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ABSTRACT

The diffusion of unreactive solutes through the Culebra Dolomite was studied 
experimentally and theoretically. The measured diffusive flux is less than that predicted 
from independent knowledge of the porosity and reasonable estimates of tortuosity. 
This low measured flux led to a review of the relationship between solute diffusion 
and pore geometry in rocks and sediments. Solute transport in hypothetical pore 
networks, where the effect of pore geometry on the solute flux is directly calculable, 
is examined. A conventional interpretation of pore tortuosity, as a normalized length 
of diffusion through a pore, loses meaning for cases where pores intersect in networks. 
Some important variables affecting the tortuosity are: (i) the distribution of pore sizes, 
(ii) the distribution of pore lengths, (iii) the number of pores which intersect at a 
node, and (iv) the pore shape between nodes. Furthermore, in porous materials with 
a preferential distribution of pore sizes and orientation, tortuosity is a tensor. For 
the Culebra Dolomite, the wide range of pore sizes causes the diffusive flux to vary 
considerably from that predicted from conventional theory. These results indicate that 
diffusive fluxes from fractures into rock pores may be smaller than previously thought.
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SYMBOLS

A area of the rock slab (cm2)
Aij cross-sectional area of segment i in j 
Ap pore cross-sectional area (cm2)
A' pore area exposed parallel to the rock face (cm2)
C(t) concentration in the upper reservoir of the diffusion cell (moles/cm3) 
C0 concentration of tracer in the lower reservoir (moles/cm3)
ACt total change in concentration across the slab (moles/cm3)
VC solute concentration gradient (moles/cm4)

D° the solute diffusion coefficient for an ion in solution 

Lp a pore length (cm)
J solute flux normal to a rock slab (moles/cm2/s)
J solute flux vector (moles/cm2/s)
Jj area-integrated solute flux across pore j (moles/s)
L thickness of a rock slab (cm)
M number of segments in a single pore 
N number of pores in a rock
V volume of the upper reservoir of the diffusion cell 
/(*) probability density function (PDF) of property x; 
gij the conductance of segment t in pore j (cm3/s) (7)
r pore radius (cm2)
t time (s)
®e averaged (effective) value of *;
z the connection number
<j> the rock porosity
9 the average tortuosity of pores in the rock
l length of a pore segment (cm)
() simply averaged quantities
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1 INTRODUCTION

The need to predict rates of migration of toxic solutes from a buried waste reposi­
tory to the biosphere has focused attention on models for water-rock interaction. Pre­
dictions are achieved by coupling models of solute transport to rate laws for reactions 
at mineral surfaces.

Difficulties arise in these models when solutes migrate through a fractured aquifer 
{e.g., Neretniaks, 1980). Solutes are not only transported with groundwater in the 
connected fissures, but also diffuse into the adjacent rock pores. Thus rock pores tem­
porarily store toxic solutes and, thereby, slow the rate of migration of these solutes to 
the biosphere. These diffusive fluxes arise in response to solute concentration gradi­
ents, such as those produced by diagenetic reactions in the rock pores, or by changing 
chemical conditions near the surface of the rock. Accurate estimation of diffusive fluxes 
into the rock from fractures is essential to understand the migration of toxic material 
in groundwater.

In many studies of solute diffusion in rocks, the flux is described with a simple 
equation (Bear, 1972):

J = —D,VC ,

where:

(1)

In a standard treatment, the flux normal to a rock slab is calculated by considering 
the concentration gradient along any pore equal to the total difference in concentration 
across the rock, ACt, divided by the rock thickness (L). This assumption amounts to 
considering the concentration field to be uniform in gradient across the sample:

J « -D.ACt/L . (2)

The porosity and tortuosity terms which are implicit in Equations (1) and (2) 
account for the geometry of pores in a rock.

The treatment of solute diffusion via Equation (1) or (2) is appealing because 
the important parameters are easily estimated. Diffusion coefficients in solution are 
calculable (e.g., Miller, 1982), and the total rock porosity is easily measured. Tortuosity
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is estimated by comparing rates of solute transport through fluid-saturated rock with 
those rates in the fluid alone. These comparisons are often made conductometrically, 
which is direct and simple (e.g., McDuif and Ellis, 1979). Furthermore, empirical 
relations exist to relate solute transport rates to porosity alone (e.g., Ullman and 
Aller, 1982). With these empirical relations tortuosity can be completely eliminated 
from the transport equations.

Although these methods are commonly adequate, much can be learned by exam­
ining the theoretical relation of pore geometry and solute diffusion. The origin of the 
geometric terms in Equations (1) and (2) is often illustrated with the simple case of 
non-intersecting pores of constant area (e.g., Ullman and Aller, 1982). In Figure 1, 
the fraction of the total rock area that consists of pores is given by the rock poros­
ity (0 = ApLp/AtL = A'/At). Thus, in this simple example, porosity enters into the 
transport equations as a measure of the pore area exposed in a cross-section of rock.

Tortuosity is introduced as a scaling factor which accounts for the fact that pores 
are not oriented perpendicular to the rock face. In Figure 1, for example, the ratio of 
the true pore length to a straight pore is given by 0 = Lp/L. Tortuosity appears as 
a squared term in Equations (1) and (2) because the concentration gradient through 
the pore (Figure 1) is less than the macroscopic gradient and because the flux through 
the pore is oriented at some angle to slab normal. As we will show, this definition of 
tortuosity must be expanded for rocks which contain complicated pore networks.

We proceed in this examination in a stepwise manner. First, the diffusivity of 
samples of the Culebra Dolomite to unreactive solutes is measured. Then this diffu­
sivity is compared to that predicted via Equation (1), using independent values of the 
rock porosity, and a tortuosity is obtained. This value of tortuosity tends to have little 
relationship to the classical interpretation of tortuosity (as described above), rather, it 
is used as a fitting parameter to account for the inadequacies of the model.

Secondly, we review the theoretical relation between pore geometry and solute 
diffusion. As part of this review, a hypothetical pore network is examined where the 
effect of pore geometry on solute diffusion can be calculated a priori. In these simula­
tions tortuosity is calculated. With this more detailed model, tortuosity is returned to 
a physical basis.

We rely on the many experimental and theoretical studies of solute diffusion in 
rocks which precede this analysis (e.g., Carrels, et a/., 1949; Brady, 1983; Norton and 
Knapp, 1977; Lever, et al, 1985; Klinkenberg, 1951; many others). These studies 
are extended by introducing an important result from percolation theory (Kirkpatrick, 
1973) which allows us to model solute diffusion in complicated pore networks (Benzoni 
and Chang, 1984; Burganos and Sortichos, 1987).

7
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Figure 1. A pore geometry used to illustrate the relationship between diffusive flux 
and pore geometry (adapted from Ullmann and Aller, 1982).



2 EXPERIMENTAL METHODS

Unless otherwise noted, all uncertainties are reported as a single standard devia­
tion, with n corresponding to the number of replicate analyses.

