SLAC-391 |

 GKS UTILITIES
- FOR FORTRAN-77 -

Robert C. Beach

SEA;C—RWME@E‘,%

. Pn@pamd for the D’eépmmmesmi éx;ﬁ Emergy

under contract mumber DE-ACO3-76SF00515

i ~-smmmmmmam A;ciczeéwmﬁm C:ejamte\n‘

* Stanford University » Stanford, CA 94309

NV T B LN S

[T o e—

. ; This document and the material and data contained therein, was devel-
' " loped under sponsorship of the United States Government. Neither the
United States mor the Department of Energy, nor the Leland Stanford
Junior University, nor their employees, nor their respective contractors,
subcom\ﬁram@m or their employees, makes any warranty, express or im- - -
plied, or assumes any liability o responsibility for accuracy, complete-
mess, ov usefulness of any information, apparatus, product or process
disclosed, or represents that its use will not infringe privately-owned
rights. Mention of any product, its manufacturer, or suppliers shall
not, mor is it. intended to, imply approval, disapproval, or fitness for
lammy particular use. A royalty-free, nonexclusive right to use and ‘dis-
« !semma;mre same for any purpose whatsoever, is expressly reserved to t‘n‘xe
| United States and. the University. ‘ |

o 2/80

M o [I AT « (LT R I L RE (A T o I T AU R VAN TR LTI\ LAY IER AR ”5"“'1!}!"‘”\”” U T ”‘l;“\”"”ﬂ“ “”W”“ I ‘"WMH iy [“m,, r wa"‘. Nl‘“”wlll

T

e o A 1

SLAC--391
DE92 010393

GKS UTILITIES
FOR FORTRAN-77*

Robert C. Beach

Computation Research Group

Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94309

January 1992

Prepared for the Department of Energy
under contract number DE-AC03-765F00515.

Printed in the United States of America. Available from the National Technical Infor-
mation Service, UJ.S. Department of Commerce, 5285 Port Royal Road, Springfield,
VA 22161,

+ Manual,

IR

Contents

" Chapter 1
Introduction e e 1
1.1 The Availability of the Subroutines.......... 1
Chapter 2
An Alternate Text Generator 3
2.1 Control Functions 4
2.1.1 Subroutine GZOPTX: Open the Alternate Text Generator 4
2.2 Qutput Functions. 4
2.2.1 Subroutime GZTX: Altermate Text 4
2.2.2 Subroutine GZTXS: Alternate Text to User Supplied Subroutine. 5
2.3 Output Attributes 5
2.3.1 Subroutine GZSTXF: Set Alternate Text Font and Spacing &
2.3.2 Subroutine GZSCHH: Set Alternate Character Height 6
2.3.3 Subroutine GZSCHU: Set Alternate Character Up Vector 6
2.3.4 Subroutime GZSTXL: Set Alternate Text Alignment 7
' 24 Inquiry Functions. 7
2.4.1 Subroutine GZQTXF: Inquire Alternate Text Font and Spacing 7
2.4.2 Subroutine GZQCHH: Inquire Alternate Character Height 8
2.4.3 Subroutine GZQCHU: Inquire Alternate Character Up Vector 8
2.4.4 Subroutine GZQTXL: Inquire Alternate Text Alignment g
2.5 The Alternate Character Sets C 9
Chapter 3
Projective Transformations. 24
3.1 Two-dimensions to Two-dimensions Projective Transformations 24
3.1.1 Subroutine GZ22PJ: Generate a Transformation 25
3.1.2 Subroutine GZ22TR: Transferma Point 26
3.2 Three-dimensions to Two-dimensions Projective Transformations 26
3.2.1 Subroutine GZ32PT: Generate a Perspective Transformation (I). ... 28
N 3.2.2 Subroutine GZ32AT: Generate a Perspective Transformation (II) ... 29
3.2.3 Subroutine GZ32PL: Generate a Parallel Transformation (I) 30
. 3.2.4 Subroutine GZ32AL: Generate a Parallel Transformation (II) 31
3.2.5 Subroutine GZ32TR: Transforma Peint 31
Chapter 4
Curve Drawing Algorithms 33
i1

WO v e L O Y B [A A O Y TR N L R i W”“I" Ry F L e L TR T VI R TR] I TR TN TRL]

iv. GKS Utilities for FORTRAN-77

1 4.1
4.1.1
4.1.2
i 4.2
| 42.1
| 43
4.3.1
4 4.3.2
: 4.4
‘ 4.4.1
4472
b 4.43
y 4.4.4

Bessel's Method of Local Cubic Interpolation 34
Subroutine GZBESL: Draw a Parametric Bessel's Curve (I) 35
Subroutine GZBESE: Draw a Parametric Bessel's Curve (II). 38

Cubic Spline Interpolation 40
Subroutine GZSPLN: Draw a Parametric Cubic Spline 40

Bézier CUIVES .« .o vt et e e e e e e e 41
Subroutine GZBEZR: Draw a Bézier Curve 43
Subroutine GZRBEZ: Draw a Rational Bézier Curve. 43

B-splime CUIVES . . o\ oot e e e 45
Subroutine GZBSP2: Draw a Quadratic B-spline Curve 46
Subroutine GZRB32: Draw a Rational Quadratic B-spline Curve ... 48
Subroutine GZBSP3: Draw a Cubic B-spline Curve 49
Subroutine GZRBS3: Draw a Rational Cubic B-spline Curve 52

Chapter 5

I | Surface Drawing Algorithms. 54
'} 51 Two-dimensional Histograms 57
5.1.1 Subroutine GZ2DHG: Draw a Two-Dimensional Histogram 57
ef | 52 Mesh Surfaces o e 60
il 521 Subroutine GZMESH: Draw a Mesh Surface)
5.3 Generalized Polyhedral Solids 63
5.3.1 Subroutine GZPOLY: Draw a Generalized Polyhedra 63
11

' References. e 67

no o IR ' TN IR N AR VR PR T TR TR KL AR wmuw ' e “.'m,u g W‘WMV ||”|m\|”||wn URRTERTI TRERTT "w”ymnw‘ul \”m‘w "”W‘W HW R TR ,W”l‘/w
! i |

Chapter 1

Introduction

This document describes a number of subroutines that can be useful in GKS
graphic applications programmed in FORTRAN-77. The algorithms described here
include subroutines to do the following:

1. Draw text characters in a more flexible manner than is possible with basic

GKS.

2. Project two-dimensional and three-dimensional space onto two-dimensional

space.

3. Draw smooth curves.

4. Draw two-dimensional projections of complex three-dimensional objects.
FORTRAN-77 is described in American National Standard, Programming Lan-
gquage, FORTRAN [ANS78]. GKS is described in American National Standard for
Information Systems: Computer Graphics ~ Graphical Kernel System (GKS) Func-
tional Description [ANS85a] and the FORTRAN-TT interface is described in Amer-
ican National Standard for Information Systeme: Computer Graphics - Graphical
Kernel System (GKS) FORTRAN Binding [ANSE5b].

All of the subroutine names and additional enumeration types that will be
described in this document begin with the letters “C2.” Since GKS itself does not
have any subroutine names or enumeration types that begin with these letters, no
confusion between the usual GKS subroutines and the ones described here should
oceur.

Many concepts will have to be defined in the following chapters. When a concept
is first encountered, it will be given in italics. The information around the italicized
word or phrase may be taken as its definition.

1.1. The Avallability of the Subroutines

The subroutines described in this document are available on the IBM mainframe
computers running at the Stanford Linear Accelerator Cenler. These computers run
under the VM/XA operating system. Executable versions of the subroutines are
contained in the file

GKSUTL TXTLIB U.

They may therefore be used by anyone at this installation who supplies the proper
TXTLIB statement.

The source code is also available for those people who have to use the subroutines
on another computer. The file

GKSUTLTX FORTRAN U

2 GKS Utilities for FORTRAN-77

contains the text drawing subroutines described in Chapter 2. The file

GKSUTLTR FORTRAN W
contains the transformation subroutines described in Chapter 3. The file

GKSUTLCV FORTRAN U
contains the curve drawing subroutines described in Chapter 4. The file -

GKSUTLSU FORTRAN U ‘
contains the surface drawing subroutines described in Chapter §. Finally, the file

GKSUTLUT FORTRAN U
contains a group of mathematical and error processing subroutines that are used
by the other subroutines described here.

Since the these subroutines are written in something very close to strict
FORTRAN-77, they themselves should be transportable to any computer with a
FORTRAN-77 compiler and 2 GKS system. The only non-standard construction in
the source code is the use of INTEGER*2 arrays to store the definition of the charac-
ter sets. These declarations can easily be changed to INTEGER; the only requirement
is that the arrays can contain integers of up to 32767.

Orne possible modification is that of a control value, INFN, that appears in a
number of subroutines. That value is used to check for things like singular matrices
and to guard against division by zero. It may have to be changed for computers with
differing word size or precision. In fact, it may be necessary to change this value on
the host computer as more experience is accumulated with these subroutines.

E R L L e N T i e e e Rl IR TR T

b

. it i

Chapter 2

An Alternate Text Generator

There are a number of problems with the GKS text drawing subroutine, GTX,

especially as it relates to scientific notation. The most basic problem is that the

standards documents only specify a single font containing the ASCII character set.
Such things as Greek letters will usually be supplied as extens’ons to the basic GIXS
in most implementations, but their font numbers and other properties can be very
different among different implementations. Programs that use the Greek letters
supplied by a GKS system will therefore probably be implementation dependent.
Another problem is that the production of superscripts or subscriptsis very difficult.
The mixing of Roman and Greek letters is a single line of text is both difficult and
implementation dependent.

The subroutines described in this chapter are an attempt to alleviate the prob-
lems described above. These subroutines can produce the upper and lower case
Roman, Greek, Cyrillic, and Hebrew alphabets, and a wide variety of special char-
acters. A versatile subscripting and superscripting ability is also available and
diacritical marks can be applied to any letter. Finally, the subroutines should be
transportable to almost any computer.

In addition, the characters are available in three fonts. However, to fully under-
stand these fonts, it is necessary to describe how the subroutines work. The user
of these text drawing subroutines supplies two character strings of equal length.
The first string is the primary character string, and the second is the secondary
string. The actual characters produced is determined by examining corresponding
positions in the two strings. The first string gives an approximation to the desired
character while the second string gives 2 modifier character, As an example, sup-
pose the primary string is “AAA" and the secondary string is “ LC.” In this case,
the first character drawn is an upper case Roman “A” (because the first secondary
character is a blank), the second character is a lewer case Roman “A” (because
the second secondary character is an “L”), and the third character is a Jower case
Greek alpha (because the third secondary character is & “G"). The subroutines pro-
cess these characters and break them down into polyiines or fill areas, and call the
appropriate GIKKS subroutine to send them to the workstation. Two of these fonts,
the simplez and duplez fonts, are drawn with polylines while the third, the solid
font, ir drawn with fill areas. The simplex fon! minimizes the complexity of the
characters, while the duplex font has some of the properties of typeset characters.
The solid font can be useful when large lettering is required. Examples of all of the
characters and their corresponding primary and secondary character are shown in
Section 2.5 of this chapter.

e

4 GKS Utilities for FORTRAN-77

The organization of the subroutines described in this chapter is similar to the
GKS standards document. There is a single subroutine that is used to initialize
this alternate text generator. There are two subroutines that break their primary
and secondary character strings down into polylines or fill areas. There are four
subroutines that may be used to set the attributes of the characters. Finally, there
are four subroutines that can be used to obtain the current setting of the attributes.

2.1. Control Function‘s

This section describes a subroutine that must be called to initialize the alternate
text generator. It may also be called at any time to reset the attributes to their
default values.

2.1.1. Subroutine GZOPTX: Open the Alternate Text Generator

~ This subroutine may be used to initialize the attributes for the alternate GKS
text drawing subroutines. If this subroutine is not called before the other alternate
text drawing subroutines, the results are unpredictable.

The calling sequence is:
CALL GZOPTX

This subroutine does not have any parameters.

2.2. Qutput Functions

This section describes two subroutines that process the primary and secondary
character strings and produce either polylines or fill areas. The first subroutine,
GZTX, sends the polylines or fill areas directly to the active workstations. The second
subroutine, GZTXS, sends the polylines or fill areas to a user supplied subroutine.

Since the data for the first subroutine is sent to the workstation by calling sub-
routines GPL or GFA, the user may control the display attributes of the characters,
such as color, by setting the polyline or fill area attributes. It is the users respon-
sibility to assure that the polyline or fill area attributes are appropriate for the
characters being drawn; for example, the line type should be set to GLSOLI (solid)
when polylines are drawn

These subroutines always produce their output in the “stroke” precision of ¢
It is therefore also the users responsibility to assure that the aspect ratio of the
window and viewport of the normalization transformation are the same when the
polylines or fill areas are sent to the workstation. If that is not the case, the
characters, like the stroke precision characters of GKS, will be distorted.

2.2.1. Subroutine GZTX: Alternate Text

This subroutine may be used to draw a string of characters. The characters

IRy T TR N T | LR T ST Y VTR IR | U AU TR U lm TR ""‘l " \muww ‘"”‘”‘\Mh g w\uuu o

RNl ”\wu RN LRGN

An Alternate Text Generator]

produced by this subroutine are quite varied and include the upper and lower case
Roman, Greek, Cyrillic, and Hebrew alphabets, and a wide variety of special charac-
ters. They may be drawn in a simplex, duplex, or solid font. A versatile subscripting
and superscripting ability is also available. This subroutine performs an operation
very similar to the operation done by the GKS subroutine named GTX,

The calling sequence is:
CALL GZTX(PX,PY,PCHS,SCHS)

The input parameters are:

PX A real value that gives the z coordinate of the location point of the
character string in world coordinates.

