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ABSTRACT 

I n i t i a l  e f f o r t s  t o  develop, t e s t ,  and evaluate counter f low recuperator  

designs are  repor ted  f o r  t he  "High Temperature Range Recuperator" p r o j e c t '  

conducted by Ter ra  Tek, I nc . ,  and M i l l c r e e k  Glass Corporat ion and sponsored by 

the  Department o f  Energy, D i v i s i o n  o f  I n d u s t r i  a1 Energy conservat ion,  through 

the  Program Opportuni ty  Not ice  PON #BI-B6-1000 under c o n t r a c t  No. EC-77-C-07- 

1660. 

P o t e n t i a l  ma te r i a l s  t o  w i ths tand g lass  furnace exhaust environments a t  

temperatures up t o  2800°F were evaluated on. the  bases o f  ma te r i a l  p rope r t i es ,  

f a b r i c a t i o n  capabi 1 i ty, and r e l a t i v e  performance i n  t h e  . f l u e  environment o f  a 

day tank  .g lass furnace. P o l y c r y s t a l l  i n e  a.1 umina ( V i s t a l ) ,  r e a c t i o n  s i n t e r e d  

s i l i c o n  carb ide (KT and NC 430) chemica1l.y vapor deposi ted s i l i c o n  carb ide  

(CVD) and s i n t e r e d  a lpha s i l i c o n  carb ide .proved most s a t i s f a c t o r y  i n  the  

ma te r ia l  temperature range o f  2300°F t o  2800°F. R e l a t i v e l y  pure alumina (AD 

998 and AD 94), m u l l i t e  and c o r d i e r i t e  were most s a t i s f a c t o r y  i n  t h e  ma te r ia l  

temperature range o f  1700°F t o  2300°F. 

Recuperator designs were evaluated on the  bases o f  c o l d  a i r  f l o w  t e s t s  on 

l abo ra to ry  models, f a b r i c a b i l i t y ,  and c a l c u l a t e d  thermomechanical s t ress  under 

expected operat ing condi tons. Mater i  a1 s t rengths  are  shown t o  be greater  than 

expected st resses by f a c t o r s  ranging from 2.6 f o r  KT s i l i c o n  carb ide  t o  16 f o r  

c o r d i e r i t e .  Recuperator t e s t  sect ions were f a b r i c a t e d  from KT s i l i c o n  carb ide 

and subjected t o  thermal s t ress  cond i t i ons  i n  excess o f  tw i ce  t h e  expected 

opera t ing  cond i t i ons  w i t h  no d e t e r i o r a t i o n  o r  f a i l u r e  ev ident .  A t e s t  sec t i on  

was subjected t o  the  thermal shock o f  i n s t a n t  t r a n s f e r  between room tempera- 

t u r e  and a 2000°F furnace w i thou t  damage.' 



Economic analysis based on calculated heat transfer indicates a recuper- 

ator system of t h i s  design and using currently available materials would have 
. . 

a payback period of 2 . 3  years. 
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EXECUTIVE SUMMARY 

This repor t  presents the  r e su l t s  of i n i t i a l  e f f o r t s  .of the  "High Tempera- 

t u r e  ~ a n ~ e  ~ e c u ~ e r a t o r "  project .  ~ e r r a  T e k ,  Inc. , and i t s  subcontractor 

M i  1 lcreek Glass Corporation, 'performed ' this  work under the  sponsorship of the  

Department of Energy, Division of Indust r ia l  Energy Conservati'on, i n  response 

t o  the  Program Opportunity Notice PON #BI-B6-1000 under Contract No. EC-77-C- 

The overall  purpose of t h i s  p ro jec t  i s  t o  develop, t e s t ,  and evaluate 

designs f o r  an indus t r i a l  recuperator capable of a 70 percent heat recovery i n  

the  recuperator material temperature range of 1700°F t o  2800°F f o r  a g lass  

furnace appl ica t ion a s  well a s  other indus t r i a l  appl ica t ions  such as s t e e l ,  

aluminum, and cement. Maximum a i r  recovery temperature i s  t o  be 2100°F. A 

payback period o'f. 3 years i s  desirable.  

Specif ic  research objectives f o r  Phase I  were: 

1 )  Design optimization of the  continuous counterflow high temperature 

. range recuperator. 

2) Selection of the  bes t  recuperator materials  and fabr ica t ion techni- 

ques through evaluation of material proper t ies  and performance in an 

expected environment 

3) Construction and short-term thermal t e s t i n g  of laboratory t e s t  

modules 

4) Development of design c r i t e r i a  and a t e s t  plan f o r  extended t e s t i ng  

of prototype modul es.  

Potential  material candidates were o r ig ina l ly  screened on the  bas is  of 

meeting the  minimum requirements of: 



1) A compressive s t reng th  i n  excess o f  2000 p s i  a t  temperatures 

, '  above 1800°F 

2) Thermal c o n d u c t i v i t y  i n  excess' o f  0.5 B T U / ~ ~ - f t - O F  

3)  P o t e n t i a l  p roduct  cos t  16ss"than $50 pe r  pound 

4) Previous usage, i n  h igh  temperature appl i c a t i o n s  ' ' ' 

5) P o t e n t i a l  t o le rance  f b r  bl 'ass furnace atmospheres 

6)- p o t e n t i a l  f a b r i c a b i l i t y  o f  t h e  s p e c i f i c  design i n  dimensions o f  

. . .  
one f o o t  o r  g rea ter .  

On' t h i s  b a s i s  3 1  ceramic m a t . ~ r i a l $  f o r  mndulas were i d e n t i f i e d  and designated 

fw f u r t h e r  eva lua t ions  and tes ts ;  Four j o i n t  seal mate r ia l s  were i d e n t i f i e d  

f o r  t e s t i n g  on ' t h e  bases o f  ma te r i a l  f l e x i b i  1 i t y  and'prev ious h igh  temperature 

usage. 

Ma te r i a l  p r o p e r t i e s  eva lua t ions  u t j  1 i z e d  ' a v a i l a b l e  1 i t e r a t u r e  data. 

P rope r t i es  considered were phys ica l  ( g r a i n  s i ze ,  dens i ty ,  po ros i t y ,  gas perme- 

a b i  1 i ty), mechani ial  ( e l a s t i c i t y ,  s t rengths,  f r a c t u r e  thoughness) ; and t h e r i a l  

(conductivity, expansion, . c y c l i n g  res is tance,  shock res is tance,  creep). 

Fabr i  cab i  1 i t y  , chemical st.abi 1 i t y  , and c o s t  were a1 so considered. Frac ture  

toughness va lues 'were  n o t  genera l l y  a v a i l a b l e  and these data were measured on 

pr ime module ma te r ia l  candidates. 

Mater i  a1 performance i n  furnace exhaust at-mosp'heres was determined by 

i n s e r t i n g  ma te r ia l s  i n t o  t h e  exhaust streams o f  opera t ing  day tank  furnaces. 

Two exhaust atmospheres were tested:  ' a  soda-lime g lass  furnace exhaust and 
. , 

combustion product  exhaust. Both exhausts r e s u l t e d  from na tu ra l  gas and a i r  

combustion i n s i d e  r e f r a c t o r y  chambers. Performance t e s t s  inc luded bo th  con- 

ti nuous furnace ope ra t i on  and cyc l  i ng operat ion.  



The eva lua t ions  i d e n t i f i e d  several module and j o i n t  seal. mater i  a1 candi- 

dates f o r  f u t u r e  pro to type tes ts .  Module ma te r ia l  candidates se lec ted  inc lude 

f o u r  s i l i c o n  carb ides ( t rade  name Sintered. Alpha, KT, NC 430, and CVD) and two 

p u r i t i e s  o f  alumina ( V i s t a l  and AD 998) f o r  the  h i g h e s t  range o f  2300°F t o  

2800°F. For t he  temperature range o f  17.00°F t o  2300°F, t he  candidates are  

c o r d i e r i  t e s  , mu1 1  i tes,  and 1  ower p u r i t y  (94 t o  998 percent)  a1 umi nas .. J o i n t  

seal candidates are  31\11 Ceramic F ibe r  . and S.af f i 1 e  above 2300°F and F i  b e r f  rax  . % 

and Kaowool between 1700°F and 2300°F. 

Physical design o p t i m i z a t i o n  was ,based on .heat  t r a n s f e r  requirements, 

f a b r i c a b i l i t y ,  f o u l i n g  considerat ions,  thermal s t ress  c a l c u l a t i o n s  and* c o l d  

a i r  f low t e s t s .  Depending upon the  ma te r ia l ,  module s t reng th  capabi 1  i t y  

exceeds thermal s t ress  by f a c t o r s  ranging from 2.6 t o  16.0. 

Fab r i ca t i on  methods are  unique w i t h  each candidate ma te r ia l .  Present 

p o t e n t i a l  module manufacturer k i  I n  1  i m i t s  vary between 0.5 f e e t  and 3.0 f e e t  

f o r  a1 1  pr imary  candi.dates. Considerable investment may be requ i red  t o  

achieve 3 - foo t  diameters i n  V i s t a l .  An t i c i pa ted  i n d u s t r i a l  module s i z e  i s  3  

f e e t  o r  less.  

S i x  8 - inch  t e s t  modules were f a b r i c a t e d  from a  f ine-gra jned s i l i c o n  
. . 

ca rb ide  (KT) and tes ted  under thermal opera t ing  cond i t ions .  Hot and c o l d  gas 

streams were d i r e c t e d  simul taneousiy through a  l l f l o w  channels. A temperature 

d i f f e r e n c e  (AT) between t h e  ho t  and c o l d  gases o f  1200°F (2.4 t imes expected 

opera t ing  AT) was achieved w i thou t  causing any f a i l u r e  o r  v i s i b l e  de le te r i ous  

e f f e c t s  on t h e  t e s t ,  sect ions.  . J o i n t  seals  o f  Kaowool, F i b e r f r a x ,  and 3M 

Ceramic performed acceptably du r ing  these' shor t - term t e s t s .  

One t e s t  module was subjected t o  the  thermal shock o f  i n s t a n t  t rans fe r  

between room temperature and a  2000°F furnace w i thou t  sus ta i  n i  ng damage. 





INTRODUCTION AND OBJECTIVES 

Background of Recuperator Program 

The Department of Energy, Divi sion of Industrial Energy Conservation, 

sponsored th i s  project under Contract No. EC-77-C-07-1660 'in response to  the 

Program Opportunity Notice PON #BI-B6-1000.1 The purpose of t h i s  program i s  

to  conserve primary f ue.1 s by devel opi ng high temperature recuperators for  

industrial  furnaces t o  recover and u t i l i ze  waste energy. Terra Tek and Mill- 

creek Glass Corporation performed the work in the i r  Sa l t  Lake City, Utah 

f a c i l i t i e s .  

While a l l  thermal processes discharge heat t o  the environment in one form 

o r '  another,. there i s  great variation in the amount of the recoverable dis- 

charged energy. In general., di rect  heating furnaces, in which there i s radi - 
ant and 'convective heat t ransfer  from the combustion materials direct ly  t o  the 

material' being heated 'in an enclosed space, are obvious choices for  thermal 

recovery 'because they are  very ineff ic ient .  Efficiencies range from 5 percent 

for  furnac'es in forge operations to  25 t o  35 percent for  furnaces where some 

recuperation i s  practiced. Exhaust temperatures range from 1200'~ for  an- 

nealing furnaces to  2300°F t o '  2700°F for  s teel  reheating and glass  furnace^.^ 

Direct hea t ing  processes using gas and oi 1 in the United States industry 

consume on the order of 6x1015 BTU/year a t  an estimated annual cost of twelve 

b i l l ion   dollar^.^ A t  l e a s t  75 percent of t h i s  energy i s  discharged t o  the 

atmos,phere without d i rec t  uti 1 ization, resulting i n  an annual waste of nine 

b i l l ion  dollars. The losses in coal-fired d i rec t  heating furnaces make the 

total  waste figure even greater. 



I n  a , d i r e c t  f i r e d  unrecuperated g lass furnace, t h e  ,energl  l o s s  i s  about 

80 percent  o f  t he  combustion energy.4 The g lass .  i n d u s t r y  alone consumes 

approximately 0. 4x1015 BTU o f  energy annual 1 ~ : ~  ',6 A 35 percent  recovery o f  

t h i s  energy (a  70 percent  e f f i c i e n t  recupera t ion  u n i t  app l i ed  t o  t h e  exhaust 

a f t e r  20 percent  o f  t h e  energy has been imparted t o  t h e  g lass and 30 percent  

has been l o s t  through means o ther  than f l u e  gas) would amount t o  0 . 1 4 ~ 1 0 ~ ~  BTU 

o r  an equ iva len t  o f  6. 6x104 b a r r e l s  o f  o i l  per  day. A t  $12.00 per  b a r r e l ,  

t h i s  value represents $0.8 m i l l i o n  pe r  day i n  savings f o r  t he  g lass  i n d u s t r y  

alone. Th is  savings w i l l  resu l t .  i n  a reduc t i on  i n  t he  U.5. balance 01' pay- 

ment.~. A savings p o t e n t i a l  o f  l l ~ i s  s i z e  15 a s t rong i n c e n t i v e  t o  develup new 

o r  improved methods t o  recover  and u t i l i z e  t h i s  waste energy. 

I n  t h e  pas t ,  e f f o r t s  t o  recover  t h e  heat  from h igh  temperature i n d u s t r i a l  

furnaces i n  a concentrated stream have proceeded i n  one o f  two d i r e c t i o n s .  I n  

many operat ions,  t he  f l u e  ga.s i s  e i t h e r  sys temat i ca l l y  d i  1  uted w i t h  ambient 

a i r  o r  r u n  i n  a cocur ren t  mode t o  reduce t h e  ma te r ia l  temperature, a1 lowing 

t h e  use o f  a convent ional  m e t a l l i c  s h e l l  and tube recuperatgr;  Such rectt- 

pe ra to rs  a re  ext remely waste fu l  because o f  the  reduc t i on  i n  e x t r a c t a b l e  en- 

ergy. A1 though convent ional  metal T i c  she1 1 and tube systems have' t he  advan- 

tage o f  easy c lean ing  and maintenance, they ar,e expensive and have an e f f i c i -  

ency o f  l e s s ' t h a n  50 percent .  

A second t ype  o f  recupera t ion  p r a c t i c e d  i . n . i n d u s t r y  cons is ts  o f  a checker 

system regenerator .  The f l u e  gas and cambustiun a i r  are d i r e c t e d  through two 

a'l t e r ~ r a t i n g  Chambers o f  r e f r a c t o r y  br icks. .  :.When: optinium checker , chamber 

temperature i s  reached, t h e  . f law d i r e c t i o n  i s  reversed p e r m i t t i n g  incoming 

combustion a i r  t o  absorb heat  p rev iqus l y  g iven up by the  exhaust. 



The exhaust and combustion a i r  are switched back and f o r t h  a t  20 t o  30 minute 

i n t e r va l s .  The advantage o f  the checker system i s  t h a t  the f l u e  gas can often 

be used wi thout  d i ' l u t i on  (enabl ing high qual i t y  recuperation). 'But the dis-  

advantages are: . . 

1) . Thermal qual i t y  o f  the i n l e t  a i r  i s  c y c l i c ,  c rea t ing  a i r  t o  fue l  
. . 

. . r a t i o  cont ro l  prodl  ems and/or uneven hea t i ng  cycles. 

. . . 2 )  ,Systems, are very ' large - and consequently must be i n i t i a l  l y  included 

i n  the design . (i . e. , they are . no t  usual l y  capable o f  r e t r o f i t ) .  

3) I n i t i a l  cost  i s  h igh and t h e i r '  maintenance costs are s i gn i f i can t .  

P ro jec t  Object ives 

This p ro j ec t  i s  .aimed a t  developing a recuperator t h a t  overcomes' these 

heat recovery problems i n  the fo l l ow ing  ways: 

1) Select ion o f  mater'ials capable o f  heat recovery operat ions a t  high 

temperatures (1700°F t o  2800°F) t o  enable h igh enthalphy heat re- 

covery. 

- 2) Design o f  a continuous counterf low system t o  e l iminate  the tempera- 

. . t u r e  f l u c t u a t i o n  and re l a ted  problems t h a t  r e s u l t  d i r e c t l y  from 

cyc l  i c  systems' such as checker works'. 

3) Use d f  a graduated mater ia l  system so t h a t  inexpensive mater ia ls  can 

be used where temperature and other condi t ions- do no t  warrant the 

. .use o f  expensive ones. Checker systems usua l ly  incorporate t h i s  

philosophy to. advantage now but most continuous operat ional  systems 

do not. 

4) Development o f  a system composed o f  un i t a r y  modules t o  f a c i l i t a t e  

ease of assembly, disassembly, cleaning, p a r t i a l  replacement o r  



modi f i c a t i  on and t o  . pe rm i t  mater i  a1 graduat ion , mentioned i n 

3) above. 

The o v e r a l l  purpose o f  t h e  p r o j e c t  then i s  t o  develop, t e s t ,  and evaluate 

designs f o r  an i n d u s t r i a l  recuperator  f o r  a g lass furnace as w e l l  as other  

poss ib le  i n d u s t r i a l  app l i ca t i ons  such as s t e e l ,  aluminum, and cement. 

S p e c i f i c  goals t o  be achieved u l t i m a t e l y  f o r  a g lass furnace recuperator 

are: 

1) Recover up t o  70 percent  o f  furnace exhaust heat t o  maximize conser- 

vat ion.  

2) Recover some heat  i n  excess o f  2100°F t o  make use o f  h i g h  grade heat 

and excess energy n o t  requ i red  f o r  preheat ing combustion a i r .  

3) Reduce recuperator  const ruc t ion ,  maintenance, and replacement costs 

through modular design. 

4) Operate i n  and surv ive  a g lass furnace exhaust environment. 

Recovery o f  heat a t  2100°F represents a somewhat, heretofore,  unused 

energy source and opens avenues f o r  increased e f f i c i ency  and u t i l i z a t i o n ,  such 

as cogenerat ion o f  e l e c t r i c i t y  o r  s h a f t  power. 

The s p e c i f i c  Phase I research ob jec t i ves  were: 

1) Design op t im iza t i on  o f  t h e  bas ic  concept. Considerat ions inc luded 

thermomechanical s t ress  s t a b i  1 i ty  , dimensions and aspect r a t i o s ,  

j o i n t  design, seal mater ia ls ,  and heat t r a n s f e r  sur face design. 

2) Se lec t ion  o f  t h e  bes t  ma te r ia l s  f o r  recuperator  modules and j o i n t  

seals hased on mate r ia l  pr.uper.1 i e s ,  mate r ia l  performenee i n  the  

expected environment, and p ro jec ted  cos t  and f a b r i c a t i o n  1 i m i  ta -  

ti ons. 

3) Construct ion and short - term thermal t e s t i n g  o f  labora tory  t e s t  

modules. 

8 



. . 

4) ' .Development o f  d e s i g n  c r i  t k r i a ;  and t e s t  p lan  f o r  prototype and 

extended t e s t  modul es. 
. ~ 
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MODULE MATERIAL SELECTION 

Se lec t i on  'of  t h e  bes t  recuperator  ma te r i a l s  was a .  mul t i ,s tep process. 

Fol  1 owing i d e n t i f i c a t i o n  o f  design and opera t ing  c o n s t r a i n t s  , t h e  requ i red  

p r o p e r t i e s  were d e l  i neated. A p r e l  i m i  nary assessment o f  p o t e n t i  a1 mater i  a1 

candidates was then made based on general known p r o p e r t i e s  t o  i d e n t i f y  the  

p r e l i m i n a r y  candidates. These candidates were then evaluated f o r  t h e i r  pre- 

c i s e  p r o p e r t i e s  as they r e l a t e  t o  the  s p e c i f i c  design requirements and f o r  

t h e i r  r e l a t i v e  ,performance i n  the  working atmosphere. The conclus ions of 

these e f f o r t s  a re  presented below and i n  the  conclusi 'on sec t i on  under "Summary 

o f  Resul ts  and Ma te r ia l  Eva1 uat ions".  The f o l  low ing d iscussions prov ide  

d e t a i l s  o'f t h e  process. 

Del i neati 'on o f  Required Proper t ies  

The environmental cons t ra i  n t s  a re  imposed by g lass furnace gas e f  f 1 uents 

and h i g h  temperature combustion exhausts. I n  t h e  i s s u i n g  PON, the  sponsor 

a l so  s t i p u l a t e d  some economic and opera t ing  requirements. Add i t i ona l  re-  

quirements are  imposed by the  bas ic  design concept and counter f low opera t iona l  

mode. The general cons t ra in t s  used i n  s e l e c t i n g  p r e l i m i n a r y  candidate mate- 

r i a l  s were: 

1) Compressive s t reng th  r e t e n t i o n  i n  excess o f  2000 p s i  a t  temperatures 

above 1800°F 

2) Thermal c o n d u c t i v i t y  i n  excess o f  0.5 BTU/hr-ft-OF 

3) P o t e n t i a l  manufactur ing costs o f  l ess  than $50 per  pound o f  p roduct  

4) Previous usage i n  h igh  temperature appl i c a t i o n s  

5) P o t e n t i a l  to le rance f o r  g lass furnace atmospheres 

6) F a b r i c a b i , l i t y  i n  complex shapes o f  one- foot  diameter o r  greater .  



The f o l l o w i n g  paragraphs d iscuss the  ma te r ia l  p rope r t i es  i d e n t i f i e d  and 

used i n  the  eva lua t ions  and no te .  t he  r e l a t i v e  importance o f  each .p roper ty  t o  

t h e  o v e r a l l  eva lua t ion .  A m a t e r i a l ' s  c a p a b i l i t y  . ' t o  perform i n  a  g iven ap- 

p l i c a t i o n  depends upon bo th  i n d i v i d u a l  ma te r i a l  p r o p e r t i e s  and e f f e c t s  o f  

t h e i r  complex i n t e r a c t i o n s .  General ly,  a  minimum p rope r t y  value must be met 

b u t  beyond t h a t  no s i n g l e  p rope r t y  can be used. as a  s e l e c t i o n  determinant. 

 ath her , a1 1  m a t e r i a l s  meeting 'a1 1  minimum requirements remain v i a b l e  candi- 

dates sub jec t  t o  performance t e s t s ,  design ana lys is  .calcul .at ions, economic 

s tud ies ,  and f a b r i c a t i o n  l i m i t a t i o n  evaluat ions.  

I n  many cases data on an impor tan t  p rope r t y  were n n t  a v a i l a h l ~  i n  t.he 

1  i t e r a t u r e  because many candidates are new and developmental i n  n a t ~ r e ~ ' ~ ~ .  

I n  these cases alternative, r e l a t e d  p r o p e r t i e s  were used as  an indicat . inn nf 

probable re1 at i .ve v a l  ues. (For example, t he re  i s  an approximate c o r r e l a t i o n  

between f 1  exure s t reng th  and t e n s i  1  e. s t rength .  A measurement o f  e i t h e r  pro-  

v ides  an i n d i c a t i o n  o f  t he  o ther  value.) 