2.1 Description of the Culebra Dolomite

A rock sample of Culebra Dolomite was chosen for the experiment. The Culebra 
Dolomite is a subunit of the Rustler Formation of southwestern New Mexico (Adams, 
1944). This unit overlies a proposed repository for radioactive waste (the Waste Iso­
lation Pilot Plant) and is a locally important aquifer. The rock generally consists 
of fine-grained dolomite rhombs of about 1-10 microns in maximum dimension (see 
Figure 2), with lesser amounts of quartz, gypsum, halite, pyrite and clay. The ma­
terial commonly contains small vugs (« 1 mm diameter) where sulfate minerals have 
weathered out of the rock.

An experiment was conducted to measure the diffusivity of Culebra Dolomite 
to unreactive solutes. The diffusive properties of the Culebra Dolomite have been 
examined in severed previous studies (Casey, et al., 1987; Casey and Stockman, 1988a, 
Casey and Stockman, 1988b; Casey and Stockman, 1988c), which will be summarized 
further in this report. The purpose of this section is to familiarize the reader with 
methods of measuring rock diffusivities and to present a typical result. The experiment 
discussed in this section was performed on a fine-grained sample of Culebra Dolomite 
acquired from the 720 foot level during the shaft mapping project. The sample (ESM- 
143, 720’) was taken by Robert Holt of the University of Texas at El Paso.

2.2 Porosity

Porosity was measured on subsamples of the rock using three separate techniques. 
Mercury porosimetry measurements were conducted by the Quantachrome Corpora­
tion at injection pressures of up to 60000 p.s.i. (see Lowell, 1979 for discussion of the 
method). The porosity measured in this fashion is 0.0730 ± 0.0037 (n = 4). Porosity 
measurements were also conducted on separate subsamples of rock by Terratek Labo­
ratories using the Boyle’ Law helium method (Coberly and Stevens, 1933). Using this 
method the porosity is 0.0975 ± 0.0024 (n = 2). Finally, the porosity was estimated 
by the water-loss method. In this method a sample of water-saturated rock of known 
volume is weighed, dried at 100° C, and reweighed. Porosity measured in this manner 
is 0.075 ± 0.0015 (n = 2).

It should not be surprising that these three techniques provide different estimates 
of rock porosity, as the methods are physically distinct from one another. Pores of «1
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Figure 2. A backscattered electron photomicrograph of the Culebra Dolomite. This 
sample was used in the diffusion experiment and the scale bar is 100 
micrometers.

10



Angstrom in nominal radius are accessible to helium, for example, but not to mercury, 
which is limited to rock pores greater than about 20 Angstroms in nominal radius 
(Lowell, 1979). Even with these differences, however, the porosity is reproducible to 
within a narrow range.

A vacuum technique was used to saturate pores in the rock with solution. The 
rock slab and plexiglas holder were placed in a vacuum chamber and repeatedly cycled 
between 150 and 760 torr. The sample was then immersed in solution, and both the 
solution and rock were repeatedly cycled in pressure. This treatment lasted a total of 
three days, after which the sample was placed in the diffusion cell with the background 
electrolyte solution.

2.3 The Diffusion Cell

The diffusion cell consists of two plexiglas reservoirs separated by a plexiglas plate 
containing a rock slab of known thickness and area (Figure 3). The rock slab is sealed 
into the plexiglas such that solutes diffuse between the two reservoirs through rock 
pores.

A tight seal between the rock core and plexiglas is achieved by coring the plexiglas 
to the same diameter as the rock sample. The core is then coated with a thin layer of 
epoxy and pressed into the plexiglas plate. The epoxy hardens and makes a tight seal 
between the rock core and the plexiglas. After the epoxy has dried, both the rock and 
plexiglas are ground to a uniform, flat surface. The integrity of the seal is tested by 
inducing a small pressure gradient across the rock slab, such that solution flows very 
slowly through the material. In all tests, fluid traveled through pores in the rock and 
not through the sealed edges. This criterion is used to infer that the sealed edges of 
the rock do not provide highly transmissive routes for solute migration.

During a typical experiment, each reservoir is filled with roughly 380 ml of brine 
solution. A small volume (~0.025 ml) of radioactive tracer is mixed into solution in 
the lower reservoir. The cell is then suspended from an overhead stirring apparatus 
so that the rock slab is horizontal (Figure 3) and immersed in an isothermal water 
bath (25°C). The entire cell is rotated discontinuously throughout the experiment to 
maintain well-mixed conditions in the cell. The mixing cycle consists of five seconds of 
rotation (36 r.p.m.) followed by five seconds of rest.

The upper reservoir is sampled at regular intervals by removing ~1 ml of solution 
with a syringe. An equal volume of similar, although nonradioactive, solution is then 
added to the upper reservoir. Diffusion coefficients are calculated from the variation 
in concentration of the radioactive tracer with time in the upper reservoir.

11



M-4

Tritium
TRANSPORT

Figure 3. The diffusion cell.

12



2.4 Description of the Solution

The background electrolyte was chosen to minimize the dissolution or growth of 
minerals during the experiment. The solution was prepared by dissolving 700 g NaCl, 
9.7 g CaCla, 12.5 g NajSC^ and 0.026 g of CaCOa into two kilograms of tap water. 
This solution was then reacted with 10 g of finely ground rock for several days prior 
to each experiment, and had a final pH of approximately 6.9. This solution was then 
added to the diffusion cell and allowed to react further with the rock slab before adding 
the radioactive tracer. This period of pre-reaction allows the cell, rock and solution to 
approach chemical and thermal equilibrium prior to the experiment.

Tritium activity in the solution was measured by liquid scintillation counting us­
ing a cocktail appropriate for solutions of high ionic strength (Hionicfluor, Packard 
Instruments). The method was calibrated by counting standards of known activity in 
the experimental geometry. The precision is generally much better than 5%. Total 
activity of tritium was approximately 5 mCi.

2.5 Solute Transport Equation

The equations which describe solute transport in the cell, accepting the assump­
tions used in developing Equations (1) and (2), are well developed (Paul and DiBenedetto, 
1965; Spacek and Kubin, 1967; Jenkins, et al., 1969; Crank, 1975). As long as the con­
centration in the lower reservoir is approximately constant, and much larger than in 
the upper reservoir, the upper reservoir concentration is well described by an approx­
imate solution. The concentration of radiotracer with time in the upper reservoir of 
the reaction cell is given by an equation of the form:

C(t) = 4> At LC0 D°t 
0* L3

1 2 
6 ^ 7T2

n=l

(-!)■
exp

D°n2 7T2 t\ 
62 L2 ) (3)

In this experiment, L = 1.43(±0.012) cm and V = 381.1 cm3.