PY A real value that gives the y coordinate of the location point of the
character string in world coordinates.

PCHS A character string containing the primary characters.

SCHS A character string containing the secondary characters.

2.2.2. Subroutine GZTXS: Alternate Text to User Supplied Subroutine

This subroutine may be used to process a string of characters in a manner
similar to the way subroutine GZTX does. However, instead of sending the data

directly to the workstation, this subroutine calls a user supplied subroutine with

the data. The user supplied subroutine can do anything it wants with the data.

The calling sequence is:
CALL GZTXS{SUBR,PX,PY,PCHS,SCKS)

The input parameters are:
SUBR An external variable that specifies the subroutine to which the com-
puted polylines or fill areas will be sent. The calling sequence of this
subroutine is the same as that of the GIS subroutines GPL or GFA.

PX A real value that gives the z coordinate of the location point of the
character string in world coordinates.

PY A real value that gives the y coordinate of the location point of the
character string in world coordinates.

PCHS A character string containing the primary characters.

SCHS A character string containing the secondary characters.

2.3. Output Attributes

The subroutines in this section may be used to set the attributes for the alternate
GKS text generator. They are all similar to native GKS subroutines and perform
operations similar to those native subroutines.

If one of these subroutines detects an error in the data supplied to it, the
subroutine prints an error message and sets the attribute to its default value.

o . TN ne e R R A TR T N L U O TN T 1Y SR [T ARY TR o qwfm [RETCRTRNT! "U“”H/””” SRS

gy

6 GKS Utilities for FORTRAN-77
2.3.1. Subroutine GZSTXF: Set Alternate Text Font and Spacing

This subroutine may be used to set the text font and spacing for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GSTXFP.

The calling sequence is:
CALL GZSTXF(FONT,SPAC)

The input parameters are:

FONT An integer that gives the font to be used:
GZSMPL (= 1) means the simplex font,
GZDUPL (= 2) means the duplex font, and
GZSOLD (= 3) means the solid font.

SPAC An integer that gives the spacing to he used:
GZMONO (== 0) means mono-spacing, and
GZPROP (= 1) means proportional spacing.

The default values are GZSMPL and GZPROP. The mono-space option does not

. work well when superscripts, subscripts, or character size or movement control is
- used.

2.3.2. Subroutine GZSCHH: Set Alternate Character Height

This subroutine may be used to set the character height for the alternate GKS
text drawing subroutines. This subroutine performs an operation very similar to
the operation done by the GKS subroutine named GSCHH.

T -

The calling sequence is:
CALL GZSCHH(CHH)

fh b

The input parameter is:
CHH A real value that gives the character height.

The default value 1s 0.01.

. 2.3.3. Subroutine GZSCHU: Set Alternate Character Up Vector

This subroutine may be used to set the character up vector for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GSCHUP.

The calling sequence is:
CALL GZSCHU(CHUX,CHUY)

The input parameters are:

‘m‘[

AR R E T S L R A T LG T

An Alternate Text Generator 7

CHUX A real value that gives the z component of the up vector in world
‘ coordinates. '

| CHUY A real value that gives the y component of the up vector in world
coordinates.

The default values are 0.0 and 1.0.

2.3.4. Subroutine GZSTXL: Set Alternate Text Alignment

This subroutine may be used to set the text alignment for the alternate GKS
text drawing subroutines. This subroutine performs an operation very similar to
the operation done by the GKS subroutine named GSTXAL.

The calling sequence is:
CALL GZSTXL(TXAH,TXAV)

The input parameters are:

TXAH An integer that gives the horizontal alignment to be used:
GALEFT (= 1) means left,
GACENT (= 2) means center, and
GARITE (= 3) means right.

TXAV An integer that gives the vertical alignment to be used:
GACAP (= 2) means top of text,
GAHALF (= 3) means center of text, and
GABASE (= 4) means bottom of text.

s = SENL

-

"

The default values are GALEFT and GABASE.

2.4. Inquiry Functions

The subroutines in this section may be used to obtain the attributes for the
alternate GKS text generator. They are all similar to native GKS subroutines and
perform operations similar to those native subroutines.

2.4.1. Subroutine GZQTXF: Inquire Alternate Text Font and Spacing

This subroutine may be used to obtain the text font and spacing for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
v to the operation done by the GKS subroutine named GQTXFP.

The calling sequence is:
CALL GZQTXF(FONT,SPAC)

The output parameters are: |
FONT An integer that gives the font being used:

ne n 0o T R T R I T TR AR TR O LT T T AR AT I T L O R L 1] R U T RO R) R T T O YA T

8 GKS Utilities for FORTRAN-77

GZSMPL (= 1) means the simplex font,
GZDUPL (= 2) means the duplex font, and
GZSOLD (= 3) means the solid font.

SPAC An integer that gives the spacing being used:
GZMOND (= 0) means mono-spacing, and
GZPROP (= 1) means proportional spacing.

2.4.2. Subreutine GZQCHH: Inquire Alternate Character Height

This subroutine may be used to obtain the character height for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GQCHH.

The calling sequence is:
CALL GZQCHBH (CHH)

The output parameter is:
CHH A real value that gives the character height.
2.4.3. Subroutine GZQCHU: Inquire Alternate Character Up Vector

This subroutine may be used to obtain the character up vector for the alternate
GKS text drawing subroutines. This subroutine performs an operation very similar
to the operation done by the GKS subroutine named GQCHUP.

The calling sequence 1s:
CALL GZQCHU(CHUX,CRUY)

The output parameters are:

CHUX. A real value that gives the z component of the up vector in world
coordinates.

CHUY A real value that gives the y component of the up vector in world
coordinates.

These values are always returned as a umt vector.

2.4.4. Subroutine GZQTXL: Inquire Alternate Text Alignment,

This subroutine may be used to obtain the text alignment for the alternate GRS
text drawing subroutines. This subroutine performs an operation very similar to
the operation done by the GILS subroutine named GQTXAL.

The calling sequence 1s:
CALL GZQTXL(TXAH,TXAV)

The output parameters are:

An Alternate Text Generator g

TXAE An integer that gives the horizontal alignment being used:
GALEFT (= 1) means left,
GACENT (= 2) means center, and
GARITE (= 3) means. right.

TXAV An integer that gives the vertical alignment being used:
GACAP (= 2) means top of text, |

| ‘ GAFALF (= 3) means center of text, and

GABASE (= 4) means bottom of text.

2.5. The Alternate Character Sets

This section defines all of the characters that may be produced by swubroutines
GZTX or GZTXS. The following table gives the primary and secondary character fol-
lowed by its description. The symbol “)" stands for a blank.

R

The Upper Case Roman Alphabet:
Ay Upper case Roman A
B, Upper case Roman B
Cu Upper case Roman C
Dy, Upper case Roman D
E, Upper case Roman E
F,, Upper case Roman F
Go Upper case Roman G
By Upper case Roman H
I, Upper case Roman I
I, Upper case Roman J
K. Upper case Roman K
L, Upper case Roman L
M., Upper case Roman M
N, Upper case Roman N
0y Upper case Roman O
P, Upper case Roman P
Qu Upper case Roman Q
Ry, Upper case Roman R
Sy Upper case Roman S
T. Upper case Roman T
Uy Upper case Roman U
V. Upper case Roman V
W, Upper case Roman W
Xo Upper case Roman X
¥, Upper case Roman Y
Z, Upper case Roman 7

The Lower Case Roman Alphabet:

I L R R R TRl e e

10 GKS Utilities for FORTRAN-77

AL Lower case Roman A
BL Lower case Roman B
€L Lower case Roman C
DL Lower case Roman D
EL Lower case Roman E
FL. Lower case Roman F'
GL Lower case Roman G
BL Lower case Roman H
IL Lower case Roman I

JL Lower case Roman J

KL Lower case Roman K
LL Lower case Roman L

ML Lower case Roman M
NL Lower case Roman N
0L Lower case Roman O
PL Lower case Roman P

QL Lower case Roman Q
8L Lower case Roman R
L. Lower case Roman S

TL Lower case Roman T'
UL Lower case Roman U
VL Lower case Roman V
WL Lower case Roman W
XL Lower case Roman X
YL Lower case Roman Y
7L Lower case Roman Z

Upper Case Auxiliary Roman Characters:
10 Upper case Latin and Scandinavian ligature AE
D0 Tpper case Icelandic Eth
L0 Upper case Polish suppressed L
00 Upper case Scandinavian O with slash
20 Upper case French ligature OE
TO Upper case Icelandic Thorn

=

Lower Case Auxiliary Roman Characters:
Al Lower case alternate Roman A
11 Lower case Latin and Scandinavian ligature AL
D1 Lower case Icelandic Eth
31 Lower case Roman ligature FF
41 Lower case Roman ligature FI
51 Lower case Roman ligature FL
61 Lower case Roman ligature FFI
71 Lower case Roman ligature FFL

o e TR Lt I R R R LR AR | TR

An Alternate Text Generator 11

61 Lower case alternate Roman G

I¥ Lower case detless Roman I

J1 Lower case dotless Roman J

L1 Lower case Polish suppressed L

0t Lower case Scandinavian O with slash
21 Lower case French ligature OE

81 Lower case German double S

T1 Lower case lcelandic Thorn

The Upper Case Greek Alphabet:
AF Upper case Greek Alpha
BF Upper case Greek Beta
GF Upper case Greek Gamma
DF Upper case Greek Delta
EF Upper case Greek Epsilon
ZF Upper case Greek Zeta
HF Upper case Greek Eta
QF Upper case Greek Theta
IF Upper case Greek lota
KF Upper case Greek Kappa
LF Upper case Greek Lambda
MF Upper case Greek Mu
NF Upper case Greek Nu
XF Upper case Greek Xi
OF Upper case Greek Omicron
PF WUpper case Greek Pi
BF Upper case Greek Rho
SF Upper case Greek Sigma
TF Upper case Greek Tau
UF Upper case Greek Upsilon
FF Upper case Greek Phi
CF Upper case Greek Chi
YF Upper case Greek Psi
WF Upper case Greek Omega

The Lower Case Greek Alphabet:
AG Lower case Greek Alpha
BG Lower case Greel Beta
GG Lower case Greek Gamma
DG Lower case Greek Delta
EG Lower case Greek Epsilon
ZG Lower case Greek Zeta
BG Lower case Greek Eta
QG Lower case Greek Theta

B I R T UW” oo ”;";\IH L ER T T I T A TR TR T ‘”‘P'\ N ‘lml‘”r gy "l;lwl”‘ 0 ””'”‘“WW 1 U' Hlm’“H“H”W‘”llm w!IH It ,.”lw”‘ it

NN

12 GKS Utilities for FORTRAN-77

IG Lower case Greek lota

KG Lower case Greek Kappa

| LG Lower case Greek Lambda
MG Lower case Greek Mu

NG Lower case Greek Nu

XG Lower case Greek Xi

06 Lower case Greek Omicron

PG Lower case Greek Pi ’
RG Lower case Greek Rho
SG Lower case Greek Sigma
TG Lower case Greek Tau
UG Lower case Greek Upsilon
FG Lower case Greek Phi
CG Lower case Greek Chi
Y& Lower case Greek Psi
WG Lower case Greek Omega
16 Lower case Greek Epsilon (variant)
2G Lower case Greek Theta (variant)
3G Lower case Greek Pi (variamt)
4G Lower case Greek Rho (variant)
5G Lower case Greek Sigma (variant)
6G¢ Lower case Greek Phi (variant)
The Upper Case Cyrillic Alphabet: '

AB Upper case Cyrillic Ak
BB Upper case Cyrillic Beh
VB Upper case Cyrillic Vel
GB Upper case Cyrillic Geh
DB Upper case Cyrillic Deh
EB Upper case Cyrillic Yeh
XB Upper case Cyrillic Zheh
ZB Upper case Cyrillic Zeh
IB Upper case Cyrnillic Ee
1B Upper case Cyrillic Ee S Kratkoy
KB Upper case Cyrillic Kah
LB Upper case Cyrillic El
MB Upper case Cyrillic Em
VB Upper case Cyrillic En
0B Upper case Cyrillic Oh
PB Upper case Cyrillic Peh
RB Upper case Cyrillic Err
SB Upper case Cyrillic Ess
TB Upper case Cyrillic Teh
UB Upper case Cyrillic Ooh

T I T N R U AT L TR T T I TR U T 1 R "mu‘q|uuwrm"|‘l‘l\ R AR) \Ww i
[

An Alternate Text Generator 13

FB Upper case Cyrillic Ef

BB Upper case Cyrillic Kha

ce Upper case Cyrillic Tseh

28 Upper case Cyrillic Cheh

38 Upper case Cyrillic Shah

48 Upper case Cyrillic Shchah

ge Upper case Cyrillic Tvyordy Znak

yB Upper case Cyrillic Yery
' 58 Upper case Cyrillic Myakhki Znak
! 68 Upper case Cyrillic Eh Oborotmnoye
| WB Upper case Cyrillic Yoo
| JB Upper case Cyrillic Yah
2 The Lower Case Cyrillic Alphabet:
; AC Lower case Cyrillic Ah
BC Lower case Cyrillic Beh
\ vc Lower case Cyrillic Veh
s 6t Lower case Cyrillic Geh
{ DC Lower case Cyrillic Deh
H EC Lower case Cyrillic Yeh
% X¢ Lower case Cyrillic Zheh
] z¢ Lower case Cyrillic Zeh

