.23 58.47 161 Jg
Heat of vaporization 445.59 509.88 309 Iig
Heat of sublimation 507.39 602.44 — g
Heat of combustion (low) 119.93 50.02 445 kl/g
Heat of combustion (high) 141.86 55.53 48 kl/g
Energy density 8.49 21.14 31.15 MI/litre
Specific heat (Cp) of NTP gas 14.89 2.22 1.62 J/g-K
Specific heat (Cp) of NBP liquid 9.69 3.5 22 J/g-K
Specific heat ratio (Cp/Cv) of NTP gas 1.383 1.308 1.05 —
Specific heat ratio (Cp/Cv) of NBP liquid 1.688 1.676 — —
Viscosity of NTP gas 0.0000875  0.00011 0.000052 g/cm-s
Viscosity of NBP liquid 0.000133 0.00113 0.002 gf/cm-s
Thermal conductivity of NTP gas 1.897 0.33 0.112 mW/cm-K
Thermal conductivity of NBP liquid 1 1.86 131 mW/cm-K
Surface Tension 0.00193 0.01294 0.0122 N/m
Dielectric constant of NTP gas 1.00026 1.00079 1.0035 —
Dielectric constant of NBP liquid 1.233 1.6227 1.93 —
Index of refraction of NTP gas 1.00012 1.0004 1.0017 —
Index of refraction of NBP liquid 1.11 1.2739 1.39 —
Adiabatic sound velocity in NTP gas 1294 448 154 m/s
Adiabatic sound velocity in NBP liquid 1093 1331 1155 m/s
Compressibility factor (Z) of NTP gas 1.06006 1.0243 1.0069 —
Compressibility factor (Z) in NBP liquid 0.01712 0.004145 0.00643 —
Gas constant (R) 40.7037 5.11477 0.77 cm’-atm/g-K
Isothermal bulk modulus of NBP liquid 50.13 456.16 763 MN/m2
Volume expansivity (b) of NBP liquid 0.01658 0.00346 0.0012 K

NBP = Normal boiling point
NTP =1 atm and 20 C (293.15°K)
Source: (Hord 1978)
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Another important physical property of methane is its lack of odor. Although ethyl mercaptan is
added at 25 ppm to give the odor we associate with natural gas, it cannot be used in LNG. At LNG
temperatures, the mercaptan compounds freeze and are not carried along with the gas. There have been
attempts to develop cryogenic odorants that will remain in solution in LNG, such as tetrahydrothiophene
(THTP) (Mulliner 1974). The lack of odor greatly increases the importance of methane detectors to detect
leaks and spills.

4.2.2 Combustion Properties

Four conditions are necessary for a self-sustaining combustion reaction. First, the fuel and oxygen
must be intimately mixed in vapor form. Second, the proportions of fuel and oxygen must be within the
flammability limits. Since we are here concerned with accidental combustion in air, we will discuss
flammability limits as volume percent of fuel in air. Third, within the region where the fuel and air are
within the flammability limits, there must be an energy source capable of initiating the chain of chemical
reactions that constitutes the combustion process. The combustion process will not be self-sustaining if
strong heat sinks are present within the reacting mixture of gases. These heat sinks may be in the form of
water droplets, solid particles or the metal walls of a tank or pipe. The final condition necessary for a self-
sustaining combustion reaction is that the chain reaction be complete and that intermediate products not be
removed so as to interrupt the chain.

The combustion properties of hydrogen, methane and gasoline are compared in Table 4-3.

4.2.2.1 Flammability Limits. Mecthane and air are combustible when the methane volume fraction is
between about 5 and 15 percent. The flammability limits are somewhat dependent on the initial
temperature of the mixture, as shown in Table 4-4. When the vapor is very cold, the flammability limits
are more narrow than at room temperature. Note also in the table that the density of methane at 175°K is
about the same as air at 300°K. Thus methane rises and disperses at temperatures above 175°K.

4.2.2.2 Distinction Between Deflagration and Detonation. A deflagration is a subsonic
combustion wave sustained by chemical reactions in a reactive mixture of gases. The diffusion of heat and
species from the reaction zone into the unburned gases is responsible for the initiation of chemical reactions
ahead of a deflagration. Thus the speed of propagation of a deflagration is limited by the molecular
diffusivities within the gas to about one meter per second. A deflagration can be ignited by a weak energy
source with an energy of only a fraction of a millijoule. Deflagration combustion pressures are generally
much less than 1 psi.

The initiation of chemical reactions in a detonation, on the other hand, is due to an adiabatic shock
compression wave passing through the unburned gases. The combustion reactions take place in highly
compressed and preheated gases and the wave propagates very rapidly. Typical propagation velocities are
of the order of kilometers per second and the pressures produced are generally several psi. The
instantaneous ignition of a detonation in an unconfined mixture of reactive gases requires several orders of
magnitude more energy than that necessary to ignite a deflagration. The energy necessary to initiate a
detonation can be reduced if the mixture is confined by hard, reflecting walls, such that the shock can pass
through the mixture several times.

4.2.2.3 Deflagration Conditions. As noted in Table 4-2, the energy necessary to ignite a deflagration
is only about 0.3 mJ for either methane or gasoline. Such energy is easily available from a match, an open
flame or a spark. As noted above, the flammability limits for methane are somewhat higher for methane (5
to 15 volume percent in air) than for gasoline (1.2 to 8 volume percent in air.)
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Table 4-3. Combustion properties of hydrogen, methane and gasoline.

Property Hydrogen Methane Gasoline Units

Limits of flammability inair 4.0 t0 75.0 53t015.0 1.0to 7.6 vol %

Limits of detonability in air 18.3 to 59 6.3to0 13.5 1.1t0 3.3 vol %

Stoichiometric composition 29.53 9.48 1.76 vol %

in air

Minimum energy for ignition ~ 0.02 0.29 0.24 mJ

in air

Autoignition temperature 858 813 501 to 744 K

Hot air-jet ignition 943 1493 1313 K

temperature

Flame temperature in air 2318 2148 2470 K

Percentage of thermal 17 to 25 231033 30to 42 %

energy radiated from flame

to surroundings

Buming velocity in NTP air 265 to 325 37t0 45 37t043 cm/s

Detonation velocity in NTP 1.48t02.15 1.39t0 1.64 14t01.7 km/s

air

Diffusion coefficient in NTP  0.61 0.16 0.05 cm/s

air

Diffusion velocity in NTP <2.00 <0.51 <0.17 cm/s

air

Buoyant velocity in NTPair 1.2t09.0 0.8t06.0 Nonbuoyant m/s

Maximum experimental safe ~ 0.008 0.12 0.07 cm

gap in NTP air

Quenching gap in NTP air 0.064 0.203 0.2 cm

Detonation induction L/D=100

distance in NTP air

Limiting oxygen index 5 12.1 11.6 vol %

Vaporization rates (steady 25t05.0 0.05t00.5 0.005 to cm/min

state) of liquid pools without 0.02

burning

Burning rates of spilled 30t06.6 03t01.2 021009 cm/min

liquid pools '

Flash point Gaseous Gaseous 230 K

Toxicity Nontoxic Nontoxic Slight Slight (asphyxiant

(asphyxiant) (asphyxiant) {asphyxiant)

Energy of explosion, 24 11 10 g TNT/g fuel

Energy of explosion 1.71 4.56 7.04 g TNT/cm® NBP liquid
fuel

Energy of explosion 2.02 7.03 4422 kg TNT/m’ NTP
gaseous fuel

NTP = 1 atm and 20 C (293.15°K)

Source: Hord 1978
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Table 4-4. Temperature dependence of flammability limits for methane-air mixtures.

