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ABSTRACT

Isotopic evaluations for 5 B• 6 0• B 1 •6Z•6*Ni performed for ENDF/B-VI are
briefly reviewed. The evaluations are based on analysis of experimental
data and results of model calculations which reproduce the experimental
data. Evaluated data are given for neutron induced reaction cross
sections, angular and energy distributions, and for gamma-ray production
cross sections associated with the reactions. File 6 formats are used to
represent energy-angle correlated data and recoil spectra. Uncertainty
files are included for the major cross sections. Detailed evaluations are
given for 5 8' 6 0Ni, and results of calculations for the major reactions are
used for evaluations of the minor isotopes.

1. INTRODUCTION

Separate evaluations have been done for each of the stable isotopes of
nickel. In this report, we briefly review the structure of the
evaluations, describe how the evaluations were done, and note the major
pieces of data considered in the evaluation process. Experimental data
references were obtained primarily from CINDA, but also from the literature
and reports. The data themselves were mostly obtained from the National
Nucle-ar Data Center at Brookhaven National Laboratory and, occasionally,
from the literature and reports. The TNG nuclear model code (FU80,SH86), a
multistep Hauser-Feshbach code which includes precompound and compound
contributions to cross sections, angular, and energy distributions in a
self-consistent manner, calculates gamma-ray production, and conserves
angular momentum in all steps, was the primary code used for these
evaluations. Extensive model calculations were performed with the goal of
simultaneously reproducing experimental data for all reaction channels with
one set of parameters. This ensures internal consistency and energy
conservation within the evaluation. In the case of reactions for which
sufficient data were available, a Bayesian analysis using the GLUCS code
(HE80) was frequently done, using ENDF/B-V or the TNG results as the prior.
In cases where insufficient data were available for a GLUCS analysis, and
the available data were deemed to be accurate, but in disagreement with the
TNG results, a line was drawn through the data and used for the evaluation.
A hand-drawn line was also used for cross sections where resonant structure
was felt to be important, but resonance parameters were not included. The
final evaluation is thus a combination of TNG results (used where
extrapolation a.id interpolation was required and where data sets were badly
discrepant), GLUCS results (used where sufficient data existed to do an
analysis), and hand-drawn curves.
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In Section 2 the resonance parameters are discussed; Section 3 contains a
description of the major cross sections included in the evaluation; Section
4 is devoted to angular distributions; and Section 5 to energy-angle
correlated distributions. Section 6 describes the uncertainty files.

Much of this information is abstracted from Ref. HE87, a report devoted to
a description of the calculations for 5 8- 6 0Ni. As of this writing, the
various pieces of the evaluations are being reviewed, modified if
necessary, and assembled into full evaluations using the ENDF/B-VI formats,
and will be submitted by May 1988 to the Cross Section Evaluation Working
Group (CSEWG) for inclusion in ENDF/B-VI.

2. RESONANCE PARAMETERS

Resonance parameters for 58Ni from 10 to 810 keV were taken from a recent
SAMMY analysis (PE87) of ORELA transmission, scattering, and capture data.
Sixty-two i—0 and 410 £>0 resonances were identified and are included,
using the Reich-Moore formats. Resonance parameters for Q0Ni cover the
energy range from 1 to 450 keV and were also taken from a SAMMY analysis of
ORELA transmission and capture data (PE83) . Thirty i-0 and 227 £>0
re-onances were identified and included in the 60Ni evaluation. For the
6 1 i 6 2 i 6*Ni evaluations, the resonance parameters were taken from the
compilation of Mughabghab (MU81).

3. CROSS SECTIONS

In this section we briefly describe the contents of the files containing
cross sections for the more important reactions. The total cross section
for 58Ni above the resonance region was " ken from a high-resolution
measurement (PE87) up to 20 MeV. For 60 • 6* • 6Z • 6*Ni the total cross section
above the resonance region was taken from a high-resolution measurement of
natural nickel (LA83). Cross sections for inelastic scattering to discrete
levels in 58.60Ni were taken from the model calculations which compared
favorably with numerous data sets available for these levels. Direct
interaction contributions were included for many of the levels. Agreement
with experimental data is generally favorable; however, the experimental
uncertainties are often rather large. Figures 1 and 2 show a comparison of
the TNG results with experimental data for the total inelastic scattering
cross section for 5 8' 6 0Ni, respectively. For 6i,62,6*Nj_ ttie c r o s s secLions
for the lowest few levels were included from the calculations, and a
continuum was used to represent the remainder of the inelastic scattering
cross section.

