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ABSTRACT

The diffusion of unreactive solutes through the Culebra Dolomite was studied
experimentally and theoretically. The measured diffusive flux is less than that predicted
from independent knowledge of the porosity and reasonable estimates of tortuosity.
This low measured flux led to a review of the relationship between solute diffusion
and pore geometry in rocks and sediments. Solute transport in hypothetical pore
networks, where the effect of pore geometry on the solute flux is directly calculable,
is examined. A conventional interpretation of pore tortuosity, as a normalized length
of diffusion through a pore, loses meaning for cases where pores intersect in networks.
Some important variables affecting the tortuosity are: (i) the distribution of pore sizes,
(i) the distribution of pore lengths, (iii) the number of pores which intersect at a
node, and (iv) the pore shape between nodes. Furthermore, in porous materials with
a preferential distribution of pore sizes and orientation, tortuosity is a tensor. For
the Culebra Dolomite, the wide range of pore sizes causes the diffusive flux to vary
considerably from that predicted from conventional theory. These results indicate that
diffusive fluxes from fractures into rock pores may be smaller than previously thought.

MASTER ,

HSTRIBUTION OF THIS DOCUMENT 18 UNLIH '_‘-\._‘3

V=






Contents

Figures
1

2

INTRODUCTION

EXPERIMENTAL METHODS

2.1 Description of the Culebra Dolomite

2.2 Porosity

2.3 The Diffusion Cell

2.4 Description of the Solution

2.5 Solute Transport Equation
DISCUSSION OF THE EXPERIMENTAL RESULTS
SOLUTE DIFFUSION IN PORE NETWORKS
4.1 Porosity and Solute Diffusion

4.2 Tortuosity .

MODELING SOLUTE TRANSPORT THROUGH THE CULEBRA
DOLOMITE

5.1 Effective Medium Theory .

5.2 Application to the Culebra Dolomite .
5.3 Summary of Other Results
CONCLUSIONS

ACKNOWLEDGEMENT

REFERENCES

11
13
13
14
16
16

20

23
23
26
31
34
35

35



Figures

10

A pore geometry used to illustrate the relationship between diffusive
flux and pore geometry (adapted from Ullmann and Aller, 1982).

A backscattered electron photbmicrograph of the Culebra Dolomite.
This sample was used in the diffusion experiment and the scale bar is
100 micrometers.

The diffusion cell.

The reduced concentration of tritium in the upper portion of the diffu-
sion cell as a function of time. Data are corrected for sampling, and the
uncertainty due to counting statistics is contained within the sample
point.

(A) The parallel model for arrangements of pore segments of length £.
(B) The series model for arrangement of pore segments of length £.

(A) An orthogonal network of uniform pores. (B) A network of non-
uniform pores. .

The modeling approach.

The integrated pore volume as a function of modeled pore radius.
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area of the rock slab (cm?)

cross-sectional area of segment 1 in j

pore cross-sectional area (cm?)

pore area exposed parallel to the rock face (cm?)

concentration in the upper reservoir of the diffusion cell (moles/cm?)
concentration of tracer in the lower reservoir (moles/cm?)

total change in concentration across the slab (moles/cm?)

solute concentration gradient (moles/cm*)
_ oD
=

2
the solute diffusion coeflicient for an ion in solution (En—>
' s

a pore length (cm)

solute flux normal to a rock slab (moles/cm?/s)
solute flux vector (moles/cm?/s)

area-integrated solute flux across pore j (moles/s)
thickness of a rock slab (cm)

number of segments in a single pore

number of pores in a rock

volume of the upper reservoir of the diffusion cell
probability density function (PDF) of property z;
the conductance of segment i in pore j (cm*/s) (7)
pore.radius (cm?)

time (s)

averaged (effective) value of z;

the connection number

the rock porosity

the average tortuosity of pores in the rock

length of a pore segment (cm)

simply averaged quantities



1 INTRODUCTION

The need to predict rates of migration of toxic solutes from a buried waste reposi-
tory to the biosphere has focused attention on models for water-rock interaction. Pre-
dictions are achieved by coupling models of solute transport to rate laws for reactions
at mineral surfaces.

Difficulties arise in these models when solutes migrate through a fractured aquifer
(e.g., Neretniaks, 1980). Solutes are not only transported with groundwater in the
connected fissures, but also diffuse into the adjacent rock pores. Thus rock pores tem-
porarily store toxic solutes and, thereby, slow the rate of migration of these solutes to
the biosphere. These diffusive fluxes arise in response to solute concentration gradi-
ents, such as those produced by diagenetic reactions in the rock pores, or by changing
chemical conditions near the surface of the rock. Accurate estimation of diffusive fluxes
into the rock from fractures is essential to understand the migration of toxic material
in groundwater.

In many studies of solute diffusion in rocks, the flux is described with a simple
equation (Bear, 1972):

J=-D,VC , (1)
where:
¢ D°
D, = ]

In a standard treatment, the flux normal to a rock slab is calculated by considering
the concentration gradient along any pore equal to the total difference in concentration
across the rock, AC,, divided by the rock thickness (L). This assumption amounts to
considering the concentration field to be uniform in gradient across the sample:

J~ —D,AC/L . (2)

The porosity and tortuosity terms which are implicit in Equations (1) and (2)
account for the geometry of pores in a rock.