Lower Upper
Temperature Flammability Flammability
Limit Limit r CH4 r air
K C F (%) (%) kg/m3 kg/m3

111.6 -161 -258.5 5.7 13.0 1.8159 —
150 -123 -189.4 5.5 13.4 1.3229 -
175 -98 -144 4 54 13.7 1.1279 —
200 -73 994 54 13.9 0.9843 1.7690
225 48 -54.4 53 14.2 0.8726 —
250 -23 94 52 14.5 0.7843 —
300 27 30.6 5.0 15.0 0.6527 1.1769
350 77 170.6 48 15.6 0.5593 —
400 127 260.6 4.6 16.1 0.4890 0.8826

4.2.2.4 Detonation Conditions. D. C. Bull and coworkers (Bull 1976; Baker 1991) performed a
series of experiments to determine the encrgy needed to initiate a detonation in mixtures of methane and
oxygen diluted by nitrogen. In his experiments, the gaseous mixtures were confined by thin plastic
membranes, thus simulating an unconfined cloud of methane and air. The mixture consisted of CH, +2 O,

+xN,.

He found that a detonation could be initiated by 1 gm of the high explosive Tetryl at x = 2, but that
1000 gm of Tetryl was required at x = 6. Extrapolating to a mixture of methane and air (x = 7.4) he found
that 22 kg of Tetryl would be necessary to initiate a detonation. That quantity of Tetryl releases about
3001M]J, some twelve orders of magnitude higher than the spark ignition energy. Tests with other gases
showed that ethane/air would detonate with about 50 grams of Tetryl, propane/air with 90 grams and
butane/air with about 100 grams.

The lower energy requirement for ¢thane is important when considering the use of ‘weathered” LNG,
which may contain several percent ethane due to the selective vaporization of methane from the liquid.
Weathering is discussed in a later section.

4.2.3 Chemical Hazards

In additional to the hazards of accidental combustion of LNG, its ability to displace breathing air
and to cause cryogenic burns must be considered.

4.2.3.1 Toxicity Limits. Natural gas, per se, is non-toxic. However, it can be an asphyxiant if air is
displaced and the oxygen content of the breathing atmosphere falls below 15% (ACGIH 1996). Since
methane at temperatures below 165°K is denser than air at room temperature, cold methane gas will pool in
low sections of a facility, such as the bund enclosure, pumping pits, basements and pits in vehicle
maintenance facilities. Maintenance facilities specifically designed for LNG vehicles do not have pits
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(Thomas 1996). Note that the danger of asphyxiation is increased in LNG facilities due to the absence of
an odorant in the gas, as discussed earlier. ‘

Considering LNG leaks and the volume expansion that occurs upon boiling, the issue of displacing
air is a toxicity concern. Workers are restricted by law from entering atmospheres with less than 19.5%
volume of oxygen (normally 21% at sea level) without precautions (OSHA 1996) such as breathing
apparatus. This 19.5% value is for workers of average health; it may be taxing to children and elder
people. No guidelines for acceptable levels of oxygen deficiency for the general public were found in the
literature. The expectation is that any deficiency should be less than that allowed for healthy workers (i.e.,
only oxygen concentrations greater than 19.5%). The Compressed Gas Association (CGA 1992) gives
some symptoms of oxygen deficiency. At values of 12-15%, judgment and coordination are impaired, so it
is questionable if a person can evade the hazard without assistance. At oxygen concentrations at the 4 to
6% level, a person can enter a coma in less than a minute, followed by convulsions and death,

4.2.3.2 Carcinogenicity. Methane, or natural gas, is not a carcinogen; it has no threshold limit value.
It is a simple asphyxiant gas as indicated above.

4.2.4 Cryogenic Hazards

As a cryogenic liquid, LNG can cause burns to workers if it comes in contact with the skin. The
hazard is further complicated since LNG is about 42% the density of water and handled at pressures of
15 to 250 psi. Therefore the possibility of cold liquid spraying into a worker’s face or onto a worker’s
clothing must be guarded against. Personal protective equipment (PPE), such as impervious gloves that
extend to the elbow, full face shields with chin protection and an impervious apron, is necessary.
According to the fueler in one location we visited, if LNG hits an exposed portion of ordinary clothing, the
worker should immediately hold that area of clothing away from the skin to prevent cryogenic burns. This
action is also given in LNG safety manuals. It is also important that ‘cut-offs” and trousers with cuffs not
be allowed in the refueling area. Cut-offs expose the legs to immediate cryogenic burns. Trousers with
cuffs can hold a pool of cryogenic liquid next to the ankles. Note that at other locations visited, workers
refueling with LNG did not wear their protective equipment when refueling. In some instances the
protective equipment consisted only of short (wrist-length) work gloves and safety glasses.

A second cryogenic health hazard is associated with LNG vapors; breathing cold vapors from LNG
evaporation or boiling can damage the lungs (GRI 1994). While methane does not chemically react with
the lungs (i.e., it is a "simple’ asphyxiant that creates a hazard by displacing air), the cold vapor from LNG
can cause "frosting the lungs". This effect is also a health concern in extremely cold winter weather.
Breathing super cold air or methane vapor can frost or freeze lung tissues. When the tissues freeze, ice
forms. Since ice occupies more volume than a similar quantity of water and since ice crystals are also
sharp, the cells can be ruptured and will likely die upon thawing. If alveoli cells are destroyed, a person
could experience edema, pneumonia-like symptoms, and emphysema-like symptoms. The type of
symptoms and their severity are directly related to the severity of exposure.

Regarding potential component damage caused by exposure to LNG, all components normally in
contact with LNG are metals that do not undergo a ductile to brittle transition (DBT), e.g., austenitic
stainless steel, aluminum, brass, copper. However, the ordinary structural steel commonly used for
buildings, ships, etc. does undergo a DBT at 200-300°K. Our research has found reports of cracking of
carbon steel deck plates on LNG carrier ships as a result of spills on the deck. The spill did not necessarily
pool on the deck, but enough heat was removed from the deck plates to cause cracking. The cracking was
due to a combination of contraction and embrittlement (Harris 1993). In these incidents, the damage was
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apparently localized and was generally repaired at the next scheduled maintenance. However, the DBT
phenomenon presents an opportunity for a minor spill to become a major spill if a structural steel
component, such as a tank support colurnn, fails due to embrittlement.

4.3 Phenomena in Routine Handling

Because LNG is a cryogenic fluid, its routine handling is different from the handling of gasoline and
diesel fuel. This section discusses how the composition of LNG can change over time due to the selective
vaporization of methane ("weathering"), how differences in density between new LNG and that already in
the storage tank can cause a sudden pressure rise in the ullage volume ("rollover"), and how vapor can be
evolved in a flowing stream ("geysering"). It also discusses the issues of static electricity buildup and
vapor accumulation and associated potential hazards. ‘

4.3.1 Weathering

LNG as delivered to a storage facility often has a mixture of methane, ethane, propane and butane,
with lesser amounts of other hydrocarbons. Typically, the methane content of LNG is at least 95%, though
weathered LNG can have methane contents as low as 85%. While weathering is an issue in peakshaving
plants, the LNG used for vehicles is generally of high purity (e.g. 99.5% methane, Pentz 1995) and is used
at a high rate. Both factors greatly decrcase the importance of weathering in the use of LNG as a vehicle
fuel.