1¢ Lower case Cyrillic Ee '
1¢ Lower case Cyrillic Ee S Kratkoy
KC Lower case Cyrillic Kah

' LC Lower case Cyrillic El

‘ MC Lower case Cyrillic Em

¥¢ Lower case Cyrillic En

oc Lower case Cyrillic Oh

pc Lower case Cyrillic Peh

RC Lower case Cyrillic Err

s¢ Lower case Cyrillic Ess

TCc Lower case Cyrillic Teh

e Lower case Cyrillic Ooh

FC Lower case Cyrillic Ef

HC Lower case Cyrillic Kha

cc Lower case Cyrillic Tseh

2¢ Lower case Cyrillic Cheh

3¢ Lower case Cyrillic Shah

4C Lower case Cyrillic Shchah

Q¢ Lower case Cyrillic T yordy Znak
Yo Lower case Cyrillic Yery

5C Lower case Cyrillic Myakhki Znak
6C Lower case Cyrillic Eh Oborotnoye

an LA) R L 1 IO I I L T T R TR (L B U B (1 A | U [LT I TT TR RN S mu Im R T TN ‘1"” [‘“qu“u.” W'\” IR ”'HW y”

14 GKS Utilities for FORTRAN-77

WC Lower case Cyrillic Yoo
JC Lower case Cyrillic Yah

The Hebrew Alphabet:
AH Hebrew Aleph
BH Hebrew Beth
GH Hebrew Gimel
DE Hebrew Daleth
HHE Hebrew He
VE Hebrew Vav
ZH Hebrew Zayin
CH Hebrew Cheth
0 Hebrew Teth
YH Hebrew Yod
KE Hebrew Kuph
LE Hebrew Lamed
MH Hebrew Mem
NE Hebrew Nun
SH Hebrew Sameth
XH Hebrew Ayin
PH¥ Hebrew Pe
EH Hebrew Sadhe
Qi Hebrew Koph
RE Hebrew Resh
WH Hebrew Sin/Shin
TH Hebrew Tav
1# Hebrew Kaph (end of word)
2H Hebrew Men (end of word)
30 Hebrew Nun (end of word)
4 Hebrew Pe (end of word)
58 Hebrew Sadhe (end of word)

The Numerals:
0, Numeral 0
1, Numeral 1
2y Numeral 2
3y Numeral 3
4, Numeral 4
5, Numeral 5
6, Numeral 6
70 Numeral 7
8, Numeral 8
9, Numeral 9

Common Special Symbols:

L S R I TR L TR YT T T {1 I LTI AL 1R Y (LN T F LU LA Nwmu neo |w 1 I‘pU\IWW"IHN\"\ I \IH‘[H w oK IWHTW"”W ’jﬂfﬂf‘["

An Alternate Text Generator 15

i Blfamk
+, Plus sign
-u Minus sign
*, Asterisk
/ [N Sla—‘:h ma.rk
=, Equal sign
. . Period
,u Comma
(u Left parenthesis
Ju Right parenthesis

Special Symbols for Punctuation:
P Colon
,P Semi-colon
EP Exclamation mark
UP Question mark
IP Interrobang
FP Inverted exclamation
VP Inverted question
AP Apostrophe
QP Quotation marks
OP Single left quote
1P Single right quote
) 2P Double left quote
3P Double right quote
SP New section
PP New paragraph or Pilcrow sign
DP Dagger
RP Double dagger

Additional Special Symbols:
DS Dollar sign
CS Cent sign
SS British Sterling
¥S Japanese Yen
QS International currency syrbol
+5 Ampersand ‘
PS Pound sign
AS At sign
0s Copyright
G5 Registered
05 Percent sign
1S Per thousand sign
VS Vertical line

LR L L L L TR L R N T L T R LT L A VR 0 I R ATy R Tt
1 R R]

16 GKS Utilities for FORTRAN-77

18
WS
Us
¥s
/s
(s
)s
LS
RS
BS
ES
XS
TS

Broken vertical line

Double vertical line
Underline

Not sign
Backwards slash
Left bracket

Right bracket

Left brace

Right brace

Left angle bracket
Right angle bracket
Accent mark

Caret mark

Mathematical Special Symbols:

-M
XM
/M
PM
*M
+M
-M
AM
VM
UM
WM
LM
GM
MM
HM
M
4M
NM

KM
CM
SM
M
RM
™
2M
DM
M
JM

Dot product

Cross product
Division sign
Group plus

Group multiply
Plus or minus
Minus or plus
And

Or

Therefore

Since

Less than

Greater than

Less than or equal
Greater than or equal
Much less than
Much greater than
Not equal
Identically equal
Approximately equal
Congruent to
Similar to
Approximate
Proportional to
Perpendicular to
Surd

Degrees

Integral sign

Line integral

An Alternate Text Generator

17

Y™
ZM
(M
M
BM
EM
OM

Partial derivative
Del

Left floor bracket
Right floor bracket
Left ceiling bracket
Right ceiling bracket
Infinity

Set Theoretic Special Symbols:

ET
AT
MT
NT
IT
UT
LT
GT
KT
FT

Existential quantifier
Universal quantifier
Membership symbol
Membership negation
Intersection

Union

Contained in

Contains ‘
Contained in or equals
Contains or equals

Physics Special Symbols:

HK
LK

H-bar
Lambda-bar

Astronomical Special Symbols:

HA
MA
VA
EA
WA
JA
SA
U4
NA
PA
OA
CA
*A
XA
YA
KA

QA

TA
0A

Sun

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus
Neptune

Pluto

Moon

Comet

Star

Ascending node
Descending node
Conjunction
Quadrature
Opposition
Aries

18 GKS Utilities for FORTRAN-77

1A Taurus
2A Gemini
3A Cancer
4A Leo

5A Virgo
6& Libra

7A Scorpius

84 Sagittarius
94 Capricornus
AA Aquarius
BA Pisces

Drawing Symbols, Arrows, and Pointers:
oW Underscore
1% Midscore
2W Overscore
UWw Up arrow
D¥W Down arrow
LW Left arrow
RW Right arrow
BW Left/right arrow

Diacritical Marks:
GD Grave accent
AD Acute accent
HD Hat or circumflex
TD Tilde or squiggle
MD Macron or bar
BD Breve accent
DD Dot accent
UD Umlaut or dieresis
RD Ring or circle
vD Caron, hacek, or check
LD Long Hungarian umlaut
WD Over arrow
cD Cedilla accent
-D Under bar
.D Under dot
,D Under dots
PD Prime

Horizontal and Vertical Movement Control:

uU Null
0U Backwards blank

voom v T LR A L L I L | L U L AL TR LR A N L A mv UL IR AL ARAa b KT R [T "I”HH j*

B

An Alternate Text Generator 19

1U Half blank

2U Half backwards blank
3U Third blank

4U Third backwards blank
5U Sixth blank |
6U Sixth backwards blank
1V Half up movement

2V Half down movement
3V Third up movement
4V Third down movement
5V Sixth up movement

6V Sixth down movement

Subscript and Superscript Control:
0X Enter subscript mode
1X Leave subscript mode
2X Enter superscript mode
3X Leave superscript mode

Character Size Control:
0Y Increase size by one-half
1Y Decrease size by one-third
2Y Increase size by one-third
3Y Decrease size by one-fourth
4Y Increase size by one-sixth
5Y Decrease size by one-seventh

Position Control:
0Z Put current state in first save area
1Z Restore state from first save area
2Z Put current state in second save area
3Z Restore state from second save area
47 Put current state in third save area
5Z Restore state from third save area
6Z Put current state in fourth save area
7Z Restore state from fourth save area

In addition to the primary and secondary character pairs shown above, most
of the printable characters in the ASCII character set as described in American
National Standard for Information Systems: Coded Character Sets, 7-bit American
National Standaerd Code for Information Interchange (7-bit ASCII) [ANS86] will be
produced with a secondary character of blank. Thus, if the primary character is a
lower case Roman letter and the secondary character is a blank, then the proper
character will be produced. The user, however, is encouraged to use the character

v [Cooypn e e o DT I L T LI | [AN (R U R TK (O

I

20 GKS Utilities for FORTRAN-77

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghljklmnopgrstuvwxyz

ADLOED aeOfF MM gl)teebp
ABTAEZHBIKAMNZONTPETTOX YO
XBISEINOLKNUVEOTPTTUGXY D) EOWPS ¢
ABBIM AE K BUMKMHOMNPCTY X UYWL bbb 3104
A6BI AKX IUAKAMHONPCTYOX UYWL bEL 310
NIATATTTIY 32010\ IX) TN 079X
0123456789 +=%/=,()
slebiereersqrs geL¥m&eeoe Ll _-\[]{}()
KIOBETAV <Ot noc 1Y OSE8V||[]e0
dVe¢nucoc2 HX
OIIBrURSYVPCHF ¥ NV OLTYITORMPOM A Y X

— tle—= e

N AAN s s O /

I

b=

Figure 2.1. The simplex font of the alternate character set

pairs given in the above tables. The use of these character pairs will enhance the
portability of the application program to non-ASCII computers.

The underscore, midscore, and overscore characters in the above table have some
special properties. The purpose of these characters is to allow the programmer to
draw lines under or over a line of text. Two consecutive underscore characters,
for example, will join together into a single line (this is not true of the underline
character). Thus the programmer, with some difficulty, can generate such things as
fractions. The overscore will also join properly with the surd character to form a
full radical sign.

The diacritical marks may be used immediately following any drawn character
or a full sized blank, When this is done, the mark will attach itself to the preceding
character and will be centered on that character. The prime mark is different than
the others. The prime is normally used as a superscript on another symbol. More
than one prime may be used in a superscript and the spacing will be appropriately
close. However, this may mean that a partial space will have to be inserted if

ERRTEITRE IR TR I IR R LA TR R TR T SR | TR LT T

=
=
i

An Alternate Text Generator 21

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

ADLZED azdoffifififigyleeBb
ABI'AEZHOIKAMNEOIIPET “$X¥0
afyoelnbikApuvéonpoTvdyyw fdwpse

ABBTIE3UUKIMHOIIPCTY XU BLILAI0A
a6BIr'OeX3UNK/IMHOIIPCTYPXLIUILILIELILE0I0H
R2ATIIY 2201099 % P I 10797
0123456789 +—%/=()

LY SPAULLI L s, $eo¥ag #@oa% |||~ \[11}()'~
XLBBEFAV OS2Iy EEEa~ma LV [F0V] |[eo
vegnucocz hA
OLYBIURBYECH*¥QV DL TYHSQWAM A= X

 Nene

N2 ANCY L 11D v ne- /

b= 4 s

Il

Figure 2.2. The duplex font of the alternate character set

something follows a prime.

After a character is drawn, it is always followed by a short blank space before
the next character is drawn. When the character is a full blank, it produces a
space representing the blank and then the blank space that follows all characters.
The fractional blanks refer only to the space that represents the space itself. The
backwards blanks cause exactly enough movement to eliminate the space represent-
ing the blank and its following space. Thus, a “third blank” followed by a “third
backwards blank” will £xactly cancel each other.

The alternate character generators usually produce characters of differing
widths; thus the upper case letter “M” is about twice as wide as the upper case
“I", and most lower case letters are about three-fourths as wide as most upper case
letters., This results in a more pleasing appearance, but also causes some problems.
If, for example, a letter is to carry both a superscript and subscript, something
equivalent to a backspace would be necessary, but the amount backspaced would
depend on the characters in the superscript (or subscript). To overcome this prob-

99 GKS Utilities for FORTRAN-77

~ ABCDEFGHIJKLMNOPOQRSTUVWXYZ
 abcdefghijklmnopgrstuvwxyz
ADLAEDP azdffififififig feehp
ABMAEZHBIKAMNZOTIPZTT®XEQ
GRFEESNOLKAUVEOTPOTVP XYW ESTPSY
ABBT AEXIVAKIMHOMPCTY dXUYLL bbb 310
6B AeMINAKIMHONPCTY OXLYLILBEIL 308
NIATIITTI" 2270 1083X 77U 18711X
0123456789 +-%/=()
12000 TRITE SPEYO&HAEE %%~ \[I{{)"
XE@OETFav OS2y EEEx~n 1Y [$3V]][]e
Ve¢NUeoe2 fix
0300 ¥he¥PCe*xQUoOLTYRSQRMOM AW IS

L A R I R /

i

— Tle=e

-

Fizure 2.3. The solid font of the alternate character set
lée]

lem, a group of position control characters have been introduced which cause the
stroke generator to save its current position and state. Another control character
in a later part of the string can cause the earlier state of the strnke generator to be
restored. There are four independent save-restore control character pairs available.
The scope of these save restore pairs is a single call to subroutine GZTX or GZTAS.
That is, you cannot save a position in one call to one of these subroutines and try
to use it in a later call. If you try to use a position without saving it in an earher
part of the string, you will obtain the position of the beginning of the string.