The treatment of solute diffusion via Equation (1) or (2) is appealing because
the important parameters are easily estimated. Diffusion coefficients in solution are
calculable (e.g., Miller, 1982), and the total rock porosity is easily measured. Tortuosity



is estimated by comparing rates of solute transport through fluid-saturated rock with
those rates in the fluid alone. These comparisons are often made conductometrically,
which is direct and simple (e.g., McDuff and Ellis, 1979). Furthermore, empirical
relations exist to relate solute transport rates to porosity alone (e.g., Ullman and
Aller, 1982). With these empirical relations tortuosity can be completely eliminated
from the transport equations.

Although these methods are commonly adequate, much can be learned by exam-
ining the theoretical relation of pore geometry and solute diffusion. The origin of the
geometric terms in Equations (1) and (2) is often illustrated with the simple case of
non-intersecting pores of constant area (e.g., Ullman and Aller, 1982). In Figure 1,
the fraction of the total rock area that consists of pores is given by the rock poros-
ity (¢ = ApL,/A:L = A'/A;). Thus, in this simple example, porosity enters into the
transport equations as a measure of the pore area exposed in a cross-section of rock.

Tortuosity is introduced as a scaling factor which accounts for the fact that pores
are not oriented perpendicular to the rock face. In Figure 1, for example, the ratio of
the true pore length to a straight pore is given by § = L,/L. Tortuosity appears as
a squared term in Equations (1) and (2) because the concentration gradient through
the pore (Figure 1) is less than the macroscopic gradient and because the flux through
the pore is oriented at some angle to slab normal. As we will show, this definition of
tortuosity must be expanded for rocks which contain complicated pore networks.

We proceed in this examination in a stepwise manner. First, the diffusivity of
samples of the Culebra Dolomite to unreactive solutes is measured. Then this diffu-
sivity is compared to that predicted via Equation (1), using independent values of the
rock porosity, and a tortuosity is obtained. This value of tortuosity tends to have little
relationship to the classical interpretation of tortuosity (as described above), rather, it
is used as a fitting parameter to account for the inadequacies of the model.

Secondly, we review the theoretical relation between pore geometry and solute
diffusion. As part of this review, a hypothetical pore network is examined where the
effect of pore geometry on solute diffusion can be calculated a priori. In these simula-
tions tortuosity is calculated. With this more detailed model, tortuosity is returned to
a physical basis.

We rely on the many experimental and theoretical studies of solute diffusion in
rocks which precede this analysis (e.g., Garrels, et al., 1949; Brady, 1983; Norton and
Knapp, 1977; Lever, et al.,, 1985; Klinkenberg, 1951; many others). These studies
are extended by introducing an important result from percolation theory (Kirkpatrick,
1973) which allows us to model solute diffusion in complicated pore networks (Benzoni
and Chang, 1984; Burganos and Sortichos, 1987).



Figure 1. A pore geometry used to illustrate the relationship between diffusive flux
and pore geometry (adapted from Ullmann and Aller, 1982).



2 EXPERIMENTAL METHODS

Unless otherwise noted, all uncertainties are reported as a single standard devia-
tion, with n corresponding to the number of replicate analyses.

2.1 Description of the Culebra Dolomite

A rock sample of Culebra Dolomite was chosen for the experiment. The Culebra
Dolomite is a subunit of the Rustler Formation of southwestern New Mexico (Adams,
1944). This unit overlies a proposed repository for radioactive waste (the Waste Iso-
lation Pilot Plant) and is a locally important aquifer. The rock generally consists
of fine-grained dolomite rhombs of about 1-10 microns in maximum dimension (see
Figure 2), with lesser amounts of quartz, gypsum, halite, pyrite and clay. The ma-
terial commonly contains small vugs (= 1 mm diameter) where sulfate minerals have
weathered out of the rock.

An experiment was conducted to measure the diffusivity of Culebra Dolomite
to unreactive solutes. The diffusive properties of the Culebra Dolomite have been
examined in several previous studies (Casey, et al., 1987; Casey and Stockman, 1988a,
Casey and Stockman, 1988b; Casey and Stockman, 1988c), which will be summarized
further in this report. The purpose of this section is to familiarize the reader with
methods of measuring rock diffusivities and to present a typical result. The experiment
discussed in this section was performed on a fine-grained sample of Culebra Dolomite
acquired from the 720 foot level during the shaft mapping project. The sample (ESM-
143, 720’) was taken by Robert Holt of the University of Texas at El Paso.

2.2 Porosity

Porosity was measured on subsamples of the rock using three separate techniques.
Mercury porosimetry measurements were conducted by the Quantachrome Corpora-
tion at injection pressures of up to 60000 p.s.i. (see Lowell, 1979 for discussion of the
method). The porosity measured in this fashion is 0.0730 + 0.0037 (n = 4). Porosity
measurements were also conducted on separate subsamples of rock by Terratek Labo-
ratories using the Boyle’ Law helium method (Coberly and Stevens, 1933). Using this
method the porosity is 0.0975 + 0.0024 (n = 2). Finally, the porosity was estimated
by the water-loss method. In this method a sample of water-saturated rock of known
volume is weighed, dried at 100°C, and reweighed. Porosity measured in this manner
is 0.075 + 0.0015 (n = 2).