Although weathering is generally not important in vehicular use, operators should be familiar with
the phenomena when handling impure fuel or storing it for extended periods. A comparison of the vapor
pressures and heats of combustion for four energy gases is shown in Table 4-5. Note that, at 150°K, the
vapor pressure of methane is two orders of magnitude higher than that of ethane and probably three and
four orders of magnitude higher than that of propane and butane, respectively. Thus the ullage volume at
the top of a storage tank of LNG will contain vapor that is at least 99% methane. As that vapor volume is
vented or consumed, methane will be selectively extracted from the liquid and the methane content of the
liquid will decrease. Since the volumetric energy content of ethane is nearly twice that of methane, the
energy density of the remaining fuel increases.

Weathering in vehicle tanks is not a problem when the vehicles are frequently refueled. Operational

issues include engine knock (and possible damage) caused by the use of lower octane fuel (the octane rating
of pure methane is about 140, while that of a 90% methane/10% ethane mixture is about 134). Weathering

Table 4-5. Vapor pressures and heats of combustion for four energy gases.

Vapor Pressures

(MPa)
Heat of
100°K 125°K 150°K 175°K 200°K Combustion
-279.4°F -234 4°F -189.4°F -144 4°F -99 4°F (MJ/m3)
Methane 0.03451 0.2694 1.041 278 — 39.77
Ethane —_— — 0.0096 0.2563 0.2200 69.67

56




Propane — — — L— 0.0200 99.16
Butane — — — — 0.0019 128.57

is a safety issue in that the energy required to initiate a detonation in ethane is about two orders of
magnitude lower than that for methane.

The rate of weathering is dependent on the rate of heat leakage through the insulation into the storage
tank, since the boil-off of the methane is the primary heat absorption process. Shah and Aarts (Shah 1974)
bave developed correlations for predicting the rate of weathering in storage tanks. Typically, weathering
times are around 150 days for a 48,000-m’ storage tank with a boil-off rate of 0.05% per day. Weathering
times for a 125,000-m’ LNG carrier ship having a boil-off rate of 0.25% per day are around 10 days.

Weathering can be reduced by several techniques. High methane contents (e.g. 99%) can be
specified in the fuel purchase contract. Fuel to be consumed in a vehicle should the taken from the liquid
contents of the vehicle tank to prevent a long term buildup of ethane. Both storage and vehicle tanks should
be well insulated to reduce vaporization in the tanks as much as possible. The effects of weathering in
large storage tanks can also be reduced through mechanical refrigeration and reliquefaction of the ullage
vapor. Vehicle tanks are designed to use only 90% of the gross tank volume to reduce the rate of pressure
rise in the ullage® and the subsequent venting of methane-rich vapors. In order to prevent venting of the
vehicle tanks in potentially hazardous locations, such as within an enclosure, fueling schedules should be
arranged to assure rapid turnover of the fuel in both the storage and vehicle tanks.

4.3.2 Rollover

Rollover is a phenomenon seen in large (>30,000-gallon) storage tanks when new LNG is added to
LNG of a different composition already in the tank. The mixing of the two compositions can cause large,
unexpected and sudden releases of vapor, commonly referred to as ‘rollover.” This rollover causes a
pressure rise in the tank and may challenge the pressure or venting capacity of the tank. No damage has
been reported in any incidents of rollover, but the magnitude and rate of vapor release must be accounted
for in storage tank design (Drake 1973).

New LNG being added to a storage tanks is usually higher in methane content than the LNG already
present, due to weathering. The colder, lighter® LNG added to the top of the tank forms one convective
cell, driven by heat inleakage through the walls of the tank and boiloff at the surface. The older, heavier,
warmer LNG already in the tank forms a cell at the bottom of the tank, also driven by heat inleakage, but
without boiloff. These cells remain separate until heat and mass transfer processes bring the upper and
lower layer densities close enough to allow rapid mixing. When that mixing takes place, the warmer lower
layer in the tank heats the methane-rich upper layer, causing the rapid evolution of methane gas into the
ullage volume.

g. Note that pressure in the ullage volume increases faster when the vehicle is not in use than while fuel is being consumed.

h. The new LNG has higher methane content and is therefore lighter than the older, weathered methane.
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Large bulk tanks are equipped with top-fill vapor collapse headers which can reduce any possible
effects of associated with non-methane content of the vapor space. Operational procedures should assure
the use of the top-fill headers when warranted.

The dangers of rollover can be reduced or eliminated by three actions in the loading of an LNG tank.
First, the formation of separate convective cells can be avoided if there is adequate mixing of the incoming
LNG with all the LNG previously in the tank. This mixing can be done with recirculation pumps, which,
however, increase the heating of the LNG. Another approach uses the momentum of the feed stream to mix
the incoming with the stored LNG. Buoyant forces can aid in mixing if lighter LNG is always bottom-
loaded and heavier LNG is always top loaded.

Overpressurization of the storage tank during a rollover can be avoided if venting or pressure
capacity is adequate to handle the maximum amount of vapor that can be generated during a rollover.
Finally, concerns for rollover (and weathering) can be reduced if the range of LNG compositions to be
added to the tank is limited. In recent years, the methane content of LNG has increased and become more
consistent because of more thorough removal of ethane, propane and butane at the liquefaction plant.

4.3.3 Geysering

Geysering is caused by heat inleakage to a feed or vent pipe connected to both the bottom and upper
portions of a deep storage tank (Morioka 1986). Because the area to volume ratio is higher for the pipe
than for the overall tank, the fluid in the pipe becomes heated above saturation, forming bubbles and
decreasing in density. The bubbles causs upward flow through the pipe and possible rapid methane vapor
evolution in the ullage volume. Because the heat transfer rates are low and the mass of LNG is large,
geysering sometimes develops into a transient phenomenon called bumping. Bumping is more frequent in
vertical pipes. Transient boiling and condensation within piping to an LNG storage tank can also cause
‘water hammer’ and possible damage to the piping system.

4.3.4 Static Electricity and Grounding

Static electricity is the separation of positive and negative charges and the continued separation of
the charges because no conducting path is available for the charges to reunite. Static electricity can be
generated by friction in flowing low conductivity fluids, such as gasoline or LNG. Static electricity can
also be generated by friction between solid surfaces or by connection to atmospheric static discharges. Five
conditions must be present to produce a static spark capable of igniting a flammable mixture:

1. A mechanism for generating the static charge separation
2. A means of accumulating the charge, i.¢. a capacitance
3. A suitable gap across which the previously separated charges can flow

4, A voltage difference across the gap sufficient to cause electrical breakdown -

5. Sufficient energy released in the spark to meet the minimum ignition energy requirements of
the flammable mixture (Mancini 1988).

As discussed earlier, the ignition energy for both methane and gasoline is about 0.3 mJ. Gasoline is
usually carried in metal tanks and the flexible hose and spout are electrically bonded. Furthermore, the

.
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area surrounding gasoline pumps is usually concrete, to resist chemical attack from spilled gasoline. The
electrical conductivity of concrete is about two orders of magnitude higher than that of asphalt. Thus
charges separated by friction in the flow of gasoline are reunited along paths in the hose, concrete and tires.

Because of its cryogenic properties, LNG is transferred in metal rather than rubber or plastic hoses
and tanks. Seals are also generally metallic. Thus separated charges flow through the metal bellows hoses
and nozzle connections without sparking. For added safety, a separate grounding wire has been provided at
each of the refueling stations we visited. It is not clear that such a separate wire is needed. (As it turns
out, because the wire can become entangled with the LNG fill hose, particularly in one facility, the
grounding wire was not always used. If the function of the grouding wire is needed, the design of future
stations should rely on intrinsic grounding and bonding mechanisms and not rely on the operator’s
attaching a separate grounding wire.)

