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ABSTRACT sesults show that the neural petworks can successfully

A combination approach of an expert system and
neural petworks is used to implement a prototype severe
accident diagnostic system: which would monitor the
progression of the severe accident and provide necessary
plant status information to assist the plant staff in accident
management during the accident. The station blackout
accident in a pressurized water reactor (PWR) is used as the
study case. The current phase of research focus is on
distinguishing different primary system failure modes and
following the accident transient before and up 10 vessel
breach.

1. INTRODUCTION

Severe accident management has been recognized as an
essential element 1o enbance puclear power plant safety,
and a large effort has been devoted on related issues. 123
Silverman and Klopp used a neural network-based expert
system for the purpose of severe accident management.4
The system was used to predict parameters important for
accident management during loss of coolant accidents
(LOCA), £.8., the time available 1o core support plate and
reactor vessel failure and time remaining until recovery
actions were 100 late to prevent core damage. Guarro et al.
have proposed an accident management advisor system
(AMAS) as & decision aid for interpreting the instrument
information and managing accident conditions in a nuclear
power plant.5 The modified Jogical flowgraph methodalogy
was used 10 interpret the instrument readings to derive the
plant parameters, and the plant stats was determined
through the Baysian Belief Network (BBN). Recently,
artificial peural networks have been vsed for BWR ATWS
tansients pattern recognition.b Core power, vessel
pressure, pumber of open safety relief valves, and
suppression pool temperature have been cbosen o define
the four patierns for the training of the networks. The

retrieve the patterns even with large random noise and
partial loss of the input information. As indicated by the
authors, this kind of error resistance might be useful in
severe accident situations where the instrumentation may
not be available because of the harsh environment. Neural
networks bave also been used in many other areas of
nuclear power plants, including transient diagoostics,
sepsor validation, plant-wide monitoring, check valve
monitoring, and vibration analysis.” In most of these
applications, multi-layer, feed-forward backpropagation
neural networks are vsed. A dynamic node architecture
scheme for neural network training was proposed by Basu
and Bartle to optimize the neural network structure.® For
a three layer backpropagation peural network, while tbe
neuron pumber of input and output layers is usually
determined by the diagnostic problem, the number of
peurons for the hidden layer is added or deleted dynamically

~ Qduring the training until the optimal criteria are met with a

certain number of hidden neurons. Neural networks with

“schemes other than backpropagation have also been applied

to fault diagnosis. Specht’s probabilistic neural nerworks
were modified and integrated with influence diagrams for
power plant monitoring and diagnostics.9+10 Marseguerra
and Zio proposed a stochastic neural network (boltizmann
machine) and used it to diagnose a pipe break in a
simulated auxiliary feedwater system. 1!

~ Itis important for the personnel in charge of accident
management during the accident to understand the status of
the power plant and the progression trend of the accident in

_ order to evaluate and implement effective prevention or
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mitigation strategies. While there are Jots of efforts on
diagnostic systems for accidents before core
damage,12:13.14 there is & general lack of diagnosis
metbodologies for severe accidents whese the core would
undergo severe damage and accidents might progress beyond
vessel breach.
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A combination approach of an ¢xpert system and
neural networks is used to implement a prototype severe
accident diagnostic system which would monitor the

~ progression of the severe accident and provide necessary
plant status information to assist the plant staff in accident
management during the accident. The station blackout
accident in a pressurized water reactor (PWR) is used as the
study case. The current phase of research focus is on
distinguishing different primary system failure modes and
following the accident transient before and up to vessel
breach. Section II is a brief discussion of the station
blackout accident. Section III presents the diagnosis
methodology. Section IV describes neural networks and the
expert system. Section V shows the neural metwork
training results. And finally, Section VI is the summary of
the work.