Equation (3) consists of a linear term and an exponential series. As time be­
comes large, the exponential term disappears asymptotically leaving a linear increase 
in concentration with time:

C(t) = <f> At L C0 
V

D° t 
92 L2

1
6 (4)
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The time derivative of concentration, along with knowledge of the cell geometry,
0 D°provides an estimate of the term —- for the rock slab:

1 dC <f> At D° , .
C„ dt L V 62 U

Furthermore, the porosity of the sample is provided independently of the tortuosity 
from the intercept of Equation (4):

g(0) =
C0 6 V ' K 1

Thus both this porosity and the tortuosity can be determined from a single ex­
periment. Using the simple model shown in Figure 1, this porosity corresponds to the 
exposed pore area in the sample. To avoid confusion in the upcoming section, we refer 
to this parameter as the diffusion porosity (Norton and Knapp, 1977). This diffusion 
porosity will be compared with the total rock porosity determined independently.

a DISCUSSION OF THE EXPERIMENTAL RESULTS

Results of the experiment are shown in Figure 4. As predicted from the transport 
equations, tritium concentration increases linearly with time after a short interval in 
the early stages of the experiment. Also included in Figure 4 is a linear regression 
through the last 16 sample points. This regression slope is 5.9 (± 0.04) 10-6 h_1 with 
an intercept of -8.1(±0.3) 10~4. These data can be used to estimate the tortuosity and 
pore area of the sample via Equations (5) and (6), provided that diffusion coefficients 
in solution can be estimated.

A tracer diffusion coefficient for tritium in 4.05 molar NaCl is provided by Devell 
(1962), who reports a value of 1.64(±0.06) 10-B cm3/s. This value is adjusted to 
higher concentrations by correcting for viscosity (Earned and Owen, 1958), and thus we 
estimate a tracer diffusion coefficient of 1.31 10-6 cm2/s for tritium under experimental 
conditions.

The diffusivity (Df) and porosity of the rock are calculated to be 3.0(±0.1) 10~8 
cm2/s and 0.04(±0.005), respectively. The tortuosity (03) is calculated to be 19. The 
diffusion porosity is considerably less than the porosity range measured via mercury, 
helium, or water porosimetry (0.075-0.0925). Therefore, our results indicate that the 
measured flux is much less than would be predicted from Equation (1) and indepen­
dently measured porosities.

14
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Figure 4. The reduced concentration of tritium in the upper portion of the diffusion 
cell as a function of time. Data are corrected for sampling, and the 
uncertainty due to counting statistics is contained within the sample point.
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There are two potential causes of this low porosity. First, pores in the sample 
may not have been completely filled with solution prior to the experiment. Brace, 
et a/., (1965), for example, found that it was difficult to completely fill pores in granite 
with solution using techniques similar to those we employed here. The porosity of 
the granite (0.002-0.007), however, was roughly a factor of ten less than the Culebra 
Dolomite porosity (0.07-0.09) and, thus, may be more difficult to fill. Furthermore, 
the porosity determined by the water-loss method, which was determined after the 
diffusion experiments, is nearly equal to that measured via other methods.

A more likely cause of the low solute fluxes involves assumptions in the transport 
Equations (1), (2) and (3). These assumptions led us to review the relationship between 
pore geometry and solute diffusion.

4 SOLUTE DIFFUSION IN PORE NETWORKS 

4.1 Porosity and Solute Diffusion

In real pore networks, pores vary in radius (and hence area) along their length. 
Solute diffusion through these pores varies considerably from the case of smooth- 
walled pores, such as those shown in Figure 1. These differences can be illustrated by 
examining two special cases.

In Figure 5 two sets of pores are shown arranged parallel to one another. No pores 
intersect and all are aligned normal to the rock slab, so that pore tortuosity defined 
via Figure 1 can be ignored. The pores are of equal length (L), and consist of smaller 
segments of equal length (l). In Figure 5-A, pore segments of constant area are aligned 
to yield smooth sets of pores that completely traverse the rock. In Figure 5-B, pores 
consist of segments with varying area. The total rock porosities in Figures 5-A and 
5-B are equal.

These two cases are chosen to resemble sets of electrical resistors arranged in 
parallel and in series. This similarity is maintained in our discussion by defining a 
conductance for each pore segment which is proportional to the segment area:

(7)

where Aij is the area of pore segment i in pore j. The total solute flux for each segment 
i in pore j is the same at steady state. Thus:

Jj = gijACij (moles/s) (8)
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where AC,j is the change in concentration across segment i in pore j (moles/cm3).

The total change in concentration across the rock slab is found by summing over 
individual segments:

where M is the number of segments in the pore, which is equal to Ljl. Equation (9) 
is valid for all pores if the solution above and below the rock slab is well mixed.

With the above equations, differences between the two proposed pore geometries 
are shown in Figure 5. For the first case (Figure 5-A) the area of segments within a 
single pore is constant; thus = Akj. Different pores, however, have different areas 
(A^ 7^ Aik)- There are N pores in the rock.

Therefore, Equation (9) may be simplified by noting that all conductances within 
a single pore are equal:

By summing over all pores and dividing by the slab area, the flux through the rock is 
obtained:

With a large number of pores, an average conductance can be used to replace the 
summation in Equation (11):

(9)

Jj = 9ij t (mole8/s) .
IJ

(10)

(11)

T ACr i N{9ij) 
L At

(moles/cm2/s) . (12)
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Noting that the rock porosity can also be written in terms of the total number of pores:

At

the flux through the rock is rewritten as:

T {9ij) ACt / l/ 2/ \j = j (rnoles/cm /s) . (14)

Note that Equation (14) resembles the flux defined in Equation (1), although it 
does not include a tortuosity term. (This resemblance becomes obvious when one uses 
Equation (7) to define the conductance.) Therefore, in the ensuing discussion Equation 
(1) is referred to as the parallel-pore model. This model of solute diffusion through 
pores is analogous to a parallel arrangement of electrical resistors.

The second case (Figure 5-B) yields a result similar to a series arrangement of 
electrical resistors. Again, the derivation begins with Equation (9), which is simplified 
by assuming that the number of segments in each pore is very large (M » 1). In this 
case, the sum in Equation (9) can be replaced with M times the average value (recall 
M = L/t)

ACt = -^7— ( ) (moles/cm3) . (15)
l 9ij

Note that each pore, j, contains many segments. Furthermore, if the segment areas are 
chosen from a single probability density function then the average term in Equation 
(15) is identical for all pores. That is, the average conductance of each pore is equal. 
In this case, the summation over all N pores can be replaced with N times the average 
flux through a single pore

J = ——j_ _ N_l_ACt_ (moles/cma/s) . (16)
At At L(-)

9ij

Again, introducing the porosity from Equation (13), the flux is rewritten as:

J =-----IQ —ACt (moles/cm2/s) , (17)
> £9ij
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which is always smaller than the flux for the parallel case (except for the trivial case 
of monodisperse pores) since

■j < (dij)
<r->

(18)

Thus, the diffusivity of pore segments arranged in parallel is always larger than a series 
arrangement, even if the porosities are equal. In other words, the distribution of pore 
sizes in a rock strongly affects the observed flux.