4.3.5 Vapor Accumulation

The accident at Cove Point, Maryland on October 6, 1979, in which one person was killed, was the
result of vapor accumulation in a motor controller building. The vapor flowed into the building through an
improperly sealed conduit from a submerged pump to the building. Since the LNG was not odorized, and
since there were no methane sensors in the building, the supervisor did not recognize that natural gas had
accumulated in the building and a spark from the control circuitry in a cabinet ignited an explosion (see
Section 2.3.3).

While accumulation of a flammable mixture and ignition of an explosion of methane in the open air
is difficult, vapor accumulation within a building can easily result in large volumes of an explosive
mixture. Furthermore, the reflection of shock waves off the interior walls, floor and ceiling intensify the
shock heating process and therefore reduce the energy required to initiate a detonation. Thus a prime
concern in the handling of LNG is the accumulation of vapors within enclosures.

After the Cove Point accident a number of changes were mandated in the design and construction of
LNG facilities. Among those changes was the requirement for vents and a section of solid conductor in any
conduit run between any source of natural gas and an ignition source. The vents are located outside of any
enclosure and release any vapors flowing within the conduit. The solid conductor interrupts the vapor path
in the interstitial passages between stranded conductor. Tests done after the Cove Point accident indicated
that vapors could flow along the interstices in stranded wire if the driving pressure is sufficient (PAR 1980,
Van Meerbeke 1982, IFC 1980).

4.4 Phenomena Under Accident Conditions

Under accident conditions, a quantity of LNG may be spilled on the ground or on a water surface.
The flow, dispersion, and possible ignition of the LNG vapors following such a spill in large part determine
the severity of the accident. As a low density cryogenic liquid, LNG has several characteristics different
from those of more common liquid fuels.

4.4.1 Spills

LNG is stored and transferred at pressures of 45 to 200 psi (0.3 to 1.4 MPa). As noted in Table
4-2, the viscosity of liquid methane at 112°K, its boiling point at atmospheric pressure, is 0.00113 g/cm-s.
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By comparison, the viscosity of gasoline is 0.002 g/cm-s and that of water is roughly the same in the range
300°K to 400°K. Thus, LNG can be expected to spill and flow somewhat more easily than water.

4.4.2 Dispersion

The dispersion of methane after a spill of LNG has been the subject of several series of experiments
over the last thirty years. Several phenomena govern the behavior of methane after the open pool of liquid
has been established. The LNG is vaporized by heat input from the underlying water or soil, from the air
above the pool and from insolation. Spills on water can continue to draw heat from the water because of its
high thermal capacity and convective currents. However, spills on soils cause freezing of the soil and a
marked decrease in thermal conductivity. In a deep pool of LNG, convective currents will be formed in the
pool itself.

The critical parameter in the investigation of vapor dispersion is the extent of the region wherein the
methane concentration is between the upper and lower flammability limits, i.e. between 5 and 15 volume
percent. Unlike gasoline and propane, methane is lighter than air when in thermal equilibrium and thus the
vapor will rise when warmed sufficiently by the surroundings. As stated earlier in this section, methane at
165°K has the same density as air at 300°K. Thus, the methane vapor will begin to rise as soon as it is
warmed (by the water, soil and air) from its release temperature of 115-120°K to 165°K.

Finite element models have been developed to simulate the dispersion of LNG and its vapor after a
spill. These models and the experiments that validated the models are discussed later in this section and in
Chan (1992).

4.4.3 Boiling Liquid Expanding Vapor Explosions

A Boiling Liquid Expanding Vapor Explosion (BLEVE) occurs as a result of a fire surrounding a
pressure or other storage vessel containing flammable liquid. Typically, the fire is fed by a leak in the
storage vessel. The liquid within the vessel heats up and the pressure rises. Relief valves are challenged to
open at their set point pressures, but if the valves are not large enough, or do not function on demand, then
the flow through the valve is insufficient to reduce the pressure and in any case, flammable liquid or vapor
issuing from the relief valve further intensifies the fire beneath the storage vessel. The walls of the vessel
begin to creep as their temperature rises and finally the wall fails, often in a lower portion of the tank
exposed to the most intense external fire. At this point the remaining contents of the tanks are discharged
to the atmosphere in a preheated condition and are immediately ignited by the initial fire, exploding in a
classic mushroom fireball. The blast effects of such explosions are not usually too severe, but debris may
be scattered over a wide area (Thomson 1987). Often there is a domino effect, where the first BLEVE
scatters debris which lights further fires and causes additional vessel failures. In the U.S., there were
twelve BLEVESs between 1970 and 1975 (GAO 1978). Several of these were in strings of railroad tank
cars carrying propane. A derailment would cause the failure of one or a few cars and the ensuing fire
would cause a BLEVE in those cars with a domino effect to the other cars.

Several distinctions between propane and LNG tank cars are worthy of note. First, since LNG must
be shipped at 112-130°K, the storage and transport tanks are well insulated from the external atmosphere.
The external shell must be strong enough to maintain the annular vacuum insulation, but the pressure
boundary is the internal shell. On the other hand, tanks for the shipment and storage of propane are single-
walled and often uninsulated, since propane is a liquid at 300°K and 1.0 MPa (145 psi). Thus heating of
the walls and heat transport to the stored liquid are much more rapid with propane than with LNG. Qur
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research has found no reports of BLEVESs involving LNG, though we have obtained reports of propane
BLEVEs from several sources. '

The incidence of propane BLEVEs has decreased markedly since the 1970s due to federally
mandated improvements to railcars, such as end shields for the tanks, couplers which would not slip apart
during a derailment and protection of valving. The improved couplers were necessary because the initial
tank failures were often caused by the coupler of an adjacent car.

4.4.4 Unconfined Vapor Cloud Explosions

Unconfined vapor cloud explosions (UVCEs) occur when a cloud of flammable vapor is released and
becomes mixed with the air over a period of time before ignition occurs. If the mixture then detonates, it
produces a shock wave traveling at a few kilometers per second and overpressures of a few atmospheres.

As discussed elsewhere in this section, Bull and coworkers (Bull 1976) ignited UVCEs in mixtures
of methane, oxygen and nitrogen. He found, by extrapolation, that 22 kg of high explosive would be
necessary to detonate a methane air mixture, but that propane and ethane could be ignited by a few tens of
grams. Furthermore, at the same temperature and pressure, methane is about 0.55 the density of air, while
ethane and propane are 1.03 and 1.52 times the density of air, respectively. Thus, methane disperses into
the atmosphere as it heats while ethane, propane and heavier hydrocarbons vapors can flow into low spots
at ground level. The likelihood of a methane cloud detonation therefore appears to be low.!

A methane cloud deflagration, on the other hand, is possible. Gugan (1979) reports an unconfined
vapor cloud explosion involving a perhaps 500 kg cloud of methane at a chemical process plant on a cold
(-12°F) day. The cloud edge was some 50 meters away from its source when ignition occurred. The
explosion broke several windows (the flying glass caused numerous injuries, some of them serious) but
otherwise caused little damage. The damage observed (which impliess a relatively slow speed of pressure
rise) indicates that the explosion did not involve a detonation.

4.5 Experiments

The U.S. Department of Energy (DOE) has constructed the Liquefied Gaseous Fuels Spill Test
Facility (LGFSTF) on and adjacent to the dry bed of Frenchman Lake at the Nevada Test Site, 75 miles
northwest of Las Vegas (Leone 1990). One feature of the LGFSTF is the Large Scale Test Area, where
the storage tanks can supply spill rates of 5 to 100 m*/min (1000 to 26,000 gpm) onto ground or water
surfaces. The cryogenic system can supply total spill volumes of 5 to 200 m* (1000 to 53,000 gallons).
The LGFSTF has the capability to test phenomena such as source definition, dispersion, rapid phase
transition, pool fire and vapor bumn.