Physical P rope r t i es  

a) Grain S ize  

Deadweight loads, thermal induced s t ress ,  and v i b r a t o r y  loads are  i n -  

herent  i n  the app l i ca t i on .  Gra in  s i z e  and s i z e  d i s t r i b u t i o n  are  f a c t o r s  i n  

f 1  aw propagation, f r a c t u r e  toughness, and ma te r ia l  s t rengths.  S t r u c t u r a l  

weaknesses because of i n d i v i d u a l  g r a i n  defects and bonding Rscsms the limiting 

m a t e r i a l  p rope r t y  as g r a i n  s i z e  approaches ma te r ia l  th ickness dimensions. It 

was recognized t h a t  i n  o rder  t o  avo id  bond and g r a i n  f a i l u r e s  from r e s u l t i n g  

i n  module f a i l u r e ,  a  ma te r i a l  th ickness t o  g r a i n  s i z e  r a t i o  o f  20:l was des i r -  

ab le  as t h i s  l i m i t s  t he  e f f e c t  o f  a  s i n g l e  g r a i n  f a i l u r e  t o  a  5 percent  e f -  

f e c t i v e  reduc t i on  i n  s t reng th  i f  the  e f f e c t  o f  t h e  placement o f  t he  f a i l u r e  

p o i n t  i s  ignored. 



: . b) Densi ty  . . . . . . 

Densi ty  i ' s  a  fac to r  . in s t ress  c a l c u l a t i o n s  t o  some degree because gener- 

a ted  compressive,. 1  oads a re  'expected i n  , a l  1  recuperator  conf igura t ions .  More 

impor tan t ly ;  d e n s i t y . i s  an economic f a c t o r  because i n i t i a l  c o s t  and f i r i n g  

energy are  bo th  r e l a t e d  t o  the  weight  o f  a 'ceramic piece. No l i m i t  i s  s e t  b u t  

t h e  value en ters  i n t o  economic and s t ress  ca l cu la t i ons .  

c) Po ros i t y  and Gas Permeab i l i t y  

Except f o r  some unique and spec ia l  cases, p o r o s i t y  o f t e n  c o r r e l a t e s  t o  

gas pe rmeab i l i t y .  Gas pe rmeab i l i t y  o f  t h e  i n t e r f a c e  permi ts  i n t e r p a t h  leakage 

between h o t  and c o l d  gases and i s  extremely de t r imenta l  t o  recuperator  e f fec -  

. t iveness.  Because some leakage i s  expected t o  occur a t  j o i n t s ,  i t  i s  des i r -  

ab le  t o  l i m i t  ma te r i a l  p e r m e a b i l i t i e s  t o  1.0 m i l l i d a r c y  o r  less .  Th is  value 

was selected, s ince  i t  r e s u l t s  i n  about , 0 . l  percent  leakage a t  2000°F f o r  a  

pressure d i . f ference ' o f  2  p s i  ac.ross a  b a r r i e r  o f  0.02 f e e t  'where the  recuper- 

a t o r  gas i n t e r f a c e  area r a t i o  i s  5 ft2- per  1000 ft3 o f  c o o l i n g  a i r  pe r  hour. 

~ e c h a n i  c a l  Proper t ies  

a) E l a s t i c i t y  

As the  measure o f  t he  s t r a i n  produced by a  g iven s t ress ,  e l a s t i c ' i t y  i s  a  

key f a c t o r  i n  a1 1  s t ress  c a l c u l a t i o n s  i n c l u d i n g  ' thermomechanical s t ress .  

E l a s t i c i t y  a t  room temperature i s  r e a d l l y  determined and ava i l ab le .  A t  e le-  

vated temperatures the  e l a s t i c  range f o r  most ma te r i a l s  decreases considerably 

and ,.the e l a s t i c  1  i m i t  becomes a  key f a c t o r  as creep and non-e las t ic  de'iorma- 

.. t i o n s  'occur. The e l a s t i c  l i m i t  as a  f u n c t i o n  .of .  temperature was n o t  genera l l y  

a v a i l a b l e  i n  t he  1  i t e r a t u r e  f o r  candidate mater ia l 's .  . The scope o f  work f o r  

t h i s  e f f o r t  d i d  n o t  pe rm i t  extensive de terminat ion  o f .  elevated-temperature 

s .  . . 



p r o p e r t y  values. This  w i l l  be requ i red  i n  . f u t u r e  e f f o r t s  to:  check thermal 

s t resses i n  op t im ized designs. 

b) Strengths 

Because a  v e r t i c a l  s tack  c o n f i g u r a t i o n  i s  a  poss ib i  1  i t y ,  a  se l f - suppor t  

capabi 1  i t y  i s  needed, and compressive .-strengths o f  several thousand p s i  would 

be des i rab le  f o r  t h e  l oad  bear ing  p a r t  o f  a  s t ruc tu re .  Thermal s t resses are 

always present  and f l e x u r e  and t e n s i l e  s t rengths  a r e  a  measure o f  f a i l u r e  

res i s tance  under the rma l l y  induced,, s t resses.  Low t e n s i l e  s t reng th  can be 

designed around t o  some extent.. DIIP t.n t.he b r i t t l e  nature o f  most ccrimicct, 

t e n s i l e  t e s t s  a re  d i f f i c u l t  and ~ o s t l y . ~ ~ ' ~ ~  
I 

A c r i t i c a l  measure.of a  m a t e r i a l ' s  a b i l i t y  t o  w i ths tand crack propagat ion 

from small  de fec ts  i n  a  s t ressed s t a t e  i s  f r a c t u r e  toughness. This  i s  normal- 

l y  a  d i f f i c u l t  and expensive t e s t  f o r  b r i t t l e  mater ia ls .  i Ter ra  Tek has re -  

c e n t l y  developed a  re1 a t i v e l y  simple and extremely re1 i a b l e  method. o f  measur- 

i n g  t h e  f r a c t u r e  toughness o f  b r i t t l e  m a t e r i a l s  from room temperature t o '  about 

650°F. 30 32 ~ h d s e  measurements were made on pr ime candidates where values 

were n o t  a v a i l a b l e  i n  t h e  1 i t e r a t u r e .  

Thermal P rope r t i es  . . ., . 

a) Thermal Conduc t i v i t y  
d '-, . 

High c o n d u c t i v i t y  i s  a  p r i n c i p a l  element i n  heat  t r a n s f e r  and cos t  effec- 

t iveness.  Because o f  the  wide range o f  .coupled fac to rs ,  a  broad range o f  

c o n d u c t i v i t i e s  must be i n i t i a l l y  considered. conduc t i v i t y  i n  t h e  range of 0.5 

BTU/hr/ft2/ft/OF (about 1.0 Wjm0.K) o r  g rea te r  was considered as the  c u t o f f  

between a  conductor and an . insu la tor .  



b) L inear  Thermal ~xpans io 'n  

Thermal expansion i s  t he  p r i n c i p a l  cause' o f  s t ress  i n  a  recuperator  

because d i f f e rences  i n  temperature r e s u l t  i n  d i  f f e r e n t i  a1 expansion and d i  s- 

t o r t i o n .  A low value i s  des i rab le ,  a s i t  minimizes t h e  design l i m i t a t i o n s  

p a r t i c u l a r l y  a t  module j o i n t s .  An average expansion r a t e  from room 'tempera- 

t u r e ' t o  273Z°F o f  g rea ter  than 6~10'~/OF was deemed unacceptable. 

, c) Thermal Cyc l ing  and Thermal.Shock . . 

These p r o p e r t i e s  are  n o t  s t r i c t l y  thermal o r  mechanical b u t  a re  a  complex 

f u n c t i o n  o f  .both.. Cyc l i ng  f a i l u r e  i s  a  f a t i g u e  type f a i l u r e  r e s u l t i n g  from 

repeated s t ress ings  a t  l e s s  than t h e  one-time f a i l u r e  s t ress.  Shock f a i l u r e  

i s  a  r e s u l t  o f  excessive st resses r e l a t e d  t o  a  s i n g l e  r a p i d  temperature 

change. It i s  n o t  always easy t o  d i f f e r e n t i a t e  af terwards between these types 

o f  f a i l u r e .  Because both  c y c l i n g  and shock are  avoided whenever poss ib le  i n  

continuous .g lass  furnace operat ions,  they a re  n o t  imposed as pr imary  con- 

s t r a i n t s .  

d) Thermal creep : I +A 

S t rong ly  dependent upon temperature, creep i s  the .  predominant f a i l u r e  

mode as ma te r ia l s  approach the  me1 t i n g  p o i n t .  Ava i l ab le  data are very 1  i m i t e d  

f o r  candi date m i t e r i  a1 s. 
. . 

F a b r i c a b i l  i t y  . . . . 

Three fac to rs . .  en te r  i n t o  t h i s :  c o s t  o f ,  f a b r i c a t i o n ,  to- lerance I _  . .  ' con t ro l  

(which i s  most o f t e n  a  f u n c t i o n  o f  t he  forming method and ma te r ia l  p rope r t i es ) ,  
, .  " 

and the  i nhe ren t  s i z e  1  i m i  t s  because o f  f i r i n g ,  f u r n a c e '  1  i m i t s  land. i na te r i a l  
. . .. - . .  . . . a  f 

proper t i es .  A module dimension o f  6  inches was used. as a  pract i '=al_ c u t o f f  t o  .. . , * .  
t , . . $  ... . r ... 

m i  n imi  ze p o t e n t i  a1 f o u l  i ng. ~ o l e r a n c e  c o n t r o l  ;was. secondary, be{a;se some . .  . r '  . .  . 
small amount of machining on' c r i t i c a l  j o i n t  surfaces may be t o l e r a t e d  i f  



o v e r a l l  cos ts  a r e  kept  w i t h i n .  bounds.. Cost and f a b r i c a t i o n ,  a re  t r e a t e d  i n  

detai.1 i n  l a t e r  sect ions.  

Chemical S t a b i l i t y  

Th is  i s  a c r i t i c a l  f a c t o r  which . i s  d i f f i c u l t  t o  de f i ne  except by ac tua l  

t e s t s  i n  t h e  proper  environment because o f  t h e  v a r i a b i  1 i t y  i n  p o t e n t i a l  ex- 

hausts. Ava i l ab le  i n fo rma t ion  such as known h igh  temperature s t a b i l i t y ,  

i ne r tness  i n  an oxygen-r ich h igh  temperature atmosphere and good res i s tance  t o  

C02, CO, N2, H20, SiU2 and a l k a l i  a t t a c k  a t  e leva ted temperatures was used f o r  

i n i t i a l  screening. 

Propert. ies Eva1 uat ions  

P r i o r  t o  performance t e s t s  on v i a b l e  candidates i t  was necessary t o  

survey a broad range o f  p o t e n t i a l  candidate ma te r ia l s .  Through an i t e r a t i v e  

eva lua t i on  procedure t h e  most v i a b l e  candidates were i d e n t i f i e d .  

P re l im ina ry  Assessment 

I n i t i a l  p rope r t y  eval u a t i o n  e f f o r t s  centered on a 1 i t e r a t u r e  search, 

d iscussions w i t h  prominent ceramic is ts  and m e t a l l u r g i s t s ,  and i n t e r a c t i o n s  

w i t h  techn ica l  representa t ives  o f  manufacturers o f  ceramics , a n d  glass. 

P o t e n t i a l  candidates were i d e n t i f i e d -  i n  t h e  f i v e  ca tegor ies  discussed below. 

Meta ls  Th i s .  group conta ins such lsigli tenlperba tur-e rnaters.ial s as p lat inum, 

i r i d i u m ,  molybdenum, niobium, osmium, rhenium, rhod i  um, tan-  

talum, tungsten, y t t e r b i u m  and several others.  some o f  these 

cand ida tes ,can endure the  environment b u t  the  cos t  f a c t o r s  a re  

p r o h i b i t i v e  i n  a1 1 cases when compared w i t h  ceramics. 



Carbides One of the most highly touted candidates in this group, si 1 icon 

carbide has high thermal conduc.tivi ty and relatively low 'expan- 

sivity. It can be made strong and dense and, up t .  2550°F, has 

' shown' good slag cor~osio'n resistance. l 1  Many processes and 

trade names confuse ' the' choice as different binders wi 1 1  pre- 

sent their own chemical characteristics in a furnace environ- 

ment. 

Nitrides Only silicon nitride can be considered a real possibility. 1.t 

has 1 imitations similar to ' silicon carbide plus' lower. thermal 

conductivity. Boron nitride has good' conductivity, but it is 

. . anisotropic, and .forming usually causes the minimum value to 

occur in a direction perpenddcular to the thin section. 

Oxides Thi,s is the largest group of candidates.. With a few excep- 

tions, they are generally strong and relatively stable. Beryl- 

lia or beryllium oxide has the highest thermal conductivity. 

Aluminum oxide is used extensively in the glass industry be- 

cause of its corrosion resistance, but has a lower thermal 

conductivity. The expansivity is also greater in general for .. 
oxides than nitrides and 'carbides. Other oxides such as MgO, 

Mg ' A1203 and Zr02 are candidates if sodium vapor limits the 

use of A1203; otherwise they have no advantage over A1203 and 

are less available. Also, Zr02 has a phase change which can be 

detrimental under certain thermal conditions. 

Si 1 icates This group i ncll ude6 mu1 1 i tes and cordieri tes. A1 though corn 

dierites have a temperature threshold in the range of 2200°F, 



t h e i r  extensive use i n  t h i n  substrate form f o r  automotive c a t a l y t i c  

'1 converters i s  a d e f i n i t e  . p lus  f o r  considering them f o r  a t  1 east the 
, . 

1 ower temperature modules. ~ u l l  i t e  i s  weaker than a1 umi num oxide 

and comparable w i t h  co rd i e r i  te.  Mu1 1 i t e  a lso has expansivi t i e s  

, intermediate t o  these two mater ia ls.  Cord ier i  t e  may have the lowest 

expansi v i  t y  o f  a1 1 candidates. 

From these general categories, 31 module mater ia ls were i d e n t i f i e d  and 

assessed as being able t o  meet - the broad design c r i t e r i a ,  using ava i lab le  
. , 

f ab r i ca t i on  techniques (Table I). The spec i f i c  qual i t i e s  were shown i n  t h i s  

t ab le  on ly  i f  they represented a po ten t i a l  problem o r  an unusual advantage o r  

s i tua t ion .  The mater ia ls  were separated i n t o  three categories: 1) Prime 

candidates, meaning very 1 i kel y t o  meet design c r i t e r i a ,  2) secondary candi- 

dates, meaning probably able t o  meet design c r i t e r i a ,  and 3) t e r t i a r y  o r  

questionable candidates f o r  meeting design c r i t e r i a .  Generally, re f rac to ry  

grade mater ia l  s have 1 arqe q ra i  ns and e x h i b i t  very 1 ow strengths compared w i th  

the f i n e  grained, h igh qual i t y  mater ia ls.  This i s  the p r i nc i pa l  reason f o r  

t h e i r  low assessment. Nevertheless, the best  were chosen f o r  f u r t he r  evalua- 

t i o n  on the basis o f  low cost  considerations. Castables are h igh ly  var iab le  

and .control:  i s  d i f f i c u l t  because o f  the f ab r i ca t i on  methods used. 
. * ,  . *, ' 

Nevertheless, I ' t he i r  avai 1 abj 1 i ty , cost, and ease o f  f ab r i ca t i on  warranted 
\ 
' i 

t h e i r  i nc lus ion  i n  the evaluet ion program. 

From t h i s  assessment, 15 1 eadi ng candidates were i d e n t i f i e d  and materi a1 

samples . f o r  t e s t i n g  were ordered. A s ixteenth mater ia l  (AD 998 alumina) was 

added t o  the program l a t e r .  
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TABLE I 
. . 

, MATERIALS ASSESSM~NT SUMMARY 

. .  

. 

.. 

MATERIAL 
NO. 

1 t o 8  

1 

. 

2 ' 

3 

4 

5 

6 

7 

' 8  

9 

' 

-10 t o  11, 

10 

11 

I 2  

13 

I . .  . < 

MATERIALS 

S i l i c o n  
Carbide 

S ic  Dense, 
Sintered 

Porous SIC 
Self bonded 
sintered, 

Reaction 
bonded S i c  

Reacton 
Bonded Sic  

Si3N4 
bonded S i c  

Si20N2 
bonded qiC 

CVO coated 
Sic base 

Pure CVO 
Sic  

Oxide 
(Fe203) 
bonded 
Sic  

S i l i con  
N i t r i d e  

Si,N, 
Hot Pressed 

Reaction 
bonded 
Si 3N4 

Si20N2 

Sialon 

_ . _  . .~ 

SUPPLIEW 
TMDE NAKE 

. . 

Carborundurd 
Sintered 

: 

Norton/ . 
'NC 400 

Refel/Refel 
NortonINC-430, 
Carporundurd 

CarbowndumJ 
KT 

WortonIW-130, 
Carbo~nmrm/ 
Refrax 20 

NortonINC-163. 
Carbo~ndum 
Refrax 50 

MTCICVO 

MTCICVO 

NortonINC 127 

NortonINC 132 

NortonINC 350 
GarrettIRBN 101 

NortonlSioxyn 

Univ. of Uta! 
Sialon 

POSITIVE QUALITIES 

High thermal conduct iv i ty .  
Lou thermal stress. 
LOW thermal expansivi ty .  

No Free Si. 
Strong. 
Stable a t  h igh tenperature 
Estimated t o  u l t ima te l y  be 
l eas t  expensive S ic  form. 

Pure Sic. 
Possibly a cheap. base for  
a CVO c w t e d  mater ia l .  

Dense, nonporous . 

Dense, nonpomus ' ' 

Readily avai lable, 
inexpensive. . . 

Readily avai lable. 
inexpensive. 

Dense coating o f  Pure. 
impermeable S ic  on an 
inexpensive core of Sic. 

Dense pure Sic, non- 
permeable. 

Used i n  turb ine appl ica- .  
t ions and other  h igh 
temperature appl icat ions. 
wnse, puw. 

. .  '.. 

. . 

NEGATIVE QUALITIES , 

. . 
Behavior questionable 
i n  condensing glass 
fume contact. 

R t e r i a l  i s  s t i l l  i n  
developnental stage. 

~ . ::!', ';. :' 

Very pomus. and 
permeable.. 

Contains some f ree ' 
s i l i con .  

. 

h y  contain some 
i npu r i  t ies .  

Refractory grade gra in  
s i re .  some pomsi ty .  . 

Refractory grade gra in  
size. so, pomsi ty .  . 

* 

Requires 2 suppl iers 
a.nd 2. operations. . .. 

) 

Expensive. must be 
f o m d  around a core 
usually. carbon. 

I ron may be reduced 
i n  furnace, i r o n  
should be-avoided due 
to i t s  t o l o r i n g  e f f ec t s  
on glass. 

. 

Very expensive, I imi ted 
s i ze  a v a i l a b i l i t y .  

Expensive i n  t ine-gra in  
form, cannot be made 
dense i n  coarse grains. 

Not comnercially ava i l -  - 
able. character i n  doubt. 

REMARKS 

Pomsi ty. if any, , 

should p a r t i a l l y  
close during use. 

' 

Use as a base f o r  
CVO (see 87) 
Use as an untreated 
material,  

NC 420 i s  a react ion 
form of  NC-400: Super 
KT s i m i l a r  t o  NC 430 
and re fe l  : Refel i s  
a B r i t i s h  product - 
f i r s t  on market 

~nowiedge 'o f  exact 
processing f o r  manu- 
facture no t  avai lable. 

(see p) . 

%30; Z s  
no appaen t  advan- 
tage o f  Si N over 
Si20N ~ f f j e r e n c e s  
may sgo* up i n  furnace 
tes t .  . 

Behavior I n  furnace ' 

may show advanta es 
of pure CVO ( #BY 
(a lso see 62) 

2nd order  choice. 

. , 

Inexpensive medium 
gra in  b r i c k  ava i lab le  
f o r  tes t ing.  Cutt ing 
w i l l  be required. 

Univers i ty  o f  Utah 
makes small pieces. 
inadequate for  tes t -  
ing. 

TEST 
PRIORITY 

1 

1 

3 

1 

2 

1 

2 

1 
' 

' 

' 

2 

3 

3 

1 . 
. 

2 

. .  . 

PUROlASE 
ORDER 

Ves 

., 

Yes ' 

No 

Yes 
NC 430 

Yes 

'Yes 
Refrax 

20 

Yes 
Refrax 

20 

NO. 
but  may 
order 
when NC 
400 i s  
ava i lab le  
(See 82) 

Yes 

NO 

NO 

Yes 
RBNlOl 

Yes 

NO 

FURTHER 
EVALUATION 

Yes 

, 

Yes 

No 

Yes, 

Yes . 

Yes 

Yes 

NO . 

Yes 

No 

NO 

Yes 

Yes 

No 



TABLE I (Continued) 

MATERIALS ASSESSMENT SUMMARY ' 

. . .  

FURTHER 
EVALUATION 

Yes 

Yes 

Ye5 

No 

yes 

NO 

No 

No 

Yes 

NO 

.No 

NO 

Yes 

Yes 

Yes 

Ila 

No 

NO 

- -. -. - 

MTERIALS ~ ~ ~ ~ L ~ ~ {  POSITIVE QUALITIES NEWTIVE QUALITIES REMARKS ----- 
14 t o  17 Alumina, Good h igh temperature Thermal expansion 

A1 203 qua l i t i e s ,  used i n  many greater than SIC. re-  
glass operations. s u l t i n g  i n  greater  . . ,stress: . , 

14 Poly- CoorsIVistal Dense, transparent t o  Expensive, usua l ly  99.9% pure 
c ~ y r L o l l  IIIE b ~ a d  I R  a ~ ~ d  v l s i b l e  I i l n l  Led lu slndll shapes. 

. AlZ0, r ad ia t i on  spectrum. 

I 5  94% Alumina CoorsIAD 94 Dense Thermal stresses may be 
a problem. 

16 85% Alumina CoorslAD 85 Dense Thermal stresses may be 
a problem. 

17 . Refractory . NortonIAH 1946 Not dense re f r ac to r y  Fuze cast then re-  
shapes only. ground and re f i r ed .  

18 t o  20 k l l i t e  Thermal expansion 
intermediate t o  Sic 
and A1203. 

18 Mu1 1 i t e  Coors/Mull i t e  Dense 

19 Refractory N o r t o n l k l n o -  Not completely dense, Fuze cast, reground 
r i t e  o r  M-176A fo r  r e f r ac to r y  shapes, and then re f i red.  

poros i ty  1 ~ 2 .  

20 Coorsl - Not dense, r e f r ac to r y  ~ i f f e rence ;  between 
t E : i o r y  shapes. Norton h toors pro- 

. . cesslng are not  known. 
Mater ia ls  may be 
d i f f e r e n t  i n  character. 

E cast 
CorningIAZS Dense, good i n  glass h s t  be shaped w i t h  

contact. dian.ond.tools. Very 
onponcivo t n  fornod 
shapes. 

22 b r d i e r i t e  COO~~ICO-I lnexpensively fabricated. maximum temperature 
l a rge  e x i s t i n g  market. l imi ted.  2200°F-255O0F 

23 t o  25 Basic Eas i l y  ava i lab le  i n  non- High C.O.E. 
Raf rar tnr isc  hence fnrmc, innrpan%ive. 

23 
MgO 

Successful checker NO one f ab r i ca t i ng  
mater ia l .  dense forms. 

24 M 0.Crz03 Successful checker No one f ab r i ca t i ng  ' 

9 mater ia l .  dense forms. 