II. STATION BLACKOUT ACCIDENT

One of the major type of accidents is Station Blackout,
which contributes a relatively large risk to nuclear power
plant operation and might progress to the stage of severe
core damage or further. Station Blackout is the situation
when both offsite and onsite AC power are unavailable.
During these accidents, there are various primary system
failure modes, including reactor coolant pump (RCP) seal
failure, power operated relief valve (PORYV) stuck open or
safety relief valve (SRV) stuck open, temperature-induced
bot leg/surge line failure (H/S Failure), temperature-induced
steam generator tube rupture (ISGTR), and vessel breach
(VB). At the start of the accident, there is loss of RCP seal
cooling because of a loss of AC power. Large or small seal
failures might develop and cause the loss of reactor coolant
system (RCS) inventory. There also might be primary
system inventory loss through the PORVs or SRVs
~ cycling. With the uncovery of the core, the PORVs or

- SRVs would operate at a much higher temperature than the

pormal condition and might fail to reclose during one of
the cycles. ISGTR or creep rupture of the hot leg/surge line
might also happen if the system is exposed to superheated
steam and hydrogen due to natural circulation over a period
of time under high differential pressure. If any of these
occurs, the RCS might be depressurized and the vessel
might fail at intermediate or low pressure, and hence a high
pressure melt injection, which may cause containment
failure by direct heating, would be unlikely to happen. If
none of these happens, the VB will probably occur at high
pressure and direct containment heating might happen.
After vessel breach, the accident will continue to progress
and the containment might be endangered and fail, if it is
not already failed at VB.

Preliminary analysis indicates that primary system
pressure undergoes more or less distinct dynamic responses

with various failure modes during station blackout3.15
After the initial transient period, there is a decrease of the
primary system pressure because of energy transfer to the
secondary system before the dryout of steam generators and
possible energy loss through the primary system opening
(e.g. RCP seal leaking). After the dryout of the steam
generators, the primary system pressure will increase o the
PORYV setpoint when the PORVs start cycling. The
primary system pressure will fluctuate accordingly. For the
case of large RCP seal failure, the pressure drop might be
so large that the pressure will no longer go up to the
PORY setpoint. Depending on different primary failure
modes, there might be a different primary system pressure
history. In addition, there are otber sensor readings which
could be used to distinguish different failure modes.!6 For
example, when ISGTR occurs, the pressure, temperature,
and radiation level of the secondary side of the steam
generator will normally increase. In summary, the
combination of the primary system pressure history and
other instnmentation indications could be used to diagnose
various primary system failure modes during station
blackout accidents.

1. METHODOLOGY

Thbere are basically two fundamental problems for the
diagnostic task, i.e., detection of a failure and identification
of the failure. The detection process would uncover a
possible primary system failure from abnormal sensor
readings and the identification process would determine
which failure actually occurs from the time series of the
signals. It is important to distinguish these two steps of
the diagnosis because it usually takes more data to identify
what exactly happens after the detection. For example, it is
rather easy and quick to tell that the reactor vessel has been
breached, or the bot leg/surge line fails, from the sudden
large decrease of the primary system pressure, whereas it is
hard to see right away which of these two happens. For the
case of PORV Stuck Open, the failure could not be detected
for some sustained period of time undl the sensor readings
show substantial abnormality. The same situation applies
to ISGTR without radiation reading of the secondary side of
steam generators. Various uncertainties bave to be
considered during the accident progression. First, there is
uncertainty regarding which failure occurs. For example,
during a station blackout accident, the auxiliary feedwater
system may either be in operation or fail at the initiation
of the accident. After uncovery of the top of the active fuel
there might be failure of steam generator tubes, failure of
the bot leg/surge line, or a stuck open power operated relief
valve. Second, there is uncertainty regarding whep the
failure occurs. The timing of each possible failure is hard
to determine. It is pot possible to specify exactly when the
power operated relief valve would be stuck open under




sboormal operation conditions. Third, there is uncertainty
regarding severity of the failure. For example, the size of
the reactor coolant pump seal leak is not known and one is

unable to determine this beforehand. And fourth, there is

uncertainty regarding whether furtber failures occur, There
might be multiple failures during the accident progression.

The proposed framework for the diagnosis is a
combination of an expert system and artificial neural
petworks. The rule-based expert system is wsed for the

basic plant overall monitoring and diagnosis. Specific -

peural networks will be initiated by the expent system to
determine the patterns of special events during the accident
progression. This severe accident diagnosis system will be
vsed to distinguish different failures, severity of the failure
and further failures based on the available instrumentation
seading.