It should not be surprising that these three techniques provide different estimates
of rock porosity, as the methods are physically distinct from one another. Pores of ~1



Figure 2. A backscattered electron photomicrograph of the Culebra Dolomite. This
sample was used in the diffusion experiment and the scale bar 1s 100

micromnieters.
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Angstrom in nominal radius are accessible to helium, for example, but not to mercury,
which is limited to rock pores greater than about 20 Angstroms in nominal radius
(Lowell, 1979). Even with these differences, however, the porosity is reproducible to
within a narrow range.

A vacuum technique was used to saturate pores in the rock with solution. The
rock slab and plexiglas holder were placed in a vacuum chamber and repeatedly cycled
between 150 and 760 torr. The sample was then immersed in solution, and both the
solution and rock were repeatedly cycled in pressure. This treatment lasted a total of
three days, after which the sample was placed in the diffusion cell with the background
electrolyte solution.

2.3 The Diffusion Cell

The diffusion cell consists of two plexiglas reservoirs separated by a plexiglas plate
containing a rock slab of known thickness and area (Figure 3). The rock slab is sealed
into the plexiglas such that solutes diffuse between the two reservoirs through rock
pores.

A tight seal between the rock core and plexiglas is achieved by coring the plexiglas
to the same diameter as the rock sample. The core is then coated with a thin layer of
epoxy and pressed into the plexiglas plate. The epoxy hardens and makes a tight seal
between the rock core and the plexiglas. After the epoxy has dried, both the rock and
plexiglas are ground to a uniform, flat surface. The integrity of the seal is tested by
inducing a small pressure gradient across the rock slab, such that solution flows very
slowly through the material. In all tests, fluid traveled through pores in the rock and
not through the sealed edges. This criterion is used to infer that the sealed edges of
the rock do not provide highly transmissive routes for solute migration.

During a typical experiment, each reservoir is filled with roughly 380 ml of brine
solution. A small volume (=0.025 ml) of radioactive tracer is mixed into solution in
the lower reservoir. The cell is then suspended from an overhead stirring apparatus
so that the rock slab is horizontal (Figure 3) and immersed in an isothermal water
bath (25°C). The entire cell is rotated discontinuously throughout the experiment to
maintain well-mixed conditions in the cell. The mixing cycle consists of five seconds of
rotation (36 r.p.m.) followed by five seconds of rest.

The upper reservoir is sampled at regular intervals by removing ~1 ml of solution
with a syringe. An equal volume of similar, although nonradioactive, solution is then
added to the upper reservoir. Diffusion coefficients are calculated from the variation
in concentration of the radioactive tracer with time in the upper reservoir.

11
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2.4 Description of the Solution

The background electrolyte was chosen to minimize the dissolution or growth of
minerals during the experiment. The solution was prepared by dissolving 700 g NaCl,
9.7 g CaCl,, 12.5 g Na;SO4 and 0.026 g of CaCOj; into two kilograms of tap water.
This solution was then reacted with 10 g of finely ground rock for several days prior
to each experiment, and had a final pH of approximately 6.9. This solution was then
added to the diffusion cell and allowed to react further with the rock slab before adding
the radioactive tracer. This period of pre-reaction allows the cell, rock and solution to
approach chemical and thermal equilibrium prior to the experiment.

Tritium activity in the solution was measured by liquid scintillation counting us-
ing a cocktail appropriate for solutions of high ionic strength (Hionicfluor, Packard
Instruments). The method was calibrated by counting standards of known activity in
the experimental geometry. The precision is generally much better than 5%. Total
activity of tritium was approximately 5 mCi.

2.5 Solute Transport Equation

The equations which describe solute transport in the cell, accepting the assump-
tions used in developing Equations (1) and (2), are well developed (Paul and DiBenedetto,
1965; Spacek and Kubin, 1967; Jenkins, et al., 1969; Crank, 1975). As long as the con-
centration in the lower reservoir is approximately constant, and much larger than in
the upper reservoir, the upper reservoir concentration is well described by an approx-
imate solution. The concentration of radiotracer with time in the upper reservoir of
the reaction cell is given by an equation of the form:

¢ A LC,| Dt 1 2 (1) Den? 2 ¢
CO="5"gp stz m = an )| ©
n=1

In this experiment, L = 1.43(+0.012) cm and V = 381.1 cm®.

Equation (3) consists of a linear term and an exponential series. As time be-
comes large, the exponential term disappears asymptotically leaving a linear increase
in concentration with time:

C(t) _ ¢ AtVL Co \‘élz)oLtz 3 %] . (4)
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The time derivative of concentration, along with knowledge of the cell geometry,

7 for the rock slab:

provides an estimate of the term

1d0_¢ar )
C, d¢ LV@# °

Furthermore, the porosity of the sample is provided independently of the tortuosity
from the intercepi of Equation (4):

Cc0) —-¢AL
c, 6V (6)

Thus both this porosity and the tortuosity can be determined from a single ex-
periment. Using the simple model shown in Figure 1, this porosity corresponds to the
exposed pore area in the sample. To avoid confusion in the upcoming section, we refer
to this parameter as the diffusion porosity (Norton and Knapp, 1977). This diffusion
porosity will be compared with the total rock porosity determined independently.