25 . M 0.A1203 CoorsISpinel More res i s t an t  t o  a l k a l i s  Comnercial Fabr icat ion 
9 than A1201 . 1 imi ted. 

26 Z ~ O  Coors/Zirconla May have good corrosion High thermal expansion Bet ter  i nsu la to r  
, resistance. ( >M,O) than m s t  materials, 

27 CaO Bonded Possibly inexpensively Considerable. poms i t y ,  Readily ava i lab le  
castable fabricated. t h i n  membrane d i f f i c u l t  
r e f r ac to r y  Lu fobrlcaLe. 

28 Phosphate Possibly inexpensively . Cdnsiderable poros i ty ,  Readily ava i lab le .  
Bonded fabricated. t h i n  membrane forma- 
Csctable t i o n  d i f f i c u l t .  
Refractory 

C 9  b e r y l l i a ,  l l igh  b n d u c t i v i  t y  Potential  hea l th  I inrd t o  obta in  duc 
Be0 hazard. t o  hea l th  hazard. 

30 Plat inum 
Pt. Excel l e n t  mater ia l  Extremely expensive. 

for  t h i s  app l ica t ion.  

' 31 ~ o m n  ~ n i s o t m p i c  con- 
Ni Lrir le duc t i v i t y .  Very d i f f i -  

c u l t  t o  fabr icate .  
Oxidizes a t  about 120O0F. 

TEST 
PRIORITY 

1 

. . 
1 

1 

3 

1 

3 . 

, 3 

3 

I 

3 

3 ' 

2 

2 

2 

2 

3 

3 

3 

PURCHASE 
ORDER 

. .. . 
Yes 

Yes 

'Yes 

NO 

yes 

NO 

No 

NO 

Yes 

NO 

NO 

No 

yes 

Order . 
l a t e r  

Order 
l a t e r  

Ilo 

NO 

NO 



Mechanical and Thermal Proper t ies  Eva1 uat ions 

Many o f  t h e  candidate mater i  a1 s a re  p r o p r i e t a r y  w i t h  a speci f i c manufac- 

t u r e r .  Furthermore, t he  f a b r i c a t i o n  process usual 1y inc ludes  va r iab les  t h a t  

g i v e  r i s e  t o  p rope r t y  dev ia t ions  as compared w i t h  t h e  pure gener ic  ma te r i a l  

made f o r  l abo ra to ry  t e s t s .  As a r e s u l t ,  much o f  t he  a v a i l a b l e  i n fo rma t ion  i s  

i n  t he  form o f  manufacturer s p e c i f i c a t i o n s .  

The f o l  low ing subparagraphs discuss the  unique p r o p e r t i e s  and considera- 

t i o n s  f o r  t he  pr ime candidates. Each ma te r ia l  i s  i d e n t i f i e d  by i t s  ma te r i a l  

number. 

No. 1 Sin tered S i l i c o n  Carbide. Wi th about 0.3 percent  f r e e  

carbon and 0.5 percent  f r e e  boron, s i  1 i c o n  carb ide o f  l ess  than a micron i n  

p a r t i c l e  s i z e  can be s i n t e r e d  t o  a nonporous condit ion.,  General E l e c t r i c ' s  

Beta and Carborundum's S in tered Alpha products are i n  t he  research and develop- 

ment stage. 

No. 2 Recrysta l  1 i z e d  S i  1 i c o n  Carbide. This  i s  f i n e  gra ined 

s i l i c o n  carb ide  formed and heated t o  s i n t e r i n g  temperatures. Without f r e e  

carbon and boron i t  w i l l  y i e l d  vapor t ranspor t ,  and c r y s t a l s  w i l l  grow and 

s t i c k  together  w i thou t  shrinkage. The r e s u l t  i s  a porous and permeable b u t  

, ra the r  s t rong S I C  skeleton. Thermal c o n d u c t i v i t y  i s  thereby decreased by . . . 

about a f a c t o r  o f  2 from pure, dense S i c .  The v a r i a t i o n  in tended here 

invo lved us ing  CVD t o  coat  o r  form an impervious s k i n  on t h i s  m a t e r i a l ,  making 

i t  s a t i s f a c t o r y  f o r  design c r i t e r i a .  

Nos. 3 & 4  S e l f  Bonded S i l i c o n  Carbide. This  s i l i c o n  carb ide  

*is r w i c t i o n  s i n t e r e d  us5iig s i l i c o n  and carbon as admixtures t h a t  f o r m  s i l i c o n  

carb ide i n  s i t u .  These are much less  porous than r e c r y s t a l l i z e d  Sic. The 



Refel  type uses s i l  icon: carb ide w. i th '  . .  . g raph i te  i n t o  .which . . i s  absorbed me1 t e d  

s i l i c o n  much as a -  sponge absorbs water. Some f r e e  s i l i c o n  f i l l s  .the pores'. 

. .  . Nos. 5. & 6 N i t r i d e  Oxyn i t r i de  Bonded S i l i c o n  Carbide. . . 

Carborundum uses s i l i c o n  carb ide w i t h  s i l i c o n  and reac ts  the  powder. compact a t .  

temperatures near t he  m e l t i n g  p o i n t  o f  s i l i c o n  w i t h  n i t r o g e n  t o . g i v e - S i 3 N 4  as 

t h e  bonding agent. Norton uses the  heoxyn i t r i de  in"a s i m i l a r  fashion.  These . 

m a t e r i a l s  proved t o  be t o o  weak t o  stand sample p repa ra t i on  i n  a 3/8- inch 

cross sect ion.  , 

Nos. 7 &. 8 Chemically Vapor Deposited S i l i c o n  Carbide. - . -- . . . - This 

can be formed .as a pure ma te r ia l  on a removable substrate,  usual ly, .carbon, o r  

a permanent subs t ra te  such. as . selfr'bonded, s i n t e r e d  . S i c .  It was o r i g i n a l l y . .  

in tended t o  do the  . l a t t e r  us ing  NC 400 as a base ma te r ia l  (No. 7). Be1 i v e r y  

o f  s u f f i c i e n t  NC 400, however, cou ld  n o t  be achieved and . .. a l t e r n a t i v e  samples 

o f  pure CVD (No. 8) were ordered from MTC i n  Dal las,  Texas. 

Nos. 10 & 11. S i l i con . .N i t r i de .  Hot p ress ing  i s  possible,, b u t  

to le, rance c o n t r o l  i s  so poor  t h a t  "diamond t r u i n g "  and/or g r i n d i n g  i .s usually 

necessary f o r  any moderate to le rance.cont ro1 .  This  r a i s e s  p a r t s  .costs tremenS . . 

dously.  The r e a c t i o n  bonding technique i s  a nonshr ink ing pro.cess and- thus i s  

capable o f  very t i g h t  to le rance c o n t r o l .  Some problems w i t h . h e a t  bu i l dup  and 

r e a c t i o n  complet ion I n  t h i c k  shapes may be , d i f f i c u l t  to.overcome i f  wa l l  

th ickness  .eyer needs . t o  exceed 0.75 inches.. The- lower.  costs,  however, make - 

t h e  reac t i on .  bonded m a t e r i a l  (No. l l ) , . t h e i  f i r s t  choice. . . 

No. 12 Sioxyn (Si,ON,). A ~noder'ately inexpensive p l a t e  6l' 
L L 

t h i s  mater ia l ,  was obta ined from Norton. . It showed ,considerable weakness 

d u r i n g  c u t t i n g  operat ions . f o r  furnace.coupon sample .preparat ion. . . . . 

. . . . . . . .  , .. . 



Nos. 14, 15 81 16 Aluminum Oxide. The three p u r i t i e s  repre- . . . -  . 

sented i n  these mater ia ls span the range o f  h igh q u a l i t y  alumina. The impu-. 

r i t i e s  i n  AD 85 and AD 94 are o f  considerable .concern, because t h e i r  reac t ion  
i 

t o  furnace atmospheres may d i c t a te  overa l l  effect iveness. Vista1 i s  p a r t i c -  

u l a r l y  a t t r a c t i v e  f o r  h igh temperature uses, because o f  i t s  h igh p u r i t y  and 

translucence t o  the v i s i b l e  and i n f r a red  por t ions o f  the energy spectrum. 

AD 998 was subsequently added t o  the t e s t  program because o f  the poor perform- 

ance o f  AD 85 and AD 94. 
. I  * 

No. 18 Mul l i t e .  A mull  i t e  porce la in  can be obtained as a 

dense s in tered mater ia l .  Because i t  has a lower expansivi ty , i t  has an advan- ' ' 

tage over alumina. I t s  mechanical strengths, however, are somewhat less than ' 

those o f  alumina. 
. . 

No. 22 Cordier i te.  This i s  a r ead i l y  ava i lab le  mater ia l  i n  . .. 
. . ; +  

wide use now; hence, i t s  value f o r  t es t i ng  f o r  t h i s  app l ica t ion.  -1ts.tempera-, . 
t u r e  l i m i t a t i o n  o f  about 2200°F and reported react ion w i t h  glass, furnace'. 

exhausts are major concerns. # I .  
, +- ; 2 -  

, 3 -' 

No. 26 Zirconia. This mater ia l  has proven high temperatube 
" 1 

capabi 1 i t y ,  bu t  i s  lack ing i n  necessary conduct iv i ty  and expansivi t y  1 i m i  t s .  

Furthermore, slow ac t ing  bu t  ser ious ly  damaging phase changes occur when Zr02 

passes through a speci'f ic elevated temperature range. I't was selected f o r  

f u r t he r  t e s t i n g  because a) i t s  use as an insu la to r  may prove valuable f o r  the 

recuperator she1 1 and b) i t  i s  being t r i e d  by other h igh temperature recbper- ' . 
. .  . , . 

. , . . 
a to r  researchers. . .. . 

Table I 1  presents spec i f i c  property values as ava i lab le  f o r  the 15 candi- 
. ' "  

I .  

dates i n i t i a l  l y  selected f o r  f u r t he r  evaluation. Many di f ferences were noted *, 
, - 

when generic values from the 1 i tera tu re  were compared, w i t h  spec i f ic  p roduc t  



TABLE 11 

RECUPERATOR MODULE 
MATERIALS PROPERTIES EVALUATION 

Flexure (Rupture) 

Rahmnces - .  
-- ;;, 9;2101' ' 

7.11.2l.22' 7, 11; a 2 6  !i 14 20 23 . 



TABLE 'I I (Con ti nued) 

RECUPERATOR MODULE 
MATERIALS PROPERTIES EVALUATION 

Hardness: Test Type 

Strength: Tensi le  

Compressive 

Flexure (Rupture) 

Fracture Toughness 

References -- 25 26 12.14.1s.a4 IS,  24 IS,  24 16 13 



data. I n  a l l  cases, s p e c i f i c  p roduct  values are repor ted  when ava i l ab le .  The 

drop i n  thermal c o n d u c t i v i t y  from room' temperature t o  3000°F seems t o  be 

general w i t h  a l l  ma te r i a l s .  

Frac ture  toughness values are  d i f f i c u l t  t o  ob ta in  by standard techniques. 

Furthermore, c o r r e l a t i o n  o f  values f o r  d i f f e r e n t  accepted techniques i s  no t  

good f o r  b r i t t l e  ceramics. Ter ra  Tekls  r e c e n t l y  developed technique noted 

e a r l i e r  was used i n  o b t a i n i n g  cons i s ten t  f r a c t u r e  toughness data. These t e s t s  

wcre run  on as many ma te r ia l s  as cuu ld  be ubta lned f rom supp l je rs .  I n  the  

case o f  KT and S in tered Alpha, t he  manufacturer 's  da ta  had a l a r g e  spread o f  

values f o r  d i f f e r e n t  techniques. KTi, room temperature values f o r  S in tered 

Alpha ranged from a low o f  2.6 K s i f i  f o r  t he  sur face crack bend method t o  a 

h igh  o f  4.9 K s i f i  f o r  a s i n g l e  edge riutched beam t e s t . 3 3  Ter ra  Tek measure- 

ments prov ided a value o f  2.3 Ksifi. Values prov ided i n  Table I 1  are Terra 

Tek values a t  room temperature. Elevated temperature data are  from the  o ther  

references noted i n  Table 11. 

An important  element i n  the  ma te r ia l s  eva lua t i on  i s  the  use o f  these pro-  

p e r t i e s  t o  c a l c u l a t e  the  thermal s t resses and engineer ing sa fe ty  margin i n  the  

design c a l u l a t i o n s .  Also, the  change i n  s t reng th  as measured by f l e x u r e  t e s t s  

(discussed l a t e r  i n  t he  Performance Evaluat ion sec t ion)  served t o  evaluate 

each ma te r ia l .  

Performance Test  Furnaces and Glass 

Two types o f  furnaces were used t o  t e s t  ma te r i a l s  performance: one f o r  

thermal c y c l i n g  and thermal shock and the  o ther  f o r  long-term exposure e f f e c t s  

i n  t he  g lass and combustion exhaust environments. 



The thermal shock and cyc l i ng  furnace consisted o f  a r e f r ac to r y  l i n e d  

s tee l  chamber used as a "g lo ry  hole" i n  glass blowing operations. I t  i s  

normally cycled between room temperature and 2200°F on a d a i l y  basis. F u l l  

temperature excursions occur i n  about 30 minutes. Figure 1 shows some t e s t  

samples i n  the rear  o f  the furnace chamber. 

A two-furnace f a c i l i t y  was designed t o  permit  t e s t i n g  i n  a combustion 

product exhaust and glass furnace exhaust a t  the same time. This permit ted 

greater f l e x i b i l i t y  i n  the t e s t  program, more mater ia ls,  and a shorter  t ime 

frame. The dimensions o f  the furnace and f l u e  d ic ta ted  the physical  dimens- 

ions o f  the mater ia l  samples t o  be tes ted i n  the exhaust environment. The 

front-to-back cross sect ion i n  Figure 2 shows a d e t a i l  o f  the sample i nse r t i on  

area o f  the f l ue .  

The exhaust environment furnace designs were bas i ca l l y  the day tank 

furnaces normally used a t  M i l l c reek  Glass f o r  a r t  glass production. Modif ica- 

t i ons  i n  mater ia ls  and operations were made t o  accommodate the special t e s t  
- 

requirements which d i f f e r e d  from those o f  the normal day tank. 

Probably the two most important fac to rs  i n  determining the environment 

under considerat ion are the temperature and the composition o f  the glass being 

melted. A t  Mi l lc reek,  the glass used i s  between standard soda-lime and bora- 

s i l i c a t e  glasses i n  composition, and contains some components t h a t  do not  ' '  

appear i n  most standard compositions. Furthermore, because the temperature a t  

which glass i s  drawn from a furnace i s  400°F t o  800°F below the temperature a t  

which i t i s  melted, a day tank type o f  furnace such as M i l l c reek  uses spends 

much o f  i t s  t ime a t  a lower temperature than the operat ing temperature o f  a 

continuous furnace. It was decSded t h a t  these di f ferences impl ied t h a t  t h e -  

research work was no t  compatible w i t h  M i l l c reek ' s  product ion furnaces. There-\ 

fore, the  new furnaces were designed and constructed f o r  p r o j e c t  use t o  



Figure 1 .  The thermal cycling furnace. Samples are upright in the rear. This furnace i s  used 
as the "glory-hole" during glass blowing. I t  i s  cycled from room temperature to over 
2000°F'very rapidly on a daily basis.. 
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Figure 2 .  Special day tank type furnaces used at Millcreek Glass for material tests. 

( 



contai n standard i ndustry g1 ass formulations a t  indust ry  temperatures. 

Because eas i l y  the major i ty  o f  the glass produced by industry i s  a soda- 

l ime type, i t i s  prudent t o  use t h i s  as the t e s t  composition. Glass formula- 

t i o n  ERDA 1, which was developed t o  match the i ndus t r i a l  furnace atmospheres, 

was subsequently modif ied t o  DOE 2 formulation t o  provide a be t te r  match t o  

the f i n a l  glass product (Table 111). 

Although the glasses are representative o f  soda-lime glass used i n  the 

p l a t e  glass and container glass industr ies,  any one p lan t  i n  the glass 

indust ry  would probably not  use barium, c r yo l i t e ,  and borax a t  the same time. 

These addit ions are used i nd i v i dua l l y  i n  small quant i t ies  i n  many soda-lime 

formulations and it was f e l t  t h a t  they should be included t o  give the exhaust 

a l l  the components t h a t  might be found i n  any operating plant.  

TABLE I11 

GLASS FORMULA COMPARISON 

(Pounds) 

S i O Z  

Na2CU3 
K i  riymari Feldspar 

F4Kona Spar 

CaC03 

Do 1 omi t e  

BaC03 

Cry01 i t e  

Anhydrous Borax 

ERDA 1 

63.0 

22.0 

10.0 

DOE 2 

65.0 

21.0 



Figure 3 shows the d e t a i l s  dur ing furnace construct ion. The t i l e s  t h a t  

formed the glass mel t  tank are an AZS fused-cast mater ia l  from Carborundum 

Corporation ca l l ed  Monofrax S-3. These and a comparable product made by 

Corhart are the indust ry  standard f o r  soda-lime tank blocks. The s idewal ls of 

the furnace above the glass l eve l  are Cl ipper D. P. "Super Duty" f i r e b r i c k s  

which contain over 40% a1 umi na and about 50% s i  1 ica. The roof i s '  made from a 

Babcock and W i  1  cox castabl e 141A high a1 umi na castabl e re f rac tory .  These high 

alumina mater ia ls d i f f e r  markedly from those used i n  continuous tanks where 

s i l i c a  blocks would be the norm. The reason for  t h i s  choice i s  t h a t  s i l i c a  

blocks have large thermal expansion coe f f i c i en t s  a t  temperatures below approxi- 

mately 1800°F. This makes them d i f f i c u l t  t o  heat i n  a small furnace wi thout  

spa1 1 i ng. Further, i f  modi f icat ions are required i n  a furnace dur ing tes t ing,  

s i l i c a  blocks are a problem because they are extremely d i f f i c u l t  t o  cool and 

reheat w i t h  enough cont ro l  t o  prevent collapse. Ex te r io r  i nsu la t i ng  b r i cks  

provide s t r uc tu ra l  support and thermal insu la t ion.  Granular Vermicul i t e  

completed the i nsu la t i on  requirements. These chosen mater ia ls are equivalent  

t o  mater ia ls  t h a t  M i l l c reek  Glass has used successful ly  i n  the past  and there 

was no question t h a t  they would serve successfu l ly  under t e s t  condit ions. 

Performance Tests i n  an Exhaust Environment 

A furnace exhaust environment can be characterized by three elements: 1) 

thermal condit ions, 2) combustion products which are re l a ted  t o  f ue l  and 

f u e l / a i r  r a t i os ,  and 3) furnace product wastes. While not  a1 1 condi t ions for  

a l l  po ten t i a l  furnace appl ica t ions could be tes ted i n  t h i s  p ro jec t ,  i t  was 

possib le t o  t e s t  mater ia ls i n  two d i f f e r e n t  condit ions. A pure combustion 

product atmosphere (where no glass was ever melted i n  the t e s t  furnace) was 



Tank blocks i n  place F i r e  br ick  i n  place 

Crown and insulat ion br ick  i n  place Two furnaces p r i o r  t o  f i n a l  enclosure 

Figure 3. Test furnaces shown during progressive construction stages. 



established i n  one o f  the two material t e s t  furnaces. This exhaust contained 

Cop, 02, N2, and H20 as pr inc ipal  components a f t e r  the a i r  and natural gas 

combustion. This condit ion provided baseline data on material performance i n  

a high temperature combustion product atmosphere which can be relat.ed t o  

expected performance i n  any furnace. The other o f  the two t e s t  furnaces 

produced soda-lime glass during the en t i re  t e s t  and the exhaust contained the 

J -  by-products o f  glass melt ing i n  addit ion t o  the combustion productsiw42, ,:,z'+.E-,%- 
I >  L , n h ,  ;L - 

, ' - 2 1 ' ~ d !  ;L- * An absolute performance i s  d i f f i c u l t  t o  p red ic t  from any single t e s t  
*- 

, because o f  the great v a r i a b i l i t y  i n  conditions from one glass furnace t o  
I 

- 7 7  , . I  another and even from one exhaust por t  t o  another. To overcome t h i s  d i f -  - . - - 
8 5 ,  7 ,  

. . 
; f i cu l t y ,  a widely accepted method o f  measuring re la t i ve  performance f o r  

refractory materials has been developed and i s  i n  general use. 34 This method 

consists o f  placing the ref ractor ies d i r e c t l y  i n  the exhaust stream which 

tends t o  accelerate time dependent ef fects.  Mu1 t i p 1  e materi a1 s are tested 

simultaneously and the r e l a t i v e  ef fects  provide a measure o f  l i k e l y  re la t i ve  

performance i n  practice. By using t h i s  t e s t  method, investigators can ident i -  

f y  the best materials a f t e r  a r e l a t i v e l y  short t e s t  period. 

Test samples were fabricated from rods and tubes o f  candidate materials 

and inserted i n t o  both exhaust f lues transverse t o  the gas f low a t  a range o f  

temper.alur*es f ram 2000QF t o  2850°Fl 

It was desirable t o  maintain constant conditions during the tes ts  and 

duplicate as closely as possible conditions expected i n  an indus t r ia l  glass 

furnace. To do th i s ,  the fol lowing measurements were used as controls: An 

Omega model "Sn sheathed, ungrounded thermocouple ( P t  vs. P t  10% Rh) period- 

i c a l  l y  monitored temperature p r o f i l e s  of the f l ue  sample area. An Orsat gas 

analyzer model 621 A.31:30 monitored exhaust chemistry f o r  02, C02, and CO. 



Except dur ing shor t  periods o f  burner f a i l u re ,  f l u e  condi t ions were maintained 

oxygen r i c h  w i t h  exhaust O2 kept between zero and p lus  5 percent. Rockwell 

model 321 CFH natura l  gas meters monitored fue l  consumption on each furnace. 

Furnace temperatures were kept constant a t  a high melt  temperature. The 

glass formulat ion ERDA 1 was used f o r  several months and then changed t o  DOE 2 

t o  improve the f i n a l  glass product match w i t h  indust ry  glass. To duplicate 

chemistry, t iming, and charge carryover condit ions, the day tanks were charged 

w i t h  addi t iona l  glass batch a t  frequent in te rva ls ,  general ly three o r  four 

times per  day. Glass melt  was removed as necessary t o  prevent overflow. 

Mater ia l  t e s t  specimens were preferab ly  long cy l inders  o r  rods. Some 

mater ia ls,  however, were no t  r ead i l y  ava i lab le  i n  t h i s  shape and had t o  be 

s l i c e d  from long tubes. Some tubes were small enough t o  be used in tac t .  

Exposure cross sections were t y p i c a l l y  2.5 inches long and 0.375 t o  0.500 

inches wide. 

Before i nse r t i on  i n  the furnace, mater ia l  samples were photographed, 

measured, and weighed. Figure 4 shows the sample p o r t  area w i t h  some samples 

i n  place. Archive samples were a1 so preserved f o r  chemical analysis and other 

materi  a1 proper t ies  t e s t s  t o  f o l  low. During the furnace t . ~ s t .  period, samples 

were per iod ica l  l y  removed, photographed, inspected, and evaluated. Figure 5 

shows examples o f  archive and exposed t e s t  samples. Severely degraded mater- 

i a l s  were replaced w i t h  other mater ia ls because furnace s ize and temperature 

p r o f i l e s  d i d  not  permit  t es t i ng  o f  a1 1 mater ia l  candidates simultaneously a t  

a1 1 desired t.~mp~rat. l l re ranges. 