The alternate character set in the simplex font is shown in Figure (2.1), the
duplex font is shown in Figure (2.2), and Figure (2.3) shows the solid font. The
order of the characters in the figures is the same as in the preceding table. The
character in the lower right of these figures is produced when an invalid character
pair is specified. The average number of polyline end points per character in the
simplex font is 7.8 and the maximum number is 21 (the lower case Roman G and the

" [anth ol] . .
lower case ligature AE). The averape number of polylinc ond points per character

e e gt

An Alternate Text Generator 23

I (A L= AN — |
| Durer (1525): m=3/3

« {

| ~ Diirer (1525): 7=31/4% |

| ; ﬁ

| ~ Direr (1525): =3/ |

I |
;’ PRIMARY...DUURER (1525). P-3311640/4148 g
. SECONDARY ... LDLLLE P G VY UVY Uyv
1

| B vEveaN NN [v-RYE

i | | X=+Y +Y X=+Y

il l PRIMARY . ..20222215X223+Y22

A \ SECONDARY . . .MZWWWWZY X X X

) ;

} Figure 2.4. Examples of the simplex, duplex, and solid fonts

}l in the duplex font is 22.4 and the maximum number is 62 (the upper case Cyrillic
il Zheh). The average number of fill area vertex points per character in the solid

l?*‘ font is 23.6 and the maximum number is 94 (the ascending and descending node

j} symbols).

‘] Many of the characters in the duplex font were designed by A. V. Hershey and

¥ are described by him in Calligraphy for Computers [Her67].

‘ A large number of interesting constructions are possible with these character
generators. Some examples are shown in Figure (2.4). In producing that figure, the
primary and secondary characters were drawn with the simplex font in the mono-
spaced mode. The other parts of the figure were done with the simplex, duplex, or

solid fonts in the proportionally spaced mode.

P R R I S T TR TN B B BRI L L L R T I T TV IERAN TENRR Y]
" A N T

Chapter 3

Projective Transformations

This chapter describes a group of subroutines that may be used to define pro-
jective transformations from two-dimensional or three-dimensional space into two-
dimensional space. Subroutines are provided which generate the transformations
and encode them as a matrix. Other subroutines are then provided that take a
peint, in two-dimensional or three-dimensional space, and project them into two-
dirmensional space. The mathematical derivation of all of these projective trans-
formation algorithms is given in An Introduction to the Curves and Surfaces of
Computer-Aided Design [Beadl).

One use of the two-dimensions to two-dimensions transformation is in digitiz-
ing photographs. If the photograph contains a figure of known dimensions then
the transformation from real two-dimensional space to the coordinate system of
the photograph can often be determined. A projective transformation is also the
physically correct transformation if the optical system of the camera approximates
a pinhole camera.

The three-dimensions to two-dimensions transformations are useful whenever
two-dimensional images of three dimensional objects are required. ‘

These transformations have many desirable properties. One of the most impor-
tant is that they transform straight lines into straight lines. Another advantage is
that neither the generation of the transformation nor the projection of a point is
computationally expensive.

If one of the transformation generating subroutines determines that the trans-
formation does not exist, it sets an error indicator and returns to the caller. The
subroutines that project a point should always work unless they are supplied with
extremely large coordinates.

3.1. Two-dimensions to Two-dimensions Projective Transformations

This section describes a means of generating and using a projective transforma-
tion from two-dimensional space to two-dimensional space. The transformation is
defined by giving four points in the source coordinate system and the corresponding
four points in the target coordinate system. The resulting projective transformation
will always be computable provided no three of the points lie on a straight line in
either coordinate system.

There is, however, a problem with points that transform into a point at infinity.
To understand this problem, refer to Figure (3.1). In this figure, the four points
on the irregular quadrilateral, Py, P2, P3, and Py, are to be transformed into the

24

LI T I K T1 R LR IR Y ORI A I L R L NIRRT A 1 E I L RN T N rwm“u“‘”‘(‘r UHWH’IWMW ”wm Ly ‘WW!”[‘N“WH“'w‘"“"U 1y MWM-- "W‘ ""W [T

Projective Transformations 25

Figure 3.1. A two-dimensions to two-dimensions projective transformation

rectangle described by P, P), Py, and Pj. The line through the points P, and
P, intersects the line through the points P3 and Py at Q. The lines through
the corresponding P! points do not intersect, or rather, they intersect at infinity.
The point @ therefore transforms into a point at infinity. The point Q similarly
transforms into a point at infinity. Since straight lines are preserved under the
transformation, all of the points on the dotted line through Q and Q» transform
into points at infinity. The subroutine that transforms a point from one coordinate
systemn to another will determine if the given point transforms into a point at infinity
and warn the caller.

3.1.1. Subroutine ¢Z222PJ: (Generate a Transformation

This subroutine may be used to generate a two-dimensions to two-dimensions
projective transformation that carries four given points into four given points.

The calling sequence is:
CALL GZ22PJ(PXAS,PYAS,PXAT,PYAT,IERR,PTRN)

The input parameters are:

PXAS A real array of dimension 4 containing the z coordinates of the source
points.

PYAS A real array of dimension 4 containing the y coordinates of the source
points.

i e 1 R] s bt

26 GKS Utilities for FORTRAN-TT

PXAT A real array of dimension 4 containing the r coordinates of the target
poimnts.

PYAT A rezl] array of dimension 4 containing the y coordinates of the target
it points.
The output parameters are:
li‘ IERR. An integer giving an error flag. A nonzero value means the transfor-
§ mation could not be computed.
%I‘, PTRN A real array of dimension (3,3) containing the projective transforma-
?' bion,
% 3.1.2. Subroutine GZ22TR: Transform a Point

This subroutine may be used to transform a point using a two-dimensions to
two-dimensions projective transformation. A flag indicates if the projected point is
a finite point or a point at infinity.

a wren b
e 2T L

o et e

The calling sequence is:
CALL GZ22TR(PTRN,PAS,PAP,FLAG)

The input parameters are:

PTRN A real array of dimension (3,3) containing the projective transforma-
tiom.
PAS A real array of dimension 2 containing the source point.
The output parameters are:
PAP A real array of dimension 2 containing the projected point.

FLAC A real value that indicates whether a finite point or a point at mnfinity
has been computed. If this value is nonzero, PAP contains the finite
coordinates of the projected point. If this value is zero, PAP 1s a unit
vector pointing in the direction of the point at infinity.

3.2. Three-dimensions to Two-dimensions Projective Transformations

This section describes a number of ways to generate a three-dimensions to two-
dimensions projective transformation.

In the first case the projection of a point in three-dimensional space 1s defined
by an eye point and a projection plane as shown in Figure (3.2). The plane is
defined by an origin point, O, on the plane, and two direction vectors, H and V. H
is the “horizontal” direction and V is the “vertical” direction. These two direction
vectors will often be perpendicular to each other. A point on the plane, Q, is found
by starting at O, and moving parallel to H the necessary distance and then parallel
to V the necessary distance. Thus, Q is represented as

Q=0+ ¢H+nV.

Thus the vectors H and V impose a coordinate system on the plane. The projec-
tion of a point P onto the plane is then obtained by drawing a straight line through

T S PR R | AU (T LRt Watt (Y R Ry U I UL L I T AR U U ‘M ONETITY "”\MWM“J‘ T g ”“”‘w\‘]

thu

Y
|
uA’%mh P W Conn et o .]

Projective Transformations 27
5 %
; g
J
; E

E

P _——

e — - L - - -

- |

Figure 3.2. A three-dimensions to two-dimensions perspective transformation

the eye point, E, and the point P until it meets the plane. The ¢ and 7 values of
the intersection point are the coordinates of the projected point in two-dimensional
space. In many applications H and V are perpendicular and the vector from BE
to O is perpendicular to both H and 'V but that is not necessary in these subrou-
tines. This type of transformation is known as a perspective transformation. These
transformations are best understood by imagining a viewer at the eye point, looking
teward the origin point.

The second type of three-dimensions to tweo-dimensions transformation that 1s
described here is known as a parallel transformation. It 1s formed by projecting a
given point, P, parallel to a fixed direction, D, as shown in Figure (3.3). Tt 15 agmin
comraon to have H and V perpendicular and to have D perpendicular to both H
and V.

In the case of a perspective transformation, the horizontal and vertical directions
must be distinct and neither may point at the eve point. In a parallel transforma-
tion, the horizontal, vertical, and projection directions must all be distinct.

The preceding scheme is very general but is not very easy to uze. The problem
is that the origin point is not easy to determine. For this reason, a second way to
define the projection plane is provided. In this second scheme, the projection plane

is defined by selecting a rectangular area on the projection plane and thinking of

it as the “projection screen.” The projection screen is orientated so that one set of
parallel sides is parallel to the z-y plane. The projection screen is defined by giving
the center point of the screen, C, and its horizontal and vertical size, A and v. In
the case of a perspective transformation, the projection plane is perpendicular to

T O I R UL R T L s A R T O 1 AR R

ol IH'W " '\!

TR TR IRT I PREnT] TR IR TR L

28 GKS Utilities for FORTRAN-77

Figure 3.3. A three-dimensions to two-dimensions parallel transformation

the vector from E to C; in the case of a parallel transformation, it 1s perpendicular
to D. To define the coordinate systemm on the projection screen, the meximum and
minimum values of ¢ and 7 are given. This information is all shown in Figure (3.4).

The maximum and minimum values of £ and 7 are given by a real array of
dimension (2,2). The format of the data is

] SCRC(1,1) SCRC(1,2) Emin Mmin)
SCRC = | ; ; = |) .
.SCRG(2,1) SCRC(2,2)

Emar Tmaz

For most usage, the aspect ratio given by h and v should be the same as that defined
by the maximum and minimum values of £ and 7. That is, the values should satisly

Nmar ~ Nmin v

f,‘mar - émin h
However, the subroutines do not enforce this constraint.

A perspective transformation can also produce points at infinity. All of the
points on the plane through the eye point and parallel to the projection plane
map into points at infinity except for the eye point itsell. The eye paint has no
corresponding point. A parallel transformation never produces points at infinity.

3.2.1. Subroutine GZ32PT: Generate a Perspective Transformation (I)

This subroutine may be used to generate a three-dimensions to two-dimensions
perspective transformation. The transformation is definad by giving the orojection

T T T TR T RRT TR IR T TRt RN e 1 L AT TR T R T U [T C A LTI TR A RO

wone e

g e

Projective Transformations 28

Figure 3.4. An alternate method of defining the projection plane

plane and an eye point. The projection plane is specified by giving a point on the
plane and a horizontal and vertical direction within the plane.

The calling sequence is:
CALL GZ32FT(PD,HD,VD,PE,1ERR,PTRN)

The input parameters are:

PO A real array of dimension 3 containing the origin point on the projection
plane.

HD A real array of dimension 3 containing the horizontal direction in the
projection plane.

VD A real array of dimension 3 containing the vertical direction in the
projection plane.

PE A real array of dimension 3 containing the eye point.

The output parameters are:

IERR An integer giving an error flag. A nonzero value means the transfor-
mation could not be computed.

PTRN A real array of dimension (3,4) containing the projective transforma-
tion.

3 2.9, Subroutine GZ324T: Generate a Perspective Transformation (1)

This subroutine provides an alternate way to generate a three-dimensions to two-
dimensions perspective transformation. The transformation is defined by giving the

TS N R i BT [T T IO TN N IR TR T LU TR e “"‘Hl”‘ g um ‘\”‘IW w w”’ll\"'\' oo MW *Hqiw "W \”m“ g \W\ ' m”hlw o
|

30 GKS Utilities for FORTRAN-T7

projection plane and an eye point. In this case, the projection plane is specified
by giving the center point of a projection screen, its size, and the limits of the
coordinates on the screen.

The calling sequence is:
CALL GZ32AT(PC,HZ,VZ,SCRC,PE,IERR,PTRN)

The input parameters are:

PC A real array of dimension 3 containing the center point on the projec-
tion plane.

HZ A real value giving the size of the screen in the horizontal direction.

vz A real value giving the size of the screen in the vertical direction.

SCRC A real array of dimension (2,2) containing the limits of the coordinate

_ system on Lhe screen.
PE A real array of dimension 3 containing the eyve point.
The output parameters are:

IERR An integer giving an error flag. A nonzero value means the transfor-
mation could not be computed.

PTRN A real array of dimension (3,4) containing the projective transforma-
tion.

3.2.3. Subroutine GZ32PL: Generate a Parallel Transformation (1)

This subroutine may be used to generate a three-dimensions to two-dimensions
parallel transformation. The transformation is defined by giving the projection
plane and a projection direction. The projection plane is specified by giving a point
on the plane and a horizontal and vertical direction within the plane,

The calling sequence 1s:
CALL GZ32PL(PO,HD,VD,PD,IERR,PTRN)

The input parameters are:

PO A real array of dimension 3 containing the origin point on the projection
plane.

HD A teal array of dimension 3 containing the horizontal direction in the
prejection plane.

VD A real array of dimension 3 containing the vertical direction in the
projection plane.

PD A real array of dimension 3 containing the projection direction.

The output parameters are:

IERR An integer giving an error flag. A nonzero value means the transfor-
mation could not be computed.

PTRY A real array of dimension (3,4) containing the projective transforma-
tion.

R A T T R TR T AT RO TR TE N 1) LY N AU AU I (K K N N R T TR U R ,w “”‘ e ”P N N IR HI‘”“‘“Mm"”“

o e

L S L L T e O TR R T T

Projective Transformations 31

3.2.4. Subroutine GZ32AL: Generate a Parallel Transformation (II)

This subroutine provides an alternate way to generate a three-dimensions to
two-dimensions parallel transformation. The transformation is defined by giving
the projection plane and a projection direction. In this case, the projection plane
is specified by giving the center point of a projection screen, its size, and the limits
of the coordinates on the screen.