3 DISCUSSION OF THE EXPERIMENTAL RESULTS

Results of the experiment are shown in Figure 4. As predicted from the transport
equations, tritium concentration increases linearly with time after a short interval in
the early stages of the experiment. Also included in Figure 4 is a linear regression
through the last 16 sample points. This regression slope is 5.9 (+ 0.04) 10~® h~! with
an intercept of -8.1(10.3) 10~4. These data can be used to estimate the tortuosity and
pore area of the sample via Equations (5) and (6), provided that diffusion coefficients
in solution can be estimated.

A tracer diffusion coefficient for tritium in 4.05 molar NaCl is provided by Devell
(1962), who reports a value of 1.64(+0.06) 105 cm?/s. This value is adjusted to
higher concentrations by correcting for viscosity (Harned and Owen, 1958), and thus we
estimate a tracer diffusion coefficient of 1.31 10~% cm?/s for tritium under experimental
conditions.

The diffusivity (D,) and porosity of the rock are calculated to be 3.0(+0.1) 108
cm?/s and 0.04(+0.005), respectively. The tortuosity (6?) is calculated to be 19. The
diffusion porosity is considerably less than the porosity range measured via mercury,
helium, or water porosimetry (0.075-0.0925). Therefore, our results indicate that the
measured flux is much less than would be predicted from Equation (1) and indepen-
dently measured porosities.

14
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There are two potential causes of this low porosity. First, pores in the sample
may not have been completely filled with solution prior to the experiment. Brace,
et al., (1965), for example, found that it was difficult to completely fill pores in granite
with solution using techniques similar to those we employed here. The porosity of
the granite (0.002-0.007), however, was roughly a factor of ten less than the Culebra
Dolomite porosity (0.07-0.09) and, thus, may be more difficult to fill. Furthermore,
the porosity determined by the water-loss method, which was determined after the
diffusion experiments, is nearly equal to that measured via other methods.

A more likely cause of the low solute fluxes involves assumptions in the transport
Equations (1), (2) and (3). These assumptions led us to review the relationship between
pore geometry and solute diffusion.

4 SOLUTE DIFFUSION IN PORE NETWORKS
4.1 Porosity and Solute Diffusion

In real pore networks, pores vary in radius (and hence area) along their length.
Solute diffusion through these pores varies considerably from the case of smooth-
walled pores, such as those shown in Figure 1. These differences can be illustrated by
examining two special cases.

In Figure 5 two sets of pores are shown arranged parallel to one another. No pores
intersect and all are aligned normal to the rock slab, so that pore tortuosity defined
via Figure 1 can be ignored. The pores are of equal length (L), and consist of smaller
segments of equal length (£). In Figure 5-A, pore segments of constant area are aligned
to yield smooth sets of pores that completely traverse the rock. In Figure 5-B, pores
consist of segments with varying area. The total rock porosities in Figures 5-A and
5-B are equal.

These two cases are chosen to resemble sets of electrical resistors arranged in
paraliel and in series. This similarity is maintained in our discussion by defining a
conductance for each pore segment which is proportional to the segment area:

A;; D°
9i; = Jl Cms/s ’ (7)

where A;; is the area of pore segment i in pore 7. The total solute flux for each segment
t in pore j is the same at steady state. Thus:

J; = g;;AC;;  (moles/s) (8)
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where AC;; is the change in concentration across segment i in pore j (moles/cm?).

The total change in concentration across the rock slab is found by summing over
individual segments:

_ M . M 1 .
AC: = E AC;; = J; — (moles/cm”) (9)
g-.

i=1 =1 tJ

where M is the number of segments in the pore, which is equal to L/£. Equation (9)
is valid for all pores if the solution above and below the rock slab is well mixed.

With the above equations, differences between the two proposed pore geometries
are shown in Figure 5. For the first case (Figure 5-A) the area of segments within a

single pore is constant; thus A;; = A;. Different pores, however, have different areas
(Aij # Air). There are N pores in the rock.

Therefore, Equation (9) may be simplified by noting that all conductances within
a single pore are equal:

_ AC, gi; £

J; 7

(moles/s) . (10)

By summing over all pores and dividing by the slab area, the flux through the rock is
obtained:

v I A, (moles/cm?/s) . (11)

N N
J= Z Ji AC L 3., 9is
i=1

With a large number of pores, an average conductance can be used to replace the
summation in Equation (11):

_ ACr L N{gij) 2
J = ——TLT (moles/cm®/s) . (12)

/

18



Noting that the rock porosity can also be written in terms of the total number of pores:

M) w9

the flux through the rock is rewritten as:

L (g;) AC,
= (Ai;) L

(moles/cm?/s) . (14)

Note that Equation (14) resembles the flux defined in Equation (1), although it
does not include a tortuosity term. (This resemblance becomes obvious when one uses
Equation (7) to define the conductance.) Therefore, in the ensuing discussion Equation
(1) is referred to as the parallel-pore model. This model of solute diffusion through
pores is analogous to a parallel arrangement of electrical resistors.