With the furnaces, condit ions essen t ia l l y  1 i ke those i n  the f l u e  o f  a 

continuous soda-1 ime tank were achieved, Continuous furnace condi t ions were 

- - - - -  



. 
Figure 4. Test  furnace during operation. P.t t h i s  point  not a l l  ports are  occupied wi th  samples. 



Figure 5 .  Furnace tesr samp' es. Unex~osed samples are i d e n t i f i e d  as New. Samples exposed t.3 
glass furnace e x k - s t  are identi f ied by the number 2. Samples exposed to  combustion 
praduct exhaust arz i d e n t i f i e d  by the number 1. 



f u r t h e r  dup l i ca ted  by spacing o f  "charging" t o  g i ve  a batch car ryover  i n t o  the 

f l u e  comparable w i t h  what might be found i n  a l a rge  tank. 

One cannot expect t h a t  the  cond i t i ons  i n  the  f l u e  o f  a small day tank 

type o f  furnace w i l l  be i d e n t i c a l  a t  a l l  t imes t o  a g iven f l u e  i n  a g iven 

l a r g e  continuous furnace. But, i n  f a c t ,  so much v a r i a t i o n  e x i s t s  between one 

l a r g e  furnace and the  next ,  and even between the  var ious exhaust p o r t s  i n  a 

g iven furnace, t h a t  t he  c o n t r o l  i n  t he  t e s t  cond i t i ons  a l lows r e s u l t s  as 

meaningful as those achievable i n  a l a r g e r  i n s t a l l a t i o n .  

This  v a r i a b i l i t y  makes the  t ime e f f e c t  d i f f i c u l t  t o  assess. This  means 

t h a t  a comparative approach must be r e l i e d  upon fo r  r e s u l t s  ana lys is .  I f  one 

ma te r ia l  performs s i g n i f i c a n t l y  b e t t e r  than another i n  one environment over a 

g iven span o f  t ime, then i t  should a l so  be b e t t e r  f o r  another e s s e n t i a l l y  

s i m i l a r  environment over a longer t ime span. This  approach i s  commonly and 

success fu l l y  used i n  t he  g lass r e f r a c t o r i e s  i ndus t r y .34  

Furnace t e s t i n g  o f  ma te r i a l s  samples began i n  November 1977, and con t i n -  

ued u n t i l  March 1978. Furnace temperat.ures v a r i e d  between a low o f  2360°F, 

f o r  a s h o r t  p e r i o d  du r ing  which a burner problem appeared, and 2955OF. The 

average was very c lose  t o  2800°F. The average temperature f o r  the  h o t t e s t  

sample was 2800°F and the  lowest t e s t  temperature was approximately 2100°F. 

Whi le one furnace never me1 ted  any g lass,  small amounts o f  g lassy condensate 

d i d  appear on some samples. The source o f  t h i s  condensate was apparent ly  

der ived from k i  1 n ma te r ia l s  du r ing  f i r i n g .  

Thermal Cyc l ing  Tests 

For some poss ib le  app l i ca t i ons  o f  t he  recuperator  such as a remel t  f u r -  

nace, an amount o f  thermal c y c l i n g  may be experienced. To determine ma te r ia l  



degradat ion due t o  thermal cyc l i ng ,  t he  g lass blowing " g l o r y  hole" furnace was 

used. The furnace cyc led  from room temperature t o  above 2000°F i n  l ess  than 

one-ha1 f hour. Temperatures were t y p i c a l  l y  he ld  f o r  several hours. Cool i n g  

t o  200°F 'occurs i n  l ess  than one-half hour. This  cyc le  was t y p i c a l l y  made 

once a day. Because o f  l i m i t e d  space, on l y  representa t ive  ma te r ia l s  were 

tes ted .  These were S in te red  Alpha, SijN4, V i s t a l ,  AD 998, and KT. 

A f t e r  80 cyc les,  no f a i l u r e s  occured i n  S in tered Alpha, AD 998, o r  KT. 

A1 though a smal l  ha i  r l  i ne 1 ongi t u d i  na1 f r a c t u r e  d i d  appear i n  the  V i  stal 

sample, i t  d i d  n o t  propagate e n t i r e l y  and t h e  sample remained i n t a c t .  Si,N, 

performed w e l l  b u t  was withdrawn from the  t e s t  be fore  complet ion because o f  

poor performance i n  o the r  t e s t s  and was replaced i n  t h i s  t e s t  by AD 998. 

Performance Evaluat ions 

As i n d i c a t e d  e a r l  i e r ,  performance o f  the  module candidate ma te r ia l  s i n  

bo th  combustion and g lass  furnace exhausts were evaluated on a r e l a t i v e  basis .  

Tables I V  and V l i s t  observat ion r e s u l t s  fo.r the  g lass furnace exhaust and 

combustion product  exhaust respec t i ve l y .  

As can be seen by comparing observat ions from Tables I V  and V w i t h  ex- 

pected ma te r ia l  l i m i t s  noted i n  Table 11, i n  several cases furnace samples 
. , 

deformed and f a i  1 ed a f t e r  c o n t i  nuous exposure a t  temperatures s i  gni  f i c a n t l y  

below the  manufacturer 's  quoted se rv i ce  temperature. Thus, quoted serv ice  

temperatures may be v a l i d  f o r  sho r t  exposures and no t  long-term use. A f a i l -  

u re  example i s  AD 94 which was supposed t o  be good t o  3100°F b u t  which sagged 

under no-load cond i t i ons  a t  2650°F. The suspected reason i s  t h a t  t he  6 per- 

cen t  i m p u r i t i e s  are  i n  a continuous phase and represented a s i g n i f i c a n t  por- 



TABLE I V  

MATERIAL SAMPLE OBSERVATIONS 

FURNACE I (WITHOUT GLASS) 
r . - 

M a t e r i a l  
Approx. and Date Date 

Ave. Temp. Sample # I n s e r t e d  Observed Observat ions 

CVD SiC:1 4  Nov. 21 Dec. 

28 Feb. 

AD 94 : l  3  Nov. 11 Nov. 

NC 430:l 16 Nov. , 21 Dec. 
28 Feb. 

M u l 1 i t e : l  3  Nov. 11 Nov. 

V is ta1 :l 15 Nov. 21 Dec. 

28 Feb. 

Z i r c o n i a : l  4  Nov. 25' Nov. 

S in te reda : l  % I 0  Dec. 21 Dec. 

15 Jan. 

AD 998:l 15 Jan. 23 Feb. 

S in tereda: l  15 Jan. 28 Feb. 

C o r d i e r i t e : l  3  Nov.: 7 Nov. 
28 Feb. 

Glazed w i t h  some foam. Apparent 
decrease i n  d iameter  over p a r t  
o f  exposed 1  ength. 

Some decrease i n  diameter on c o o l e r  
p a r t  o f  exposed length .  

Slumping s l i g h t l y .  Moved t o  c o o l e r  
area a t  2550°F.. 

Glazed. No dimensional d e t e r i o r a t i o n .  
M i l k y  coat ing.  V i r t u a l l y  no dimensional 

d e t e r i o r a t i o n .  

E a s i l y  bent  a t  temperature. Grea t l y  
reduced res i s tance  t o  thermal shock. 
Withdrawn. 

I r o n  s t a i n i n g  f rom sample above. No 
dimensional d e t e r i o r a t i o n .  

Loss o f  "Waxy" sur face.  No dimensional 
d e t e r i o r a t i o n .  

Hot end slumped s l i g h t l y .  Severe 
mu1 t i p l e  f r a c t u r i n g  i n  i n te rmed ia te  
reg ion  i n s i d e  f l u e  w a l l .  Withdrawn. 

Sl i g h t  g laz ing .  No dimensional d e t e r i o r a -  
t i o n .  

No change. Moved t o  area a t  2600°F t o  
111dke' ruulrl f u r  AD 998 sample. 

No apparent d e t e r i o r a t i o n .  

Mi.1 ky coat ing.  .No dimensional d e t e r i o r a -  
t i o n .  

Hot end' slumped, then f e l l  o f f .  W i  thdeawn. 
Recovered end c u r l e d  and bad1 y  de te r i o ra ted .  



TABLE I V  (Cont inued)  

MATERIAL SAMPLE OBSERVATIONS 

FURNACE I (WITHOUT GLASS) 
.- . . . .  -- - 

Approx. and Date Date 
Ave. Temp. Sample # I nse r t ed  Observed Observations 

2550 NC 4Q0:l 4 Nov. 21 k c .  Some g laz ing  and foam. No dimensional 
de te r io ra t ion .  

28 Feb. No apparent dimensional de te r io ra t ion .  

I 2550 V i  s t a l  :'I 4 Nov. 11,Nov. No change observed. Moved t o  h o t t e r  area 
at.  26!if1°F. 

1 2550 AD 85: l  4 Nov. 11 Nov. Severe slumping. W i  th!,r,a,wz. 

2550 AD 94:l 11 Nov. 21 Dec. I r o n  s t a i n i n g  from another sample. No 
dimensional de te r io ra t ion .  

28 Feb. Same- as 21 Dec. 

2450 S i  3N4 :I B 4 Nov. 20 Dec. ' Sample broken upon ex t r ac t i on  f o r  observa- 
t i on .  Pnssi b l e  f l aw apparent. Possible 
s l i g h t  de te r i o ra t i on  of  exposed surface. 

4 Nov. 21 Dec. Glazed. No dimensional de te r io ra t ion .  1 2450 . KT:1B 
28 Fab.. Possible s l i g h t  rounding o f  shorp edge. 

2300 . Mu l l i t e : 3  11 Nov. 25 Nov. 

2300 Cord ie r i  te:3 1'1 Nov. 25 Nov. 

 arke en in^ o f  surface, c r y s t a l l i n e  develop- 
ment on one side. Great ly  reduced res is tance 
t.0 thermal shock. 
W i  thdkawn. 

Exposed s ide o f  sample darkened, b l  i s t e r e d  
and expanded causing sample t o  cu r l  
upwards. !jthd!awn- 

2250 S i  3N4 : 3B 28 Nov. 21 Dec. ~ i a z e d .  L l t t l e  i f  any dimensional 
de te r io ra t ion .  

31 Jan. Sample broken e a s i l y  upon ex t rac t ion .  
Break very s i m i l a r  t o  sanlple Si3N4:1B. 

I 2250 CVDSiC:3 28Nou. 21 Dec. Glazed. Nodimensional de te r io ra t ion .  
28 Feb. ljalne as i l l  Dec. 

2100 Cord ie r i te :4  28 Nov. 21 Dec. S l i g h t  edge de te r io ra t ion .  Surface 
darkened. 

28 Feb. Surface darkened. Edge s l i g h t l y  rounded. 

I 2100 Sta in less 22 Nov. 20 Dec. Severe sca l ing.  Withdrawn. 
426 



TABLE V 

MATERIAL SAMPLE OBSERVATIONS 

FURNACE 11 (WITH GLASS) 
7 .  . .  .- 

M a t e f i a l  
Approx. and Date Date 

Ave. Temp. Sample # I n s e r t e d  Observed Observat ions . .  . . .  . 

CVD S1C:Z . 4 tdov. 21 Uec. 

13 Jan. 

S in tereda:2  13 Jan. 30 Jan. 

KT:4 31 Jan. 10 Apr. 

AD 94:2 '  3 Nov. 11 Nov. 

NC 430:2 16 Nov. 21 Dec. 
28 Feb. 

Glazed w i t h  some foam. Apparent 
decrease i n  d iameter  over  p a r t  
o f  exposed l eng th .  

Sample eroded i n t o '  two p a r t s .  
Most e r o s i o n  a t  o r  nea r  suppo r t i ng  
w a l l  where g lass  condensate 
i s  apparent.  

Sample eroded almost' i n t o '  two pa r t s .  
Eros ion l i m i t e d  t o  zone a t  suppo r t i ng  
w a l l  where m a t e r i a l  temperature i s  
we1 1 be1 ow 2800°F. 

S l i g h t  decrease o f  d iameter  i n s i d e  
suppo r t i ng  w a l l  a t  much, lower  
temperature.  

Slumping s l i g h t l y .  Moved t o  c o o l e r  spo t  
a t  2550°F. 

Glazed. No dimensional  d e t e r i o r a t i o n .  
Sample c i  rcumf erence decreased a t  

sample wal.1 zone o f  lowered tem- 
pe ra tu re .  

2650 Mul1 i te :Z  3 Nov. 11 Nov. E a s i l y  ben t  a t  temperature.  C r y s t a l l i n e  
development i n  ceramic body. G r e a t l y  
reduced r e s i s t a n c e  t o  thermal shock. 

2650 V i s ta1  :2 15 Nov. 21 Dec. Sur face no l onge r  f e e l s  waxy. No 
dimensional  d e t e r i o r a t i o n .  

10 Apr. S l i g h t  slumping. Diameter decreased 
0.02 inches a t  suppo r t i ng  w a l l  zone 
on l y .  

2650 Z i r con ia :2  4 Nov. 25 Nov. Severe m u l t i p l e  f r a c t u r i n g  i n  i n t e r -  
mediate temperature reg ion  i n s i d e  
f l u e  w a l l .  Withdrawn. Sample 
broken upon wi thdrawal  and exposed 
p o r t i o n  l o s t .  

2650 S in tereda:2  9 Jan. 13 Jan. Sample .moved t o  h o t t e r  area a t  2800°F 
a f t e r  e x p i r a t i o n  o f  CVD SiC:2. 

2650 AD998:Z 15Jan .  22Feb .  S l i g h t s l u m p i n g , 1 o n g i t u d l . n a l c r a c k i n g ,  
d i s t o r t i o n  o f  t i p .  

2600 C o r d i e r i  te:2 3 Nov.' 7 Nov. Hot  end slumped, then f e l l  o f f ,  
W i  thdvawn. 

2600 KT:2 13 Jan. 2 Mar. S l i g h t  edge d e t e r i o r a t i o n .  S l i g h t  
decrease i n  c i rcumference 0.5 inches 
i n s i d e  suppor t  w a l l .  



TABLE V (Continued) 

MATERIAL SAMPLE OBSERVATIONS 

FURNACE 11 (WITH GLASS) 
b 

Halaterial 
A P P ~ ~ x .  and Date Date 

Ave- Temp. Sample # I n s e r t e d  Observed Observations 

2600 Si20N2:1 %7 NOV. 25 Nov. Surface covered w i t h  foam. Decrease 
i n  volume o f  exposed mate r ia l .  
Sample subsequently broken i n  p o r t .  
Exposed p o r t ~ o n  .no t  ext ractable.  

I - -2550 -NC 400:2 - - 4-flov. - 21-Dee;- SOIIIC y laz ing  ~ n d  foam.. . No .dimoncional.-. . 
detor ioratSQn.  

28 Feb. Some decrease i n  circumference a t  
z ~ ~ p p n r t .  w a l l  znne. 

2550 Vis ta1 :2 4 Nnv. 15' Nov. No change observed. &y& t o  h o t t e r  spot  
a t  265O6F. 

2550 AD 85:2 4 Nov. Y Nov. Severe slumpfng. Withdrawn. 

1 2550 AD 94:2 11 Nov. 21 Dec. No dimensional de te r io ra t ion .  
28 Feb. Decrease i n  circumference a t  support 

I wa l l  zone. 

i.50 S i  3N4:2 4 Nov. 20 Dec. Glazed w i t h  some foaming i n i t i a l l y  
I S l i g h t  sur face de te r io ra t ion .  

13 Jan. Sample broken e a s i l y  upon ex t rac t ion .  
Break and c o l o r a t i o n  vory s i m i l a r  t o  
sample S i  3N4 :lB. 

2450 KT:2 4 Nov. 21 Dec. Glazed. S l i g h t  decrease i n  diameter of 
exposed length. Move t o  h o t t e r  spot  
a t  2600°F on 13 Jan. 

2250 Si3N4:4 28 Nov. 21 'Dec. Major decrease i n  diameter over e n t i r e  
exposed length. Withdrawn. 

I 2250 Sintereda:3 13 Jan. 31 Jan. Major disappearance o f  mate r ia l  over 
exposed length. 

I 2250 KT:3 31 Jan. 10 Mr, Major d o c r e a ~ e  I n  ~ i r u u s ~ i c r ~ w r ~ c e  o f  
exposed mate r ia l .  

I 2100 AD85:3 10 Jan. 10 Apr. Glass apparent ly combining i n t o  the 
sur face on lower side., 

2100 Cord ie r i  t e .5  l n  ,lan. I n  Apr. Sample warped upward w i t h  some 
d e t e r i o r a t i o n  o f  lower side. 

I 2100 M u l l i t e : 4  10 Jan. 10 Apr. S l i g h t  disapperance o f  mater ia l  
from lower side. 

I 2100 Vis ta1 :4 10 Jan. 10 Apr. Mater la l  coated w i t h  a glaze on lower 
side. Clare ea:ily breaks o f f .  



t i o n  o f  the  ma te r ia l  s t rength.  When these i m p u r i t i e s  f a i l e d  a f t e r  long-term 

exposure a t  temperatures below t h e  l i m i t  f o r  pure A1203, t he  e n t i r e  s t r u c t u r e  

was weakened. Th is  p o i n t s  o u t  c l e a r l y  t he  need f o r  more accurate, long-term 

h igh  temperature da ta  on module mater ia ls .  

Furnace performance tes.t-s i n  a  combustion product  atmosphere and a  soda- 

l ime g lass furnace atmosphere have shown a  number o f  ma te r i a l s  t o  be unsu i t -  

ab le  a t  any temperature above 2000°F and o thers  t o  have ope ra t i ng  l i m i t s  below 

2800° F  . 

S i l i c o n  n i t r i d e  was d ramat i ca l l y  a f f e c t e d  i n  t he  g lass exhaust a t  2200°F 

w i t h  c lose  t o  0 .1  i nch  reduct ion  i n  sample rad ius  i n  two months. Although KT 

and NC 430 were thought t o  be s i m i l a r ,  v i s u a l  d i f f e rences  are apparent i n  the  

respec t i ve  samples w i t h  NC 430 appearing t o  have the  f a s t e r  d e t e r i o r a t i o n .  

These d i f f e rences  may be due t o  a  g rea te r  f r e e  s i l i c o n  content  i n  NC 430. 

These d i f f e rences  , however, may a1 so be re1  a ted  t o  sample c o n f i g u r a t i o n  d i  f- 

ferences. V is ta1  changed c o l o r  s l i g h t l y  b u t  does n o t  appear t o  have changed 

character .  

Fol 1 owing exposure i n  t he  f 1  ues , samples were t e s t e d  a t .  room temperature 

f o r  f l e x u r e  s t reng th  (Table V I ) .  Sample s i z e  l i m i t e d  the  t e s t  sample popula- 

t i o n  t o  one . f o r  t he  exposed ma te r ia l s  and two t o  th ree  f o r  the  arch ive  mater- 

1  I n  some cases sample d e t e r i o r a t i o n  prevented t e s t l n g  e n t i r e l y .  

Furnace performance eva lua t ions  by D r .  I van  C u t l e r  o f  the  U n i v e r s i t y  o f  

Utah a re  reproduced i n  t h e  Appendix. 

Net r e s u l t s  from a1 1  ma te r ia l  eva lua t i on  and performance e f f o r t s ,  i n c l  ud- 

i n g  those ca tegor ized as design c a l c u l a t i o n s ,  cos t  p ro jec t i ons ,  and f .abr ica t ion  

s tud ies ,  a re  discussed i n  the  Conclusions sect ion.  



TABLE V I  . ' 

STRENGTH CHANGE AFTER FURNACE EXPOSURE 

*Broken ho t  end s a t  a t  bottom o f  f l u e .  Temperature h i s t o r y  uncer ta in  but  known t o  exceed 2650°F. 

Sample No. 

S in te red  Alpha 1 

NC-400-1 

NC-430-1 

Kt -  1 

K t -2  

S i  ?No-l 

S i  ?No-3 

V i s t a l - 1  

V i s t a l - 2  

AD-85-1 

AD-94-1 

AD- 9 4 ~ 2  

AD-998-1 

AII-YYX-2 

Yul l  i te-1 

Yu l l  i te-2 

Cord ie r i  te -3  

?ord ie \ - i  t e - 4  

Rat io  o f  Exposed 
Ma te r i a l  Strength 

t o  Archive Strength 

0.94 

1.03 

0.83 ' 

0.72 

0.66 

0.23 

0.47 

1.06 

0.86 

0.13 

0.72 

0; 47 

0.81 

0.99 

1.26 

0.03 

0.13 

0.40 

s t reng th  Loss o r  Gain 
(Percent) 

-6. 

+3. 

-17. 

-28. 

-34. 

-77. 

-53. 

+6. 

-14. 

' -87. 

-28. 

-63. 

-'I 9. 

---.-...-. ;I. -..-... ..--. ... 

+26. 

-97. 

-87. 

-60. 

Furnace 

Combustion 

Combustion 

~ombus' t ion 

Combustion 

Glass 

Combustion 

Combustion 

Combustion 

Glass 

Cornbus t i on 

Combustion 

Glass 

Combustion 

i;lass 

Combustion 

Glass 

Combustion 

Combu3ti on 

Temperature 
("0 

2650' 

2550 

2650 

2450 

2450 

2450 

2250 

2650 

2650 

* 

2550 

2550 

2650 

_ _  .. .1.650--. 

2650 

2650 

2300 

2100 



MODULE FABRICATION EVALUATION 

High temperature ceramics can .be fab r i ca ted  i n  many complex shapes a t  a 

wide v a r i e t y  o f  costs. Sam@ ma te r ia l s  are r e a d i l y  formed i n  a number o f  ways 

depending upon t h e  dimensions, shape, and requ i red  to lerances i n  t he  end pro-  

duct. Other ma te r i a l s  can on ly  be formed i n  a s i n g l e  o r  l i m i t e d  fashion. 

Fabr i  cabi  1 i t y  and' cos t  are complex func t ions  o f  s i ze ,  shape, t o1  erances , and 

mater ia l .  These f a c t o r s  and t h e i r  importance t o  t h e  ceramic recuperator  a re  

discussed below. 