The difference in fluxes for pores with constant and varying areas has been noted 
before (e.g., Michaels, 1959; Petersen, 1955; van Brakel, et al., 1974). These authors 
introduced an additional term (the constrictivity) to Equation (1) to reduce the calcu­
lated diffusivity from the parallel-pore model.

4.2 Tortuosity

The previous treatment can be easily adapted to include simple tortuosity, as 
illustrated in Figure 1, as long as only nonintersecting, parallel pores are considered. 
The treatment becomes very complicated, however, when pores intersect in complicated 
networks. Pore intersections change the functional dependence of solute flux on total 
porosity. Thus the tortuosity term assumes an additional meaning beyond that implied 
in the parallel-pore model (Figure 1).

Tortuosity is introduced when porosity (a volume term) is used to estimate a 
pore area available for diffusion. As illustrated in Figure 1, the actual porosity is 
an estimate of the area fraction of the rock surface which consists of exposed pores. 
This approximation is suitable in rocks which contain an isotropic and homogeneous 
pore network. As in the case of an inclined pore, however, the rock porosity must be 
corrected for the orientation of network pores.

Imagine a rock that contains the cubic pore network shown in Figure 6-A repeated 
ad infinitem. Two pore directions are exactly perpendicular to the macroscopic gra­
dient in concentration. For this case, the entire flux proceeds by diffusion through 
pores parallel to the macroscopic gradient in concentration. Pores perpendicular to 
the concentration gradient contribute nothing to the net solute flux.

One interpretation of this special pore geometry is that the diffusion porosity 
should be set to | the total porosity, since only | of the pore volume contributes 
to the flux. Although this interpretation yields the correct flux, it is flawed. The 
interpretation leads to inaccurate prediction of the capacity of the rock to store solutes.
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In this and the ensuing section, we show that there is no need for two separate porosities 
to model solute transport. The necessary correction factors can be calculated from pore 
geometry for some realistic cases.

Furthermore, the cubic grid shown in Figure 6-A is isotropic and yields the same 
solute flux regardless of the orientation of the macroscopic concentration gradient. For 
orientations where no pore set is exactly perpendicular to the concentration gradient, all 
of the pores will carry some flux, and the area fraction of pores on a plane perpendicular 
to the gradient will equal the rock porosity (not | the porosity). Therefore, it appears 
that the diffusion porosity concept should be discarded. The actual rock porosity, 
along with a tortuosity term (92 = 3.0), more accurately represents the process of 
solute transport.

In this usage, tortuosity is a correction which accounts for orientation of pores 
relative to the concentration gradient and the rock surface. It is thus returned to the 
simple meaning implied by Figure 1. Both tortuosity and porosity can be related to 
physical properties of the rock. For those rocks which contain isotropic pore networks, 
the tortuosity is easily calculable (see Appendix).

Rock fabric introduces considerable uncertainty into the relationship between total 
porosity and diffusive flux. Consider the example shown in Figure 6-B where two 
sets of orthogonal pores of different diameters are shown. Because the solute flux is 
proportional to pore area, the diffusivity of the rock is largest parallel to the set of 
large pores. In the case shown in Figure 6-B, the set of small pores is parallel to 
the macroscopic concentration gradient. The large pores, and hence most of the rock 
porosity, contribute nothing to the flux. Total rock porosity is a particularly poor 
estimate of pore area in this case. We arbitrarily exclude pore intersections from this 
illustration to simplify the example. For the case shown in Figure 6-B, tortuosity is a 
tensor.

Even pore grids which are microscopically anisotropic, however, can be used to 
construct a much larger, isotropic pore network if they are repeated randomly in the 
rock. In this case, there is no preferred direction for solute migration through the 
rock. The equality 92 = 3.0 again becomes true (Appendix). In Figure 6 only smooth, 
straight pores are considered. Curvature of the pore segments between intersections 
also complicates the treatment of tortuosity, but this effect is probably not large in 
most rocks.

A much larger effect is the presence of pore intersections and pores of varying area. 
Varying pore sizes in networks of intersecting pores introduces a resistance to diffusion 
in a manner similar to the one-dimensional arrangement of pores in series (Figure 5- 
B). When pores intersect, alternative paths exist around constricted segments. These 
alternative paths increase the macroscopic solute flux from the series example (Figure

21



A B

Figure 6. (A) An orthogonal network of uniform pores. (B) A network of
non-uniform pores.



5-B), where solutes must diffuse through each pore constriction. The maximum flux 
is given by the parallel case (Figure 5-A), where there are no pore constrictions, and 
pores are straight.

Thus networks with varying pore radii have a flux which lies somewhere between 
the parallel and series examples shown in Figure 5. As we discuss in the next section, 
the degree to which the flux through a pore network resembles these limiting cases is 
affected by the distribution of pore radii and the geometry of the pore intersections.

5 MODELING SOLUTE TRANSPORT THROUGH THE CULEBRA 
DOLOMITE

To summarize, rock properties which affect the diffusive flux include: (i) the total 
porosity, (ii) the total variation and distribution of pore radii, (iii) rock fabric, and (vi) 
the degree to which pores deviate from a straight path between nodes. In addition, 
the character of intersections and the pore lengths between intersections affect the 
measured flux. These factors are all interrelated and their effects cannot be isolated in 
experiments on rocks.

However, the variables can be examined theoretically. In this section, solute trans­
port is modeled through an idealized pore network where the effect of pore geometry on 
solute flux is directly calculable. Properties are assigned to this network which are sim­
ilar to the Culebra Dolomite. Of the possible variables outlined above, the combined 
effects of pore intersections and pore constrictions on the solute flux are examined.

5.1 Effective Medium Theory

The construction of a model for rock pore network is illustrated in Figure 7. Al­
though the depicted network is only two-dimensional, the calculations were performed 
for a three-dimensional network. In Figure 7-A a pore network is shown such as might 
be observed in the Culebra Dolomite. Pores are irregular in length, cross-sectional 
area and orientation. The treatment is simplified by postulating a network of straight 
pores of constant radius between intersections (Figure 7-B).

With detailed knowledge of pore areas, lengths, and orientations in the Culebra 
Dolomite, realistic properties could be assigned to the ideal network in Figure 7-B and 
a corresponding flux calculated. However, only the variation of pore radii is known 
for the Culebra Dolomite. Therefore, the network is idealized further, by postulating 
an isotropic grid of pores of constant length (Figure 7-C). The term 9* equals 3.0 for 
this grid, since the network is randomly oriented in space. This term would be slightly
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Figure 7. The modeling approach.



higher if pores are not smooth or straight between nodes. The results are independent 
of the pore length in this network.

Essential to these calculations is a method of averaging pore properties, so that 
the flux through each pore segment need not be treated individually. By analogy with 
networks of resistors, Kirkpatrick (1973), Benzoni and Chang (1984), and Burganos 
and Sotirchos (1987) provide a procedure to obtain an average conductance for a pore 
network such that the overall solute flux can be calculated. This averaging procedure 
recasts the pore network and yields an effective diffusivity that can be used in Equation 
(2).