The second case (Figure 5-B) yields a result similar to a series arrangement of
electrical resistors. Again, the derivation begins with Equation (9), which is simplified
by assuming that the number of segments in each pore is very large (M >> 1). In this

case, the sum in Equation (9) can be replaced with M times the average value (recall
M = L/{)

LL 1 .
l (3;;> (moles/cm®) . (15)

AC; =

Note that each pore, j, contains many segments. Furthermore, if the segment areas are
chosen from a single probability density function then the average term in Equation
(15) is identical for all pores. That is, the average conductance of each pore is equal.
In this case, the summation over all NV pores can be replaced with N times the average
flux through a single pore

N . .
J= E,-:T B NEAG (oles/em?/s) - (16)
Ar L(—)

Gij

Again, introducing the porosity from Equation (13), the flux is rewritten as:

b(moles/cmz/s) , (17)

19



which is always smaller than the flux for the parallel case (except for the trivial case
of monodisperse pores) since

—— < (%) - (18)

Thus, the diffusivity of pore segments arranged in parallel is always larger than a series
arrangement, even if the porosities are equal. In other words, the distribution of pore
sizes in a rock strongly affects the observed flux.

The difference in fluxes for pores with constant and varying areas has been noted
before (e.g., Michaels, 1959; Petersen, 1955; van Brakel, et al., 1974). These authors
introduced an additional term (the constrictivity) to Equation (1) to reduce the calcu-
lated diffusivity from the parallel-pore model.

4.2 Tortuosity

The previous treatment can be easily adapted to include simple tortuosity, as
illustrated in Figure 1, as long as only nonintersecting, parallel pores are considered.
The treatment becomes very complicated, however, when pores intersect in complicated
networks. Pore intersections change the functional dependence of solute flux on total
porosity. Thus the tortuosity term assumes an additional meaning beyond that implied
in the parallel-pore model (Figure 1).

Tortuosity is introduced when porosity (a volume term) is used to estimate a
pore area available for diffusion. As illustrated in Figure 1, the actual porosity is
an estimate of the area fraction of the rock surface which consists of exposed pores.
This approximation is suitable in rocks which contain an isotropic and homogeneous
pore network. As in the case of an inclined pore, however, the rock porosity must be
corrected for the orientation of network pores.

Imagine a rock that contains the cubic pore network shown in Figure 6-A repeated
ad infinitem. Two pore directions are exactly perpendicular to the macroscopic gra-
dient in concentration. For this case, the entire flux proceeds by diffusion through
pores parallel to the macroscopic gradient in concentration. Pores perpendicular to
the concentration gradient contribute nothing to the net solute flux.

One interpretation of this special pore geometry is that the diffusion porosity
should be set to 1 the total porosity, since only 1 of the pore volume contributes
to the flux. Although this interpretation yields the correct flux, it is flawed. The
interpretation leads to inaccurate prediction of the capacity of the rock to store solutes.

20



In this and the ensuing section, we show that there is no need for two separate porosities
to model solute transport. The necessary correction factors can be calculated from pore
geometry for some realistic cases.

Furthermore, the cubic grid shown in Figure 6-A is isotropic and yields the same
solute flux regardless of the orientation of the macroscopic concentration gradient. For
orientations where no pore set is exactly perpendicular to the concentration gradient, all
of the pores will carry some flux, and the area fraction of pores on a plane perpendicular
to the gradient will equal the rock porosity (not % the porosity). Therefore, it appears
that the diffusion porosity concept should be discarded. The actual rock porosity,
along with a tortuosity term (#? = 3.0), more accurately represents the process of
solute transport.

In this usage, tortuosity is a correction which accounts for orientation of pores
relative to the concentration gradient and the rock surface. It is thus returned to the
simple meaning implied by Figure 1. Both tortuosity and porosity can be related to
physical properties of the rock. For those rocks which contain isotropic pore networks,
the tortuosity is easily calculable (see Appendix).

Rock fabric introduces considerable uncertainty into the relationship between total
porosity and diffusive flux. Consider the example shown in Figure 6-B where two
sets of orthogonal pores of different diameters are shown. Because the solute flux is
proportional to pore area, the diffusivity of the rock is largest parallel to the set of
large pores. In the case shown in Figure 6-B, the set of small pores is parallel to
the macroscopic concentration gradient. The large pores, and hence most of the rock
porosity, contribute nothing to the flux. Total rock porosity is a particularly poor
estimate of pore area in this case. We arbitrarily exclude pore intersections from this
illustration to simplify the example. For the case shown in Figure 6-B, tortuosity is a
tensor.

Even pore grids which are microscopically anisotropic, however, can be used to
construct a much larger, isotropic pore network if they are repeated randomly in the
rock. In this case, there is no preferred direction for solute migration through the
rock. The equality §2 = 3.0 again becomes true (Appendix). In Figure 6 only smooth,
straight pores are considered. Curvature of the pore segments between intersections
also complicates the treatment of tortuosity, but this effect is probably not large in
most rocks.

A much larger effect is the presence of pore intersections and pores of varying area.
Varying pore sizes in networks of intersecting pores introduces a resistance to diffusion
in a manner similar to the one-dimensional arrangement of pores in series (Figure 5-
B). When pores intersect, alternative paths exist around constricted segments. These
alternative paths increase the macroscopic solute flux from the series example (Figure
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5-B), where solutes must diffuse through each pore constriction. The maximum flux
is given by the parallel case (Figure 5-A), where there are no pore constrictions, and
pores are straight.

Thus networks with varying pore radii have a flux which lies somewhere between
the parallel and series examples shown in Figure 5. As we discuss in the next section,
the degree to which the flux through a pore network resembles these limiting cases is
affected by the distribution of pore radii and the geometry of the pore intersections.