The calling sequence is:
CALL GZ32AL(PC,HZ,VZ,SCRC,PD,IERR,PTRN)

The input pararmeters are: ,
PC A real array of dimension 3 containing the center point on the projec:
tion plane.

HZ A real value giving the size of the screen in the horizontal direction,

VZ A real value giving the size of the screen in the vertical direction.

SCRC A real array of dimension (2,2) containing the limits of the coordinate
system on the screen.

PD A real array of dimension 3 containing the projection direction.

The output parameters are:

IERR An integer giving an error flag. A tonzero value means the traunsfor-
mation could not be computed.

PTRY A real array of dimension (3,4) containing the projecrive transforma-
tion.

3.2.5. Subroutine GZ32TR: Transform a Point

This subroutine may be used to transform = point using a three-dimensions to
two-dimensions projective transformation. A flag indicates if the projected point is
a finite point or a point at infinity.

The calling sequence is:
CALL GZ32TR(PTAN,PAS,PAP FLAG)

The input parameters are:

PTRN A real array of dimension (3,4) containing the projective transforma-
tion.
PAS A real array of dimension 3 containing the source point.
The output parameters are:
PAP A real array of dimension 2 containing the projected point.
FLAG A real value that indicates whether a finite point or a point at infinity

has been computed. If this value is nonzero, PAP contains the finite
coordinates of the projected point. For a perspective transformation, a
positive value indicates the source point is in front of the viewer while
a negative value indicates it is behind the viewer. In these cases, the
magnitude of FLAG is proportional to the distance from the eye point to

i ‘m,"r‘ ORI TR

32 GKS Utilities for FORTRAN-T77

the projected point; it can be used as the projected distance from the
eye point to the source point. If this value is zero, PAP is a unit vector
pointing in the direction of the point at infinity. If the source point is
the eye point of a perspective transformation, both components of PAP
and the value of FLAG will be zero,

T m v}mﬂl‘\‘ g

Chapter 4

Curve Drawing Algorithms

This chapter describes a group of subroutines that may be used to draw smooth
curves, The curves are defined by supplying control points and other control in-
formation to the subroutines. The curves are drawn by breaking them down into
small straight line segments and then calling the GKS polyline subroutine, GPL,
The user has control over the number of line segments generated. The mathemat-
ical derivation of all of these curve drawing algorithms is given in An Introduction
to the Curves and Surfaces of Computer-Aided Design [Bea91).

Mathematically, all of these curves are defined parametrically, that is, the z
and y coordinates are defined as functions of a parameter, t. In effect, a user may
specify the parameter at each of the control points. Different assignments of the
parameter values at the control points usually results in different curves. There
are two schemes that are commonly used to define the values of the parameter
associated with the given control points. These two schemes produce curves that
are known as uniform and nonuniform curves. For uniform curves, the parameter
is set to zero at the first point and increases by one for each succeeding point. For
nonuniform curves, the parameter may be set to any increasing sequence of positive
valucs.

The uniform scheme is very simple mathematically but often does not produce
acceptable curves if the points are not nearly equally spaced. A nonuniform scheme
that usually produces good results is based on accumulated cherd length along the
sequence of points. The parameter is set to zero for the first point and increases
by an amount equal to the distance between consecutive points for each point. For
later reference, we display the increments in the parameter for this nonuniform case

D) = distance from point 1 to point 2,
D, = distance from point 2 to point 3,

(4.1)
Dy-q = distance from point (¥ - 2) to point (N - 1),
Dy-y = distance from point (N - 1) to point N,

where ¥ is the number of given control points. The subroutines described in this
chapter all start the parameter at zero and expect the user to supply the increments
in parameter value, explicitly or implicitly, along the curve.

In the following subroutines, the parameter values are supplied by two argu-
ments; the first, NP, is an integer and the second, PA, is a real array. If NP 1s
positive, the dimension of PA must be NP. The increments in parameter values are

33

MR oo ‘ [/ ' oo e BRI A LR LU TR R T T/ T

34 (GKS Utilities for FORTRAN-77

then obtained from the PA array. If more parameter values are needed than are con-
tained in PA, then they are obtained cyclically from Pt T'hat is, the values PA(1),
..+, PA(NP) are obtained and then this sequence is repeated. This makes it very
eusy to specify the uniform curve; NP is simply given an integer value of one while
PA is given a real value of one. It is also casy to specify the nonuniform curve with
the parameter value based on accumulated chord length, This is done by giviug
NP a value of zero. In this case, PA is ignored and the subroutine calculates the
parameter internally.

Most of the algorithms described here produce curves by using concatenations
of simple puramectric polynomials. The parametric polynomials are usually of low
degrec (normally two or three). The points at which consecutive polynomials join
are known as knots.

In addition to the simple polynomial form of these algorithms, some also have
a rational form. The rational form consists of z and y being defined as quotients
of polynomials, In certain applications, the rational form can be more useful. For
example, the only conic the polynomial form can ever match exactly is the parabola,
It is impossible for the polynomial form to exactly matcli a simple circle although
it can come arbitrarily close. On the other hand, a rdho.ml parametric quadratic
can exactly match any conic,

Two distinct types of curves, interpolation curves and design curves, may be
produced by these subroutines. Interpolation curves pass through all of their control
points while design curves do not necessarily do this.

The description of each subroutine will include figures showing examples of
curves produced by the subroutines. In these figures, the given control points are
joined by straight lines between consccutive points. This open polvgon is known
as the control polygon. The reader will notice that these figures do not display the
coordinate axes, The reason for this 1s that all of the curves described here arc
tsotropic, that is, they are independent of the coordinate system in which they are
defined. In fact, the reader may draw a set of coordinate axes anywhere in these
figures and label the axes in any units. The figures also do not label the points so
the reader cannot tell which end of the curve corresponds to the first point. The
reason for this is that most of these curve drawing algorithms arc symmetric, that
is, they do not depend on which end of the control polygon is the starting end.

If one of these subroutines detects an error in the data supplied to it, the sub-
routine prints an error message and returns without producing any graphic output.

4.1. Bessel's Method of Local Cubic Interpolation

Bessel's method is a cubic interpolation algorithin., Between each pair of points
is a segment of a parametric cubic. Adjacent cubic segments join at the control
points and have tangent vectors at those points which have the same direction. The
method is also local in that a cubic segment is completely determined by four control
points, the ones at its ends and the two on either side of it. In addition to the usual
parameter values that are associated with the line segments in the control polygon,

o IR I ROVt [N TR TR A W momp SRR IR UERE T L (L RN I LTI T W” n

me e \My'lmw i

T

Curve Drawing A]gorithms‘ 35

theve are additional parameters associated with the tangent vectors at the points,
This combination of parameters gives the user a substantial amount of control over
the final interpolation curve.

The two subroutines that are described here differ in the type of control that the
user has over the ends of the curve. In the first subroutine, the user must supply
and extra point beyond the actual ends of the curve. In the second subroutine,
the user may specify the tangent direction at the end points or request that the
curvature be zero. In this later case, the end conditions may be mixed, that is,
the user may specify a tangent vector at one end and request zero curvature at the
other.

4.1.1. Subroutine GZBESL: Draw a Parametric Bessel’s Curve (I)

This subroutine may be used to draw a curve through a sequence of points using
Bessel's method. In this scheme, the ends of the curve are controlled by an extra
point, The actual curve, therefore, extends from the second control point to the
second point from the end of the curve. Either a uniform curve, or & nonuniform
curve may be drawn. In the case of a nonuniform curve, a simple means to basc
the line segment parameters on accumulated chord length is provided.

The calling sequence is:
CALL GZBESL(N,PXA,PYA,NP,PA,NT,TA,NS)

The input parameters are:

N An integer giving the number of control points.

PXA A real array of dimension N containing the z coordinates of the control
points.

PYA A real array of dimension N containing the y coordinates of the control
points.

NP An integer giving the number of parameter values associated with line

segments in the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values arc selected cyclically from the next pa-
rameter. In this case, a total of (N — 1) values are needed.

PA If NP is positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.
NT An integer giving the number of parameter values associated with tan-

gent vectors at the interior points. This value must be positive and
the values are selected cyclically from the next parameter. A total of
(N — 2) values are needed.

TA A real array of dimension NT containing the given parameter values
associated with the tangent vectors.
NS An integer giving the number of straight line segments into which each

curve segment is to be divided.

weooom o g [T Con T L LY A T I TR

36 GKS Utilities for FORTRAN-77

— — — Uniform Curve

Nonuniform Curve

Figure 4.1. Examples of interpolation by Bessel's method (1)

Figure (4.1) includes an example of a nonuniform curve where accumulated
chord length has been used as the parameter. The TA values have all been set to
one. The circular curve at the lower right of Figure (4.1) was formed by specifving
seven points at the corners of the square in sequence. Since the chord segments are
equal, the uniform and nonuniform curves based on accumulated chord length are
identical.

Figure (4.2) illustrates the affect the PA values have on the curve. The figure
lustrates the manipulation the PA value associated with the central line segment
of the control polygon. It shows that reducing the value of PA(3) causes the curve
to move closer to the chord between the third and fourth points. In this case, the
tangent vectors at the third and fourth points also rotate to become closer to the
chord. Large values of PA(3) cause the curve to move away from the chord and a
cusp or loop can form if it 1s made too large. Figure (4.2) also illustrates the local
properties of the interpolation because all three composite curves are tangent to
each other at their ends; any continuation of the curve bevond its cu.rent ends will
not be affected by the change in the parameter.

Figure (4.3) 1llustrates the manipulation of the TA values. The natural value of
the TA values is one. As TA(2) is reduced, the influence of the tangent vector at
the middle point is reduced and the curve pulls away from the tangent vector and
approaches the adjacent chords. However, in this case, the tangent direction at the
middle point does not change. If TA(2) is made large, the influence of the tangent
vector at the middle point becomes strong. This forces the interpolation curve tc
flatten and follow the direction of the tangent vector longer. In general, when the

(T,

Cowp

Curve Drawing Algorithms 37

?

|

i
— — — PA(3)=0.5Dy |
‘_ PA(3)=Dy (
l ' DR PA(3)=2D4
j, Figure 4.2. Examples of interpolation by Bessel's method (II)

' Figure 4.3. Examples of interpolation by Bessel's method (I1I)

TA values are reduced, the curve moves closer to the adjacer t chords and becomes

the TA volues allowve the curve to relax and bow wut.

taut; increasing

c o T T I LRI UL AL T AN N RTINS LA] AR T AL T LR] w,wwm (AT Wlw"” HIWH"‘”“."HWIWI‘"MH”TW“" f

38 GKS Utilities for FORTRAN-77
4.1.2. Subroutine GZBESE: Draw a Parametric Bessel’s Curve (IT)

This subroutine may be used to draw a curve through a sequence of points using
Bessel's method. In this scheme, the ends of the curve are controlled by specifying
the end tangents or by requesting zero curvature at the ends. Either a uniform
curve, or a nonuniform curve may be drawn. In the case of a nonuniform curve, a
simple means to base the line segment parameters on accumulated chord length is
provided.

The calling sequence 1s:
CALL GZBESE(N,PXA,PYA,V1,V2 NP,PA,NT,TA,NS)

The input parameters are:

N An integer giving the number of control points.

PXA A real array of dimension ¥ containing the z coordinates of the control
points.

PYA A real array of dimension N containing the y coordinates of the control
points,

Vi A real array of dimension 2 containing the given tangent vector at the

initial end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero curvature is imposed at the end.

V2 A real array of dimension 2 containing the given tangent vector at the
terminal end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero curvature is imposed at the end.

NP An integer giving the number of parameter values associated with line
segrments 1n the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter 15 positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N — 1) values are needed.

P [f WP is positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.

NT An integer giving the nurnber of parameter values associated wich tan-
gent vectors at the points. This value must be positive and the values
are selected cychically from the next paramerer. A total of N values are
needed.

TA A real array of dimension NT containing the given parameter values
associated with the tangent vectors. ‘

NS An integer giving the number of straight line scgments into which each

curve segment is to be divided.

Figure (4.4) shows examples of interpolation by Bessel's method when tangents
at the ends of the curve are supplied. In this case the curve is not, strictly speaking,
symmetric. Since the tangents at the ends are supplied, they must point in the
direction of the curve so this curve was drawn from the left to the right. To draw
the curve in the other direction, the directions of the tangent vectors must be

T L I TR RS TN T 1T TR TR W e g w-‘}mgym R H"‘M' ey Uwv (R TR 'HM” Iy) yww

s

K

Curve Drawing Algorithms 30

- Uniform Curve

Nonuniform Curve

- Uniform Curve

e Nopnuniform Curve

Figure 4.5. Examples of interpolation by

the ends

Bessel's method with zero curvalure at

reversed. In the nonuniform curve, accumulated chord length has been used as the

IR LI TRR

LR Y ST I T [T

HRRTE

[RN R RER AT

R L T O O TR R RN TR T T

LENTL

40 GKS Utilities for FORTRAN-77

parameter.
In Figure (4.5) the curvature at the end points has been constrained to be zero.
The nonuniform curve again has accumulated chord length as its parameter.

4.2, Cubic Spline Interpolation

This section describes a subroutine that may be used to draw a parametric
cubic spline. A cubic spline is an interpolation curve consisting of parametric cubic
polynomial segments. The segments of the curve join at the knots with equal first
and second derivatives. However, the curve 1s not local in nature; changing one
control point modifies the entire curve.

There is a limit on the number of control points that may be supplied to this
subroutine.