The procedure to obtain an effective conductance greatly reduces the work needed 
to determine solute fluxes in pore networks. The averaging function is (Kirkpatrick, 
1973):

(*„ - *) f(x) dx 
(z/2 - 1) se + x

(19)

where /(x) is the probability density function (PDF) of property x and xe is the 
effective average value of x.

The connection number (z) is the number of pores leaving each node. For sake 
of comparison, the connection number of a cubic packing of spheres is six. A body- 
centered packing of spheres has a connection number of eight. Thus, there are valid 
reasons to suspect that the actual connection numbers of pores in a rock are small. 
Koplik, et al., (1984), for example, measure a connection number of 3-4 for the Masil- 
lon sandstone by examining individual pores. Connection numbers less than two cor­
respond to unconnected pores. Note that the averaging function includes only the 
connection number to describe pore topology; that is, cubic pore networks are equiva­
lent to any other network with a connection number of 6.

From Equation (19), Burganos and Sotirchos (1987) calculated an effective dif­
fusion coefficient for a medium consisting of cylindrical pores of constant length with 
radii selected from a known distribution, or:

De
<P >

< r2£ >
(20)

Quantities in brackets, <>, are simply averaged. The subscript e indicates quantities 
averaged via Equation (19). The segment length in this case is between nodes in the 
network.
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The accuracy was verified by comparing results from Equation (20) with Monte 
Carlo calculations of solute flux through an ideal rectangular pore network (Burganos 
and Sotirchos, 1987; see also Kirkpatrick, 1973). Benzoni and Chang (1984) also 
provide experimental verification for a pore network with bi-disperse sizes.

5.2 Application to the Culebra Dolomite

A pore-size distribution for the Culebra Dolomite is calculated from the relation­
ship between mercury intrusion volume and pressure. Pore radii are calculated by 
assuming a cylindrical pore geometry and from knowledge of the surface tension of 
mercury (see Lowell, 1979). The integrated pore volume as a function of nominal pore 
radius is shown in Figure 8, along with a curve which was fit to the data for modeling 
purposes. The two curves are indistinguishable on the scale of the plot. The integrated 
pore volume at high pressure, of course, equals the total porosity of the rock («0.07). 
The fitted curve was then differentiated with respect to pore number to produce a 
probability density function (Figure 9). This function was used to evaluate Equations
(19) and (20).

Equation (20) was evaluated for connection numbers between 2 and 1000. Al­
though connection numbers as high as 1000 are difficult to relate to rock properties, 
they have significance in terms of Equation (19) and are discussed below. Results of 
the calculations are shown in Figure 10.

In Figure 10 the ratio of the diffusion coefficient from the parallel-pore model (Dt 
in Equation (2)) to the effective diffusion coefficient (De) calculated with Equation
(20) is shown. Tortuosity is equal in both cases (02 = 3.0). The essential difference 
between these two coefficients is that De includes the effect of pore constrictions and 
intersections on the solute flux.

As shown in Figure 10, the ratio varies from 1.0 at very large connection numbers, 
to approximately 0.1 at a connection number of 2. In other words, the standard 
approach to calculating diffusive fluxes (Equation (2)) becomes accurate as the number 
of pores leaving a node approaches infinity.

As discussed earlier, pore intersections cause the observed flux to be smaller than 
the parallel-pore model (Equation (2)), except for the trivial case of a network made 
up of uniform pore diameters. Equation (2) is least accurate for rocks with a wide 
distribution of pore sizes. For reasonable estimates of the connection number (two to 
ten) and the measured distribution of pore sizes in the Culebra Dolomite, diffusion 
coefficients calculated using Equation (2) are a factor of five too high. Burganos and 
Sotirchos (1987) show that the inaccuracy can be as large as a factor of ten for realistic 
pore-size distributions.
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Figure 8. The integrated pore volume as a function of modeled pore radius.
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Figure 9. The probability density function (PDF) for pores in the Culebra Dolomite. 
The units are in number of pores per radius.
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Figure 10. The variation in the ratio of the effective-medium diffusion coefficient to 
the parallel-model diffusion coefficient. In both cases, 02 = 3.0.



A simple comparison can now be made of the pore network model presented here 
and the simple parallel-pore model of Equation (2). The diffusivity obtained experi­
mentally for the Culebra Dolomite is ~ 3 * 10-8 cm3/s. From the experimental data, 
and Equations (1) through (3), this implies a diffusion porosity of 0.04 and 02 & 19 
or greater. We argue that these are essentially fitting parameters, since the diffusion 
porosity is half that measured by more accurate methods and the tortuosity is much 
higher than realistic models of pore structure.

The pore network theory also uses the functional form of Equation (2) to predict 
the diffusivity, but includes additional correction terms (Equation 20) which account 
for pore intersections and nonuniform pore sizes. When applying this model, the actual 
porosity of « 0.08 is used, and ff2 is set equal to 3.0. The same diffusion coefficient for 
tritium is used in both models. The correction terms to Equation (20) are obtained 
from Figure 10. For a connection number of 3, the correction terms yield a factor of «
0.1. Thus we predict a diffusivity for the Culebra Dolomite of 3.5*10-8 cm2/s, which 
is remarkably close to the experimental value given the level of approximation in the 
treatment.

This agreement is not entirely fortuitous. Our calculations are for an ideal pore 
network where the tortuosity is calculable (03 = 3.0), and with pore sizes similar 
to those measured on the sample of Culebra Dolomite. Thus, in our modeling, the 
measured distribution of pore sizes introduces a constrictivity to the isotropic grid. In 
this manner, we isolate some important geometric variables which affect solute diffusion 
in the Culebra Dolomite.

It is important to remember when interpreting Figure 10 that the calculations are 
for an ideal pore network where the tortuosity is calculable (03 = 3.0). Had this ideal 
pore network corresponded to an actual rock, the 02 term in Equation (2) would be 
measured to be larger than 3.0 to account for an anomalously low measured flux. That 
is, in practice, the tortuosity is an empirical scaling factor which relates solute flux 
to the measured porosity. The procedure outlined above returns tortuosity to a more 
physical interpretation.

At this point it is useful to review important assumptions in the model. We 
assume: (i) straight, smooth pores between nodes; (ii) a regular geometry of pores; 
(iii) pores of constant length; and (iv) random mixing of pore sizes from the PDFs 
shown in Figure 9. The results will, of course, change with different assumptions. 
In general, the parallel-pore model (Equation 2) becomes an accurate approximation 
to the true flux as: (i) the distribution of pore radii becomes unimodal with a small 
variance; and/or (ii) the number of pores intersecting at a node becomes large; or (iii) 
the pores resemble a smooth set of non-intersecting capillaries through the rock (the 
trivial case).
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The use of the pore-size distribution shown in Figure 9 introduces a theoretical 
inconsistency into our treatment. The pore-size distribution was measured via mercury 
porosimetry, which employs an ideal model of the pore geometry (see Lowell, 1979). 
That is, the geometry assumed to calculate pore-size distributions from mercury in­
trusion is not the geometry used to evaluate Equation (20). This inconsistency is not 
critical, however, given other uncertainties in the calculation, but it can lead to low 
estimates of the actual number of large pores in the PDF (Wardlaw and Taylor, 1976).