5 MODELING SOLUTE TRANSPORT THROUGH THE CULEBRA
DOLOMITE :

To summarize, rock properties which affect the diffusive flux include: (i) the total
porosity, (ii) the total variation and distribution of pore radii, (iii) rock fabric, and (vi)
the degree to which pores deviate from a straight path between nodes. In addition,
the character of intersections and the pore lengths between intersections affect the
measured flux. These factors are all interrelated and their effects cannot be isolated in
experiments on rocks.

However, the variables can be examined theoretically. In this section, solute trans-
port is modeled through an idealized pore network where the effect of pore geometry on
solute flux is directly calculable. Properties are assigned to this network which are sim-
ilar to the Culebra Dolomite. Of the possible variables outlined above, the combined
effects of pore intersections and pore constrictions on the solute flux are examined.

5.1 Effective Medium Theory

The construction of a model for rock pore network is illustrated in Figure 7. Al-
though the depicted network is only two—dimensional, the calculations were performed
for a three-dimensional network. In Figure 7-A a pore network is shown such as might
be observed in the Culebra Dolomite. Pores are irregular in length, cross—sectional
area and orientation. The treatment is simplified by postulating a network of straight
pores of constant radius between intersections (Figure 7-B).

With detailed knowledge of pore areas, lengths, and orientations in the Culebra
Dolomite, realistic properties could be assigned to the ideal network in Figure 7-B and
a corresponding flux calculated. However, only the variation of pore radii is known
for the Culebra Dolomite. Therefore, the network is idealized further, by postulating
an isotropic grid of pores of constant length (Figure 7-C). The term 6? equals 3.0 for
this grid, since the network is randomly oriented in space. This term would be slightly
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higher if pores are not smooth or straight between nodes. The results are independent
of the pore length in this network.

Essential to these calculations is a method of averaging pore properties, so that
the flux through each pore segment need not be treated individually. By analogy with
networks of resistors, Kirkpatrick (1973), Benzoni and Chang (1984), and Burganos
and Sotirchos (1987) provide a procedure to obtain an average conductance for a pore
network such that the overall solute flux can be calculated. This averaging procedure
recasts the pore network and yields an effective diffusivity that can be used in Equation

(2)-

The procedure to obtain an effective conductance greatly reduces the work needed
to determine solute fluxes in pore networks. The averaging function is (Kirkpatrick,
1973):

(ze — ) f(z) dz
/(2/2—1) :z:,+:c_0 (19)

where f(z) is the probability density function (PDF) of property =z and z. is the
effective average value of z.

The connection number (z) is the number of pores leaving each node. For sake
of comparison, the connection number of a cubic packing of spheres is six. A body-
centered packing of spheres has a connection number of eight. Thus, there are valid
reasons to suspect that the actual connection numbers of pores in a rock are small.
Koplik, et al., (1984), for example, measure a connection number of 3-4 for the Masil-
lon sandstone by examining individual pores. Connection numbers less than two cor-
respond to unconnected pores. Note that the averaging function includes only the
connection number to describe pore topology; that is, cubic pore networks are equiva-
lent to any other network with a connection number of 6.

From Equation (19), Burganos and Sotirchos (1987) calculated an effective dif-
fusion coeflicient for a medium consisting of cylindrical pores of constant length with
radii selected from a known distribution, or:

<>

—_— 20
. <> (20)

6 [
D.=— D |Z
D[z

Quantities in brackets, <>, are simply averaged. The subscript e indicates quantities
averaged via Equation (19). The segment length in this case is between nodes in the
network.
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The accuracy was verified by comparing results from Equation (20) with Monte
Carlo calculations of solute flux through an ideal rectangular pore network (Burganos
and Sotirchos, 1987; see also Kirkpatrick, 1973). Benzoni and Chang (1984) also
provide experimental verification for a pore network with bi-disperse sizes.

5.2 Application to the Culebra Dolomite

A pore-size distribution for the Culebra Dolomite is calculated from the relation-
ship between mercury intrusion volume and pressure. Pore radii are calculated by
assuming a cylindrical pore geometry and from knowledge of the surface tension of
mercury (see Lowell, 1979). The integrated pore volume as a function of nominal pore
radius is shown in Figure 8, along with a curve which was fit to the data for modeling
purposes. The two curves are indistinguishable on the scale of the plot. The integrated
pore volume at high pressure, of course, equals the total porosity of the rock (x0.07).
The fitted curve was then differentiated with respect to pore number to produce a
probability density function (Figure 9). This function was used to evaluate Equations
(19) and (20).

Equation (20) was evaluated for connection numbers between 2 and 1000. Al-
though connection numbers as high as 1000 are difficult to relate to rock properties,
they have significance in terms of Equation (19) and are discussed below. Results of
the calculations are shown in Figure 10.

In Figure 10 the ratio of the diffusion coefficient from the parallel-pore model (D,
in Equation (2)) to the effective diffusion coefficient (D.) calculated with Equation
(20) is shown. Tortuosity is equal in both cases (* = 3.0). The essential difference
between these two coefficients is that D, includes the effect of pore constrictions and
intersections on the solute flux.

As shown in Figure 10, the ratio varies from 1.0 at very large connection numbers,
to approximately 0.1 at a connection number of 2. In other words, the standard
approach to calculating diffusive fluxes (Equation (2)) becomes accurate as the number
of pores leaving a node approaches infinity.