4.2.1. Subroutine GZSPLN: Draw a Parametric Cubic Spline

This subroutine may be used to draw a parametric cubic spline curve through
a sequence of points. The ends of the curve are controlled by specifying the end
tangents or by requesting zero curvature at the ends. Either a uniform curve, or
a nonuniform curve may be drawn. In the case of a nonuniform curve, a simple
means to base the parameter on accumulated chord length is provided.

The calling sequence 1s:
CALL GZSPLN(N,PXA,PYA,V1,V2 NP,PA,NS)

The input parameters are:

N An integer giving the number of control points, The maximum nurmber
of points that are allowed is 32,

PXA A real array of dimension ¥ contalning the z coordinates of the control
points.

FYA A real array of dimension N containing the y coordinates of the control
poiats.

Vi A real array of dimension 2 containing the given tangent vector at the

initial end. This argument should usually be a unit vector or a zero
vector. [f 1t 1s a zero vector, then zero curvature is imposed at the end.

V2 A real array of dimension 2 contamning the given tangent vector at the
terminal end. This argument should usually be a unit vector or a zero
vector. If it is a zero vector, then zero curvature is imposed at the end.

NP Aun integer giving the number of parameter values associated with hne
segments n the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. It this
parameter 1s positive, values are selected cvclically from the next pa-
rameter. In this case, a total of (N — 1) values arc needed.

PA If NP is positive, this is a real array of dimension NP containing the
given parameter values associated with the line segments.

Curve Drawing Algorithms 41

e S

i lf
g . o T Se " ' ¢ P S — 3 i
I & + by 17« ‘K\——m &} X3 i
| : ~ / -
. — — - Uniform Curve
)
d 1 —— Nonuniform Curve
i \
]
i Figure 4.6. Parametric cubic splines with end tangents given
3t

' NS An integer giving the number of straight line segments into which each

curve segment is to be divided.

Figure (4.6) shows examples of cubic splines with the tangents given at the
end points. In this case the curve is not, strictly speaking, symmetric. Since the
tangents at the ends are supplied, they must point in the direction of the curve so
this curve was drawn from the left to the right. To draw the curve in the other
direction, the direct’ons of the tangent vectors must be reversed. The figure also
shows the oscillatory behavior that is often a problem in spline curves.

Figures (4.7) and (4.8) were drawn with zero curvature at the end points. In
Figure (4.7), the spacing of the points was deliberately chosen to have large variation
in the chord lengths. As a result, the uniform curve exhibits oscillatory problems at
the top center of the figure. Figure (4.8) illustrates how the PA values can be used
to control the shape of the curve. In this case, chord lengths have been used for
the parameters except that the PA value associated with the central line segment of
the control polygon has been manipulated. As we have seen before, reducing a PA
value causes the curve to move closer to the associated line segment. Figure (4.§)
also shows that changes like these are not local; they affect the entire curve.

4.3, Bézier Curves
A Bézier curve is a design curve and not an interpolation curve. [t does, however,
pass through its first and last control points and is tangent to the first and last

" BLEA T L L] L L v lem '\I}VH b Ll H‘\"'\' I I|W Ir]ww '\'”Wl ERRILLE R L) A l” n “1“ [HEHI 'W 1 ‘|”| e g *hw‘uuuww““w‘H K

42 GQKS Utilities for FORTRAN-T7

//:’:':‘7 T
///'/

/

\i\\ \\

NN \\,\ /
. .

- -— — Uniform Curve < ==

———— Nonuniform Curve

Figure 4.7. Parametric cubic splines with zero end curvature (1)

Figure 4.8. Parametric cubic splines with zero end curvature (II)

straight line segment in the -ontrol polygon. The Bézier curve is a parametric
polynomial of large degree (in fact the degree is the number of control points minus

L[L LI TN U L L R TS T R L T TR ISR TN AL ey ‘IH‘\m‘l o

Curve Drawing Algorithms 43

one). Although using polynomials of large degree is usually a dangerous thing to
do, the Bézier curve is unusually well behaved.

The Bézier curve is available in both a simple polynomial and a rational form
The polynomial form does nobt have any user control except for the positioning of
. the control points. The rational form has control variables called weights. The

weights may be any positive values. If the weights are all equal, the polynomial
form of the Bézier curve 15 produced.

There is a limit on the number of control points that may be supplied to these
subroutines.

4.3.1. Subroutine GZBEZR: Draw a Bézier Curve
This subroutine may be used to draw a Bézier curve of arbitrary degree deter-
mined by a sequence of points.

The calling sequence is:
CALL GZBEZR(N,PXA,PYA,N3)

The input parameters are:

N An integer giving the number of control points. The maximum number
of points that are allowed is 32.
PXA A real array of dimension ¥ containing the z coordinates of the control
points.
PYA A real array of dimension ¥ containing the y coordinates of the control
: potnts.
NS An integer giving the number of siraight line segments into whict the

curve 15 to be divided.

Figures (4.9) and (4.10) show some examples of Bézier cucves. Figure (4.10)
illustrates the effect of moving a single control point.,

4.3.2, Subroutine GZREEZ: Draw a Ratinnal Bezier Curve
This subroutine may be used to draw a rational Bezter curve of arhatrary degres
determined by a sequence of pointe.

The calling sequence 1s:

CALL GZRBEZ(N,PXA,PYA NW, WA, N3)

The Input parameters are:

N An integer giving the number of control points The maxirmum nomber
' of points that are allowed 15 37
PXA A real array of dimension ¥ containing the z coordinates of the tontrol
points.
PYA A real array of dimension ¥ containing the ¥ coordinates of the contral
points.

IR T TN A T TN I T R O RO T T et T A LA Ll T TR TR L LV ‘uww L T I A I Y]

44 GKS Utilities for FORTRAN-77

—

Figure 4.10. Examples of Bezier curves (II)

NW An integer giving the number of weights associated with the control
points. This value must be positive and the weights are selected cycli-

et IR R TR R R IR A T g [IR O BRI 1

" ”"'H‘H”'”W”" LR T L TR A WH\ K \w R o IW’II I

45
//
e
—
%
— — - WA=(1,1,02,1,1) "\
Wa=(1,1,1,1,1) \ //
1. \. ‘\ o
wa=(1,1,5,1,1) L
Figure 4.11. Examples of rational Bézier curves
cally from the next parameter. A total of ¥ valuss ars needed.
WA A real array of dimension NW containing the given weichts.
N3 An integer giving the number of straight line segments into which the

curve is to be divided.

Figure (4.11) illustrates how the weights may be used to control the shape of
a rational Bézier curve. In the figure, larger values of the weighis cause the curve
to move closer to its associated point while allowing the curve to pull away from
neighboring points.

4.4, B-spline Curves

A B-spline curve is a pure design curve; it normally does not pass through any
of its control points. The subroutines described here make the Bospline available in
both the polynomial and rational forms in either quadratic or cubic degree. The
serments of a quadratic B-spline match at the knots in ordinate and ficst derivative
The segments of a cubic B-spline match in ordinate, and first and second derivative,
The curve alsc is local in nature, changing a single control point only affects & small
number of curve segments.

Since the knots would not otherwise be known to the user, a facility is provided
whereby the knots my be marked. This is done by calling the GRS palymacker
subroutine, GPM. All of the figures in this section have had the knots marked with
markers that are slightly smalier than those used for the control points,

[ERTER e L PRI T R TR R T 11t R S TR R R TR "

I

46 GKS Utilities for FORTRAN-77

N
PXA

F'rA

PA

NS

The B-spline is actually a generalization of the Bézier curve. The proper selee-
tion of the parameter values can cause the subrouunes described in this section to
produce a Bézier curve.

4.4.1, Subroutine GZBSP2: Draw a Quadratic B-spline Curve

;. This subroutine may | » used to draw a quadratic B-spline curve that is con-
trolled by a sequence of points, Either a uniform curve, or a nonuniform curve may
be drawn. In the case of a nonuniform curve, a simple means to base the parameter
on accumulated chord length is provided. In addition to drawing the curve, the
knots may also be marked.

The calling sequence is:
CALL GZBSF2(N,PXA ,PYA,NP,PA NS, MFLG)

The input parameters are:

An integer giving the number of control points.

A real array of dimension N containing the r coordinates of the control
points.

A real array of dimension N containing the v coordinates of the control
points.

An integer giving the number of parameter values associated with line
segments in the control polygon. 1f this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values are seiected cyvelically from the next pa-
rameter. In this case, a total of ¥ values are needed.

If NP is positive, this is a real array of dirnension NP cortaining the
given parameter values associated with the line segments.

An integer giving the number of straight line seginents into which each
curve segment is to be divided.

An integer flag that indicates if the knots are to be marked. Any
nonzero value will cause them to be marked,

There is, however, a problemn with the generation of the PA array when acou-
mulated chord length is used to produce it. The problem is that there are (N - 1)
distances available but ¥ values are needed. An appropriate scheme, and the one
used within subroutine GZESP2, is

i
o

PA(2) :
PA(3) = 3 (D2 + Dsy),

i

PA(L)
LD+ Dy,
1

r

il

PAN = 1) = £ (Dy-2 + Doy,
PA(N) = Dy._.

i

[R T e e Y R AT

O o TR v I

L RN

v

it

CRPE- NP

oy B .

. e

i 2

,
g

)

Curve Drawing Algorithms 47

o

P

— «— = Uniform Curve

-~ Nonuniform Curve

S

Figure 4.12. Examples of quadratic B-splines (1)

The Dy values are determined by Equations (4.1).

Figure (4.12) shows examples of uniform and nonuniform quadratic B-splines.
The nearly circular curve at the lower right was formed by specifying six consecutive
corner points around the square. The uniform and nonuniform curve based on chord
length are equal in this case. In the other nonuniform curve, the PA values were
determined from chord distances and Equations (4.2).

For the quadratic B-spline, the knots always lie on the control polygon and the
curve is tangent to the control polygon at the knots. In the uniform case, the knots
are at the midpoints of the line segments in the control polygon.

Figure (4.13) shows examples of how a modification of the PA values changes
the curve. In this case, the PA's were also determined from Equations (4.2) and only
the central one was modified. Notice how small values of this parameter cause the
points of tangency on the control polygon to move closer to the associated point on
the control polygon.

There is a fairly popular alternative to Equations (4.2). That alternative scts

PA(1) = 0.0,
PA(N) = 0.0,

with the other values set by Equations (4.2). The advantage of this scheme is that
the curve now passes through the first and last control points and is tangent to
the control polygon at those points. The interior of the curve has the propertie:
described above. The problem with this formulation is that it does not reduce to

the usual uniform approach.

T e m\wu o win T ey oo neagrorye Wt L L ﬂ'\l "

ot m\ i1

I

£l

48 GKS Utilities for FORTRAN-77

Figure 4.13. Examples of quadratic B-splines (II)

4.4.2. Subroutine GZRBS2: Draw a Rational Quadratic B-spline Curve

This subroutine may be used : > draw a rational quadratic B-spline curve that is
controlled by a sequence of points. Either a uniform curve, or a nonuniform curve
may be drawn. In the case of a nonuniform curve, a simple means to base the
line segment parameters on accumulated chord length is previded. In addition to
drawing the curve, the knots may also be marked.

The calling sequence is:
CALL GZRBS2(N,PXA,PYA,NP,PA,NW,WA NS ,MFLG)

The input parameters are:

N
PXA

PYA

NP

PA

An integer giving the number of control points.

A real array of dimension N containing the z coordinates of the control
points.

A real array of dimension N containing the y coordinates of the control
points.

An integer giving the number of parameter values associated with line
segments in the control polygon. If this value is not positive, accu-
mulated chord length will be used to generate the parameter. If this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of N values are needed.