~ The expert system will be psed to monitor the
progression from the start of the accidents. The initial
accident conditions and major change of plant status will be
recorded and displayed. This system will also determine
when the diagnostic neural networks should be initiated for
failure detection and identification. The diagnostic results
from neural networks will be compared, if possible, with
the results from the expert system. The difference between
the actual sensor reading during the accidents and the
MAAP simulation will be shown in order to justify the
use of neural networks and accommodate large uncertainty.
MAAP simulation codes could generate the primary system
pressure history and other indications, ¢.g., secondary side
pressure and temperature, containment temperature and
pressure, radiation levels. The results will also provide
bounding values and timing information of the failures.
Thbus, MAAP run results are used to gain gualitative, semi-
gqualitative, and quantitative instrument reading change
patterns to form the knowledge base of the expert system.
Other scientific knowledge and engineering judgment will
also be incorporated into the knowledge base.

The transient data from MAAP runs can be used to
train the meural networks to distinguish various failure
patterns. Since the timing of the failure is uncertain, the
sesults of use of neural networks for diagnosis purposes
must be treated cautiously since the neural network training
highly depends on the scenarios, even thougb the peural
networks retain some capability of resistance to signal
noise. The training of the neural networks needs 10 be
studied in view of several uncertainties, including
variability in initial conditions, differences between MAAP
and actual performance, changing configuration after
initiation of MAAP, misleading sensor signals, etc. These
and other considerations will be examined in order to use

the neural networks to best advantage. These multiple sub
scenario conditions suggest that for each principal scenario,
it will be useful to have a few MAAP runs appropriately
selected. Two groups of back propagation neural networks
are designed for diagnostic purposes. One group is for
detection of possible primary system failure (Detection
Neura) Networks) and the otber is for failure identification
(Identification Neural Networks). The data to be vsed for

" the training is tested progressively 10 maximize the best

possible results. The data used for peural network training
will be increased time step by time step into the accident
until the test results would not be better. After the
determination of that training data which is shown to be
effective, the two neural networks can be constructed and
tested.

IV. NEURAL NETWORKS AND EXPERT SYSTEM

The buman brain accomplishes very complicated tasks
by using billions of simple meurons which are
interconnected. Astificial neural networks are the computer
simulations of buman brain function.}7-18.19 These
networks have many artificial neurons, usually calied
processing clements. These processing elements are
organized in layers and bave similar functions as buman
peurons by adding up the weighted values of the many
inputs. The input layer acts as a buffer for the input data,
The output layer acts as & buffer for the output results.
There might be one or more hidden layers in between. A
learning process is accomplished by presenting both input
data and desired output results and then obtaining the
weighting coefficients among layers of processing elements
by some learning algarithms. During the recall process, the
trained peural network takes inputs and generates output
results. Figure 1 shows the basic structure of the diagnostic
neural petworks. It is a three-layer, feed-forward,

 backpropagation neural network. The MAAP data is used

10 train the neural networks which are then tested against
all the other sceparios. To some extent, this would
guarantee the generality of the neural networks to detect and
identify the faults under various conditions.

The expert system will provide the general
environment for monitoring the overall plant status,
determination of meural metworks usage, displaying
necessary information. The expert sysiem also provides
independent primary system failure diagnosis, if possible.
The software used for the proposed expert system will be
NEXPERT OBJECT,%0 which is a commercial software
under the IBM PC window environment. IF-THEN rules
are used for backward reasoning and forward reasoning.
Figure 2 shows the logic flow of the diagnostic system.
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FIGURE2 LOGIC FLOW OF THE PROTOTYPE SEVERE ACCIDENT DIAGNOSTIC SYSTEM
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V.NEURAL NETWORK TRAINING

MAAP simulation runs have been conducted by Dr.
Dave Dion of PG&E for thirty six (36) accident scenarios
(ASs). These results were used as the first effort to
formulate the methodology or ways of diagnosis of the
primary system failures before vessel breach during station
dlackout conditions. Accident scenarios AS1, AS2a, AS2b,
AS3a, AS4a are chosen to be the reference data,
representing Vessel Breach, ISGTR (1 tube), ISGTR (10
whes), Hot Line/Surge Line Failure, PORV Stuck Open
cases respectively. Sensor readings of primary system
pressure, steam gemerator pressure, steam generator
temperature, containment pressure, and containment

" wemperature were used for diagnosis.