Fab r i ca t i on  Methods 

Ceramics a re  f i r s t  'formed as greenware and then f i r e d '  i n  a k i l n :  I n  a1 1 

cases., f i n a l  t r u i n g  can be done on the  f i r e d  product  t o  improve to le rance 

c o n t r o l ,  b u t  t h i s  i s  c o s t l y  and should be avoided. Numerous greenware forming 

methods are  a v a i l a b l e  b u t  n o t  a l l  can be.used on a l l  ceramics, 

a) Ex t rus ion  

This process invo lves  f o r c i n g  a semiso l id  mix o f  raw ceramic ma te r ia l  and 

s u i t a b l e  b inders  through an ex t rus ion  d ie.  'The extruded greenware i s  then c u t  

and f i r e d .  

b) S l i p  Cast ing 

I n  t h i s  process a very f l u i d  mix o f  water ( ~ ~ s u a l l y ) ,  perhaps some bind-  

ers, and raw ceramic ma te r ia l  i s  poured i n t o  an absorbent mold (usua l l y  p l a s t e r  

of pa r i s ) .  As the  water i s  drawn o f f ,  a semidry "cake" forms on t h e  mold 

w a l l .  Continued water withdrawal r e s u l t s  i n  a t h i c k e r  "cake". . A f t e r  t he  

des i red  w a l l  th ickness i s  achieved, t he  excess f l u i d  i s  poured ou t  and the  

green "cake" i s  d r i e d  and removed fro. t h e  mold f o r  l a t e r  f i r y n g .  Wall t h i c k -  

nesses a re  very l i m i t e d  and p o r o s i t y  i s  usua l l y  h igh  i n  t h i s  process. 



c )  Pressing 

Var ia t i ons  e x i s t  i n  t he  method wherein a powder, perhaps w i t h  some bind-  

e rs ,  i s  compressed i n t o  a mold. This  i s  sometimes done ho t  o r  co ld ,  depending 

upon t h e  ma te r ia l  requirements. Pressure can be app l i ed  u n i a x i a l l y  w i t h  d i e  

rams o r  i s o s t a t i c a l l y  w i t h  gas o r  f l u i d s  and a f l e x i b l e  membrane surrounding a 

mandr i l .  Very h igh  d e n s i t i e s  and ma te r ia l  s t rengths can be achieved t h i s  way. . 

P o r o s i t i e s  a re  u s u a l l y  l e s s  than 5 percent.  

d) In j c c t i o n  Molding 

Th is  process needs a mu1 ti p iece mold forming a complete negat ive o f  t he  

des i red  product.  A v iscous f l u i d  i s  then i n j e c t e d  ' int.n t.he v o i d  volk~mrl under 

pressure. This  r e s u l t s  i n  a very uni form product  as compared w i t h  s l i p  cast-  

i n g  and has a g rea te r  capabi l i ty  f o r  complex shapes t.han many nt.!wr mrlthods. 

I t  i s  no t  poss ib le ,  however, f o r  a l l  o f  the  candidate mater ia ls .  

e) Machining 

Any method 'of  forming a b i l l e t  can be used t o  c rea te  a machinable pre- 

form.. F ina l  p r o d i ~ c t  i s  machined i n  the  green s t a t e  be fore  f i r i n g .  

f)  Chemical Vapor Depos i t ion  

T r i  t h i s  method, a t h i n  f i l m  i s  chemical ly  deposited from a vapor phase 

m a t e r i a l  a t  ceramic is ing  temperatures. This  method i s  used t o  coat  a s u i t a b l e  

preformed subst ra te ,  u s u a l l y  e i t h e r  a carbon form o r  another s i l i c o n  carb ide 

product ,  w i t h  pure s i l i c o n  carb ide.  The r e s u l t  i s  a very dense, non-porous 

surface, h i g h l y  r e s i s t a n t  t o  a t tack .  

g) "l'wo-Piece Culls t r -uct  i o n  

I t  i s  poss ib le  t o  j o i n  o r  weld pieces together  t o  form complex shapes. 

I n  t he  case o f  s l i p  cas t ing ,  some j o i n t s  can be made i n  the  green s t a t e  us ing 



t he  same " s l i p "  as the  weld ing ma te r ia l .  Some mate r ia l s  can' be welded by 

r e a c t i o n  bonding du r ing  and even a f t e r  t he  main f i r i n g  process. 

K i  1 n L im i ta t i ons  

K i l n s  are  expensive t o  b u i l d  and operate and pro to type f a b r i c a t i o n  i s  

1 i m i  t e d  t o  e x i s t i n g  equipment. This  i s  e s p e c i a l l y  r e s t r i c t i v e  f o r  ma te r i a l s  

t h a t  a re  batch f i r e d .  

Another f a c t o r  i s  the  k i l n  f u r n i t u r e .  Because o f  shrinkage (which f o r  

some mate r ia l s  i s  as great  as 20 percent),  heat t rans, fer  cons idera t ions ,  and 

f i r i n g  d u c t i l i t y ,  i t  i s  d i f f i c u l t  t o  support an o b j e c t  i n  a k i l n  w i thou t  

i n t roduc ing  deformations du r ing  f i r i n g .  The more complex the  shape, the  

harder i t  i s  t o  support du r ing  f i r i n g  and the  greater  t h e  c o n s t r a i n t s  on k i l n  

u t i l i z a t i o n .  

Tolerance Contro l  and F a b r i c a b i l i t y  L i m i t s  

Many p o t e n t i a l  sources o f  ma1 format ion e x i s t  between the  i n i  t i a l  formi  ng 

and f i n a l '  product  stages which can a f f e c t  to lerances.  End product  t r u i n g  i s  

expensive and should be avoided wherever poss ib le ,  b u t  need n o t  be completely 

excluded. The approach suggested from t h i s  work i s  t o  develop a design ca- 

pable o f  working w i t h  the  to lerances normal ly  achieved i n  the  f i r e d  product.  

ThSs r..eduies t l i e  waste o r  reject r a t i o  a t  a l l  steps and r c s u l t s  i n  minimum 

product  cos t .  The to le rance c o n t r o l  va r i es  f o r  each candidate b u t  genera l l y  

can be kept  t o  one percent  o v e r a l l .  

Suppl iers were surveyed t o  de f i ne  the  f a b r i c a b i l i t y  l i m i t s  o f  the  i d e n t i -  

f i e d  candidate mater ia ls .  Recent l i t e r a t u r e  on f a b r i c a b i l i t y  o f  l a r g e  alumina 

p a r t s  f o r  f us ion  research i s  cons i s ten t  w i t h  these r e s u l t s . 3 5  



I n  Table V I I  a  "yes" i nd i ca tes  t h a t  a  g iven c o n d i t i o n  o r  method was found 

t o  be i n  use i n  t he  i n d u s t r i a l  f i r m s  surveyed. A "no" i nd i ca tes  a  ma te r ia l  i s  

n o t  o r  cannot be f a b r i c a t e d  by the  noted technique. Most ma te r i a l s  can be 

formed i n  more than one way and i t  i s  d i f f i c u l t  t o  a n t i c i p a t e  which method 

w i l l  be most economical i n  a  h igh-product ion s i t u a t i o n .  However, i t  i s  read- 

i l y  concluded t h a t  reasonable s izes  and shapes are  t e c h n i c a l l y  achievable f o r  

a1 1  pr ime candidates. 

X-rays o f  s i l i c o n  n i t r i d e  t e s t  rods revedled i ~ ~ i p e r ~ r e c l  cores o f  e i t h e r  

unreacted ma te r ia l s  o r  i nc lus ions  o f  contaminants. Tn one case a  sample 

f a i l u r e  i s  p a r t l y  a t t r i b u t a b l e  t o  such an imperfect. ion. I n  cas t i ng  o r  forming 

l a r g e  shapes, such v a r i a t i o n s  are  o f t e n  d i f f i c u l t  t o  c o n t r o l  and f a b r i c a b i l i t y  

w i t h  good q u a l i t y  c o n t r o l  i s  d i f f i c u l t  t o  assess u r i t i l  ac tua l  experience i s  

acquired. This  p o i n t s  ou t  th ree  needs f o r  p ro to type t e s t  e f f o r t s :  

a) Good q u a l i t y  c o n t r o l  

b) Ma te r i a l s  p r o p e r t i e s  t e s t s  on satlip1 es taken from product ion-run 

p a r t s  

c) Caretu l  examinat ion o f  f a i l e d  serv ice  p a r t s  t o  de tec t  f a b r i c a t i o n  

abnormal i ti es. 



TABLE V I I  

EVALUATION OF FABRICATION TECHNIQUES FOR RECUPERATOR MODULE MATERIALS  

1. Only cons idered  f o r  complex shape r e q u i r e d  by module des ign.  
2. Present  c a p ~ b i l i t y  n o t  proven b u t  near te rm dev2lopment expected. 
3. H o t  by  Coors. 
4. Compress ion j t rans fe r  mo ld ing  . 
5. L i m i t  nay be due t o  f i r i n g  o r  fo rm ing  l i m i t s  o r  bo th .  
6.. Thick w a l l  n o t  n o r m a l l y  manufactured and some f a b r i c a t i o n  development would have t o  precede. 

AD 998 

No 
Yes 
Yes 
No 
140 
No 
Yes 
No 

7"  
No l i m i t '  

7 "  
No l i m i t  

0.25" 
N/A 
N/ A 
N/A 
NIA 

3% 
-18% 
12 
wks. 

Forming methods 
E x t r u s i o n  
S l i p  cas: 
Cold pressed 
H o t  pressed 
I n j e c t i o n  molded 
2 p i e c e  c o n s t r u c t i o n  
Machine green b i  1 l e t  
Chemical depozi t i o n  

Present  oven o r  k i l n  l i m i t s  
Length 
Mass 

P o t e n t i a l  3ven 3 r  k i l n  l i m i t s  
Length 
Mass 

blaximum wa.11 th ickness5  
S l i p  c a s t  
Pressed, h o t  or c o l d  
I n j e c t i a n  molded 
Machi ned 
Chemi c a l  d e p o s i t i o n  

Tolerance c o n t r o l  w i t h o u t  
f i n a l  machin ing 

Furnace shr inkage  
Present  d e l i v e r y  t imes f o r  

complex p a r t s  

I 

KT 

No 
No 
Yes 
N/A4 
Yes 
Yes 
Yes 
No 

3 '  
No l i m i t  

3 '  
No l i m i t  

N/A 
1 "  
1 "  
1 " 
N/ A 

< I %  
1 % 
10-12 
wks . 

1 

S i n t e r e d  
A1 pha 

No 
2 
Yes 
II/A 
YES 
2 
Y E S  
N cn 

1 '  
No l i m i t  

. .  

3 
No l i m i t  

0 .25  t o  0.5" 
No l i m i t  
0.25" 
No l i m i t  
N! A 

1 % 
1 3% 
3-6 
m s  . 

AD 94 

Yes 
No 
Yes 
No 
No 
No 
Yes 
No 

19" 
No l i m i t  

19"  
No l i m i t  

N/A 
No l i m i t  
N/A 
No NIA l i m i t  

1.5% 
-16-20% 
12 
wks. 

NC 430 

No 
Yes 
Yes 
No 
I4 o 
Yes 
Yes 
No 

25" 
No l i m i t  

3 '  
No l i m i t  

5/8" 
1 " 
N/A 
N/A 
N/ A 

1-2% 
0% 
12-14 
wks. 

S i  ,N, 
React ion 
Bonded 

No 
Yes ' 

Yes 
No 
Yes 
Yes. 
Yes 
No 

2 '  
>11 l b s .  

>2 '  
> I 1  lbs: 

1" 
1 "  
1 "  
1 "  
N/A 
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MODULE DESIGN ANALYSES 

This p r o j e c t  i s  aimed a t  t e s t i n g ,  improving, developing, and eva lua t ing  

the  s p e c i f i c  M i  1  l c reek    lass' Recuperator Design. Some design v a r i a t i o n s  may 

have l a rge  e f f e c t s  on thermal stresses. This  p o r t i o n  o f  the  e f f o r t  d i d  no t  

attempt t o  i n v e s t i g a t e  the  e f f e c t s  o f  design v a r i a t i o n s  b u t  r a t h e r  concen- 

t r a t e d  on the  bas ic  design t o  prove the  concept v i a b i l i t y .  I t  would c e r t a i n l y  

be wrong t o  assume t h a t  t he  con f i gu ra t i on  tes ted  thus f a r  i s  t he  on ly  con- 

f i g r a t i o n  t o  be considered as the  f i n a l  working design. Design v a r i a t i o n s  may 

have s i g n i f i c a n t  e f f e c t s  upon, f a b r i c a t i o n ,  heat t r a n s f e r ,  and economics bu t  

a f f e c t  the  techn ica l  v i a b i  1  i t y  very 1 i t t l e .  

Thermal Stress Analys is  

A s t ress  ana lys is  was performed by impos in i  an opera t ing  thermal p r o f i l e  

c o n d i t i o n  upon the  recuperator .  This  r e s u l t s  i n  d i f f e r e n t i a l  thermal ly  i n -  

duced s t r a i n s  w i t h  r e s u l t i n g  st resses which can be read i  l y  ca lcu la ted .  These 

stresses are r e l a t e d  t o  the  p rope r t i es  o f  e l a s t i c i t y  (E) thermal expansion (a) 

and temperature grad ien ts  (AT ). The maximum s t ress  i s  de f ined as fo l lows:  
P  

'max = C EaAT 
P 

Where C is. a  constant  con ta in ing  a1 1  geometric f ac to rs .  This  equat ion 

can now be used t o  ob ta in  a  ma te r i a l s  engineer ing sa fe ty  f a c t o r  f o r  a  given 

s e t  o f  thermal cond i t i ons  by d i v i d i n g  t h i s  value by the  ma te r ia l s  s t rength.  

This  a l so  denotes a  r e l a t i v e  res is tance t o  mechanical f a i l u r e  f o r  t h i s  given 

constra ined geometry when the  sa fe ty  f a c t o r s  a re  compared f o r  d i f f e r e n t  

ma te r i a l s  a t  s i m i l a r  cond i t ions .  Table V I I I  presents the  r e l a t i v e  engineering 

safety fac tors  t o  thermal s t ress  f o r  the  candidate ma te r ia l s  f o r  a given se t  

of thermal cond i t ions .  For the  most p a r t ,  these values are  encouraging since 

AT of 250°F i s  much l a r g e r  than expected i n  a  working ceramic recuperator.. 
P  

5 1 



TABLE V I I I  

RELATrVE THERMAL STRESS RESISTANCE 

1 . Th i  s i s  f o r  room temperature because E a t  e l eva ted  temperetures decreases r a p i d l y  near  
t h e  me1 t temperature. Fu tu re  a n a l y s i s  \vould show E and So as  f u n c t i o n s  o f  T and ATp. 

2 .  T h i s  i s  t h e  average va lue  near room temperature.  Th's va lue  tends t o  inc rease  w i t h  
temperature.  

j 
! 

3. Est imeted value. 

2 u 

1 0 - 6 / " ~  

1.33 

2.67 

Mater ia l '  
E' 

106 p s i  
a T ~  
O F  

250 

250 

S i n t e r e d  Alpha 

NC 400 

Reported S t reng ths  

T e n s i l e  F lexure  
ks i ks i 

- 5 0 

- 18 

' So 
k s i  

7.3 

7.4 

59.4 

30 

Safe ty  F a c t o r  
F lexure lC.64 So 

10.8 

3.8 



Heat Trans fer  

Heat t r a n s f e r  assessments must be made p r i m a r i l y  on the  bas i s  o f  ca lcu la -  

t i o n a l  e f f o r t s .  The heat t r a n s f e r  assessments, performed p r i o r  t o  t he  work 

repor ted  here in,  were updated on the  bas is  ,of new and more r e l i a b l e  p rope r t i es  

obtained from t h i s  work. Based upon the  p r e l i m i n a r y  design concept and 

thermal c a l c u l a t i o n s  the  f o l  lowing minimum c r i t e r i a  f o r  economical opera t ion  

were establ ished:  

a) Recovery o f  heat a t  2300°F and a  requ i red  e f fec t i veness  o f  0.8 o r  

g rea te r  l i m i t s  AT t o  500°F between ho t  and c o l d  gases, where AT i s  

t he  average temperature d i f f e r e n c e  between the  h o t  and c o l d  gases 

across the  recuperator .  36 

b) Turbulent  a i r  f low i s  probably requ i red  t o  main ta in  h;, and Fca i n  a  

range o f  about 17 BTU/hr-ft20F. The c o e f f i c i e n t s  KCe and Fca are  

the  ne t  surface heat t r a n s f e r  c o e f f i c i e n t s  f o r  gas t o  s o l i d  f o r  the  

exhaust and a i r  s t resses respec t i ve l y .  These c o e f f i c i e n t s  inc lude 

t h e  e f f e c t s  o f  surface . tex ture  and area l  m i l l t i p1  i c a t i o n  because of 

f i ns and o ther  heat t r a n s f e r  enhancement mechani sms (sur face ex- 

tenders). 

c)  For a  th ickness of 0.5 inch,  t h e  w a l l  ma te r i a l  u n i t  th ickness heat 

t r a n s f e r  c o e f f i c i e n t ,  K/L, should be 22.5 ~ T ~ / h r - f t ~ O ~ / f t  o r  b e t t e r .  

d) A three-year payback i s  des i rab le  as s t i p u l a t e d  i n  t he  PON. 

Results now a v a i l a b l e  i n d i c a t e  these c r i t e r i a  w i l l  be met o r  exceeded. 

These are: 

a) Heat t r a n s f e r  sect inns can be reduced i n  th ickness from 0.5 i n c h  t o  

0;25 i nch  o r  l ess  (0.04 f t  t o  0.02 ft). Mate r ia l s  considered i n  



t h i s  p r o j e c t  a re  a v a i l a b l e  i n  dense, f i n e  gra ined forms and can be 

fab r i ca ted  i n  t h i n  dimensions. Fur ther ,  designs can reduce s t ruc -  

t u r a l  load on the  heat t r a n s f e r  w a l l  by having the  c y l i n d e r  w a l l  

take t h e  load. For some mate r ia l s ,  0.25 i nch  i s  a  maximum w a l l  

th ickness because o f  f a b r i c a t i o n  l i m i t a t i o n s .  Heat c o n d u c t i v i t i e s  

are  genera l l y  h igher  than 0.9 BTU/hr- f t20F/ f t  and range from about 3  

BTU/hr- f t20F/ f t  f o r  alumina a t  2800°F t o  30 BTU/hr- f t20F/ f t  f o r  S I C  

a t  llOO°F. Thl~s,  K/L might  range from 144 t o  1440 B T U / l ~ r . - f t ~ ~ F / f t  

r a t h e r  than the  minimum o f  22.5 used i n  e a r l i e r  ca l cu la t i ons .  

b) Wi th a  h igher  value o f  thermal c o n d u c t i v i t y ,  K,  fnr the  module 

ma te r ia l ,  t h e  necessary value o f  AT can e i t h e r  be reduced p e r m i t t i n g  

recovery o f  heat a t  h igher  temperatures or t he  rec.u~~clt.a t o r  l e n g t h  

can be reduced f o r  lower cost .  

c )  Economy o f  scale i s  a n t i c i p a t e d  such t h a t  f o r  a  s i z e  increase o f  

89 percent  f a b r i c a t i o n  c o s t  may o n l y  increase by 30 percent.  

These th ree  f a c t o r s  a re  expected t o  improve heat t r a n s f e r  by a  f a c t o r  o f  

t h r e e  over  t he  3400 BTU/hr-f t2 o f  i n t e r f a c e  cross sec t i on  area determined i n  

p r e t e s t  c a l c u l a t i o n s  r e s u l t i n g  i n  a p r o j e c t e d  heat t rans fe r  o f  10,000 BTU/hr- 

f t 2 1 A .  ( I A  r e f e r s  t o  the  i n t e r f a c e  area and n o t  t o  t he  gas-so l id  sur face 

area. :I 



MODULE DESIGN TESTS 

Cold Flow Tests and Analysis 

The c o l d  f low t es t s  required a model which dupl icated a la rge  enough 

po r t i on  o f  the f low channels t o  provide f o r  accurate pressure drop measure- 

ments. Pressures were measured we l l  away from each end t o  avoid the large end 

e f f ec t s  t h a t  occur a t  the entrance and e x i t  o f  the f low channel. High densi ty 

polyethylene and l u c i t e  were used f o r  the machined model. These mater ia ls 

machine t o  very smooth and l o w - f r i c t i o n  surfaces. To obta in  a rough surface 

f o r  comparison o f  tex tu re  e f fec ts ,  a monolayer o f  sand was formed on the 

polyethylene surface. 

A t e s t i n g  assembly (Figure 6) i n  the  College o f  Engineering a t  the 

Univers i ty  o f  Utah was used t o  perform the co ld  f l ow tests.  The a i r  supply 

consisted o f  a motor connected through a continuously var iab le  transmission t o  

an impel ler  blower. The exhaust from t h i s  blower passed through a pressure 

o r i f i c e  chamber and then through the t e s t  conf igurat ion.  The mass f low o f  a i r  

was measured using the pressure di f ference, APo, across the o r i f i c e  i n  the 

pressure o r i f i c e  chamber using the standard re la t ionsh ip  developed by the 

Univers i ty  f o r  t h i s  equipment. A thermal anemometer was used t o  measure peak 

a i r  ve loc i t y .  This ve loc i t y  measurement v e r i f i e d  the square r o o t  re la t ionsh ip  

between ve loc i t y  and pressure drop so t h a t  r e l i a b l e  extrapolat ions could be 

made i n t o  the regions above the f low l i m i t s  o f  the blower and a lso a t  low f low 

ra tes where APo i n  the o r i f i c e  chamber was too small t o  measure accurately. 

Configurat ions tes ted included several va r ia t ions  i n  s i ze  and aspect 

ra t ios .  One conf igurat ion was tes ted smooth and roughened w i t h  a monolayer o f  

sand on the i n te r f ace  surface. Results o f  the f low t es t s  are shown i n  

Figure 7 i n  terms o f  mass f low r a t e  versus i n te rna l  recuperator pressure drop. 



Figwe 5 .  Cold flow test  assenbly. 



. . 

~ i ~ u k e  7 . Cold flow t e s t  data showing a i r  mass flow r a t e  as a function of 
pressure drop i n  the'recuperator. Data below 0.01 1 bs per 
second i s  in ferred from peak ve loci ty  data 'and i s  indicated 
by t i c k  marks on the curves: 

57 ' . 



The mass f l o w  r a t e s  a t  a g iven APR (Figure 7) can be used t o  p r e d i c t  mass 

f l o w  r a t e s  f o r  untested geometries.. Figure. 8 -shows t h e  da ta  a t  a APR o f  1 

i n c h  o f  water . f o r  .a1 1 ~ o n f i ~ u r a t i o r i s  w i t h  an aspect r a t i o  o f  . 1.0. . P red ic ted  

mass f l o w  values f o r  8 - inch  ' and 12- inch u n i t s  a t  a APR o f  1.0 i n c h  o f  water 

and an aspect r a t i o  o f  1.0 are.shown by the  dashed symbols o f  F igure  8. 

Table I X  i s  a summary"of t he  data and r e s u l t s  o f  an ana lys i s  t o  determine 

optimum aspect r a t i o  and s i z e  f o r  a furnace r a t e d  a t  about 1 . 6 ' m i l l i o n  BTU per  

hour unrecuperated w i t h  an e f f e c t i v e  pressure drop o f  1 i n c h  o f  water i n  the  

recuperator .  A key t o  t h i s  ana lys i s  i s  t o  recognize t h a t  a l l  con f i gu ra t i ons  

must r e s u l t  i n  t h e  same n e t  pressure drop and t o t a l  mass f l o w  as d i c t a t e d  by 

t h e  g iven furnace operat ion.  Local gas conta ins 875 BTU/SCF. A t  a  20 percent  

excess o f  a i r ,  each ft3 o f  gas r e s u l t s  i n  13 ft3 o f  exhaust a t  standard 

cond i t i ons  o r  about 0.54 l b s  o f  exhaust pe r  second. From the  data and these 

c r i t e r i a ,  and recupera tor  core l eng th  (R), t he  number o f  tubes o r  channels 

(Nr), and the t o t a l  channel l eng th  (L), a re  de f ined.  Using these data  and 

geometry cons idera t ions ,  a normal i z e d  gas t r a n s i t  : t ime  (T) and a t o t a l  heat, 

exchange sur face area (S,,) a re  ca lcu la ted .  