If NP is positive, this is a real array of dimension NP containing the
given paramelter values associated with the line segments.

to e " e e LT T R R o e ‘H"Hl e [OO L I R

wpe e oo WMMW Wy

Curve Drawing Algorithms 49

\ - .
\ "
— — - WA=(1,1,0.2,1,1) ~
——— WA=(1,1,1,1,1) N
' //‘"
~~~~~~~ WA=(1,15,1,1) —

Figure 4.14. Examples of rational quadratic B-spline curves

' NW An integer giving the number of weights associated with the control
points. This value must be positive and the weights are selected cycli-
cally from the next parameter. A total of N values are needed.

WA A real array of dimension NW containing the given weights.

NS An integer giving the number of straight line segments into which each
curve segment is to be divided.

MFLG An integer flag that indicates if the knots are to be marked. Any
nonzero value will cause them to be marked.

Figure (4.14) illustrates how the weights may be used to control the shape
of a rational quadratic B-spline curve. The P4 values were determined by Equa-
tions (4.2). In the figure, larger values of the weights cause the curve o move closer
to its associated point while allowing the curve to pull away from neighboring points.

This subroutine may be used to draw a cubic B-spline curve that is controlled
by a sequence of points. Either a uniform curve, or a nonuniform carve may be
drawn. In the case of a nonuniform curve, a simple means to base the parameter on
accumulated chord length is provided. In addition to drawing the curve, the knots
may also be marked.

=
i
g 4.4.3. Subroutine GZBSP3: Draw a Cubic B-spline Curve
=

The calling sequence is:
CALL GZBSP3(N,PXA,PYA,NP,PA,NS,MFLG)

LU ' RN e ey g T I 1 K T R N T AU T T T A T AU R TR E ISR MU L O RO T (T
I vy iy v i



500  GKS Utilities for FORTRAN-7T

The input parameters are:

N An integer giving the number of control points.

PXA A real'array of dimension N containing the = coordinates of the control
points.

PYA A real array of dimension N containing the y coordinates of the control
points.

NP An integer giving the number of parameter values associated with line

segments in the control polygon. If this value is not pesitive, accu-
mulated chord length will be used to generuiz the parameter. If this
parameter 1s positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N + 1) values are needed.

PA If NP 1s positive, this 1s a real array of dimension NP containing the
given parameter values associated with the line segments.

NS An integer giving the number of straight line segments into which each
curve segment is to be divided.

MFLG An integer flag that indicabes if the knots are to be marked. Any
nonzero value will cause them to be marked.

There is again a problem with the PA array when accumulated chord length is
used to produce it. In this case there are (N — 1) distances available but (¥ + 1)
values are needed. An appropnate scheme, and the one used within subroutine
GZBSP3, is

PA(1) = Dy,
PA(Q) = Dy,
PA(S) = Dy,
e (4.3)
PA(N — 1) = Dy_q,
P‘A(H) = Dy-1,
PA(N -+ 1) = Dy._1.

The D, values are again determined by Equations (4.1).

Figure (4.15) shows examples of uniform and nonuniform cubic B-splines. The
nearly circular curve at the lower right was formed by speafving seven consecutive
corner points around the square. The uniform and nonuniform curve based on chord
length are equal in this case. In the other nonuniform curve, the PA values were
determined from chord distances and Equations (4.3).

Figure (4.16) shows examples of how a modification of the PA values changes
the curve. In this case, the PA’s were also determined from Equations (4.3) and
only the central one was modified. Small values of this parameter cause the central
curve segment to shrink and move closer to the associated segment of ithe conirol
polygon.

Hen



{
E; Curve Drawing Algorithms 31
| i
ﬁ e A
ik X\.,__ — //M \S / -
2 | ~ (i
2 s
i
]
i
L
!
/ a._
I i N
! : ..
\\-
\\:, !
- ,
- p ‘
~_ 7 ‘
i \‘\\
i .
— — — Uniform Curve
1!
! Nonuniform Curve ‘
|" i
i,i J:
|
\, Figure 4.15. Examples of cubic B-splines (I)
3
A
|

Figure 4.16. Examples of cubic B-splines (II)

As in the quadratic case, there is a popular alternative to Equations (4.1). That

"o DT T R T A NI TR AR TR I L T AT L U A L | g



il ulI

52 GKS Utilities for FORTRAN-77

alternative sets

This scheme again forces the curve to pass through the first and last control points
and makes it tangent to the control pelygon at those points.

4.4.4. Subroutine GZRBS3: Draw a Rational Cubic B-spline Curve

This subroutine may be used to draw a rational cubic B-spline curve that is
controlled by a sequence of points. Either a uniform curve, or a nonuniform curve
may be drawn. In the case of a nonuniform curve, a simple means to base the
parameter on accumulated chord length is provided. In addition to drawing the
curve, the knots may also be marked.

The calling sequence 1s:
CALL GZRBS3(N,PXA,PYA,NP,PA,NW,WA NS MFLG)

The input parameters are:

N An integer giving the number of control points.

PXA A real array of dimension N containing the z coordinates of the control
points.

PYA A real array of dimension N contalning the y coordinates of the control
ponts.

NP An integer giving the number of parameter values associated with line

segments in the control pelygon. If this value is not pesitive, accu-
mulated chord length will be used to generate the parameter. [f this
parameter is positive, values are selected cyclically from the next pa-
rameter. In this case, a total of (N4 1) values are needed.

PA [f NP is positive, this 1s a real array of dimension NP containing the
given parameter values associabed with the line segments.

NW An integer giving the number of weights assocated with the control
points. This value must be positive and the weights are selected cycli-
cally from the next parameter. A total of N values are needed.

WA A real array of dimension NW contaimng the given weights.
NS An integer giving the number of straight line segments into which each

curve segment 1s to be divided.
MELG An integer flag that indicates if the knots are to be marked. Any
nonzero value will cause them to be marked.

Figure (4.17) llustrates how the weights may be used to control the shape of a
rabional cubic Bosnbine curve. The P4 .‘..I,m. wrmea Aot e ad Tnes Taciadliama (4 20
Tauionar Cuoic o o s CUTVE B O S L I e O A A S A LA T I T RO ERT A DTS |__" ARG LIRS\ Ty

wow e e g L N R L L I L T N L L O N R O T LI I T LA TR

TR RN AR R

n

i

L HW”H‘ i

"



Curve Drawing Algorithms 53

/// - :
Py

o C

- .
o '

., >

.

\\\

"

Wa=(L,1,1,1,1,1,1)
Wa=(1,1,1,511,1)

=
2,

In the figure, larger values of the weights cause

Figure 4.17. Examples of rational cubic B-spline curves

the curve to move closer to its

associated point while allowing the curve to pull avay from neighboring points.




Chapter 5

Surface Drawing Algorithms

This chapter describes a growp of subroutines that may be used to draw pictures
of the surfaces of solid objects. The surfaces are defined by supplying control
points and other control information to the subroutines. The surfaces are drawn
by breaking them down into simple polypons, eliminating those polygons that face
away from the viewer, sorting the remainder so that the ones farthest away are first
on the list, and then calling the GKS fill area subroutine, GFA, to write the polygons
to the active workstations in the sorted order. Closer polvgons, therefore, overlay
the farther ones.

This method is quite fast but does have its problems. It is possible, especially
when polygons of vastly differing sizes are involved, to have a large polygon deter-
mined to be “closer” than a small one even though the small one actually hides part
of the larger. The subroutine in this chapter that deals with generalized polyhedral
solids is especially vulnerable to this problem, particularly if non-convex polygons .
are supplied. Tt is also important that the polygons do nob intersect each other;
none of the algorithms described here can handle that problem.

There are a number of ways that the polygons may be drawn so that useful
pictures are produced. In the simplest method, the polygons are drawn as fll areas,
usually in the background color, and then outlined by a polyline. When this is
done the pictures look like line drawn figures. A second way is to apply a light
source and reflection mcdel to obtain fairly realistic pictures. This method will
only be successtul on workstations that can produce a large number of colors. If
the workstation only supports a small number of colors, the fill areas will all blend
together and the picture will be unintelligible. [n addition te these two general
modes, some algorithms will supply other options.

To understand the light source and reflection model used in these subroutines,
consider Figure (5.1). This figure shows a point, P, on the surface and the light
source and eyve point. N is the surface normal at P, L is a vector pointing from P
to the light source, and E is a vector pointing toward the eve position. R represents
a light ray that starts ab the light source and reflects off the surface. The vectors L,
N, and R are coplanar and L and R make the same angle, 8, with N. The vector
E makes an angle of o with R. Notice that E is not necessarily coplanar with L,
N, and R.

The light source and reflection model used is

. RKgcosf+ Nycos™a
I=1I+ E

B T e

S w e B L L A (TR T (A UL (R 1



s

TN N

mirnn

[N

)

"o

Surface Drawing Algorithms 55

Light
S@tf'rce
g N ;
»{ ; o R
! | /
N\ |
N 6 | 8 / E'{@
; N T v | Point
: , / \\a > / E
; .
p I
™

Figure 5.1. The light source and reflection model

where Iy, n, Ry, K, and A are parameters that the user may set. The computed
value, I, is known as the shading function for the point. The value dis the projected
distance from the eve point to the surface; its value is one on the projection plane
and zero at the eye point. K is a distance adjustment constant. [y is the ambient
lluemination for the scene. Ry isthe diffuse reflection constant and Ay is the specular
reflection constant. Highlights on a shiny object are raused by large values of the
specular reflection constant. Large values of n also cause an object to appear shiny
A complete derivation of the model is given in Section 5.2 of Procedurel Elements
for Computer Graphics [Rog83].

The computed shading function for a polygonal surface is mapped to a sequence

of GKS color indices or attribute bundle indices. The calling program must set up
this sequence of indices and supply the subroutine with the smallest and largest
index and the value of the shading function that it corresponds to. Linear interpo-
lation is used for intermediate values. Values of the shading function outside the
given limits are mapped to the appro_prlvate extreme indesx.

The parameters of the ight source and reflection model are given in a real array,
CCA, that is common to all of the subroutines. The description of the array in this
case 1s as follows:

CCA(1) To specify the light source and reflection model, this value should con-

tain a real value of one.

o TR LYl it v W ey 'H‘U'\ \”\‘|]| R WH\\ Mw" “mu‘ wl“vml‘\“n » UHH'\”! M”“\ AT w”w mw i ”H " HHIM n HW'"IW w\lm Wi een H HH‘I G ‘M'W"H"\ I



56  GKS Utilities for FORTRAN-T7

CCA(2) A real value giving the r component of a vector in the direction of the
light rays. That is, the direction is from the light source toward the
ob ject.

CCA(3) A real value giving the y component of a vector in the direction of the
light rays.

CCA(4) A real value giviag the = component of a vector in the direction of the
light rays.

CCA(4) A real value giving the ambient illumination, [y.

CCA(S) A real value giving the specular reflection exponent, n.

CCA(7) A real value giving the diffuse reflection constant, A'.

CCA(8) A real value giving the specular reflection constant, A,.

CCA(9) A real value giving the distance adjustment constant, R’

CCACL0) A real value of zero indicates that the indices given below are color
indices. A real value of one indicates that the indices given below are
attribute bundle indices, ‘

CCA(L1) A real value giving the minimum value of the shading functinn corre-
sponding to the next index.

CCA(L2) A real value giving the color index or the attribute bundle index to
be used to draw the color associated with the minimum value of the
shading function. This value will be converted to an integer belore it
15 used.

CCA(13) A real value giving the maximum value of the shading function corre-
sponding to the next index.

CCA(14) A real value giving the color index or the attribute bundle indes to
be used to draw the color associated with the maximum value of the
shading function. This value will be converted to an iateger before it

e bieds o BNV

somt

&
i
a1
i
3
A3

SnsaERp ekt 5

=

1s used.
Notice that the direction of the light rays as given by CCA(2), ..., CCA(4) is the
reverse of that shown by the vector L in Figure (5.1). It is impartant to get the
direction correct; it is no help if the light is shining on the bottom of the model
when you expected it on the top. The values of these parameters can be difficult
to select. In the absence of other information, a good place to start is [y = 0.1,
n=20 AK; =15 K,=03, and A = 1.0.

Each of the subroutines also needs a work array. This is 2 real array that is used
to sort the polygons. The required size depends on the problem but a maximum
value is usually easy to obtaln.

From the above discussion, it is apparent the there are two things that are
difficult to determine when these subroutines are used. The first of these problems
is the coefficients of the shading function and its extreme values. The second is the
size of the work array. To aid in the use of these subroutines, the maximum and
minimum computed values of the shading function and the actual size of the work
array that was needed are made available to the user. These results are put into a
COMMON block whose declaration is

C COMMON BLOCK TO RETURN SURFACE INFORMATION.

L T L L LR R [ M R N VI TR R I L ”wnmr”'WWHWW‘wuwuu'wuwww
I



Surface Drawing Algorithms 57

SAVE /GZSINF/
COMMON JGZSINF/GZLMAX ,GZSMIN ,GZSMAK

C MAXIMUM LENGTH OF THE WORK AREA THAT WAS USED.
INTEGER GZLMAX

c MINIMUM AWD MAXIMUM VALUES OF THE SHADING FUNCTION.
REAL GZSMIN,GZSMAX

The COMMON block is available after one of these subroutines has been called. If the
light source and reflection model was not used, GZSMIN and GZSHAX will be zero.

The view of the surface is selected by specifying a three-dimensions to two-
dimensions projective transformation. That transformation must be a perspective
transformation; it cannot be a parallel transformation.

These subroutines are quite efficient when processing on the host computer
oaly is considered. Howsver, the amount of data that must be transmitted to the
workstation can be quite large and many workstations require substantial amounts
of time to process fill areas. In essence, these subroutines off-load much of the
computation from the host computer to the graphic device itself.

If ane of these subroutines detects an error in the data supplied to it, the