To evaluate the data adequacy for diagnosis and $0
determine the data for neural network training for failure
detection and identification, training data was taken from
the start of tbe failure and the amount of data was
progressive increased (every 20 second step). The input
neurons are determined according to the amount of data for
raining. There are two output meurons with mapping

scheme for training shown in table 1.
TABLE1 MAPPING SCHEME FOR NEURAL
NETWORK TRAINING FOR DATA EVALUATION
CASENAME | Output Neuron 1 | Output Neuron 2
target target
| Vessel Breach 0.1 0.1
FI_SQTR 0.1 0.9
Hot Leg / Surge
Line Failure 0.9 0.1
PORV
| Stuck Open 0.9 0.9

Fourteen groups of data (3x20s, 4x20s, 5x20s, 6x20s,

7x20s, 8x20s, 9x20s, 10x20s, 13x20s, 14x20s, 15x20s,

16x20s, 17x20s, and 20x20s) from AS1 (Vessel Breach),
AS2a (ISGTR), AS2b(ISGTR), AS3a(H/S Failure),
AS42(PORV Failure) were used for the training. Sensor
data is pormalized between 0.0 and 1.0. For the network
recall process, any data less than 0.25 is treated as O, any
data above 0.75 is treated as 1.0, any data between 0.25 and
0.5 is treated as likely O, any data between 0.5 and 0.75 is
treated as likely 1. The mapping scheme used for testing is
shown in table 2.

Table 3 to Table 6 show the test results. Case 1 is the
AFWS initially working and no RCP Seal Failure case.
Case 2 is the AFWS initially working with RCP Seal

Failure case. Case 3 is the AFWS initially Non-working
and no RCP Seal Failure case. Case 4 is the AFWS
initially Non-working with RCP Seal Failure case.

TABLE2 OUTPUT MAPPING SCHEME FOR

TESTING FOR DATA EVALUATION
Output Output Mapping Case
Newon1 | Newon2
00-025 00-025 Vessel Breach
025-05 00-025 likely Vessel Breach
0.0-025 025-05 likely Vesse! Breach
|_025.05 | 02505 | kikely Vessel Breach

0.0- 025 075-10 ISGTR
025-05 0.75-10 likely ISGTR
00-025 05-075 likely ISGTR
0.25 - 0.5 05 .-075 likely ISGTR
075-10 00-025 H/S Failure
075-10 025-05 likely H/S Failure
05-0.75 00-025 likely H/S Failure
05 -075 0.25 - 0.5 likely H/S Failure
075-10 075-10 PORYV Failure
05-075 075-10 likely PORYV Failure
075-10 0.5-0.75 likely PORY Failure

1 05.075 05-07s likely PORV Failure

With the increase of the data into the failure, the peural
networks recall ability converges to a certain level where
test results are no Jonger improved with more data. From
the results, the converged time data for VB and H/S Failure
is 3x20s. The converged time data for ISGTR and PORY
Stuck Open is 15x20s.

Finally, the Detection Neural Networks and
Identification Neural Network were constructed. For each of
the two peural networks, there are BO input peurons
representing 15 time steps of data of 20 second each. There
are three output neurons with the mapping scheme shown
in tadle 7. The training samples included data of the no
failure case. The training data for Vessel Breach and H/S
Failure ranged from 3x20s to 8x20s into the failure. The
training data for ISGTR and PORYV Stuck Open ranged
from 10x20s to 15x20s. Since the number of input
neurons is fixed at 80 or 15 time steps of 20 seconds, most
training data also covers a portion of the no failure case.
Figure 3 and Figure 4 show the convergence of the training
of the neural networks which combines the expert system
and the neural networks.