In 1987 the Gas Research Institute and the U.S. Department of Transportation (DOT) performed a
series of five releases of LNG ranging from 6500 gallons to 26,000 gallons. The program tested the
effectiveness of vapor fences in mitigating LNG releases at peak-shaving plants.

i. It is not known if this possibility should be discounted entirely, as deflagration-to-detonation transitions are possible in
UVCEs, depending on the size of the cloud and various environmental conditions.
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The parameters for four of the five 1987 experiments are shown in Table 4-6 (Chan 1992). The last
column contains the results of a numerical simulation of the Falcon-4 experiment in which the
vapor-dispersing fence was removed from the model. Note that the spill volumes range from 5,400 to
17,500%gallons, easily encompassing the largest size tanker truck expected at an LNG refueling station.
The first three tests had spill durations of less than three minutes, while the fourth test had a spill duration
of slightly over five minutes. Winds were light and the weather conditions were moderately stable. The
spills were made on the surface of a 60 m x 40 m pond, about 0.76 m deep. The fiberglass vapor fence
surrounding the pond was 44 m wide and 88 m long and 8.7 m high. The test area also included a
billboard-line barrier 17.1 m long and 13.3 m high. The purpose of the tests was to validate the codes and

Table 4-6. Parameters for falcon experiments.

Falcon-4

Falcon-1 Falcon-2 Falcon-3 Falcon-4 (simulation, no fence)
Spill volume (m?) 66.4 20.6 50.7 449 449
Spill volume (gallons) 17540 5440 13400 11860 11860
Spill rate (m*/min) 28.7 15.9 18.9 8.7 8.7
Spill rate (gpm) 7580 4200 4990 2300 2300
Average windspeed at 1.7 4.7 4.1 52 52
2 m (m/s)
Average windspeed at 3.8 10.5 9.2 11.6 11.6
2 m (mph)
Pasquill stability class G D D D/E D/E
Downwind distance to 440 [200] 353 203 [365]
2.5 volume %
concentration (m)
Downwind distance to 1444 [656] 1158 666 [1198]
2.5 volume %
concentration (ft)
Downwind distance to 330 [70] 230 28 [230]
5 volume %
concentration (m)
Downwind distance to 1083 [230] 755 92 [755]

5 volume %
concentration (ft)

Distances in brackets are results from FEM3A runs; other distances are experimental data

wind tunnel model used in simulating vapor dispersion and to assess the effectiveness of vapor fences for
mitigating LNG vapor dispersion hazards in the event of a large accidental spill. The code FEM3A
generally predicted the results of the experiments within 25%, though the experimental downwind 5%
concentration distance was less than 45% of the distance predicted by the model.




Experimental results and the simulation of Falcon-4 without a vapor fence indicated that a vapor
fence has the following advantages: significantly reduced methane concentrations in the near field, delayed
cloud arrival times at downwind locations and a much shorten downwind distance where the methane
concentration is in the flammable range. However, a vapor fence retains the vapor cloud longer near the
source, thus increasing the potential for ignition. Methane concentrations within the vapor fence were
above the upper flammable limit (15 vol. %) for the first four minutes of the Falcon-1 and Falcon-4 tests.
(Interior concentrations were not reported for the other tests.)

Earlier, some 130 experimental spills of LNG on water were carried out between 1970 and 1981
(Puttock 1982). Liquid volumes spilled ranged from 0.04 m® to 198 m®. Sixteen of the tests were
intentionally ignited. Spills onto ground were conducted by Gaz de France at Nantes in 1972 and by
Battelle/AGA near San Clemente in 1974. In the ground spills, evaporation from a soil surface rapidly
decreased as the soil cooled and the maximum hazard occured soon after the LNG was spilled. Because of
water in the soil and humidity in the air, a visible cloud was observed to separate from the plume remaining
after the initial burst of vapor. It was found from concentration measurements that the flammable region
was always contained within the visible cloud.

Shell conducted about ten experimental spills of LNG, eight continuous and two instantaneous in
late summer 1980 at Maplin Sands along the Thames. Spill volumes were between 4 m® and 20 m’.
Instrumentation surrounded the spill site on a tidal flat in a semi-circular pattern, 400 m in radius. In one
of the tests, LNG was injected as a jet 0.25 m below the water surface at the rate of 3.9 m*/min for 5.0
minutes. The LNG formed a highly buoyant cloud which passed above even the closest methane sensors
located 2.4 m above the sea surface and 40 m from the release point. This test is good indication that the
rapid phase transitions caused by mixing of LNG and water are not violent.

4.6 Current Outstanding Issues in LNG Safety

In an October 15, 1996 memo to Thomas Grumbly (Hunt 1996) Peter Hunt raised a number of
important safety issues in the use of LNG as a transportation fuel. The issues involve:

. The hazard of a fire or explosion in the methane vapor cloud released in an LNG spill
. The danger of lung damage or asphyxiation due to the low temperature of the vapor cloud
° Material failures due to contraction and embrittlement if structural stecl is exposed to LNG

. The rapid phase transition that will occur if LNG is injected into water or another warm
liquid.

Our review of the literature and field observations lead to the following conclusions about the status of each
of theses issues.

Regarding the first issue, DOE and the LNG industry have conducted both experiments and
numerical simulations of the release and dispersions of large quantities of LNG, as noted in the preceding
section. These tests have resulted in the development of guidelines for the size of LNG facilities to assure
no offsite transport of flammable mixtures (Ong 1985). However, it is not clear if these guidelines are
being met; based on the results of the Falcon tests and associated simulations, it appears that under some
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weather conditions, credible (if quite unlikely) spills at two of the facilities visited can lead to flammable
concentrations offsite.

The DOE and industry tests and simulations have also led to the development of vapor fences
surrounding LNG storage tanks that greatly reduce the region of flammability (Chan 1992). Again, it is
not clear that these fences are widely deployed; none of the facilities visited had fences especially designed
to enhance LNG vapor dispersion. (Note that the effectiveness of conventional, e.g., chain link, fences in
dispersing LNG is also unclear.)

If a large release occurs and is not quickly dispersed, unconfined methane vapor cloud explosions are
possible (see Section 4.4.4). Although such explosions are unlikely to involve detonations, deflagrations
are capable of causing extensive injuries and property damage.

Regarding the second issue, there clearly is a danger of asphyxiation and lung damage if one enters a
low temperature LNG cloud. Such accidents are not expected to be common events, since the cloud is
usually quite visible in the daytime due to condensation of humidity from the air. Furthermore, areas where
such cold clouds can accumulate are normally contained within a bund wall or pit surrounding an LNG
storage tank, where workers are not routinely present and where the public should not be allowed.
However, the possibility of these accidents cannot be discounted; analogous occurrences have been
observed in non-LNG facilities. (For example, Medard (1970) describes a 1968 event in France in which
semi-trailer truck filled with ammonia ruptured. The release formed a white, mushroom shaped cloud. Six
nearby workers went to investigate the noise and were enveloped by the cloud; three collapsed and died.)

Regarding the third issue, material failures have occurred on LNG carrier ships when LNG has
spilled on steel deck plates, causing contraction and brittle failure. However, these incidents apparently
have not involved widespread damage and have not led to severe consequences (Harris 1993 and
Frondeville 1977). It should be noted that the 1944 Cleveland accident was caused by a material failure of
the tank wall itself. That grade of steel, containing 3.5 % nickel, is no longer used for LNG tanks; 9 %
nickel steel is used instead. This change precludes tank membrane failure by brittle fracture (assuming
there are no significant design or manufacturing errors in tank construction).