Abundant data are available to define the 58>6ONi(n,p) reaction cross
sections. Figure 3 shows a comparison of the available data, and the TNG
and GLUCS results for the ^Ni(n,p) cross section. The evaluated 58Ni(n,p)
cross section was taken from a Bayes' simultaneous analysis of several
correlated cross sections (FU82), while the 60 • 6 l • 6Z • 6<1 Ni(n ,p) cross
sections were taken from the model calculations. Data for the (n,a)
reactions are sparse, and the evaluations are based on calculated results,
which were compared with available experimental data. Total proton and
alpha emission cross sections for 58.60Ni were also taken from the model
calculations and agreed well with the integrated data at 14 MeV of Grimes



et al. (GR79) and Knetf et al. (KN86), and with the data of Qaim et al.
(QA84) at lower energies.

There is abundant cross section data for the 58Ni(n,2n) reaction, but no
data for Che (n,2n) cross section on any of the other isotopes. Results of
the TNG model calculations were in good agreement with the available (n,2n)
data, as well as the neutron emission spectra for natural Ni; thus results
of the model calculations were used for the (n,2n) cross sections for all
of the isotopes. It should be noted that the (n,2n) cross sections are
large for the minor isotopes 6 1 > 6 2' 6 4Ni, and were explicitly included in
the reactions for these minor isotopes.

Cross sections for all significant binary and tertiary reactions are given
for each isotopic evaluation. See the detailed description in Ref. (HE87)
for 5 8' 6 0Ni.

4. ANGULAR DISTRIBUTIONS

Calculated elastic scattering angular distributions using the Uilmore-
Hodgson optical model potential (WI64) are in good agreement with abundant
experimental data and are given as Legendre coefficients in File 4/2.
Disagreements in experimental angular distribution data sets for inelastic
scattering to discrete levels are often outside rather large uncertainties.
Model calculations including direct interaction and compound reaction
contributions were compared with available data and used for the
evaluations. These data are also entered as Legendre coefficients in File
6/51-90 in each evaluation for as many levels as discrete information is
available. Only the few lowest levels were used for the minor isotopes,
and isotropic angular distributions were assumed.

5. ENERGY-ANGLE CORRELATED DISTRIBUTIONS (FILE 6)

Often, neutron, proton, alpha, and gamma-ray emission spectral data are
measured as a function of outgoing particle angle, and this correlation of
outgoing angle with measured spectra can now be represented in File 6.
However, generally these distributions have only been measured at one or at
most a few incident energies, thus we rely upon the TNG model calculations
to reproduce the available data as a function of outgoing energy and angle,
and then extrapolate to other incident neutron energies. Figure 4, taken
from Ref. HE87, shows a comparison of the experimental data with the
calculated results for the natural Ni(n,xn) cross section, and Figure 5
(HE87) shows a comparison of the measured and calculated angular
distributions for three outgoing neutron energy bins. These calculated
energy-angle distributions have been taken from the TNG calculations and
entered in File 6 for the 58' 50Ni evaluations for a number of incident
energies between 1 and 20 MeV. Cross sections associated with these
distributions are given in File 3.

Figures 6 and 7 (HE87) show comparisons of calculated results with
experimental data for the 5eNi(n,xp) and 60Ni(n,xa) reactions near 14 MeV,
respectively. These energy distributions, with isotropic angular
distributions assumed, have been entered in File 6. Recoil spectra for the
heavy residual nuclei have also been included in File 6. Since the angular



distributions are given as isotropic, Fi 1 P 5 could have been used for all
charged particle spectra with the exception of the recoil spectra, but for
ease of energy balance and KERMA calculations, a consistent File 6 usage is
desirable. Cross sections associated with these distributions are given in
File 3.

File 6 was also chosen to represent the gamma-ray production energy
distributions, for consistency with the neutron and charged particle
distributions. Isotropic angular distributions were used for the gamma
rays. Figure 8 (HE87) shows a comparison of measured gamma-ray spectra
around 14 MeV with the TNG calculation at 14.5 MeV. Note that without use
of the calculated results, a significant amount of cross section below
about 1-MeV gamma-ray energy would be missing. Calculated distributions
are given in File 6 for several incident neutron energies from 1 to 20 MeV.
Cross sections associated with these distributions are given in File 3.

Capture gamma-ray cross sections and spectra are given in File 13 and 15,
respectively, and are based on a combination of experimental data and
calculation.

As an example of the usage of File 6, consider the 58Ni(n,na) reaction. In
File 6/22, constant yields are given for the outgoing neutron, alpha and
5 4 Fe residual, and an energy dependent yield is used for the gamma rays
associated with the (n.na) reaction. Normalized energy distributions are
given for each outgoing product, but only the outgoing neutron has a non-
isotropic angular distribution. The cross section to be used for
normalization is taken from File 3/22.

6. UNCERTAINTY INFORMATION

Uncertainty files are given only for the cross sections in File 3 and not
for the resonance parameters, energy distributions or angular
distributions. Fractional and absolute components, correlated only within
a given energy interval, are based on scatter in experimental data and
estimates of uncertainties associated with the model calculations.
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