The existence of dead-end pores is also not properly addressed in this model. 
Practically, dead-end pores can be included in the model by adding a finite number of 
pores with zero cross-sectional area. When these pores are distributed randomly in the 
pore network, they create pores with no net flux. The abundance of dead-end pores 
cannot be inferred from porosimetry data, and dead-end pores are, therefore, ignored 
in our treatment.

5.3 Summary of Other Results

The experiment discussed above is one of many which have been conducted on 
samples of the Culebra Dolomite. These results are reported in internal Sandia mem­
oranda (Casey, et al., 1987; Casey and Stockman, 1988a, 1988b, 1988c, Casey and 
Stockman, 1989). In these experiments, diffusion coefficients were calculated from the 
variation in activity with time of unreactive solute in the upper reservoir of the dif­
fusion cell (e.g., Figures 3 and 4). Regression parameters from the data are compiled 
in Table 1, along with standard estimates of the uncertainties. These regression data 
were used to calculate diffusivities using Equations (5) and (6).

The calculated transport properties are compiled in Table 2. Note that the dif­
fusion porosity is generally less than the total porosity. The one exception is sample 
A1S-SNL-16, which has a highly uncertain estimate of diffusion porosity. The high 
uncertainty is attributable to the very small size of the sample (« 0.35 cm3, Casey and 
Stockman, 1989).

An important conclusion from these experiments (Table 2) and the theoretical 
analysis presented above, is that the diffusive flux of solutes through the Culebra 
Dolomite cannot be estimated from knowledge of the total porosity. Many hydrologic 
models for solute migration through rock implicitly assume the parallel-pore model 
without actually measuring the diffusion porosity or tortuosity. This treatment com- 
moxdy overestimates the diffusive flux and the retardation of solute by the formation. 
The inaccuracy depends upon the rock properties outlined above, as well as the tech­
nique for measuring the total rock porosity. Helium porosities, for example, are com­
monly much larger than the diffusion porosities. If rock contains a pronounced fabric,
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Table 1. Regression Parameters

tracer slope (H 1) l<r intercept \<T # points

Sample ESM-143 720’ 
Casey and Stockman (1988a)

129/ 1.52*10-6 4.63*10-® -1.63*10-4 6.74*10-5 15

22jva 1.1*10-6 4.3*10-® -1.5*10-4 3.0*10-6 16

Casey and Stockman (1988c)

3H 5.9*10-® 4.3*10-® -8.1*10-4 3.0*10-5 16

Sample Wipp-19 760.2’ 
Casey and Stockman (1988b)

22Na 1.7*10-® 9.3*10-* -8.7*10-4 1.07*10-4 6

3H 4.1*10-® 1.45*10-7 -5.2*10"4 1.2*10-4 10

129I 2.1*10-® 3.4*10-® -2.1*10-4 3.2*10-® 21

23Na 2.5*10-® 8.3*10"® -5.3*10-4 8.0*10-® 13

Sample
Casey and Stockman (1989)

A1S-SNL-16

3H 6.9*10-® 0.04*10-® -1.9*10-6 1.4*10-® 15
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Table 2: Transport Properties Calculated from the Diffusion of Solutes*

Tracer D = (cm2/s) Diffusion Porosity ((f>) Tortuosity (ff) Total Porosity (<f>)

Casey and Stockman (1988a)
Sample ESM-143 720’

0.072 - 0.098

129I 6.68 ± 0.16*10-8 0.012 ± 0.003 3.37

22Na 1.05 ± 0.03*10-® 0.011 ± 0.002 3.28

Casey and Stockman (1988c)

3H 3.0 ± 0.1*10-®

Casey and Stockman (1988b)

0.04 ± 0.005

Sample WIPP-19 760.2’

5.5

0.086-0.155

22Na 1.3 ± 0.14*10-® 0.04 ± 0.02 4.8

3H 3.2 ± 0.22*10-® 0.06 ± 0.02 6.3

129I 1.6 ± 0.05*10"® 0.02 ± 0.006 3.1

22Na 1.9 ± 0.06*10"®

Casey and Stockman (1989)

0.04 ± 0.01

A1S-SNL-16

3.9

0.082 ± 0.002

3H 3.2 ± 0.22*10-® 0.13 ± 0.34 1.9-2.4

‘Uncertainties are reported as two standard deviations, 
by mercury and helium porosimetry.

Total porosities were measured
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such as the case if fractures are lined by shale or claystone, the diffusivity is a tensor.

The measured diffusivity of Culebra Dolomite may be constrained with a series of 
simple conductance measurements in oriented samples (e.g., McDuff and Ellis, 1979). 
The usefulness of these measurements, of course, depends upon the degree to which the 
rock samples are representative of the actual hydrology. There is, however, no reason 
to expect that field estimates of the rock diffusivity will be less uncertain than in these 
well-controlled experiments.

0 CONCLUSIONS

We have reviewed the relationship between pore geometry and solute diffusion 
in rocks. In this review, which was not comprehensive, we emphasized the following 
major points:

1. Rock porosity enters the transport equations as an estimate of the total fraction 
of pore area exposed in a random plane through the rock. This approximation is 
appropriate for homogeneous rocks with an isotropic pore network.

2. This total pore area is weighted by a constant of proportionality (tortuosity) to 
account for pores of differing orientations which contribute to the overall flux. 
For a homogeneous, isotropic pore network, 02 = 3.0.

3. The distribution of pore sizes affects the flux by constricting the pathways of 
solute migration. In three-dimensional pore networks, intersections provide al­
ternative pathways for solutes to migrate around constricted pore segments.

The importance of models which relate solute flux to actual rock properties cannot 
be overemphasized. A major obstacle to our understanding of diagenesis and metamor­
phism, for example, is our inability to estimate the exposed area of reactive minerals 
in a rock and the diffusive flux of solutes to this reactive area as a function of time. 
The first step toward correcting this inability is development and testing of models of 
the pore geometry.

These models are constructed by comparing measured diffusive fluxes of unreactive 
tracers with flux calculations on model pore networks. The comparisons are most useful 
when actual rock properties are assigned to the hypothetical network (e.g., Koplik,, 
et al, 1984). This approach was used to examine the diffusion of unreactive solutes 
through a sample of Culebra Dolomite. We find that the measured flux of solutes 
through the rock was more than a factor of two less than predicted from knowledge 
of the porosity and the measured tortuosity. This discrepancy disappears when a 
measured distribution of pore sizes is assigned to a hypothetical pore network.
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Appendix

Buragnos and Sotirchos (1987) state that 62 is equal to the inverse of the dimen­
sionality for an isotropic network, such as the cubic network shown in Figure 6-A. 
Other pore grids may also be isotropic if they are oriented randomly throughout the 
rock.