The product,  T SHY i s  t he  heat  recovery f a c t o r  and i s  a measure o f  t he  

heat  t r a n s f e r  c a p a b i l i t y  f o r  t h a t  s i z e  and con f i gu ra t i on .  The h igher  t he  

v a l  ue, t h e  more e f f e c t i v e  and e f f i c i e n t  t h e  con f i gu ra t i on .  

Re la t i ve  c o s t  e f fec t i veness  requ i res  normal i i i n g  t o  manufacture c'ost. 

Most supp l i e rs  r e p o r t  p r o j e c t e d  f a b r i c a t i o n  costs on a per  pound basis. Vm i s  

t h e  volume o f  ceramic ma te r ia l  needed i n  each c&e: a s s ~ ~ m i n g  constant  heat 

exchange w a l l  th ickness b u t  a c y l i n d e r  Fa1 1 th ickness whi,ch v a r i e s  1 i n e a r l y  

w i t h  tube rad ius .  Vm/Tm.SH provides a measure o f  t h e  r e l a t i v e  c o s t  e f f e c t i v e -  
. . 

ness per  pound o r  RCEP, wi th. '  a  1 ower number i n d i c a t i  n g  a 1 o w e r  cos t  per  heat 

recovery u n i t  f o r  a g rea te r  cos t  effect iveness..  F igure  9 '  shows a p l o t  of 



DIMENSION, INCHES 
.. I . . 

. . . . 
. . 

~ F igure, 8 . Mass f 1 ow r a t e  f o r  var ious dimensionsand. aspect r a t i o s  o f  ,I. 0. 
Values a t  8 in-ches and 12 inches are i n fe r red .  
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TABLE I X  

SUMM~RY OF C O ~ D  FLOW TEST ANALYSES , 

CI 

0.2684 

2.4131 

1.24 

0.1109 

2.0 

08.137 

4.0 

7.9 

6.4 ' 

0.71 

0.172 

1.10 

0.53 

0.48 

D l .  

0.6593 

4.3254 

0.92 

0.1524 

2.67 

0.25 

2.21 

5.9 ' 

6.3. 

0.97 

0.235 

1.48 

0.66 

0.45 

E l  

2.2715 

9.8642 

0.608 

0.230 

4.0 

0.58 

0.9 

3.76 

6.2 

1.42 

0.344 

2.13 

0.89 

0.42 

A3 

0.0231 

0.3164 

9.4 

'0.0724 

2.0 

0.0234 

23.2 

46.5 

5.0 

0.36 

0.087 

0.44 

0.54. 

1.23 

A 2 

0.0154 

0.2740 

7.3 

3.0562 

1.33 

0.0190 

28.7 

3 . 3  

5.3 

0.29 
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0.37 

0.45 

.1.22 
. . 
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Nuf ier  o f  PP T e s l  U n i t s  
t o  s ~ p p l y  0.54 Ibs/sec 
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Tatal  heat erch&,@e 
surface = '-.s~T1 .Sa 
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voic volume 

Exgosure t i r e  = pvT / t i~ r  
( a t  STP c m d i t i o m )  

Hest recovery fac to r  

Volume o f  scalec module 
na te r ia l  
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u n i t  (Vm/T.S~. 
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UNIT SIZE,  INCHES 

Figure 9 .  ' Relat ive cost effectiveness per pound. RCEP shown as a function 
o f  diameter f o r  an aspect r a t i o  o f  1.0. 



RCEP as a  func t ion  o f  diameter. . . 

One model was. run w i t h  both ' a  smooth and a rough textured' surface. 

Values of RCEP i nd i ca te  a  rough surface improves the cost  ' ef fect iveness 

s l i g h t l y .  For considerat ions re l a ted  t o  fou l ing,  an aspect r a t i o  o f  less  than 

one i s  probably no t  des i rab le  unless dimensions greater than 8 inches are used 

because the he ight  o f  the f low chamber becomes too small and subject  t o  plug- 

g-ing. The A u n i t s  data ind icates no advantage t o  a  small aspect r a t i o ;  how- 

ever, the B u n i t s  data ind icates a  c lea r  advantage o f  two times o r  greater ' f o r  

the smaller aspect r a t i o s  tested. . There i s  no c lear  explanation f o r  these 

di f ferences a t  the two d iamet~rs .  The shape o f  the p l o t  i n  Figure 9 i n -  

d icates t h a t  an optimum u n i t  s ize i s  a t  l e a s t  4 inches. . 

F ina l  optimum geometries w i l l  a lso  depend upon heat t rans fe r  e f f ec t s  not  

considered i n  t h i s  analysis and cost  fac tors  cu r ren t l y  unavailable. Such 

considerations may favor the smaller dimensions because o f  f ab r i ca t i on  l i m i t a -  

t ions.  Hence, a  prototype recuperator should be ,  sized between 5 and 10 

inches. 

Test Module Fabr icat ion 

Test ing o f  t e s t  modules under operating condi t ions v e r i f i e s  the thermal 

stress ca lcu la t ions and mater ia l  proper t ies  eva,luations. The determination o f  

operating l i m i t s  f o r  a  selected t e s t  mater ia l  a lso normalizes the thermal 

stress ca lcu la t ions and provides an absolute as we l l  as r e l a t i v e  means o f  

evaluat ing a l l  candidates. As i t  turned out, however, the t e s t  modules proved 

so durable t h a t  they could not be broken by the laboratory a t ta inab le  thermal 

condit ions. 



From the  proven pr imary candidate ma te r ia l s ,  a  KT from Carborundum was 

se lec ted  f o r  t h e  t e s t  modules on the  bas i s  o f  performance, cos t ,  and de l i ve ra -  

b i l i t y .  S i x  t e s t  u n i t s  were f a b r i c a t e d  a t  t he  f a c t o r y  from a  p a t t e r n  hand- 

f a b r i c a t e d  a t  Ter ra  Tek and M i l l c r e e k  Glass. A rubber mold was made from t h e  

p a t t e r n  and used t o  cas t  t he  greenware. The f l e x i b i l i t y  o f  t h i s  mold permi t -  

t e d  t o 1  erance dev ia t i ons  which, a1 though n o t  de t r imenta l  t o  t h i s  t e s t ,  would 

be .  unacceptable f o r  a  working recuperator .  A more r i g i d  mold would overcome 

..this. ... d i f f  ic ,u l  ty,.~ , Several sur face blemishes .a1 so occurred on some' t e s t  ,modules 

du r ing  f a b r i c a t i o n .  These. were n o t  aggrav'ated du r ing  ' the t e s t s  and p o s t - t e s t  

ana lys i s  o f  modules a t  t he  factory 'showed them t o  be s u p e r f i c i a l .  Avoidance 

o f  such blemishes f o r  produ'ct ion u n i t s  i s  assured by the  supp l i e r .  37 

-The t e s t  module design matched as much as poss ib le ' t he 'des ign  recommended 

f o r  t he  p ro jec ted  pro to type tes ts .  

Thermal Stress Tests 

Tes t ing ' .o f  u n i t s  was accomplished by p l a c i n g  them i n t o  the  f l u e  o f  a  day 

tank g lass furnace. An a i r  i n j e c t i o n  system es tab l ished a c o l d  s ide  tempera- 

t u r e  which cou ld  be accura te ly  c o n t r o l  1  ed and ope ra t i  ng . cond i t i ons  cove r i  ng a  

wide range o f  temperature d i f f e r e n t i a l ' s  cou'ld be simulated. 

, Furnace 1  i m i  t s  requ i red  30-hour 'heat-up and '.  30-hour cool  -down per iods  

du r ing  each t e s t  run. A f t e r  heal-up was achieved, a i r  i n j e c t i o n  t o  the  c o l d  

si,de -was begun and increased u n t i l  t he  des i red  gas AT was reached. These 

c o n d i t i o n s  were mainta ined f o r  .an .hour o r  more t o  i nsure ' t h a t  a  stab1 e  condi- 

.ti on had. .been reached and t h a t  . t e s t  temperatures simul a ted  l ong  ruri cond i -  

t i ons .  The t e s t  u n i t s  were then cooled w i t h  the  furnace and inspected f o r  

d e t e r i o r a t i o n  and o ther  e f f e c t s .  



The t e s t  c o n f i g u r a t i o n  r e s u l t e d  i n  a  l a r g e  ATB a t  t he  bottom o r  exhaust 

e n t r y  zone. Because o f  heat  t r a n s f e r  under cof low cond i t ions ,  t h e  ATT a t  t he  

t o p  o r  exhaust e x i t  zone was about one - th i rd  o r  l e s s  o f  t he  ATB. T h i s  pro-  

v ided oppor tun i t y  t o  t e s t  u n i t  behavior over a  wide range o f  AT'S i n  a  s i n g l e  

t e s t  run. I t . was f u l l y  expected t h a t  some d e t e r i o r a t i o n  might  o c c u r  a t  the  

g r e a t e s t  . . a t t a i n a b l e A T B  a.nd a  d e f i n i t e  l i m i t  on AT cou ld  be def ined.  This  was 

n o t  t h e  case, however. I n  t h e  f i n a l  t e s t ,  a  ATB o f  1200°F and a  ATT o f  300°F 

were achieved: w i t h  no ev iden t  d e t e r i o r a t i o n  o f  any, k i n d  r e l a t e d  t o  thermal 

s t ress .  

Dur ing  th. is  : t e s t ,  gas entrance h o t  and c o l d  temperatures i n t o  the  t e s t  

s tack  were 2460'~ and 1200°F respec t i ve l y .  t x i  t temperatufes Were 1950°F and 

1650°F. Average AT then was about 750°F. 

Thermal Shock Tests 

The t e s t  u n i t s  were subjected t o  a  r a p i d  thermal shock t o  determine the  

shock s t a b i l i t y  o f  t h e  module design. A u n i t  a t  room temperature was i nse r ted '  

i n t o  a  furnace ( the  " g l o r y  hole")  which was a t  2000°F. The u n i t  and' furnace 

equi 1  i b r a t e d .  a t  about 2 3 0 0 " ~  4n 10 ,minutes. ' The unit .  was then r a p i d l y  removed 
. . .  . 

from the  furnace and p laced on t h e  f l o o r  a t  room temperature. ~ l though. 'so i "e 
. . 

aud ib le  sounds were emi t ted  upon coo l ing ,  no evidence o f  any f a i l u r e  was 

detected. The - u n i t  was examined v i sua l  l y  and w i t h  a dye penetrant ,  again 

w i t h o u t  evidehce o f  any s t ress  o r  shock f a i l u r e .  . .. 



r JOINT DESIGN AND MATERIAL EVALUATION . . 

I A modular design permi ts  eas ie r  clean' i  ng and. replacement,, and thus s i  gn i -  

f i c a n t l y  reduces t h e  1 i f e t i m e  cost .  Furthermore, a nonpermanent j o i n t  simp1 i- 

f i e s c  f a b r i c a t i o n .  and cons t ruc t i on  w i t h  a t tendant  savings. such j o i n t s ,  how- 

ever, n e e d ' t o  be made reasonably a i r t i g h t  t o  reduce gas l o s s  and i n t e r p a t h  

leakage. Yet they  must endure h igh  temperature exhaust cond i t i ons  w i t h  a 

minimum o f  d e t e r i o r a t i o n  and ; "welding" t o  modules. Three p o t e n t i a l  j o i n t  
. .. 

types were i n i t i a l l y  i d e n t i f i e d .  

a.) Mechanical 

A mechanical j o i n t  would r e q u i r e  matching and perhaps i ntermeshi ng sur- 

faces'. Fab r i ca t i on  and to le rance c o n t r o l  would be extremely expensive f o r  a 

pure mechanical j o i n t  w i t h  the  necessary 1 eakage requirements. 

b) Nonreact ive Seals 

M a t e r i a l  o f  a f l e x i b l e .  o r  p l i a b l e  na ture  can a d j u s t  t o  minor to le rance 

and expansion v a r i a t i o n s  which are  i nhe ren t  i n  module f a b r i c a t i o n  o r  which 

might  r e s u l t  from furnace exposure, making the  j o i n t  area l e s s  expensive t o  

cons t ruc t .  Temperature requirements 1 i m i  t the  s e l e c t i o n  t o  ceramic f i b e r s  and 

c lo ths .  , , . . ~ 

c)  React ive Seals 

Th is  would i nc lude  ma te r ia l s  which would bond modules together  i n  a more 

o r  l e s s  permanent j o i n t .  Two types o f  r e a c t i v e  j o i n t s  suggested by o thers  are  

a viscous gl'ass j o i n t 3 8  (which may r e s u l t  n a t u r a l l y  a f t e r  use i n  some p a r t s  o f  

t he  recuperator)  and a braz ing  o r  weld ing o f  modules as performed by Norton on 

( t h i s  may a l so  occur n a t u r a l l y  f o r  some candidate mater ia ls ) .  



The concept o f  a  permanent seal between modules i s  somewhat con t ra ry  t o  

t h e  i dea  o f  modu la r i t y  and replacement ease. Th is  was pursued b r i e f l y  f o r '  

severa l  ma te r i a l s ,  however, because i t  was n o t  i n i t i a l  l y  c l e a r  t h a t  a i r t i g h t  
. * 

permanent ' j o i n t s  would n o t  be requi red. '  

From the  a t t a i  nab1 e  c o s t  and ease o f  ' f a b r i c a t i o n  standpoints., a  combi na- 

t i o n  mechanical and nonreact ive seal i s  recommended f o r  f u t u r e  - e f f o r t s . .  Four 

m a t e r i a l s  were i d e n t i f i e d .  as '  po te 'n t i a l ,  j o i n t  seal mater ia ls :  Kaowool ; S a f f i  1, 

3-M F i b e r  and F i  b e r f  rax: . , 

J o i n t  seal ma te r i a l s  were t e s t e d  . i n  an opera t iona l  c o n f i g u r a t i o n  because 

o f  t h e  need t o  evaluate the  poss ib le  i n t e r a c t i o n  of t he  seal and mo'd~le mate- 

r i  a1 ' a t .  temperature. Seal mater i  a1 s  were f a b r i c a t e d  i n t o  'gaskets and i n s e r t e d  

between t e s t  modules d u r i n g .  t he  thermal s t a b i  1  i ty t e s t s '  ' o f  those modules. 

These t e s t s  a re  discussed i n  more d e t a i l  under the  Thermal' St ress Tests sec- 

t i o n .  M a t e r i a l s  experienced thermal cond i t ions ,  compressive loads, and ex- 

haust  atmospheres. Exposed mq te r ia l s  ,were examined v i s u a l l y  and manually f o r  

evidences o f  ma te r i a l  degradat ion, chemical a l t e r a t i o n ,  i n t e r a c t i o n  w i t h  

modules' and condensate capture. Tests were done on Kaowool, 3-M f i b e r s ,  and 

F i  b e r f r a x .  . . . . . .  , 

, Performance tes ' ts  .on a1 1  j o i n t  seal ma te r i a l s  i n d i c a t e  t h e i r .  acceptabi, l- '  

i t y  f o r  use. i n  t h e  p ro to t ype  model. Because known' temperature l i m i t s  were no t  

exceeded i n  t h e  t e s t s ,  pub l ished data i s  t he  bas is  f o r  d e f i n i n g  the  useful  

temperature ranges noted i n  t he  Conclus.ions sec t i on  below. . . 

. . 



ECONOMICS 

The economics of t h i s  recuperator design is  determined by eff ic iency or 

heat recovery, l i f e  expectancy, operating and maintenance cos t s ,  and, of 

course, i n i t i a l  fabr ica t ion and ins ta l ' la t ion cost .  

Heat Recovery and Value a :  

, . A  principal  f ac to r  i s  the  net  heat t r an s f e r  r a t e  po ten t ia l ly  at tain,able 
' .  . 

a t  the  expected operating conditions of 10,000 BTU/hr-ft21A. (IA i s  the 

in terface ,  cross, section area as  opposed t o  the  extended surface area . )  A 

survey of local and national fuel  r a t e s  indicates  commercial natural gas .to 

current ly  average about $2.06 per mil l ion BTU. T h u s ,  a t  today 's  gas r a t e s  a 

module stack of one square foot  IA can be expected t o  recover about $180.00 in 

energy cost  per year. . 

Fabrication and In s t a l l a t i on  

A cos t  analys is  was performed on several prime candidates (Table X) .  The 

costs  and module weights a r e  conservative. This assures real  i s t i  c ly  achi ev- 

, .able values and, i f  manufacturers' cos t  projections a r e  fu l  l y  real  i zed, the 

economics wi l l  be even be t t e r .  The analys is  was done f o r  a 9-inch uni t .  A 

9-inch recuperator un i t ,  a t  a cos t  of $10.00 per pound, would cost  about 

n$180.00 t o  $240.00 per f t 2  of heat t r an s f e r  area. A 12-inch un i t  cos t  i s  

projected a t  $150.00 per square foot  of heat t r an s f e r  area. 40 

Ins ta l ' la t ion i s  r e la t ive ly .  simple- and the  'cost of j o i n t  seal  material i s  
. . 

minor. Jo in t  sea l s  and l i f t  mechanism cos t s  a r e  estimated t o  be 20 percent of 

the  recuperator module costs .  Fiber and brick insula t ion material s and ins ta l -  

1a t i on . a r e  estimated t o  be 40 percent of the  cos t  of the  modules based 



TABLE X 

COST ANALYSIS 

Unit Weight ., Ibs. 

Material Density ( re la t ive1 

Est. Raw Material Cost, S/lb 

Test Units . '  (6 )  
Est. delivered cost,  $ 
Cost/Units, $ 
CoSt/lb. $/ lb.  

Projected Casts 
Raw material, $/ lb.  
Forming, 6 / l  ta 
Fir ing,  Bt lb.  
Reject rat.e 
Cost/lb. 

Fabricat ion Methods 

I' 
Cord ier i  t e  ' 

3.13 

2.43 

1 t o  2 

1500 t o  3000 
250 t o  500 
100 t o  200 

2 t o 4  
2 t o 4  , 

1 t o 2 .  
2 : 1 
10 t o  20 

Dry pressed 
and machined 
i n  ,green stat,e, 
then f i red .  

Si 3N4 

3.55 

2 .73 '  

2 t o  4 
. . 

10,000 
1667 
470 

1 
3 t o  6 
6 t o  12 . . 
1.3:l 
13 t o  25 

S l i p  cast, 
react ion bo~ded . 
i n  N2 atmgs~herx. 

- ' 

KT/Si ntered A1 pha 

4.10 

3.15 

2.5 t o  5 

6000 t o  10,000 : 
1000 t o  1667 
320' t o  530 

2 t o  4 
2 t o  4 
2 t o  4 ' .  

2: 1 
12 t o  24 

May be dry 
pressed, i n -  
j ec t ion  molded, 
s l i p  cast o r  
possibly extrude.d 
then f i red .  

.4D 938 Vista1 

5.22 ' .  

3.99 

30 

N A 
N A 
N A 

5.20 

3.98 

2 t o  4 : 

1200 t o  2100 
200 t o  400 . 
50 t o  100 , 

39 1 t o  ? 
5 
10 
2: 1 
90 

Disc co ld  pressed 
and machined i n  
green s ta te or  
Iso-pressed;, then. 
f i r e d  i n  normal 
atmosphere 

1 t o  ? 
.5 to 1 
2: 1 
5 t o  10 

S l i p  cast arid 
f i r e d  i n  nonnal 
atmosphere. 



. . .  S . . '  . .  . . ... . , ,.. 

on 'engineer ing est imates. Net f a b r i c a t i o n  'and i n s t a l  l a t i o n  cos ts  of i ndus- 
. . 

t r i a l  s i z e  modules becomes $150.00 x 1 . 6  o r  $240.00 pe r  square ' f o o t  o f  heat 

t r a n s f e r  area. , '  

. .. . . 
Operation, Mai ntenance, and L i  f e  ~ x ~ e c t a n c ~  

The s p e c i f i c  .design .promises p o t e n t i a l  f o r  ease o f  removal and c leaning.  
. . . . 

, .  . 

Based on f o u l i n g  seen i n  t h i s  work, i t i s  a n t i c i p a t e d  t h a t :  l ess  than 25 per- 

cent  o f  t h e  u n i t s  would have t o  be replaced over  a 3-year payback per iod.  
. .,. 4 .  . . . 

~ p e r a t ' i o n ;  maintenance, and' cl 'eaning a r e  est imated, t o  be l e s s  than :15 percent  

per  year  o r  45 percent  o f  t h e  c a p i t a l  cos t  f o r  3 years. . Thus, . i t  i s  est imated 

these cos ts  . w i l l  add no more . than about 70 percent  o f  t he  f a b r i c a t i o n  and 

i n s t a l l a t i o n  cos t  t o  t h e  overall~recuperator~cost, o r  a t o t a l  o f  about $170.00 
. . 
. . . . 

per  square f o o t  I A .  . . 

Economic Payback .- 

The sum o f '  t he  recuperator  cos ts  f o r  a 3-year p e r i o d  i s  $410.00. The 

r e t u r n  i s  $180.00 per  year  o r  $410.00 i n  2.3 years. Thus the  payback i s  about 
. . . , . .  . . 

2.3 years. (Because t h i s  payback p e r i o d  depends upon the  c o s t  o f  money and 

o ther  f a c t o r s  n o t  c o n t r o l l e d  i n  t h i s  study, payback cou ld  vary between 2 and 3 

years. ) . . 