Regarding the fourth issue, a rapid phase transition is possible if LNG is finely dispersed in a much
warmer liquid, such as water at 300°K. However, the water would have to fall into the LNG or the LNG
would have be injected below the water surface. Numerous experiments where LNG has been spilled on
the water surface have not resulted in any violent phase transitions.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Study Results

A number of potentially risk significant refueling station accident scenarios have been identified in
this study. These scenarios, listed in Tables 3-4 and 3-5 and summarized in Tables 1-2 and 1-3, are not
believed to be likely, due to the relatively low likelihood of some of the initiating events (e.g., relief valves
failing open, tank/piping failure due to a severe external event) or to the requirement for multiple failures in
the scenario (e.g., an initial error during refueling followed by failure of early recovery efforts). However,
based on reports and past events involving LNG or other gaseous vehicle fuels, it appears that these
scenarios are not so unlikely as to be incredible Designers of new facilities and operators of existing ones
need to ensure that their facilities are adequately protected with respect to both scenario initiation and
progression.

This study also shows how observed differences in station design, operational practices, and siting
can affect the likelihood of different initiating events and safety barrier (top event) failures, thereby
affecting station risk. Example differences in design involve the extent and size of bunds for spill
containment and the location of maintenance facilities. Some potentially important differences in
operations and operational practices involve the frequency of refueling activities, the accessibility of the
station to the public, and the emergency response training of vehicle refuelers (drivers or designated staff)
and other station personnel. Differences in station siting can affect the likelihood of external hazards to the
station as well as the exposure of the public to station accidents.

Finally, this study has reviewed a wide range of documents relevant to LNG safety issues recently
raised by Hunt (see Section 4.6). Focusing just on LNG safety, it appears that at least two of these issues
(vapor cloud ignition and injuries/fatalities due to exposure to an LNG vapor cloud) are reasonable
concems and need to be addressed in station design, operations, and siting. However, it should be
cautioned that this study, being qualitative in nature and focused on LNG, has not addressed the issues of
absolute risk (e.g., what is the probability of the events in question) or relative risk (e.g., how does the
LNG risk compare with risks from conventional fuels). A quantitative analysxs is needed before the true
safety significance of these issues can be determined.

5.2 Recommendations

The following recommendations are based on the results of this study. They involve: (a) potential
design and operational improvements at LNG refueling stations and (b) additional studies that need to be
performed to clarify key issues. Regarding the design and operational improvements, it is recommended
that: ‘

Improvements be made in procedures and training. Variances in operational practices that may have
an impact on safety (e.g., tank venting, use of grounding wires, use of PPE), improper responses to alarms,
and the lack of procedures during maintenance (which leads to learning by trial and error) are potentially

j- It should be noted that lessons leamed from major past incidents involving LNG have been used to improve designs and
equipment. The investigation following the 1944 Cleveland release and explosions led to the use of steels that would not
become brittle at 112°K (BOM, 1946). The accident at Cove Point in 1978 led to the rewriting standards for the sealing
conduits and for the calibration of methane detectors (Van Meerbeke, 1982).
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important safety issues that need to be addressed. It is useful to observe that improvements in training and
procedures are relatively inexpensive means to reduce risk.

Station designs should account for: a) the possibility of LNG leakage along unexpected pathways
(e.g., past seals) to enclosed spaces, and b) the possibility of complete LNG inventory losses. Although
neither event is likely, they have been historically observed (albeit in different facilities) and prudence
dictates that they be addressed. This recommendation implies, for example, the use of methane detectors in
all enclosed spaces, designing/backfitting to prevent the buildup of methane in all enclosed spaces
(assuming a leak), and the provision of appropriately sized bund walls completely surrounding the main
LNG storage tank(s).

The dissemination of best practices among stations should be strongly supported. This
recommendation supports the preceding ones, and is driven by the same issues.

The above recommendations are based on field observations at three different LNG refueling stations
and on information gathered from a number of papers and reports. Because the stations visited represent a
limited sample in terms of design, operational, and siting characteristics, these recommendations must be
regarded as being somewhat preliminary. A number of follow-on safety studies are therefore
recommended. These studies will validate and modify, as appropriate, the conclusions of this study, and
will provide a stronger basis for suggested changes in current practices.

In addition to these safety studies, additional studies regarding key phenomenology' during LNG
accidents are recommended. These latter studies are needed to more completely address the issues raised in
the Hunt memo (Hunt 1996). Moreover, they will provide invaluable support to qualitative and
quantitative risk assessment efforts which need better answers to such questions as how large must a spill
be to pose a significant hazard offsite.

The particular studies recommended for the near term are as follows.

) Additional visits to a new group of operating refueling stations should be made. Observations
from these visits will modify or strengthen current conclusions regarding potential design and
operational weak points.

. An in-depth review of LNG accident/event reports (case studies) should be performed to
provide a stronger link between experiential data and the failure scenarios identified in the risk
assessment. By identifying the observed causes of failure and any sources of dependencies
between multiple failures in these case studies, the study will enable an improved assessment
of scenario likelihood. The study will also identify failure mechanisms which are less likely or
no longer relevant, due to advances in codes and standards, construction practices, operational
practices, and so forth.

. A detailed review on post-1978 experimental data relevant to predicting LNG hazards. This
review, which will identify sources, models, and codes, will provide a more definitive picture
of what is known concerning LNG dispersion and ignition behavior under realistic accident
conditions. This is needed to determine the risk significance of the two Hunt memo issues of
potential concem (i.e., unconfined vapor cloud fires or explosions and direct exposure to LNG
vapor).
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Finally, it is recommended that the following two studies be performed as time and resources permit.
While they are of lesser urgency than the preceding studies, their results should be very useful to the

industry.

A study should be performed to determine which current safety practices (e.g., use of
grounding strap) are truly necessary. For those which are needed, steps should be taken to
ensure compliance. This study addresses the possibility that overly conservative requirements
may lead to an indiscriminate attitude towards all safety requirements on the part of some
drivers and station personnel. '

The qualitative scenarios identified in this report should be quantified for LNG and
conventional (gasoline and diesel) refueling stations. Such a risk assessment will allow an
improved prioritization of accident scenarios, and will support detailed design and operational
trade-offs. It will also provide an improved basis for evaluating the overall safety of LNG
fueling stations.
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6. BASIC DEFINITIONS

Reflagration  Combustion of a gaseous mixture of fuel and oxygen, where the combustion wave front is
subsonic.

Detonation Rapid combustion of a fuel-oxygen mixture where the combustion wave front travels at the
sonic velocity. Detonations are regarded as much more severe than deflagrations because
of the overpressure and rapid liberation of thermal energy.

Geysering Flow surges of a vapor-liquid mixture in vertical tubes caused by heat inleakage and the
formation of bubbles within the liquid,

Inerting Filling an enclosed space, such as a tank or room, with a gas that will not support
combustion. Nitrogen and argon are examples.

Rollover Delayed, but vigorous mixing of new and old LNG caused by differences in composiﬁon
and temperature.

Weathering Change in the composition of stored LNG due to the more rapid vaporization of methane
compared with ethane, propane or the higher hydrocarbons
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Appendix A - Failure Modes and Effects Analysis for Facility Number 1

This appendix contains a Failure Modes and Effects Analysis (FMEA) performed for the
Facility 1 fuel dispensing system. The analysis considers each component and postulates the
system effects or responses to the various ways in which the component could fail. The FMEA
provides some insights into the failure modes and behavior of the components in the system.