As discussed earlier, pore intersections cause the observed flux to be smaller than
the parallel-pore model (Equation (2)), except for the trivial case of a network made
up of uniform pore diameters. Equation (2) is least accurate for rocks with a wide
distribution of pore sizes. For reasonable estimates of the connection number (two to
ten) and the measured distribution of pore sizes in the Culebra Dolomite, diffusion
coefficients calculated using Equation (2) are a factor of five too high. Burganos and
Sotirchos (1987) show that the inaccuracy can be as large as a factor of ten for realistic
pore-size distributions.
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A simple comparison can now be made of the pore network model presented here
and the simple parallel-pore model of Equation (2). The diffusivity obtained experi-
mentally for the Culebra Dolomite is & 3 * 107® cm?/s. From the experimental data,
and Equations (1) through (3), this implies a diffusion porosity of 0.04 and 6% ~ 19
or greater. We argue that these are essentially fitting parameters, since the diffusion
porosity is half that measured by more accurate methods and the tortuosity is much
higher than realistic models of pore structure.

The pore network theory also uses the functional form of Equation (2) to predict
the diffusivity, but includes additional correction terms (Equation 20) which account
for pore intersections and nonuniform pore sizes. When applying this model, the actual
porosity of ~ 0.08 is used, and #? is set equal to 3.0. The same diffusion coefficient for
tritium is used in both models. The correction terms to Equation (20) are obtained
from Figure 10. For a connection number of 3, the correction terms yield a factor of ~
0.1. Thus we predict a diffusivity for the Culebra Dolomite of 3.5*10~® cm?/s, which
is remarkably close to the experimental value given the level of approximation in the
treatment.

This agreement is not entirely fortuitous. Our calculations are for an ideal pore
network where the tortuosity is calculable (§*> = 3.0), and with pore sizes similar
to those measured on the sample of Culebra Dolomite. Thus, in our modeling, the
measured distribution of pore sizes introduces a constrictivity to the isotropic grid. In
this manner, we isolate some important geometric variables which affect solute diffusion
in the Culebra Dolomite.

It is important to remember when interpreting Figure 10 that the calculations are
for an ideal pore network where the tortuosity is calculable (? = 3.0). Had this ideal
pore network corresponded to an actual rock, the #? term in Equation (2) would be
measured to be larger than 3.0 to account for an anomalously low measured flux. That
is, in practice, the tortuosity is an empirical scaling factor which relates solute flux
to the measured porosity. The procedure outlined above returns tortuosity to a more
physical interpretation.

At this point it is useful to review important assumptions in the model. We
assume: (i) straight, smooth pores between nodes; (ii) a regular geometry of pores;
(iii) pores of constant length; and (iv) random mixing of pore sizes from the PDFs
shown in Figure 9. The results will, of course, change with different assumptions.
In general, the parallel-pore model (Equation 2) becomes an accurate approximation
to the true flux as: (i) the distribution of pore radii becomes unimodal with a small
variance; and/or (ii) the number of pores intersecting at a node becomes large; or (iii)
the pores resemble a smooth set of non-intersecting capillaries through the rock (the
trivial case).
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The use of the pore-size distribution shown in Figure 9 introduces a theoretical
inconsistency into our treatment. The pore-size distribution was measured via mercury
porosimetry, which employs an ideal model of the pore geometry (see Lowell, 1979).
That is, the geometry assumed to calculate pore-size distributions from mercury in-
trusion is not. the geometry used to evaluate Equation (20). This inconsistency is not
critical, however, given other uncertainties in the calculation, but it can lead to low
estimates of the actual number of large pores in the PDF (Wardlaw and Taylor, 1976).

The existence of dead-end pores is also not properly addressed in this model.
Practically, dead-end pores can be included in the model by adding a finite number of
pores with zero cross-sectional area. When these pores are distributed randomly in the
pore network, they create pores with no net flux. The abundance of dead-end pores
cannot be inferred from porosimetry data, and dead-end pores are, therefore, ignored
in our treatment.

5.3 Summary of Other Results

The experiment discussed above is one of many which have been conducted on
samples of the Culebra Dolomite. These results are reported in internal Sandia mem-
oranda (Casey, et al., 1987; Casey and Stockman, 1988a, 1988b, 1988c, Casey and
Stockman, 1989). In these experiments, diffusion coefficients were calculated from the
variation in activity with time of unreactive solute in the upper reservoir of the dif-
fusion cell (e.g., Figures 3 and 4). Regression parameters from the data are compiled
in Table 1, along with standard estimates of the uncertainties. These regression data
were used to calculate diffusivities using Equations (5) and (6).

The calculated transport properties are compiled in Table 2. Note that the dif-
fusion porosity is generally less than the total porosity. The one exception is sample
A1S-SNL-16, which has a highly uncertain estimate of diffusion porosity. The high
uncertainty is attributable to the very small size of the sample (~ 0.35 cm®, Casey and
Stockman, 1989).