I n  making these c a l c u l a t i o n s ,  t h r e e  o the r  f a c t o r s  should be recognized 
. . .  . . 

t h a t  a f f e c t  t he  economics. F i r s t , ,  i t  i s  rkecognized t h a t  i n  t he  present  i n f l a -  
\ 

t - ionary s t a t e  energy cos ts  may i n f l a t e  f a s t e r  than product  cos ts  which would 

enhance t h e ,  economics. Second, ' i t  i s assumed . . t h a t  t h e  ..metal recuperator  

sec t i on  a t  t h e  1 ower temperature range would . a1 so be economical l y  se l  f- 
, . . . 

sus ta i  ",i ng. : Th i rd ,  t he  reduced c-ost o f  p o l  1 u t i o n ' c o n t r o l  equipment r e s u l t i n g  

from -lower f u e l  consumdtion w i  11 f u r t h e r  improve. t h e  economi:~ gain. 
. , ,. , . 
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CONCLUSIONS 

Summary o f  Resul ts  and Ma te r ia l   valuations 

T h e  accomplishments t o  date have exceeded e a r l y  expectat ions i n  t h a t  mo.re 

p o t e n t i a l  recuperator  ma te r i p l  s  . have been. i d e n t i f i e d  than thought  poss ib le  and 

module behavior under opera t ing  cond i t i ons  has exceeded minimum s t a b i  1  i ty  

requirements. Spec'if i c l y ,  t he  r e s u l t s  a re  as f o l  lows: 

o  . A recuperator  module o f  p ro to t ype  design has been . f ab r i ca ted  and - .  

t e s t e d  a t  and above expected thermal s t ress  cond i t i ons  w i t h  complete 

success. ' ~ h e r m a l  s t ress  c a l c u l a t i o n s  i n d i c a t e  sa fe ty  f a c t o r s  o f !  up, 

t o  16 f o r  some candidates. 

o  Fab r i ca t i on  o f  complex .pa r t s  made o f  h igh  temperature ceramics i s  

i n d j c a t e d  as' p o s s i b l e ' f o r  a l l  'good candidate mater ia ls .  Fab r i ca t i on  

o f  s i x  modules made froin KT s i l ' i c o n  carb ide  was achieved. On the  

bas i s  o f  t e s t  module f a b r i c a t i o n ,  near-zero r e j e c t  r a t e s  .can be 

expected f o r  a t  1  eas t  'some candidate mater i  a1 s. 

o    ate rial s  have been i d e n t , i f  i e d  which can "eet t he  requirements, f o r  

. , operat io 'n i n  a  g lass furnace exhaust as ' v e r i f i e d  by t e s t s  i n  t h e .  

requ i red  environments. These ma te r ia l s  a re  c o r d i e r i  t e ,  mu1 1  i t e ,  and 

alumima below 2300°F and h igh  p u r i t y  alumina and f o u r  types of 

s i  1  i c o n  carb ide above 2300°F. 

o  Economic assessments i n d i c a t e  a  payback p e r i o d  o f  2.3 years i n  an 

i n d u s t r i a l .  i n s t a l  l a t i o n  .exc lus i ve  o f  t o o l  i ng and process development 

costs. 

o  . Expected . to le rance c o n t r o l  and proven, j o i n t  ma te r i a l  behavior pro- 

v ide  . . conf idence i n  a c h i e v i n g  u n i t  j o i n t  behavior which insures  l o w  

1  eakage. 



o No l i m i t a t i o n  o r  problem has been i d e n t i f i e d  which would p r o h i b i t  

succesSful demonstration and commercialization o f  t h i s  basic design 
. '. 

f o r  a h igh temperature range recuperator. 
' 

These resu l t s  c l e a r l y  ind ica te  the advantages o f  proceeding w i t h  a proto-  

type t e s t  o f  t h i s  design which would include operat ion and t e s t i n g  .of a com- 

p l e t e  recuperator on a day tank s i ze  glass furnace. 

Table X I  presents the Summary conclusions f o r  a l l  mater ia l  evaluations 

based upon mater ia l  propert ies,  mater ia l  performance, cost, f a b r i c a b i l i t y ,  

ca lcu la ted heat t rans fe r ,  and a v a i l a b i l i t y .  

Recommended prototype' Design 

On the basis o f  e f f o r t s  discussed herein, a recommended design f o r  proto- 

type t e s t  modules and recuperator conf i gumti on has been est'abl i shed. 

A l l  t e s t s  except one co ld  f low t e s t  were conducted on t e s t  pieces w i t h  

f l a t ,  smooth heat t r ans fe r  surfaces so . that  heat capture area matched' i n t e r -  

face  c ross  sect ion area. As hi scussed above, surface t ex tu r f  ng , f i nni ng , and 

other mechanisms f o r  improving gas t o  s o l i d  heat t rans fe r  ra tes may be i n -  

cluded i n  fu tu re  t e s t  and working designs now tha t  the basic module s t a b i l i t y  

has been establ ished t o  study the time dependent.benefits f o r  design optimiza- 

t i o n  e f f o r t s .  Table X I 1  shows the mater ia ls recommended f o r  use i n . t h e  proto-  

type t es t .  These f i n a l  recdmmendations are cons,istent w i t h  other contemporary 

resu l t s .  41 

Deta i l s  of the recommended t e s t  p lan f o r  prototype tes ts  accomplished i n  

t h i s  e f f o r t  have been prepared and forwarded t o  the sporisvr under separate 

cover. 



TABLE X I  . , 

3. NC 430-Sic Norton Dense w i th  some free s i l i c o n  i n  
matrix. Good mechanical and thenna 
propert ies and read i l y  fabricated. 

4. KT and Super KT Carborundum Dense w i t h  good thermal and I I mechanlcal properties. Some free 
s i l i con .  Readily fabricated. . . 

Refel . Refel 

I 5. Refrax 20 SIC 
bonded w i t h  . 
S13Nr' ' - 
Q( 130 SIC 
bonded wi t h  S13Ns 

Very s i m i l a r  t o  NC 430. Not tested 

6. Refrax SO SIC 
bonded w i th  Si?ON2 
NC 163-SIC 
bonded wi t h  Si20N2 

I 10. NC 132 Hot Pressed Ilorton High density w i t h  g w d  thermal and 
S1 sNc I I mechanical propert ies bu t  expensive 

t o  fabricate. Not tested i n  favor 
o f  candidate 11. , 

Carborundum 
. 

. 
Norton 

7-8 CVD-SIC 

9. NC 127-SIC 
bonded wi t h  Fez03 

!MARY 

. EVALUATION RESULTS 

Some porosi ty  arid large g ra in  sizes. 
Low strengths charac te r i s t i c  of a l l  
low cust re f rac to ry  grade materials. 

. . 

Carborundum 

Norton 

Fracture toughness as tested less than m u .  
fac tu re r  spec i f i ca t ion  b u t  s t i l l  adequate. 
Furnace wrfonniince a t  hioh temera tu re  ex- 

Charater is t ics s i m i l a r  t o  Refrax 
20 and R 130 respectively. 

R.T.C. 

l lorton 

cellent.. Sane corrosion i n d  l l a i e r l a l  loss 
evident a t  about 2250°F probably corre lates 

A f u l l y  dense, chemically vapor 
d e ~ o s l t e d  sk in  on ,carbon o r  NC 400 
substrate. 

Simi lar  t o  other coarse grain 
s i l i c o n  carbide refractor ies.  . 

to glass condensation tehperatuk.  no 
s i g n i f i c a n t  change In, s t ren  th a f t e r  ex:: . . 
posure. Can be fabr icated !n required 
shape. 
Prime candldate fo r  h igh  temperature pmto-  
type module. 

Fumace behavior good except a t  about 
2250°F there  corrosion i s  evident. No 
change i n  mechanical s t rength evident a f te r  
exposure. Mater ia l  could s e n e  as sub- 
s t r a t e  f o r  CVPSlC bu t  t h i s  would COW 
p l i c a t e  fab r i ca t ion  and performance I s  un- 
proven. 
Secondary candldate f o r  h igh temperature 
prototype module. 

Furnace behavior d a t  high teagerature. 
Some corrosion ev%nt a t  about 2250°F , 
from condensing glass. A.101 t o  20% 
strength loss appamnt a f t e r  exposure 
probably due t o  loss o f  free s l l i c o n  from 
matrix. This reduction not  s ign i f i can t  
f o r  s t ress requirements though; 
P r i m  candldate fo r 'h lgh  temperature proto- 
type module. 

Behavior i n  furnace s i m i l a r ' t o  other SIC 
products. Corrosion more noticeable I n  
glass furnace than i n  combustion furnace 
bu t  s t i l l . 1 0 ~  except a t  about 225O0F: 
Strength a f t e r  exposure shcus a 30% re-  
duction probably due t o  loss o f  f ree  
y i l i c o n ;  however, f i n a l  strength we l l  above 
minimum requirements. 
Prime candidate for  high temperature pmto-  
type module. 

Low strengths prevented furnace sample pre- 
parat ion and ind ica te  l i k e l y  inadequate use 
performance. 
Mater ia l  re jected on a st rength basis for 
prototype module. 

Low strength prevented furnace sample 'pre- 
parat ion and indicate probable inadequate I 
performance i n  use. 
Nater ia l  re jected on a st rength basis - 

, for  prototype module. I 
Furnace behavoir shows no advantage over 
nther s l l l r n n  rnrbifier.. Cost improve- 
ments not  forseeable. I 
Secondary candldate fo r  h igh tcaperaturc 
prototype module. I 
I ron  content makes i t s  usefulness doubtful 
because o f  the co lo r ing  e f f e c t  o f  i n n  on 
glass. 
Material re jected as candidate f o r  proto- 
type module. 

Mater ia l  re jected as candldate for . 
prototype module. Cost reductions 
could no t  be shorn. 

No corrosion except a t  about 2250°F 
apparently due t o  condensing glass. 
Corrosion a t  2250°F was excessive. Im- 
b r i t t l ement  w i th  loss o f  strength occurred 
i n  shaf t  away from hot  end a t  about 2000°F. 
Hot exwsed end suf fered 501 t o  BM l oss  
o f  strength. 
R t e r l a l  re jected on basis o f  s t rength 
f a i l u r e  as candidate f o r  prototype I 
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15. , AD 94. 
A1 2O3 

1Sa.Ad998 . 
A1203 

. . 

16. AD W .. 
A1203 

17- 'Y lgqe A ,203 

It).' n ~ l l i t e  

19. ) ~ r l " ? r i t e  ' 
20. t b l l i t e  R 
-.- 
El. Fuzed Cast , 

AZS 

- 

Coors 
, 
.. 

:ooo 

. . - 

:wrs 

Yorton 

:oon . 
rcnaniel 

Norton 

Cnnrs 

a m i n 9  

- . -  . . 

94% pure Alumina w i t h  mod 
mechanical and f a i r .  t o  good thennal 
propert ies.  

A higher p u r l t y  alumina w i th  
character is t ics s i m i l a r  t o  AD 94 and 
selected fo r  tes t ing  wlien AD 94 
showed less temperature surv ival  
than expected. 

. 

. . . . . . . . . - -. . . . . . . . . .. . . - . . . 

An 85% p u r i t y  Alumina w i th  f a i r  
rechanical and thermal properties. 

. - ' 

Low density Alumina of coarse ra in '  
v i t e i r a l s .  LM s r w n g m  ehr iater-  
I s t l cs .  I lot tested. 

Ccmplex material o f  f u l l  density. 
F a i r  to ~ o d  mechanical strength.. 
Poor t o  f a i r  thermal prcperties. 
Inexpensive and eas i l y  fabricated. 

. 
, . 

Refractory grade mu1 li t e  of low 
densi ty .  Pomsi l y  Loo I i igh. 
Yot tested. 

Dense mater ia l  of  known d u r a b i l i t y  
i n  glass contact. Expensive t o  . 
form. Not tested due t o  expense. 

. . 

up. I t  d i d  no t  r e s u l t  I n  any fa i lu re  nor 
d i d  i t  a f f e c t  the f l e x u m  r t m n g t h  
p a r s l l o l  to the crack plane. 
Secondary candidate a t  a l l  temperatures 
f o r  prototype module. 

Strength loss a t  less' than manufac tuvn  
speci f ied maxlmum use renperature, slunped 
a t  2650°F bu t  held up a t  2550°F. Strength 
loss of  30% t o  50% following extended 
t h e y 1  exposure a t  2550°F. 
Secondary candidate f o r  medium temperature 
range for Phase 11. 

Behavlor essentially the same as AD 94 i n  
the furnace bu t  less loss o f  strength 
a f t e r  exposure. A 20% post exposure . 
st rength loss occurred In. the conbustion 
f~ rmace  hu t  no st rength change was evident 
i n  the glass furnace sanple. However, d is-  
t o r t i o n  occurred where glass condensed on 
the sample. 
Primary candidate for,medium teqerature.  
fo r  prototype module. 
. . . 

Mater ia l  slumped severely a t  2550°F appar- 
e n t l y  due t o  behavior of  the 15 percent 
impurity. 
Mater ia l  re jected i n  favor o f  A0 998 and 
A0 94 fo r  pmtotype module. 

-. -, 

Easi ly  bent a t  2650°F. Crysta l l ine . . 
develo~ment and tofa! loss of strength 
w i th  f ractur ing i n  glass atmosphere. 
Post exposure strengh o f  combustion 
furnace s a q l e  increased 25%. Glass 
furnace samles had no Strength post 

' 

exposure. . . 
Behavior sat is factory a t  lower tem- 
p o r a t u m ~ ,  
Primary candidate for,mdium tenperature 
f o r  pmtotype module. 

Recent developmnts m y  Pmvide a cheaper 
way t o  fabricate complex shapes. Should be 
reconsidered as possible candidate fo r  
prototype module. 
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checker mater iq l  bu t  , 

i n  dense conplex f o m .  

. ' I " '  

WERIAL PRINCIPAL CHAWTERISTICS EVALUATION RESULTS 

M. MA)* ER 

I A successful checker mater la l  bu t  . 
n o t  avai lable I n  dense conplex . 
f h .  Not tested. 

PZ. ~ o r d i e r l t e  . 
CD-1 

Coors 

25. I(p0.Alz03 , 

i 

p6. ZrO 
21 rconia 

I 

lnexp'ensive and eas i l y  fabr icat id.  Post exposure st rength dmpped by 87% 
Very lm thermal expansion and above 2300eF and dropped 6M above 
stress. Maximum temperature 21W°F. Condiserable deformation and 
l i m i t e d  t o  about 2300°F. b l i s t e r i n g  above 21W°F. 

Secondarj candidate f o r  m e d i m  taw 
perature for  pmtotype module. 

27. CaO bonded 
&stable 
refractory 

pB. Phosphate bonded 
Castable 
re f rac to ry  

29. Be0 
B e r y l l i a  

30. dlatinum and other 
. h igh  temperature 

metals. 

.31. BN 
Bomn ,Nl t r i d e  

32. 311 
Fibers 

S a f f i l e  . 

Coon 
' 

Coon 

33. Fiberf rax 

a. ~ a k o l  

High resistance t o  a l k a l i s  b u t  Future evaluation recomnded. 
otherwise no real  advantage over 
A120 . Testing wi thheld I n  favor 
of  Alumina. 

Very good mechanical propert ies but  Behavior good a t  h igh temperature but  . 
low thermal conductivity. Known f a i l u r e  o f  sanple always occurred at' po in t  
phase t rans i t i on  occurs w i th  time a t  o f  t rans i t i on  temperatu*.. Nature, and ex- 
s lngular  temperature. ten t  of effects indicates a rather bmad 

temperature range f o r  t h i s  e f fec t  over 
extended exposure times making I t  an 
unrel iable material. 
Material re jected f o r  pmtotype module. 

3M 

S a f f i l e '  

1 

Very inexpensive. ~ i f f i c u l t y  i n  formind cons!stent sanples 
and apparent .low strengths resul ted I n  

. materials re jec t ion  f o r  test ing.  
Very inexpensive. Materials r e j e c t e d f o r  prototype module. 

Very good conduct iv i ty  w i th  good Material re jected f o r  Phase 1 tes t ing  due 
strength. t o  potent ia l  heal th hazards. 

Expensive. Good mater ia l  Cost considerations cause re jec t ion  of  
properties. Fabrication usual ly  . these materials f o r  Phase I testing. 
d i f f i c u l  t. 

Excel lent  material propert ies Not selected f o r  tes t ing  i n  Phase 1 but  
bu t  expense appears too high. should be reconsidered I f  future pm- 

duction costs can be decreased. 

Available as loose f ibe rs  and woven Tested t o  25nOPF o r  greater. Cloth showed 
c l o t h  and tape. Good high tem- a tendency t o  becg~e more r i g i d  during 
perature capabi 1 i ty.  . exposure bu t  t h i s  i s  not 'deleter ious to use. 

flo other ef fects apparent: 
Prime candidate fo r  high temperature j o i n t  
seal. 

:arborundum Rvailable i n  wide var ie ty  of forms 
inc luding preformed gasket. 
Nnu fac tu re r  l i m i t s  use t o  about 
23000~. 

Available i n  loose pack and i n  
soveral twperatur* ,  gralics. 

Tested t o  about 2500°F " i t h  no apparent 
f fec ts .  

;rime candibate for  m d i ~  tewerature 
j ~ l n t  seal. 

Tested t o  about 2500°F. Some charr ing 
l o t l c e d  on exposed areas a f t e r  72 hours, 

- 
Secondary candtdate f o r  j o l n t  seal - 
nedium tenperstuw. 

m. 
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MODULE MATERIALS . . 

<17OO0F 

S t a i  n l  ess, s tee1 , 
309 
446 

JOINT SEAL MATERIALS 

<1700° F 

F i  b e r f r a x  
~ O W O O ~  

. . 

1700°F-2300°F 

Cqrdi e r i  t e  
M u l l i  t e  
Low p u r i t y  Alumina 

>23OO0F 

V i  s t a l  o r  High P y r i  t y  A1 umi na 
S in te red  A1 pha 
KT 
CVD 
NC 430 

1700" F-2300" F 

F i  b e r f r a x  
Kauwuul 

>2300° F 

3-M Ceramic F i  b e r  
(62% A1 u1ii.i ild, 
14% Bor ia,  24% S i l i c a )  

S a f f i l e  
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APPENDIX 

Ceramic Evaluation 

Dr. Ivan  Cut le r ,  Univers i ty  o f  Utah ceramicist  and p r o j e c t  consultant ,  

examined mater ia l  samples a f t e r  furnace exposure and provided the  fo l lowing 

eval u a t i  on. 
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Report from' D r .  I van  B. C u t l e r  t o  Ter ra  Tek 

A p r i l  1, 1978 

EVALUATION - OF SAMPLES SUBJECTED - TO COMBUSTION, -- AND GLASS FURNACE ATMOSPHERES 

TERRA TEK, INC., S a l t  Lake C i t y ,  Utah --- -- 

Mechanism - o f  F a i l u r e  - o f  R e f ~ c t o r y  Ma te r i a l s  

I n  t he  r e f r a c t o r y  t e s t i n g  f o r  use i n  g lass  tank  recuperators,  the  

me.chanisms o f  f a i l u r e  are  impor tan t  f o r  our considerat ion.  There are  r e a l l y  

t h ree  mechanisms o f  f a i l u r e  t h a t  can be examined w i t h  the  ma te r ia l s  supp l ied  

t o  me. One mechanism o f  f a i l u r e  concerns ox ida t i on .  Non-oxide ma te r ia l s  such 

as s i l i c o n  carb ide  and s i l i c o n  n i t r i d e  are  usefu , ,  a t  h igh  temperatures because 

they develop a  s i l i c o n  d iox ide  p r o t e c t i v e  layer .  A t  low temperatures t h i s .  

p r o t e c t i v e .  l a y e r  i s  a  glass; a t  h igh  temperatures above about 1200°.C o r  2100°F, 

t he  g lass f i l m  w i l l  c r y s t a l 1  i z e  t o  c r i s t o b a l i t e .  It s t i l l  remains ' p r o t e c t i v e ,  

however, i n  s p i t e  o f  i t s  c r y s t a l l i z a t i o n .  Because the  r a t e  o f  o x i d a t i o n  i s  

c o n t r o l l e d  by the  s i l i c a  f i l m  on the  ou ts ide  o f  these non-oxide ma te r ia l s ,  

anyth ing t h a t  would change the  s i l i c a  f i l m  w i l l  change the  r a t e  o f  ox ida t i on .  

The r a t e  o f  o x i d a t i o n  has been shown t o ' i n c r e a s e  somewhat i n  a  water vapor 

atmosphere f o r  example, because the  water a c t u a l l y  changes the  v i s c o s i t y  o f  

t h i s  g lass f i l m  on the  ou ts ide  o f  the  s i l i c o n  carb ide  o r  s i l i c o n  n i t r i d e .  

Other ma te r i a l s  t h a t  change v i s c o s i t y  o f  s i l i c a  g lass a l so  acce lera te  the  r a t e  

o f  ox ida t ion .  I n  t h e  presence o f  vapors o f  a l k a l i e s  t h a t  a re  present  i n  g lass 

tanks, t he  r a t e  o f  o x i d a t i o n  i s  p red i c ted  t o  increase and i t  c e r t a i n l y  does. 

I n  these t e s t s  the  specimensc- lear ly  show t h a t  t he  r a t e  o f  o x i d a t i o n  i s  ac- 

ce le ra ted  by the  presence o f  vapor species t h a t  come ou t  o f  the  g lass tank. 
. . 



These accumulate. on t h e  sur face,  decrease the  v i s c o s i t y  o f  t he  g lass,  accele- 

r a t e  ox ida t i on ,  and hence acce lera te  corros ion.  It should be noted, however, 

t h a t  i n  s p i t e  o f  the. co r ros ion  a l l .  o f  t he  s i l i c o n  carb ide  and s i l i c o n  n i t r i d e  

samples showed very good creep res is tance.  T h a t . i s , , t h e y  d i d  n o t  deform under 

t h e i r  own .weight when, sub jec t  t o  t he  .combustion. atmosphere o r  t h e  g lass atmo- 

sphere. This  means t h a t . t h e y .  d i d  n o t  s u f f e r  from pene t ra t i on  o f  any o f  these 

a1 ka l  i e s  i n  between t h e  c r y s t a l s  o r .  g ra ins  o f  s i l i c o n  carb ide  o r  s i l i c o n  

n i t r i d e .  Likewise, they  are very creep r e s i s t a n t  on t h e i r  own accord, t he  

p rope r t y  t h a t  i s  w e l l  recognized i n  t he  ceramic i ndus t r y .  

Among t h e  ox ides which would' inc lude aluminum oxide, m u l l i t e ,  and 

c o r d i  e r i  t e ,  t h e  mode o f  o r  mechanj;sm o f  f a i  1  u re  is .  one o f  creep which may' be 

acce lera ted  a g rea t  deal by pene t ra t i on  o f  t h e  g lass o r  vapor species i n  

between the  c r y s t a l s  i n  t h e  ox.ide. Creep i s  e a s i l y  noted by deformat ion under 

the  weight' o f  t he  specimen i t s e l f .  Creep . type f a i l u r e s  are  a l so  e a s i l y  

observed by h igh  temperature s t reng th  t e s t i n g .  

For the  purposes o f  the  t e s t s  t h a t  have been performed t o  date, creep 

f a i l u r e  i s  e a s i l y  0bserve.d i n  t he  deformation o f  samples i n  t he  h o t  zone both  

i n  combustion atmospheres as w e l l  as i n  g lass atmosphcrcs. Crccp t h a t  56 

acce lera ted  i n  t h e  presence o f  a  g lass tank  atmosphere i s  o r d i n a r i l y  due t o  

t h e  pene t ra t i on  o f  t he  g lass cons t i t uen ts  a's they condense o u t  on the  re f rac-  

t o r y  and penet ra te  a long g r a i n  boundaries i n t o  t h e  ox ide type ma te r ia l s .  This  

,p rov ides  a  low v i s c o s i t y  g lassy ma te r ia l  a t  g r a i n  boundaries t h a t  e a s i l y  

accelerates any deformat ion due t o  t h c  a c t i o n  o f  g r a v i t y  on the  specimen 

i nvol  ved. . .  