There are many valves in the system, including over 30 manual valves, 12 relief valves, 3
check valves, and 5 flow control valves. The FMEA shows that these valves, which constitute
about two-thirds of the system components are only a safety concern if the failure mode is external
leakage or relief valve venting. LNG valve data must be reviewed to determine if external leakage
(i.e., stem leakage or valve body cracking) are frequent events that warrant attention.

The other components include rupture disks, instruments, fill connections, the pump and
meter, and the tanks. Instruments could be a source of concern if they leak at penetrations or leak
from instrument taps, or give false indications. The connection lines appear to be benign, used
infrequently and provided with isolation valves. Any pump and meter failures require the opening
of the pressure tank for repair or replacement, but do not appear to pose safety concerns.

In general, most of the failures hypothesized in the FMEA result in the inability of the
system to deliver fuel to vehicles or to receive incoming fuel shipments. While this downtime is an
operational inconvenience, it is not a safety concern. Catastrophic events, such as pump impeller
catastrophic failure followed by impeller debris piercing the pressure tank wall, were not
considered because this is not a typical failure mode for a centrifugal pamp. The system analyzed
is not very complex and has little automated control.

One insight from the FMEA is that there are a number of single point failures that can lead
to a release of LNG. In particular, the pressure relief valves for the storage and pressure tanks are
single barriers between the LNG and the atmosphere. These relief valves are vented up the facility
stack (which helps to loft the gas for dispersion); any failure of these valves is a single failure
leading to a release. For example, a valve might successfully open to relieve a mild system
overpressure, but then fail in the open position (e.g., due to buildup of ice from atmospheric
humidity). As a second problem, if the valves are not well insulated, ice could build up on them
while they are closed, causing them to remain closed when they are demanded to open. This could
also be true for the rupture disks. Relief valve failure rates tend to be low (on the order of 10™ to
10? per demand) but there are several of these valves in the fuel dispensing system.

A second insight concerns the degree of redundancy provided by the standard double-
walled storage tank construction. . If air or LNG leaks into the vacuum space between the two
walls, a heat transfer path will be provided to the inner tank. Without mitigative action, eventually
the LNG in the tank will boil and vent. (This problem is well-recognized; tanks must typically be
refurbished in 5 to 7 years.) Furthermore, the outer vessel walls are generally constructed of
carbon steel to reduce the cost of the tank, and so are susceptible to brittle fracture if cooled to
LNG temperatures. Thus, a failure of the inner vessel will lead to a release of LNG into the
vacuum space which, in turn, can lead to failure of outer vessel. The double wall does not mean
double containment in the case of cryogens.
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Appendix B - Fault Trees for Initiating Events
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Appendix C - Event Trees for Refueling Station
Qualitative Risk Assessment
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Appendix D - Large Consequence Scenarios

Legend: IE = initiating event
XX  =failure of top event "XX"
XX' = guaranteed failure of top event "XX"
/XX = success of top event "XX"
/XX' = guaranteed success of top event "XX"
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Table D-1. Scenarios Leading to Large Releases

1E Top Events Notes
CAI /ED' | ER' /SI LR /RC Dominant CAI
CAI /ED' ER' /SI LR RC
CAl /ED' ER’ SI LR IRC
CAI /ED' ER' SI LR RC
CAU | [ED' | ER' /S1 LR /RC Dominant CAU
CAU | /ED' | ER' /S1 LR RC
CAU | [ED' | ER' SI LR' /RC
CAU | /ED' | ER’ SI LR’ RC
EE /ED ER’ /S1 LR’ /RC
EE /ED ER' NI LR RC
EE [ED ER' SI LR' /RC
EE [ED ER’ SI LR’ RC
EE ED ER' /S1 LR’ /RC Dominant EE
EE ED ER' /S LR RC
EE ED ER’ Si LR’ /RC
EE ED ER' SI LR RC
HF /ED ER /S1 LR /RC Dominant HF
HF /ED ER /S1 LR RC
HF {ED ER SI LR /RC
HF /ED ER SI LR RC
HF ED ER’ /S1 LR /RC
HF ED ER' /S1 LR RC
HF ED ER' SI LR /RC
HF ED ER' SI LR RC
oD /ED' | ER /S1 LR /RC Dominant OD
oD /ED' ER /S1 LR RC
oD [ED’ ER S LR /RC
oD /ED' ER SI LR RC
OF /ED ER /SI LR /RC Dominant OF
OF /ED ER /SI LR RC
OF /ED ER SI LR /RC
OF [ED ER SI LR RC
OF ED ER’ /S1 LR /RC
OF ED ER’ /SI LR RC
OF ED ER’ SI LR /RC
OF ED ER’ SI LR RC
OM {ED ER /S1 LR /RC Dominant OM
OM /ED ER /81 LR RC
OM /ED ER SI LR /RC
OM {ED ER SI LR RC
oM ED ER’ /S1 LR /IRC Dominant OM
OM ED ER’ /S1 LR RC
OM ED ER’ SI LR /RC
oM ED ER’ St LR RC




Table D-1. Scenarios Leading to Large Releases (cont.)

‘ IE Top Events N Notes

PFI | /ED | ER /SI LR /RC | Dominant PFI
PFI | /ED | ER /SI LR RC

PFI | /ED | ER SI LR /RC

PFI | /ED | ER SI LR RC

PFl | ED ER' | /SI LR /RC | Dominant PFI
PFI | ED ER' |/SI |LR RC

PFI | ED ER' | SI LR /RC

PFI | ED ER' | SI LR RC

PFU | /ED | ER' | /SI LR' | /RC | Dominant PFU
PFU | /ED | ER' |/SI LR | RC

PFU |/ED |ER' | SI LR' | /RC

PFU |/ED | ER' | SI LR' | RC

PFU | ED ER' | /SI LR' | /RC

PFU | ED ER' | /S1 LR' [RC

PFU | ED ER' | SI LR' | /RC

PFU | ED ER' | SI LR' |RC

SFI | /ED | ER /SI LR /RC | Dominant SFI
SFI | /ED | ER /SI LR RC

SFI | /ED | ER SI LR /RC

SFI_ | /ED | ER SI LR RC

SFI__| ED ER' | /SI LR /RC | Dominant SFI
SFI | ED ER' [ /SI LR RC

SFI | ED ER' | SI LR /RC

SFI | ED ER' | SI LR RC

SFU | /ED | ER' [|/S1 LR' | /RC | Dominant SFU
SFU |/ED | ER | /SI LR' |[RC

SFU |/ED |ER' | S8I LR | /RC

SFU |[/ED |ER | SI LR' |{RC

SFU | ED ER' | /SI LR' | /RC

SFU | ED ER' | /SI LR' |RC

SFU | ED ER' | SI LR' | /RC

SFU | ED ER' | SI LR' | RC

ST /ED | ER' | /SI LR' | /RC | Dominant ST
ST /ED | ER' | /SI LR' | RC

ST /ED | ER' | SI LR' | /RC

ST /ED | ER' | SI LR' | RC

ST ED ER' | /SI LR' | /RC

ST ED ER' | /SI LR' | RC

ST ED ER' | SI LR' | /RC

ST ED ER' | SI LR' | RC

TTF | /ED | ER | /SI LR' | /RC' | Dominant TTF
TTF |/ED | ER' | SI LR' | /RC

TTF | ED ER' | /SI LR' | /RC

TIF_ | ED ER' | SI LR' | /RC




Table D-1. Scenarios Leading to Large Releases (cont.)