An important conclusion from these experiments (Table 2) and the theoretical
analysis presented above, is that the diffusive flux of solutes through the Culebra
Dolomite cannot be estimated from knowledge of the total porosity. Many hydrologic
models for solute migration through rock implicitly assume the parallel-pore model
without actually measuring the diffusion porosity or tortuosity. This treatment com-
monly overestimates the diffusive flux and the retardation of solute by the formation.
The inaccuracy depends upon the rock properties outlined above, as well as the tech-
nique for measuring the total rock porosity. Helium porosities, for example, are com-
monly much larger than the diffusion porosities. If rock contains a pronounced fabric,
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Table 1. Regression Parameters

tracer slope (H™?) lo intercept lo # points ﬂ

Sample ESM-143 720’
Casey and Stockman (1988a)

129;  1.52*10°® 4.63*10~® -1.63*10~* 6.74*10°° 15
22N, 1.1*10-¢ 4.3%*10-% -1.5*10~* 3.0*10°° 16
Casey and Stockman (1988c)

3H 5.9*10°° 4.3*10-®  -8.1*10~* 3.0*10°° 16

Sample Wipp-19 760.2’
Casey and Stockman (1988b)

#Na 1.7*10°¢ 9.3*10-® -8.7*10~* 1.07*10°* 6
3H 4.1*107%  1.45*10~7 -5.2*10~* 1.2*10~* 10
129] 2.1*10°° 3.4*10-% -2.1*10~* 3.2*10°% 21
¥Na 2.5*%10-8 8.3*10-%  -5.3*10~* 8.0*10°° 13

Sample A1S-SNL-16
Casey and Stockman (1989)

’H 6.9¥10°%  0.04*107® -1.9*10"° 1.4*10°® 15
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Table 2: Transport Properties Calculated from the Diffusion of Solutes*

Tracer D = £;7° (cm?/s) Diffusion Porosity (¢) Tortuosity (§) Total Porosity (¢)

Sample ESM-143 720’

Casey and Stockman (1988a) 0.072 - 0.098
1291 6.68 + 0.16*10~8 0.012 + 0.003 3.37
22Na  1.05 &+ 0.03*10°8 0.011 + 0.002 3.28

Casey and Stockman (1988c)
3H 3.0 £ 0.1*10-8 0.04 + 0.005 5.5

Sample WIPP-19 760.2’

Casey and Stockman (1988b) 0.086-0.155
#2Na 1.3 + 0.14*10°8 0.04 + 0.02 4.8
*H 3.2 + 0.22*108 0.06 + 0.02 6.3
1291 1.6 £+ 0.05*10°8 0.02 X 0.006 3.1
#2Na 1.9 + 0.06*10-8 0.04 + 0.01 3.9
A1S-SNL-16
Casey and Stockman (1989) 0.082 + 0.002
3H 3.2 + 0.22*10°8 0.13 4+ 0.34 1.9-24

*Uncertainties are reported as two standard deviations. Total porosities were measured
by mercury and helium porosimetry.
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such as the case if fractures are lined by shale or claystone, the diffusivity is a tensor.

The measured diffusivity of Culebra Dolomite may be constrained with a series of
simple conductance measurements in oriented samples (e.g., McDuff and Ellis, 1979).
The usefulness of these measurements, of course, depends upon the degree to which the
rock samples are representative of the actual hydrology. There is, however, no reason
to expect that field estimates of the rock diffusivity will be less uncertain than in these
well-controlled experiments.

86 CONCLUSIONS

We have reviewed the relationship between pore geometry and solute diffusion
in rocks. In this review, which was not comprehensive, we emphasized the following
major points:

1. Rock porosity enters the transport equations as an estimate of the total fraction
of pore area exposed in a random plane through the rock. This approximation is
appropriate for homogeneous rocks with an isotropic pore network.

2. This total pore area is weighted by a constant of proportionality (tortuosity) to
account for pores of differing orientations which contribute to the overall flux.
For a homogeneous, isotropic pore network, §? = 3.0.

3. The distribution of pore sizes affects the flux by constricting the pathways of
solute migration. In three-dimensional pore networks, intersections provide al-
ternative pathways for solutes to migrate around constricted pore segments.

The importance of models which relate solute flux to actual rock properties cannot
be overemphasized. A major obstacle to our understanding of diagenesis and metamor-
phism, for example, is our inability to estimate the exposed area of reactive minerals
in a rock and the diffusive flux of solutes to this reactive area as a function of time.
The first step toward correcting this inability is development and testing of models of
the pore geometry.

These models are constructed by comparing measured diffusive fluxes of unreactive
tracers with flux calculations on model pore networks. The comparisons are most useful
when actual rock properties are assigned to the hypothetical network (e.g., Koplik,,
et al., 1984). This approach was used to examine the diffusion of unreactive solutes
through a sample of Culebra Dolomite. We find that the measured flux of solutes
through the rock was more than a factor of two less than predicted from knowledge
of the porosity and the measured tortuosity. This discrepancy disappears when a
measured distribution of pore sizes is assigned to a hypothetical pore network.
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Appendix

Buragnos and Sotirchos (1987) state that 6% is equal to the inverse of the dimen-
sionality for an isotropic network, such as the cubic network shown in Figure 6-A.
Other pore grids may also be isotropic if they are oriented randomly throughout the
rock.

Proof is derived from the inclined-pore model for tortuosity (Figure 1) and the
assumption that all pore orientations are equally likely. If we employ standard spherical
coordinates to represent three-dimensional space, an integral average can be performed
to obtain the tortuosity:

7 =;<: [2;;}2 > (21)

3 fo" f:/z [L f—*f,” ]z siny dyp d( 1
ST [ sinpdpd, 3

(22)

In Equation (1), we use 3 and { to represent the azimuthal and polar angles of
the sphere of integration.
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