Observations of 'samples Submitted f o r  Examhat ion .  - 
On the  s i l i c o n  carb ide and s i l i c o n  n i t r i d e  samples, i t  was r e a d i l y  ap- 

parent  t h a t  a  maximum accumulation o f  ' co r ros i ve  cons t i t uen ts  from t h e  g lass  

tank  occurred a t  some in te rmed ia te  tempe'rature. ' Saying t h i s  i n  a  d i f f e r e n t  

way, t h e  v o l a t i l e  cons t i t uen ts  t h a t  come- from t h e  g lass tank  o r  a  dus t  t h a t  

may come from the  g lass tank  from adding batch ' t o  t he  g lass tank  tends t o  

accumulate a t  some in te rmed ia te  temperature. A t  t h e  very  h igh  temperatures 

the  a l k a l i e s  are  so v o l a t i l e  . t h a t  they  do n o t  remain i n  contac t  w i t h  t h e  

carb ides and n i t r i d e s .  To some ex ten t  t h i s  i s  a1 so observed on the  oxides as 

w e l l .  It would be i n t e r e s t i n g  t o  be ab le  t o  p r e d i c t  the , tempera ture  a t  which 

maximum accumulat.ion occurs. I can on l y  est imate from S-a3 and si.1 i c o n  n i t r i d e  

sample 4  t h a t  . the  , maximum accumulat ion. occ'urs a t  approximate1.y , 2200°F. . A t  

temperatures be1 ow t h i s  t he re  appears t o  be very 1  i ttl e 'corros ion accelerated 

by the  g lass.  A t  temperatures above t h i s  t h e  co r ros i ve  agents appear t o  b o i l  

ou t  and a  cor ros ion ,  a1 though 'more severe than i n  a  combustion atmosphere, i s  

l ess  severe than i t  i .s  a t  t h i s  in te rmed ia te  temperature. 

Even i n  the  combustion atmosphere the re  i s  obv ious ly  some. i r o n  ox ide t h a t  

i s  a v a i l a b l e  i n  t he  vapor as. can be observed from the  co lo red  ox ide f i l m  

present  on the  ox id i zed  samples. This  i r o n  oxide undoubtedly accelerates 

co r ros ion  t o  some ex ten t  b u t  i t  c e r t a i n l y  appears t o  be mlnlrnal. Most o f  the  

s i l i c o n  carb ide samples as wel-l a s , s i l i c o n  n i t r i d e  samples, appear t o  be ab le  

t o  w i ths tand the  combus'tion 'atmosphere ' i n  t he  absence o f  t he  v o l a t i l e  g lass 

c o n s t i  tue'nts. 

The h igh  p u r i t y  alumina samples, even t o  the  AD-94,; apparent ly  can w i th -  

stand the  a t t a c k  o f  t he  g lass cons t i tuents .    his i s  , c h a r a c t e r i s t i c  o f  aluminum 

oxide which has a  good record  f o r . w i t h s t a n d i n g  co r ros i ve  atmospheres i n  g lass 



tanks. I could  detec t  a l ' i t t l e  creep o r  bending i n  the AD-94. The AD-85, o f  

course, which i s  s in te red  w i t h  the a i d  o f  considerable magnesium, calcium 

s i l i c a t e  ,g lass shows. a great  .deal o f  deformat ion 'and probably could not  be 

used a t  swch',high temperatures as 2550°F wi thout  severe deformation. Inasmuch 

as there  are many re f r ac to r y  products avai 1 able' w i t h  reasonably h igh p u r i t y  

a1 umi nun ox i de  . above 98%. A1 *03, i t would appear t o  me t h a t  these mater ia ls  
. . 

would be adequate t o  temperatures i n  the neighborhood o f  2600°F. Perhaps t he  

more d i f f i c u l t  problem of long term operat ion o f  a recuperator would bc the 

cont inual  condensation of the glass  constituent.^ mainly a1 ka l  i e s  t h a t  would 

take place a t  an intermediate temperature eventual ly  p lugging o r  r e s t r i c t i n g  

t t ie f l ow o f  gases and decreasing .the heat t r ans fe r  coe f f i c i en t s  t o  the p o i n t  

o f  making recuperat ive operat ion very d i f f i c u l t .  Compared t o  the alumina, the 

m u l l i t e  and c o r d i e r i t e  were inadequate. The m u l l i t e ,  i n  p a r t i c u l a r ,  showed a 

great  deal o f  penet ra t ion of glass atmosphere const i tuents.  Not only d i d  the 

penet ra t ion occur and, undoubtedly, change the v i s cos i t y  and creep character- 

i s t i c s  o f  the mu1 1 i t e ,  bu t  i t  'a1 so changed. the c o e f f i c i e n t  o f  thermal expan- 

s ion  as evidenced by the mul t i tude o f  cracks t h a t  occurred i n  the.penetrated 

p o r t i o n  o f  the m u l l i t e .  

Even the i r o n  from the combustion atmosphere was s u f f i c i e n t  t o  a l t e r  the 

c o r d i e r i t e  a t  t he  higher t.emp~rat.!!re~. I t  ' ,may be t h a t  we -a r c  above the  

eu tec t i c .  i n  the c o r d i e r i  t e  system (Magnesia-a1 umni na-si 1 ica). Cord ier i  t e  i s  

normally not  used a t  such high temperatures as 2600°F.. On the other hand, i t  

i s  very s,ensi.tive t o  i r o n  a:! shown by c o r d i e r i t e  sample 3 which showed some 

creep and shrinkage on the hot  end where i r o n  would absorb and produce a lower 

me1 t i n g  1 iqu id .  Evi.dently the c o r d i e r i  t e .  cannot be used above .about .210O0F as 

shown by sample 4. 



Summary - o f  Observations 

Although I have made d e t a i l e d  observat ions on each sample elsewhere, 

general conclusions can be drawn t h a t  show w i thou t  doubt the  accumulation o f  

a1 ka l  i e s  and o the r  v o l a t i . l e  cons t i t uen ts  on the  r e f r a c t o r y  ma te r i a l s  t h a t  i s  

maximized a t  some in te rmed ia te  temperature near 2200°F; This accumulation 

accelerates ox i 'dat ion o f  carb ides and n i t r i d e s  and renders them inadequate f o r  

long term opera t ion  o f  a recuperator  a t  these temperatures. O f  the  oxides, i t  

i s  apparent t h a t  a1 umi num oxide wi thstands creep and pene t ra t i on  b e t t e r  than 

any o f  t he  o ther  oxides. Both m u l l i t e  and c o r d i e r i t e  are s e n s i t i v e  t o  the  

pene t ra t i on  o f  a l k a l i e s  and o ther  v o l a t i l e  cons t i t uen ts  a v a i l a b l e  from glass 

furnace atmospheres. 



ADDENDUM TO ECONOMICS SECTION 

Phase I F i n a l  Report: High Temperature Range Recuperator 

The c a l c u l a t i o n  o f  economic pay ou t  i n  t he  Phase I F i n a l  Report: High 

Temperature Range Recuperator was made on a bas is  .of t h e  heat  recovered by the  

recupera tor  as having a value equ iv i l en ' t  t o  methane w i t h  the  same combustion 

content.  This  was done so as t o  separate the  recuperator  economics from the  

end-use system economics. This  approach, tiowever, severely  underestimates 

the  t r u e  economic p i c t u r e  fo r  t h e  recuperator .  This  addendum has been .pre- 

pared t o  c l a r i f y  t he  c a l c u l a t i o n s  and .e labora te  upon . t h e  saving p o t e n t i a l .  

The e a r l  i e r  c a l c u l a t i o n s  are  two conservat ive f o r  t h e  f o l  1  owing two 'reasons. 
. . 

1. The recuperated. heat i s  i n  t h e  form o f  usuable h o t  gas w h i l e  the  

methane heat must be converted through some f i r i n g  process t o  gen- 

e r a t e  the  sens ib le .  heat. . These f i r i n g  processes a r e  u s u a l l y  about . . 

65 t o  70 percent  e f f i c i e n t .  Thus t h e  recuperated . . heat  i a l  ue should 

, be m u l t i p l i e d  by 1.4 t o  1.6 be fore  calcul .at ing.  t h e  econoinic va1.ue 

based on met'hane cost .  - .  
I . . 

2. The most l i k e l y  use  o f  recovered h e a t  ';is t o  preheat  combustion a i r  

f o r  t h e  source furnace. The i n t e r a c t i o n  between t h e  furnace and: 

recuperator  i s  such as. . to . reduce fuel  .requirements by more than the  
. . 

simp1 e heat recovery c a l c u l a t i o n .  

The above approaches a re  independent and cannotribe added. They are 

t r e a t e d  separate ly  below. 

. . 
C a l c u l a t i o n  o f  Economi,c Return from Sensi b1 e Heat Val ue 

I n  t h e  referenced t e x t ,  t h e  'heat recovery i s  est imated a t  10,000 Btu/ 

hr- f t21A. .  Since t h i s  i s  i n  t he  form o f  sens ib le  heat  we can equate i t  t o  t h e  



heat content o f  methane which can be converted t o  sensib le heat a t  about 

70 percent. Thus a t  $2.06 per MCF o f  methane (one MCF o f  methane contains 

about l o 6  Btu), the sensib le heat recovery i s  valued a t  

l o 4  BTU 365 x 24 h r  , $2. 06/106 BTU = $258. OO/year 
h r  year 0.7 e f f .  

Using the  same simple payback approach we have a net  f ab r i ca t i on  and i n s t a l -  

l a t i o n  cost  o f  $240.00/ft21A and an annual operat ing cost  o f  '$57.00. Thus the 

payback (neglect ing i n t e r e s t  and r a t e  o f  r e t u r n ) , i s  about.15 months instead o f  

the 2.3 years ca lcu la ted  i n  the  main t e x t .  

Cal cu l  a t i  on o f  Economic Return from Preheated A i r  Usage. 

Two modes o f  operat ion are poss ib le  t o  iiidke use o f  preheated combustion 

a i r .  These' are  1) reducti.on o f  f ue l  w i t h  constant furnace output  and 2) i n -  

creased furnace output  w i t h  constant fue l .  

1) Possible Fuel Savings 

A. Fuel Reduction 

A t.ypica1 furnace con f igu ra t ion  using a recuperator i s  shown i n  Figure A l .  
I 

COMBUSTION 

NATURAL 
GAS 

FURNACE RECUPER- 
d . a - ATOR ..~..-- 

AMBIENT 

.. . AIR ( 7 0 ~ ~ 1  
I I . 

PREHEATED COMBUSTION . . 
AIR 

Figure A l .  Typical furnace recuperator ,conf igura t ion.  

I n  a g lass <furnace, the flame tempe,rature . i s  t y p i c a l l y  around 1700.°C. Furnace 

e x i t  temperatures usual l y  range from. 1500 - 1600°C. (Reference: S. R. Scholes, 

Modern Glass Pract ice,  7 t h  Ed. , Cahners Books, 1975, Pg. 156, 160. ) 



For t h i s  ana lys i s  we use the  f o l l o w i n g  'technique. 

' a) Assume na tu ra l  gas t o  be p r i m a r i l y  methane. 

b) Assume burner  t o  be ad iabat ic .  

c) Ca lcu la te  requ i red  methane f l o w  per  . u n i t  heat  l oad  i n  furnace f o r  

several a i r  preheat:  temperatures ( f o r  constant  f lame temperature and 

' fufinace e x i t  temperature). 

The combustion equat ion i s :  

where X = excess a i r  

.For an Ad iabat ic  Flame: 
A * 

A 

where H denotes the  t o t a l  enthalpy o f  products and reac tan ts  (on a molar 

bas i s'j 

where: 

q = S to i ch iomet r i s  c o e f f i c i e n t s  i n  combustion equat ion 

hi = ~ n t h a l ~ ~  o f  each compund i n  combustion process 

The' p roduct  p r o p e r t i e s  o f  combusti on a t -  t he  s e t  f 1 ame temperature are  

T = 1700°C (use 3600°R t o  avo id  i n t e r p o l  a t i o n  o f  values) 

= -129,801.5 BTU/l b mol'e h ~ 0 2  



h = 24,144.9BTU/ lbmole 
A N2 

h ~ 2 0  = -72,696.2 BTU/lb mole 

The reactant  proper t ies  a t  d i f f e r e n t  preheat temperatures are shown i n  Table A l .  

TABLE A 1  . 

Reactant Enthalpies as a Function o f  Temperature 

h A 

Equating H i  t o  HR and solving f o r  X for several preheat t&mperatures we have;' 

and: 



Then X 'versus t f o r  se lec ted  values o f  t i s  shown i n  Table A2. 

TABLE A2 

Excess A i r  vs. Preheat Temperature 

. . 

The requ i red  methane f lows ' normal i z e d  by furnace heat l oad  can now be c a l -  

TEMP. ( O R )  

537 

1,000 

1,500 

2,000 -- -. 
2,500 

2,560 
+ 

' cu lated.  I n  t h e  furnace, t h e  furnace heat  l oad  ( losse 's  t o  ambient + heat  

f 

X 

1.26 

1.460 

1.772 

* 2.29 

3.29 

3.48 

i n p u t  t o ' m a t e r i a l ) .  i s  g iven by: 

- 
where: 

9 ~ u r n a c e  = Fur*r~ace Heat Load (DTU/I.IR) 
0 

M ~ r o d u c t s  = Mass Flow Rate o f  Products (LBM/HR) 

C P ~ r o d u c t s  = S p e c i f i c  Heat o f  Products (BTU/LBM°F) 

= Temperature Drop o f  Products i n  Furnace (OF) AT~roduct.k 

(Burner Temp. - E x i t  Temp. ) 



0 

/Q "lving for M ~ r o d u c t s  Furnace we o b t a i n  

0 

M ~ r o d u c t s  - - . 1 
Q 

Furnace C p ~ r o d u c t s  A T ~ r o d u c t s  

From t h e  ~ t o c h i o m e t r ~  o f  t he  combustion equat ion we have 
A 

0 0 - No. Moles CH4 

M c ~ 4  - 'products x 'No' Products Products 

Where: 
0 

= Mass Flow ' o f  Methane (LBM/HR) 
M ~ ~ 4  

h - Mola l  Mass o f  CH4 (LBWLBMOLE) M ~ ~ 4 -  

A .  

M ~ r o d u c t s  = Mola l  Mass o f  Products (LBM/LBMOLE) 

or 
0 .  

M ~ ~ ,  - - 1 
No. ~ o l e s  CH, 

Q ~ u r n a c e  ( C p ~ r o d n c t s  A T ~ r o d u c t s  ) No. Moles Products 

I n  o rder  t o  evaluate t h i s  equat ion we m ~ s t  make a de terminat ion  o f  product  

p rope r t i es .  The s p e c i f i c ,  heats a t  an average furnace temperature, 1600°C are: 

co, 
A 

Cp = 6.214 (cal/gMOLE OK) + 10.396 x (cal/gMOLE OK2)(T) 



A 

C~ 
= 6.524 (cal/gMOLE O K )  + 1.250 x (cal/gMOLE OK2)(T) 

The Molal weights are: 

M ~ o ,  = 44.01 LBMLLB MOLE 

  hen the product properties and fuel  requirements are as given Table A3 

and Table A4. 



TABLE A3 

Produc$ Proper t ies  

TABLE A4 

Fuel Requirements f o r  Furnace Production 
. * 0 ,  

These r e s u l t s  a re  best  ill us t ra ted  by . p l o t t i n g  normalized f u e l  requirements as 

X ~ 2  

0.'729 

0.737 

0.746 

0.755 

0.765 

0.767 

' ~ ~ 0  

0.154 

0 .134 '  

0.112 

0.088 

0.062 

0.059 

a func t ion  o f  preheated. a i r  temperature as 'shown i n  Figure A2. 

I 
: 

X ~ 2  

0.040 

0.062 

0.086 

0.113 

0,142 

' 0.145 

. No. MOLES 
Products 

12.995 

14.899 

17.850 , 

, 22.801 

32.321 

34.130 . 
L 

p 

EXCESS 
A i r  (X)  

1.26 

1.46 

1.77 

2.29 

3.29 

3.48 , 

X ~ 0 2  

0.077 

' 0.067 

0.056 

0.044 

0.031 

-, 0.029 

h A 

Cp = TXiCpi 
(CAL/GMOLEO K) 

9.763 . 

9.642 ; 

9.509 

9.364 

9.207 

. 9.187 

A A 

M = TXiMi 

( LBM/LBMOLE) 

27.867 

27.995 

.' 28.134 

28.290 

28.458 

28.468 
4 
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Figure A2. Graphic , d isp lay  o f  f ue l  requi  rements vs. preheat temperature based 
. .. 

,on 100,000 BTU/hr furnace. 

These . resu l ts  are dramatic i n  showing reduct ion , in fuel requirements. 

For example f o r  a 100,000 BTU/hr furnace using recuperated precombustion a i r  

a t  2100°F, the  f ue l  savings from Figure A2 are: . . 

. . 

For 1100" the fuel  savings are 



These resu l t s  are supported by operating experience i n  the glass indust ry  

where a 30% decrease i n  fue l  requirements i s  commonaly, achieved w i t h  precom- 

bust ion a i r  heated t o  approximately llOO°F (Pr ivate ~ommunicat ion,Foster 

Hardi ng, Johns-Manvi 11 e, Denver, co l  orado). 

To f u r t he r  conf i rm t h a t  these savings are possib le i t  must be establ ished 

t h a t  there i s  enough heat 'avai l a b i e  i n  the furnace exhaust f low s u f f i c i e n t  t o  

preheat the combusti on a i r  t o  2100°F. The goal o f .  the high temperature p ro j ec t  

i s  t o  recover 70% o f  the energy i n  the exhaust stream. I n  terms o f  temperatures 
. . . . . . ,  

then 
. . . . 

and Taib = 70°F then i t  i s  requl'red t h a t .  
, .. < . , .* .... . . . . , .  

, . . ( I .  . . 
= 883OF T ~ u t ~  e t  

The avai.lable heat i n  the exhaustproduct's i s  

(I . '. 
The required heat i'nput . t o  the a i ' r  i s :  

must be > QAir Q ~ x h a u s t  
. , 



the cond i t i on  required then i s :  

. . "' ."-' 

Thus preheating t o  2100°F i i possible; ' 
. . . . 

I . .  . . 
B. Economic Value o f  Fuel ' ~ a v i  ngs 

The estimated savings 'achieved by, a recuperator . ~ e c o v e r i n g  2100°F prehe.at 

a i r  compared t o  an unrecuperatred furnace are 60%. For a t y p i c a l  240 ton  per 

day glass furnace ' t he  f ue l  usage i s  a b o u t  10 x l o 6  BTU per t o n  unrecuperated. 

Annual savi n,gs' a t  constant prod.uct ion are -then 

Using the recuperator s i z e .  requirements (conservative) f o r  70% recovery o f  
, . .  . 

. . 

stack gas we have ' . 

3.5 x I06BTUI., ton  , day . . . 
ft21A = 3,500 ft21A ton  7 240. 24 h r s  10,000 BTU * . .  

. . 
. I . .  

and savings per u n i t  f t 2 1 A  i s  . . 

This. i s  a somewhat b e t t e r  economic p i c t u r e  than the methane combustion heat 

.calculat ion i n  t h a t  the simple pay back per iod  i s  j u s t  under 12 months. 
. . 



2) Possible 1ncreased.Furnace Loading a t  Constant Fue l  Usage 
. , 

: A. Increased. production Potent ia l .  . . .  

The previous f ue l  savi ngs ca lcu la t ions  show de ta j  1 ed problem formulat ion 

t h a t  w i  11 no t  be repeated here. For the .present analysis we w i l l  use the 

f o l l ow ing  technique.,. 

a) Calculate s to i ch ione t ry  r e q i i  red, f o r  1 7 ' 0 0 ~ ~  f 1 ame temperature w i t h  
- * -  

. .no a i r  preheat. 

b) Calculate flame temperatur.e as a func t ion  o f  a i r  preheat temperature 
. . ,. 

using p r e v i n u s l y  ca lcu la ted sknirhiul l lstry. 
, < '  

I * _  . 
. . c) Calculate increased furnace . load ing.  poss ib le  usi.ng higher flame 

I 

tempe.ratures. 

The 'cbmbustion equation now i s  based ,upon a given 26% excess 02: 

CH4 + 2;52 (02 + 3.76 N2) * COz + 2H20 + 9.48 N2 + 0-52 O2 
A 

The h reac tan t i  are as given i n  previous ca lcu la t ions.  

The enthalpy o f  reactants as a , funct ion o f  temperatures i s  shown i n  Table A5. 

TABLE A5 

Reaetant Enthalpy vs. Temperature 



, .. 
. . 

The enthalpy o f  the  p ~ o d ~ C t s  versus f l a y e  temperature then i s  shown i n  Table A6. - . . 

TABLE A6 

Product Enthalpy vs. Flame Temperature 

The fo l lowing graph i l l u s t r a t e s  t h i s  re la t ionship .  

I I I I I I I 
a9 - 

3 + 
m 
. . 
> 
a. 
J " 

a 
L 50.000 - 
I- 

- 

-50.000 I I I I I I I 
. .  . -. - 

3600 3800 4000 4200 4400 4600 4800 5,000 

' FLAME TEMPERATURE ( O R )  

. . 

Figure A3. Product enthalpies displayed graphica l ly .  



Equating HR = Hp, using Figure A3 and Table A5, the flame temperature .vs. a i r  
. ,  , 

preheat temperature i s  found t o  be as shown i n  Table .AT. 

TABLE. A7 

F l  ame ~ e m ~ e r a t u r e  .vs. Preheat Temperature 

For constant f lows and stoichiometry, the possib le furnace loading i s  a r a t i o  

o f  the temperature d i f ferences (assuming constant spec i f i c  heats):, 
. . .  

0 - - 
q~nrecuperated - M ~ r o d u c t s   products (T~ lame unrecup, TOu+l e t )  

Furllace 
0 . , 

. . - (T . ' 

- 
q~ecuperated - M ~ r o d u c t s  Cp~roduc ts  , , Flame Recup. TOutl e t )  
,Furnace' 

'. .L 

q~ecup  . . 

,Furnace - - -- T ~ l a m e  Hecup.. -Tou t le t  
.- 

q~nrecup. T ~ l a m e  Unrecup. - Toutlet , .  . , 

. . 

F o r  a furnace o u t l e t  temperature o f  2780°F t he  product r a t i o s  are given i n  

lab1 e ~ 8 .  The . i nverse o f  t h i  s case could be t o  m a i  n t a i  n a constant 1 oadi ng 

r a t e  and decrease the t o t a l  fue l -a i r  f lowrate. For t h i s  mode 'the data pre- 

sented' i n  Table A8 would represent the r a t i o :  



f u e l  consumption unrecuperated furnace 
f u e l  consumption recuperated furnace. 

. . 
. . TABLE A8 

Increased Furnace Loading f o r  Increased. Flame Temperature 

. ,  
I n  p rac t i ce ,  mater ia ls  considerat ions l i m i t  t he  maximum flame temperature 

T'i heheat 
(OR)  . . 

' 537 

1,000 

1,500 ' 

2,000 

2,500 

2,560 
4 

and furnace redesign would 'probably.  be riec'essary t o  ensure the  l a r g e  A T ' S  

. 
% Load!;; Pecup. f urnace/l  oadi ng unrecup. furnace 

., 1.0 
. . 

1.89 

2 .'83 

3.88 
. . . . . . . 

4.97 
. . 

. LL .. - 5.11 

between the flame and the  furnace e x i t  kppkars as. energy i n p u t  t'o the  g lass  

ra the r  than heat loss  t o  the  surroundings; ' A  poss ib le  operating.mode would be 

t o  increase flame temperature t o  t h e  mater ia l  l i m i t s  o f  burners and furnaces 
2 . .  . p i - ; c  < + '  

and then increase the  kxCess a i r  r a t i o  t o  mainta in temperatures and opt imize ' 

the through p u t  f o r  a g iven . furnace s i t e .  