Proof is derived from the inclined-pore model for tortuosity (Figure 1) and the 
assumption that all pore orientations are equally likely. If we employ standard spherical 
coordinates to represent three-dimensional space, an integral average can be performed 
to obtain the tortuosity:

0*
(21)

t if rinMlMC ,
Si" S'1’ ,il1^ ii’d( 3

(22)

In Equation (1), we use i/) and ( to represent the azimuthal and polar angles of 
the sphere of integration.
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Management Division 
785 DOE Place 
Idaho Falls, ID 83402

U.S. Department of Energy (3)
Savannah River Operations Office 
Defense Waste Processing 

Facility Project Office 
Attn: S. Cowan

W. J. Brumley 
P.O. Box A 
Aiken, SC 29802

U.S. Environmental Protection Agency 
Attn: D. J. Egan, Jr.

Mark Cotton
Office of Radiation Programs (ANR-460) 
Washington, DC 20460

U.S. Geological Survey 
Branch of Regional Geology 
Attn: R. Snyder
MS913, BOX 25046 
Denver Federal Center 
Denver, CO 80225

U.S. Geological Survey 
Conservation Division 
Attn: W. Melton
P.O. Box 1857 
Roswell, NM 88201
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U.S. Geological Survey (2)
Water Resources Division 
Attn: Cathy Peters
Suite 200
4501 Indian School, NE 
Albuquerque, NM 87110

U.S. Nuclear Regulatory Commission (4) 
Division of Waste Management 
Attn: Michael Bell

Hubart Miller 
Jacob Philip 
NRC Library 

Mail Stop 623SS 
Washington, DC 20555

Environmental Evaluation Group (3)
Attn: Library
Suite F-2
7007 Wyoming Blvd., N.E.
Albuquerque, NM 87109

New Mexico Bureau of Mines 
and Mineral Resources (2)

Attn: F. E. Kottolowski, Director
J. Hawley 

Socorro, NM 87801

NM Department of Energy & Minerals 
Attn: Kasey LaPlante, Librarian
P.O. Box 2770 
Santa Fe, NM 87501

Battelle Pacific Northwest Laboratories (6) 
Attn: D. J. Bradley

J. Relyea
R. E. Westerman
S. Bates
H. C. Burkholder
L. Pederson 

Battelle Boulevard 
Richland, WA 99352

Savannah River Laboratory (6)
Attn: N. Bibler

E. L. Albenisius
M. J. Plodinec 
G. G. Wicks
C. Jantzen 
J. A. Stone 

Aiken, SC 29801
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Savannah River Plant 
Attn: Richard G. Baxter
Building 704-S 
Aiken, SC 29808

George Dymmel 
SAIC
101 Convention Center Dr.
Las Vegas, NV 89109

INTERA Technologies, Inc. (4) 
Attn: G. E. Grisak

J. F. Pickens
A. Haug 
A. M. LeVenue 

Suite #300
6850 Austin Center Blvd.
Austin, TX 78731

INTERA Technologies, Inc.
Attn: Wayne Stensrud
P.O. Box 2123 
Carlsbad, NM 88221

IT Corporation (2)
Attn: R. F. McKinney

J. Myers
Regional Office - Suite 700 
5301 Central Avenue, NE 
Albuquerque, NM 87108

IT Corporation (2)
Attn: D. E. Deal
P.O. Box 2078 
Carlsbad, NM 88221

Charles R. Hadlock 
Arthur D. Little, Inc.
Acorn Park
Cambridge, MA 02140-2390

Los Alamos Scientific Laboratory 
Attn: B. Erdal, CNC-11
Los Alamos, NM 87545

Oak Ridge National Laboratory (4) 
Attn: R. E. Blanko

E. Bondietti
C. Claiborne 
G. H. Jenks

Box Y
Oak Ridge, TN 37830



RE/SPEC, Inc.
Attn: W. Coons

P. F. Gnirk 
P.O. BOX 14984 
Albuquerque NM 87191

RE/SPEC, Inc. (7)
Attn: L. L. Van Sambeek

D. B. Blankenship 
G. Callahan
T. Pfeifle 
J. L. Ratigan 

P. 0. Box 725 
Rapid City, SD 57709

Rockwell International (1)
Attn: C. E. Wickland
Rocky Flats Plant 
Golden, CO 80401

Rockwell International (3)
Atomics International Division 
Rockwell Hanford Operations 
Attn: J. Nelson (HWVP)

P. Salter 
W. W. Schultz 

P.O. Box 800 
Richland, WA 99352

Science Applications
International Corporation 

Attn: Howard R. Pratt,
Senior Vice President 

10260 Campus Point Drive 
San Diego, CA 92121

Science Applications
International Corporation 

Attn: Michael B. Gross
Ass't. Vice President 

Suite 1250 
160 Spear Street 
San Francisco, CA 94105

Systems, Science, and Software (2) 
Attn: E. Peterson

P. Lagus 
Box 1620 
La Jolla, CA 92038



Westinghouse Electric Corporation (7) 
Attn: Library

W. C. Moffitt 
W. P. Poirer 
W. R. Chiquelin 
V. F.Likar
D. J. Moak
R. F. Kehrman 

P. 0. Box 2078 
Carlsbad, NM 88221

T. N. Narasimhan 
Earth Sciences Division 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, CA 94720

University of Arizona 
Attn: J. G. McCray
Department of Nuclear Engineering 
Tucson, AZ 85721

University of New Mexico (2)
Geology Department 
Attn: D. G. Brookins

Library
Albuquerque, NM 87131

Pennsylvania State University (1) 
Materials Research Laboratory 
Attn: Della Roy
University Park, PA 16802

Texas A&M University 
Center of Tectonophysics 
College Station, TX 77840

G. Ross Heath 
College of Ocean

and Fishery Sciences 
University of Washington 
Seattle, WA 98195

Thomas Brannigan Library
Attn: Don Dresp, Head Librarian
106 W. Hadley St.
Las Cruces, NM 88001

Hobbs Public Library
Attn: Ms. Marcia Lewis, Librarian
509 N. Ship Street
Hobbs, NM 88248
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New Mexico State Library 
Attn: Ms. Ingrid Vollenhofer
P.O. Box 1629 
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library 
Campus Street 
Socorro, NM 87810

Pannell Library 
Attn: Ms. Ruth Hill
New Mexico Junior College 
Lovington Highway 
Hobbs, NM 88240

WIPP Public Reading Room 
Attn: Lee Hubbard, Head Librarian
Carlsbad Municipal Library 
101 S. Halagueno St.
Carlsbad, NM 88220

Government Publications Department 
General Library 
University of New Mexico 
Albuquerque, NM 87131

Dr. Charles Fairhurst, Chairman 
Department of Civil and 

Mineral Engineering 
University of Minnesota 
500 Pillsbury Dr. SE 
Minneapolis, MN 55455