IE Top Events Notes

TIT |/ED [ER' | /SI LR' | /RC | Dominant TTT
TIT |/ED | ER' | /SI LR | RC

TIT |(/ED |[ER' | SI LR | /RC

TIT |/ED | ER | SI LR | RC

TIT | ED ER' | /SI LR' | /RC

TIT | ED ER' | /SI LR' | RC

TIT | ED ER' | SI LR | /RC

TIT | ED ER' | SI LR' |RC

VA | /ED' | ER' | /SI LR | /RC | Dominant VA
VA |/ED' | ER' | /SI LR' | RC

VA | /ED' |ER' [ SI LR' [ /RC

VA | /ED' | ER' | SI LR [RC

VFI |(/ED | ER /SI LR | /RC | Dominant VFI
VFL | /ED | ER /SI LR RC

VFI |/ED | ER SI LR | /RC

VEI | /ED | ER SI LR RC

VFI | ED ER' | /SI LR /RC | Dominant VFI
VFI | ED ER' | /SI LR RC

VFI | ED ER' | SI LR | /RC

VFI | ED ER' | SI LR RC

VFU | /ED | ER' | /SI LR' | /RC | Dominant VFU
VFU |/ED | ER' | /SI LR' | RC

VFU |/ED |ER' [ SI LR' | /RC

VFU |/ED | ER | SI LR' |RC

VFU | ED ER' | /SI LR [ /RC

VFU | ED ER' | /SI LR | RC

VFU | ED ER' | SI LR | /RC

VFU | ED ER' | SI LR |RC




Table D-2. Scenarios Leading to Large Releases with Onsite Ignition

IE Top Events l Notes ) I

CAI | ED | ER SI LR {RC | Dominant CAI
CAI_{ /[ED' | ER’ SI LR RC
CAU | /ED' | ER' Si LR’ /RC | Dominant CAU
CAU | /ED' | ER’ SI LR' RC
EE /ED ER' SI LR {RC
EE /ED ER' SI LR' RC
EE

EE

ED ER' | SI LR’ /RC | Dominant EE
ED ER' SI LR' RC
HF /ED ER SI LR /RC | Dominant HE
HF /ED _{ ER SI LR RC

HF ED ER' SI LR /{RC
HF ED ER' St LR RC

ob /ED' | ER SI LR /RC__ | Dominant OD
oD /ED'_ | ER SI LR RC
OF /ED ER SI IR /RC | Dominant OF
OF /ED ER SI LR RC

OF ED ER’ SI IR /RC
OF ED ER' S1 LR RC

OM /ED ER SI LR /RC | Dominant OM
OM /ED ER SI IR RC
OM ED ER’ S1 LR /RC | Dominant OM
oM ED ER' SI IR RC
PFI /ED ER SI IR /RC | Dominant PF1
PF1 /ED ER SI LR RC
PE1 ED ER' SI LR /{RC | Dominant PFI
PFI ED ER' SI LR RC
PFU | /ED ER' SI LR /RC | Dominant PFU
PFU | /ED ER’ SI LR’ RC

PFU | ED ER' ST |LR' /RC
PFU | ED ER' SI LR’ RC

SFI {ED ER SI LR {RC | Dominant SFI
SF1 /ED ER SI LR RC
SFI ED ER' SI IR /RC | Dominant SFI
SFI ED ER’ SI LR RC
SFU | /ED ER' SI LR /RC | Dominant SFU
SFU | /ED ER' SI LR RC

SFU | ED ER’ SI LR /RC
SFU | ED ER' SI LR' RC

ST /ED ER' ST LR /RC | Dominant ST
ST /ED ER' SI LR RC

ST ED ER' SI LR’ RC
ST ED ER' S1 LR’ RC

TTF | /ED ER' SI LR' /RC' | Dominant TTF
TIF | ED ER' S1 LR RC'




Table D-2. Scenarios Leading to Large Releases with Onsite Ignition (cont.)

ER' SI LR’ /RC__| Dominant VFU
ER' SI LR’ RC
ER' SI LR’ RC
ER' SI LR' RC

1IE Top Events Notes
TIT | /ED ER’ SI LR’ /RC - | Dominant TTT
TIT | /ED ER’ SI LR’ RC
TIT | ED ER’ SI LR’ /RC
TIT | ED ER' SI LR’ RC
VA /ED' | ER' SI LR' /RC Dominant VA
VA /ED' | ER’ SI LR’ RC
VFL /ED ER SI LR /RC Dominant VFI
\231 /ED ER SI LR RC
VFIL ED ER’ SI LR /RC Dominant VFI
VEL ED ER' St LR RC
/ED
{ED
ED
ED

D-6




Table D-3. Scenarios Leading to Large Offsite Releases

IE Top Events ! Notes

) 1R | RC | Dominant CAT |
ER /S1 LR RC Dominant CAI

ER' SI LR’ RC
ER’ /S LR’ RC
ER' S1 LR’ RC
ER' /81 LR’ RC Dominant ST
ER’ S1 LR’ RC
ER’ /81 LR’ RC
ER' SI LR’ RC
ER' /51 LR’ RC Dominant TTT
ER' St LR RC
ER' /81 LR’ RC
ER’ SI LR’ RC

CAI | /ED' i
CAI | /ED' | ER SI IR RC
CAU | /ED' | ER /81 LR' RC Dominant CAU
CAU | /ED' | ER’ SI LR RC
EE {ED ER' /81 LR RC
EE /ED ER' SI LR’ RC
EE ED ER' /81 LR RC Dominant EE
EE ED ER’ SI LR’ RC
HF /ED ER /S1 LR RC Dominant HF
HF /ED ER SI LR RC
HF ED ER’ /81 LR RC
HE ED ER’ S1 LR RC
oD /ED' | ER /81 IR RC Dominant OD
oD /ED' | ER SI LR RC
OF /ED ER /S1 LR RC Dominant OF
OF /ED ER St LR RC
OF ED ER’ {81 LR RC
OF ED ER’ SI LR RC
oM {ED ER /81 LR RC Dominant OM
oM {ED ER SI LR RC
oM ED ER’ /SI LR RC Dominant OM
OM ED ER’ SI LR RC
PFI /ED ER /S1 LR RC Dominant PFI
PFI /ED ER SI LR RC
PFI ED ER' /81 LR RC Dominant PF1
PEY ED ER’ SI LR RC
PFU | /ED ER’' /81 LR’ RC Dominant PFU
PFU | /ED ER' SI LR’ RC
PFU | ED ER’ /S1 LR’ RC
PFU | ED ER’ SI LR’ RC
SFI /ED ER /81 IR~ [RC Dominant SFI
SFI /ED ER SI LR RC
SFI ED ER' /81 LR RC Dominant SFI
SFI ED ER’' SI LR RC
SFU | /ED ER' /S1 LR RC Dominant SFU
/ED
ED
ED
/ED
{ED
ED
ED
{ED
/ED
ED
ED
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Table D-3. Scenarios Leading to Large Offsite Releases (cont.)

IE Top Events Notes
VA /ED' ER’ /SI LR’ RC Dominant VA
VA /ED' ER' SI LR’ RC
/ED ER /SI LR RC Dominant VFI
/ED ER S1 LR RC
VFI ED ER’ /S1 LR RC Dominant VFI
ED
/ED
ED
ED
ED

ER' S1 LR RC
ER’ /S1 LR RC Dominant VFU
ER' SI LR' RC
ER' /SI LR' RC
ER’ SI LR’ RC
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