: subroutine prints an error message and returns, usunlly without producing any
graphic output.

5.1. Two-dimensional Histograms

A two-dimensional histogram consists of a rectangular array of rectangular
columuns sitting on a common pase. The height of the columns can be used to rep-
resent, experimental or synthetic data. Pictures of this type are sometimes called
Lego plots.

5.1.1. Subroutine GZ2DHG: Draw a Two-Dimensional Histogram

This subroutine may be used to draw a two-dimensional histogram.

The polygons that constitute the histogram may ba drawn in one of three ways.
In the first scheme, corresponding sides on each column are drawn in a distinet coloc,
In the second scheme, the existing GRS settings are used to draw the polygons as
fill areas and then outline the polygons using a polyline. The thicrd scheme provides
a light source and reflection model to color the polygons.

The calling sequence 1s:
CALL GZ2DHG(M,N,PXYZA,PTRN,CCA,L,WA)

The input parameters are:
M An integer giving the first dimension of PXYZA.
N An integer giving the second dimension of PXYZA.

" [ L I T A 11 e 0 ] ORI T O] RNl "”]H‘ [N ‘Uw [T RN T ] o n wa et MW"IW VIS EN ey e



58  GKS Utilities for FORTRAN-77

Figure 5.2. A two-dimensional histogram

PXYZA A real array of dimension (M,N) containing the z, y, and = coordinate:
cf the two-dimensional histogram. The format of the array 15

b0 Il ) Ty-» Ty

[ z z2) Ih-2,1 -

Yo 72 20 IN-12 -
YN-2 T M-2  Z2 M- T
LB - - - -

The sequences (zy, 22, ..., Tu—~1) and {(y1, v2, ..., Ux-1) Must be mano.
tonically increasing but do not have to be equally spaced. The two-
dimensional histogram consists of (¥ — 2) columns in the z direction
and (M — 2) columns in the y direction. The value zy is the =z coor-
dinate of th. base of the columns. The bounds of the (i,7)th column
(t=1,...,(N=2); 7=1,...,(M-2)) are z, to 7,4y in 7 and y, to ¥+
in y. This means that the last row and column of PXYZ4 are almost
unused. These unused values are shown as dashes in the matrix. The

] TR TN IO TR VAR LA N T g v””‘\ (R I kuu\ww”"”u TR T

e v N I R R A TR T TR BN RRY T [T



Surface Drawing Algorithms 59

zij values give the z coordinates of the tops of the columns and should
not be smaller than 2.

PTRN A real array of dimension (3,4) containing the perspective transforma-
tion.
CCA A real array containing the color control for the two-dimensional his

togram. The value of CCA(1) selects one of three possibilities:

CCA(L)«-1.0 This means each side of a column is to be colored
in a distinct color. Additional data is supplied in the array
as described below.

CCA(1)=0.0 This means that the existing GRS settings for fll
areas and polylines is to be used to draw the polygons. No
additional data is supplied in the array.

CCA(1)=1.0 This means that the columns are to be colored using
the light source and reflection model. Additional data is
supplied in the array as described earlier.

‘ L An integer giving the length of the work array.
WA A real array of dimension L that will be used as a work array. L should
be at least 6(M = 2)(N = 2).

This subroutine allows the special coloring scheme defined by a value of CCACL)
equal to minus one. The description of the CCA array in this case is as follows:
cca(l) To specify this option, this value should contain a real value of ounus
one.

CoaC2) A real value of zero indicates that the indices given below are color
indices. A real value of one indicates that the indices given below are
attribute bundle indices.

CCAC3) A real value which specifies the index to be used to draw the Ty side
of the polygon. This value will te converted to an integer belore it is
used.

CCAC4) A real value which specifies the index to be used to draw the rpa. side
of the polygon. This value will be converted to an integer befnre it is
used,

CCA(s) A real value which specifies the index to be used to draw the yp,., side
of the polygon. This value will be converted to an integer before it s
used.

CcAlB) A real value which specifies the index to be used to draw the ymg, side
of the polygon. This value will be converted to an integer before it is

, used.

Coa(7) A real value which specifies the index to be used to draw the zm, side
of the polygon. This value will be converted to an integer before it is
used.

ccal®) A real value which specifies the index to be used to draw the zp,,. side
of the polygon. This value will be converted to an integer before it is
used.

" ' ' Aoty ' "o o n o noargy e W T I I T A A TR VN TR N T



B I - Rt D, TR ke v K e T -

owme gy o

60  GKS Utilities for FORTRAN-TT

Figure (5.2) shows an example of a two-dimensional histrgram. Like all of
the examples in this chapter, it was produced by drawing the polygons in the
background color and then outlining the polygons in the normal color.

5.2. Mesh Surfaces

A mesh surface consists of a rectangular sheet positioned above a rectangular
area in the r-y plane. The sheet is divided into smaller rectangular or triangular
patches. The height of the corners of the patches of the sheet can be used Lo
represent experimental or synthetic data.

If the data suppled to the mesh surface subroutine is not relatively smooth,
the resulting picture may be difficult to interpret. In this case, a two-dimensional
histogram may be more appropriate.

5.2.1. Subroutine GZMESH: Draw a Mesh Surface

This subroutine may be used to draw a mesh surface. The mesh may be con-
structed by drawing rectangles or splitting each rectangle into a pair of triangies.
Either the uppec side, lower side, or both sides of the surface may be drawn. When
only one side of the surface is drawn, a akirt is drawn around the base.

The polygons that constitute the surface may be drawn in one of two ways. In
the fcst scheme, the existing GINS settings are used to draw the polvgons as fill
areas and then outline the polygons using a polyline. The second scheme provides
a light source and reflection model to color the polygons,

The calling sequence 13
CALL GIMESH(M,N,PXYZA,SFLG,MFLG,PTRYN,CCA,L,HA)

rr N . o
[he input parameters are:

M An integer giving the first dimension of PXYZA.
N An integer giving the second dimension of PXYZA,

PevzA A real arcay of dimension (M,N) containing the z, v, and = coordinates
of the mesh surface. The formal of the array is

o0 Z] 2 In-2 IN-1
Vi 21, 2200 M- IN-1,1
v2 z1,2 e S Th-i

H=2 ... IN-2M-2  IN-M-2
\YM-1  TUM-l E2M=1 ... IN-2M-l IN-] M-l
The sequences (1, T2, ..., To-1) and (y1, ¥2, ..., yx-1) must be mono-
tonically increasing but do not have to be equally spaced. The mesh
surface consists of (N —2) surface elements in the z direction and (M—2)
surface elements in the y direction. The bounds of the (1,7)th surface

O TR R I TR L AR T T N T O N L T O IR

t

g

W



Surface Drawing Algorithms 61

‘\

Figure 5.3. A mesh surface showing both upper and lower sides
element (1 2= 1,..., (N =2); 7= 1,...,(M=2)) are z, to /4, in z and
v, t¢ y;41 ‘ny. The z;; values give the z coordinates of the corners
of the rectangular surface elements. The value 2o is the z coordinate
of the base of the structure and is only used if a skirt is being drawn.
When a skirt is drawn for the upper side of the surface, zg must not be
greater than any of the z, ; values. When a skirt is drawn for the lower
side of the surface, zg must not be smaller than any of the z; ; values.
SFLG An integer specifying which side of the surface is to be drawn A
positive value means the upper side is to be drawn while a negative
value means the lower side. A zero value means both sides are to be

irawn.

MFLG An integer specifying the type of mesh to be drawn. A zero value means
rectangles are to be drawn while nonzero values mean triangles are to
be drawn. A positive value means the dividing line for the triangles
will pass through 21,1 and a negative value means it will not.

PTRN A real array of dimension (3,4) containing the perspective transforma-
tion.
CCA A real array containing the color control for the mesh surface. The

value of CCA(1) selects one of two possibilities:
cCA(1)=0.0 This means that the existing GKS settings for fill

com TR T T T v T DR o v n 0 - - . A —— . i . v RIS . L .
1 T N T T T ) [ [ R A A T T AT} I 1 O o o SN T



I i G | e i

62 GKS Ut

ilities for FORTRAN-TT

drmum sice !

.
S UL ISMICU LI
J. (}”,
S FPORIROH)

- e { iy . Ly I . P P - e
rart with (M= 20N = 00 Iftriungies are being drawn,

U cormnpate, ‘ 2 T
drotle thet velue I both top end botions ere being drews, deable

v -

L oo o - S et nAd ©
in. I onlv the wp or bottom is belng drawn, add 204 —

thet value ag
), : R T B N S DO S A NI
20+ (N - 2) 4+ 1. Finadly, double that value Thic value everestimaton
t

[¢
he number of words needed: the actuel nomber will usually be about

half this maximum number.

Figures (5.3), (5.4), and (5.5) all illustrate examples of mesh surfaces. In Fig:
ure (5.3) the mesh surface was broken down into rectangles, while the other two

point while in Figure (5 5) it does not.

wu v DTS

" o YT TR TR ween oo



L

Surface Drawing Algorithms 63

Figure 5.5. A mesh surface showing the lower side only

5.3. Generalized Polyhedral Solids

This section describes a subroutine that can be used to draw any figure that can
be broken down into planar polygons. Normally the polygons should be organized
into solid polyhedra because, at most, only one side of each polygon will be drawn.

5.3.1. Subroutine GZPOLY: Draw a Generalized Polyhedra

This subroutine may be used to draw a group of polyhedra. A polyhedron
consists of a solid body bounded by polygonal faces. The polygons should be planar
or very nearly so. The polygons must also be nonintersecting. The points on the
boundary should be ordered in such a manner that the polygon is to the left as onc
traverses the outside of the surface in the given order of the bounding points.

The polygons that constitute the polyhedra may be drawn in one of two ways.
In the first scheme, the existing GKS settings are used to draw the polygons as fill
areas and then outline the polygons using a polyvline. The second scheme provides
a light source and reflection model to color the polygons.

The calling sequence is:
CALL GZPOLY(PXA,PYA,PZA ,M,NPA,IPA,IXA PTRN,CCA,L,WA)

L I A R e L | (S o E I U LR R | (R TN Tl T N [T TN TR

e

e



64 GKS Utilities for FORTRAN-77

Figure 5.6. The five Platonic solids

The input parameters are:

PXA A real array of containing the = coordinates of the points on the paly-
hedra.

PYA A real array of containing the y coordinates of the points on the poly-
hedra.

PZA A real array of containing the z coordinates of the points on the poly-
hedra.

M An integer giving the number of polygons in the polyhedin.

NPA An integer array of dimension M containing the number of points in each

of the polygons. The maximum number of points allowed in each poly-
gon is 16. However, there is no need to close the polygon; a triangular
polygon may bhe defined by giving only three points.

IPA An integer array of dimension M containing a pointer into the IXA array
that gives the starting index of the indices pointing to the coordinates




Surface Drawing Algorithms 65

Figure 5.7. Two interlocked tor

of the points in the PXA, PYA, and PZA arrays bounding the polygon.

IXA An integer array containing the indices of the points bounding the
polygons.

PTRN A rea) array of dimension (3,4) containing the perspective transforma-
tion.

cca A real array containing the color control for the polyhedra. The value

of CCA(1) selects one of two possibilities:

CeA(1)=0.0 This means that the existing GKS settings for fill
areas and polylines is to be used to draw the polygons. No
additinnal data is supplied 12 the array.

CcA(1)=1.0 This means that the polygons are to be colored
using the light source and reflection model. Additional data
is supplied in the array as described earlier.

L An integer giving the length of the work array.

weooeon R ML T TR T L ey o g



66 GKS Utilities for FORTRAN-77

WA A real array of dimension L that will be used as a work array. The
maximum size that will ever be required is 24. The actual number
needed will usually be about half this number.
Figures (5.6) and (5.7) illustrate two applications of this subroutine. Notice | .

that Figure (5.6) could have been produced in two distinct ways. In the fiest case,
a single call could be made to subroutine GZPOLY supplying it with all of the data
necessary to draw all five solids. A second way that the figure could have been
produced is to draw each of the five solids in turn starting with the farthest from
the viewer; first the tetrahedron, then the cube, octahedron, dodecahedron, and
finally the icosahedron. Since the farther solids do not hide the nearer ones, either
method will produce exactly the same result. This second method will be shghtly
more efficient because the subroutine always has smaller files to sort. However, the
order that the polyhedra must be processed i1s dependent on the viewing direction.
This shorteut will not work in producing Figure (5.7) because each of the tori hides
part of the other; the entire figure must be produced in a single call to GZPOLY.

I A TR I T A LU T T T TNt AL AR T AR TR TR RN AT ST W YRRl U LR IR ITINRY  I WHH- (IR A AR R RN ]




References

The following list contains more information about the books and reports that
have been referenced in this document.

[ANST8]  American National Standard: Programming Lenguage FORTRAN,
Document. ANSI X3.9-1978, American National Standards Institwte,
lnc., New York, April 1978

[ANS85a]  American National Standard for Inmformation Systems:  Computer
Graphics - Graphical Kernel System (GKS) Functione Description,
Document ANSI X3.124-1985, American National Standards Institute,
[nc., New York, June 1985.

[ANS85b) American National Standard for Information Systems: Computer
Gruphics - Graphical Kernel System (GKS) FORTRAN Binding, Docu-
ment ANSI X3.124.1-1985, American National Standards Institute, Inc.|
New Yorl, June 1985.

. |ANSSE]  American Nationul Standerd for Information Systems: Coded Charwc-

ter Sets. 7-bit American National Standard Code for Information Inter-
change | ~-bii ASCI), Document ANSI X3.4-1986, American Nutional
Standards [nstitute, Inc., New York, March 1986.

[Beadl] Robert C. Beach, dn Introduction to the Curves and Surfoces of Com-
puter- Aided Design, Van Nostrand Reinhold, New York, 1991.

(HerG7] A. V. Hershey, Culligraphy for Computers, Report Number 2101, United
States Naval Weapons Laboratory, Dahlgren, Virginia, August 1967,

[Rog85]  David F. Rogers, Procedural Elements for Computer Graphics, McGravi-
Hill Book Company, New York, 1985.

TORERANL e g ' NI L L DA T TR LA W'UHI WP ml’”l‘lru "‘W'F" u||“\ LR IH””'W' mw\ Ve y”wuu r",my WM‘V‘W“” o (W”W”” ‘H“”‘ Mg;WH‘anwy v‘ ‘



68

GKS Utilities for FORTRAN-TT

o

T A I TN TR T TR TR LI A 1

1

[ AT TR

!

LI T

e
i

ey

"!'UN[H R A T T TR U



LS

. T TR X AR Rt R A L I A UL L T IRT LRI R O R L “‘N'U‘\"U"HWW



o

mo

n

e

o e

w

g

g

INENT

VIO O e ey iy

i

7 R O IR A L T T I R RN R TR WN‘IW " lllw‘ ‘W\l\"' mww