Dr. John O. Blomeke 
Route 3
Sandy Shore Drive 
Lenoir City, TN 37771

Dr. John D. Bredehoeft 
Western Region Hydrologist 
Water Resources Division
U.S. Geological Survey (M/S 439) 
345 Middlefield Road 
Menlo Park, CA 94025

Dr. Karl P. Cohen
928 N. California Avenue
Palo Alto, CA 94303



Dr. Fred M. Ernsberger 
250 Old Mill Road 
Pittsburgh, PA 15238

Dr. Rodney C. Ewing 
Department of Geology 
University of New Mexico 
200 Yale, NE 
Albuquerque, NM 87131

Dr. George M. Hornberger 
Department of Environmental Sciences 
Clark Hall
University of Virginia 
Charlottesville, VA 22903

Dr. Frank L. Parker 
Department of Environmental 

Engineering 
Vanderbilt University 
Nashville, TN 37235

Dr. D'Arcy A. Shock
233 Virginia
Ponca City, OK 74601

Dr. Christopher G. Whipple 
Electric Power Research Institute 
3412 Hillview Avenue 
Palo Alto, CA 94303

Dr. Peter B. Myers, Staff 
Director

National Academy of Sciences 
Committee on Radioactive 

Waste Management 
2101 Constitution Avenue 
Washington, DC 20418

Ina Alterman
Board on Radioactive Waste 

Management 
GF462
2101 Constitution Avenue 
Washington, D. C. 20418
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Studiecentrum Voor Kernenergie (1)
Centre D'Energie Nucleaire
Attn: Mr. A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol
BELGIUM

Atomic Energy of Canada, Ltd. (2) 
Whiteshell Research Estab.
Attn: Peter Haywood

John Tait
Pinewa, Manitoba, CANADA 
ROE 1L0

Dr. D. K. Mukerjee 
Ontario Hydro Research Lab 
800 Kipling Avenue 
Toronto, Ontario, CANADA 
M8Z 5S4

Mr. D. Alexandre, Deputy Director 
ANDRA
31, Rue de la Federation
75015 Paris, FRANCE

Mr. Jean-Pierre Olivier 
OECD Nuclear Energy Agency 
Division of Radiation Protection 

and Waste Management 
38, Boulevard Suchet
75016 Paris, FRANCE

Claude Sombret 
Centre D#Etudes Nucleaires 

De La Vallee Rhone 
CEN/VALRHO
S.D.H.A. BP 171 
30205 Bagnols-Sur-Ceze 
FRANCE

Bundesministerium fur Forschung und 
Technologie 

Postfach 200 706 
5300 Bonn 2
FEDERAL REPUBLIC OF GERMANY



Bundesanstalt fur Geowissenschaften 
und Rohstoffe 

Attn: Michael Langer
Postfach 510 153 
3000 Hannover 51 
FEDERAL REPUBLIC OF GERMANY 
Hahn-Mietner-Institut fur Kernforschung (1) 
Attn: Werner Lutze
Glienicker Strasse 100 
100 Berlin 39
FEDERAL REPUBLIC OF GERMANY

Institut fur Tieflagerung (4)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4 
D-3300 Braunschweig 
FEDERAL REPUPLIC OF GERMANY

Kernforschug Karlsruhe (1)
Attn: K. D. Closs
Postfach 3640 
7500 Karlsruhe 
FEDERAL REPUBLIC OF GERMANY

Physikalisch-Technische Bundesanstalt
Attn: Peter Brenneke
Postfach 33 45
D-3300 Braunschweig
FEDERAL REPUBLIC OF GERMANY

D. R. Knowles
British Nuclear Fuels, pic
Risley, Warrington, Cheshire WA3 6AS
1002607 GREAT BRITAIN

Shingo Tashiro
Japan Atomic Energy Research Institute 
Tokai-Mura, Ibaraki-Ken 
319-11 JAPAN

Netherlands Energy Research Foundation 
ECN (2)

Attn: Tuen Deboer, Mgr.
L. H. Vons 

3 Westerduinweg 
P.O. Box 1
1755 ZG Petten, THE NETHERLANDS

Svensk Karnbransleforsorjning AB 
Attn: Fred Karlsson
Project KBS 
Karnbranslesakerhet 
Box 5864
10248 Stockholm, SWEDEN
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Sandia Internal:
1510 J. W. Nunziato
1511 D. K. Gartling
1511 R. R. Eaton
1511 P. L. Hopkins
1511 M. J. Martinez
1511 D. F. Mctigue
1512 J. C. Cummings
1512 K. L. Erickson
1513 D. W. Larson
1513 R. C. Dykhuizen (10)
1520 L. W. Davison
1521 R. D. Krieg
1521 J. G. Arguello
1521 H. S. Morgan
1530 D. B. Hayes
1550 C. W. Peterson
3141 S. A. Landenberger (5)
3151 W. I. Klein (3)
3154-1 C. L. Ward, (8) for DOE/OSTI
6000 D. L. Hartley
6230 W. C. Luth
6231 H. C. Hardee
6232 W. R. Wawersik
6233 T. M. Gerlach
6233 W. H. Casey (10)
6233 J. L. Krumhansl
6233 H. W. Stockman
6233 M. E. Thompson
6300 R. W. Lynch
6310 T. O. Hunter
6312 P. A. Kaplan
6312 M. S. Tierney
6312 M. L. Wilson
6313 T. Blejwas
6315 L. E. Shephard
6315 R. J. Glass
6330 W. D. Weart
6330 V. L. Bruch
6330 D. P. Garber
6330 S. Pickering
6331 A. R. Lappin
6331 R. L. Beauheim
6331 D. J. Borns
6331 P. B. Davies
6331 S. J. Lambert
6331 R. Z. Lawson
6331 K. L. Robinson



6331
6332
6332
6332
6332
6332
6332
6332
6332
6332
6332
6332
6333
6334
6334
6334
6334
6334
6334
6334
6334
6334
6334
6334
6334
6410
6416
7100
7110
7120
7125
7125
7130
7133
7133
7135
8524

M. D. Siegel
L. D. Tyler
R. Beraun
B. M. Butcher
B. L. Ehgartner
S. J. Finley
M. A. Molecke
D. E. Munson
E. J. Nowak
J. C. Stormont
T. M. Torres
Sandia WIPP Central Files (10)
T. M. Schultheis
D. R. Anderson 
G. T. Barker
S. Bertram-Howery
K. Brinster
L. Brush
G. E. Bujewski
L. S. Gomez 
R. Guzowski 
R. L. Hunter
M. G. Marietta 
R. R. Rechard 
A. Rutledge
N. R. Ortiz
E. J. Bonano
C. D. Broyles 
J. D. Plimpton 
M. J. Navratil 
R. L. Rutter
J. T. Mcllmoyle 
J. 0. Kennedy
O. Burchett 
J. W. Mercer
P. D. Seward
J. A. Wackerly (SNLL Library)
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