TABLE3 TEST RESULTS FOR VESSEL BREACH IDENTIFICATION

time s ] 3x20 | 4x20 | 5x20 | 6x20 | 7x20 | 8x20 | 9x20 ] 10x20 | 15x20 | 16x20 | 17x20 | 20x20
 data
| casel ,
case? +4 >4+ +4 +4 4 +4 ++ +4 +4 +4 ++ ++
| case3 + ++ | ++ ++ +4 +4 +4 +4 +4 +4 +4 +4
| cased + +4 +4 +4 +4 +4 ++ +4 +4 +4 +4 +4
Note:  ++ positive + likely positive - likely negative - negative (same for table 4-6)
TABLE4 TEST RESULTS FOR HOT LEG/SURGE LINE IDENTIFICATION
time s ] 3x20 | 4x20 | 5x20 | 6x20 | 7x20 | 8x20 | 9x20 | 10x20 1 15x20 | 16x20 | 17x20 | 20x20
data
 casel +4 +4 *+ ++ +4 +4 +4 +4 +4 +4 ++ ++
case2 +4+ +4 +4 +4 +4 +4 ++ +4 +4 +4 + 4 +4
casel ++ ++ +4 ++ 4+ ++ ++ ++ +4 +4 +4 +4
| cased ++ +4 +4 +4 +4 *4 +4 +4 +4 ++ ++ +4
TABLES TESTRESULTS FOR ISGTR IDENTIFICATION
time s 3x20 | 4x20 | 5x20 | 6x20 | 7x20 | 8x20 | 9x20 | 10x20 ! 15x20 { 16x20 { 17x20 | 20x20
dan
| casel +4 ++ +4 +4 +4 +4 ++ ++ ++ + 4 +4 ++
case? +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 ++ ++
caseld ++ + . - . . + + + + + +
PORV | PORV | PORV | PORV
| cased +4 ++ +4 +4 + + + + + + + +
TABLES6 TEST RESULTS FOR PORV STUCK OPEN IDENTIFICATION
time s 3x20 | 4x20 | 5x20 | 6x20 | 7x20 | 8x20 | 9x20 | 10x20 } 15x20 ] 16x20 | 17x20 { 20x20
data
casel ++ | ++ +4 ++ +4 ++ +4 +4+ | +4+ ++ ++ PN
case2 - . - - - + + + ++ ++ ++ ++
ISGT }ISGTR.] ISGR ] ISGT }ISGTR
R R
casel + - + + + + + + ++ ++ ++ ++
ISGTR,
| cased + +4 ++ +4+ +4 +4 ++ ++ ++ +4 +*+ ++

TABLE 7 MAPPING SCHEME FOR DETECTION AND IDENTIFICATION NEURAL NETWORKS TRAINING

CASE NAME Output Neuron 1 Output Neuron 2 Output Neuron 3
No Failure 0.1 0.1 0.1
| Vessel Breach 09 0.1 0.1
ISGTR 09 0.1 0.9
S Fais 0.9 0.9 01 _
PORYV Failure 09 0.9 0.9
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‘When networks were tested, VB or H/S Failure could
be detected 20 seconds into the failure and identified 30
seconds into the failure. The diagnosis could be confirmed
for several more time steps. The ISGTR or PORV Stuck
Open could be detected 160 seconds into the failure and be
identified 180 seconds into the failure. Test of no failure
cases was successful. When 30% of random noise was
added to the training data, the Detection Neural Network
could still correctly detect various failures. Vessel Breach or
H/S Failure could be correctly identified by the
ldentification Neural Network with 25% random noise
added to the training data. PORV Stuck Open and ISGTR
could be correctly identified with 10% random noise.

The Detection Neural Network and Identification
Neural Network can be initiated during the cycling of the

PORYV, long before the start of primary system failure.

Every 20 seconds, new time step data can be fed in and the
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oldest time step data thrown out, If the situation is
classified as No Failure by the Detection Neural Network,
the process would continue. If some failure is detected by
the Detection Neural Network, the Identification Neural
Network would be initiated to identify which failure
occurred. Further data input would be used for diagnosis
confirmation. The expert system would provide separate
confirmation, and would advise of differences between
sensor readings and the MAAP results,

VI. SUMMARY

Artificial intelligence, such as expen gystems and
neural networks, has been used to detect and identify
primary system failures during station blackout. Among
the things accomplisbed, the use of neural networks to
evaluate data adequacy and sufficiency is a nove! application
of such a technique. The same technique will be used to
construct meural networks for RCP Sea! Failure cases.
Even though we give a scale for some sort of uncenainty
assessment, a more thorough uncertainty analysis would be
desirable, if possible. Expert system knowledge base

‘formation and the integration of the prototype severe

accident diagnostic system are the remaining tasks.
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