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ABSTRACT 

Numerical modeling and analysis of  surface electr ical  and seismic d a t a  

from the Beowawe KGRA, north-central Nevada, permit extrapolation of mapped 

geologic units and structures to  approximately a mile (1.6 km) depth from 

which inferences about the geothermal system can be made. Detailed numerical 

modeling was completed for 78 line-mi. (125 km) of dipole-dipole res i s t iv i ty  

data and includes compensation for topographic effects  caused by the Malpais 

R i m  scarp. 

units, one of which occurs only w i t h i n  the area of hydrothermal alteration 

along the f au l t  s e t  a t  the base of the Malpais R i m .  

reflection d a t a  show numerous normal faul ts  sub-parallel t o  the Malpais R i m  

w i t h i n  Whirlwind Val 1 ey west and southwest o f  The Geysers. 

The interpreted sections have as many as five d is t inc t  electrical  

The weight-drop seismic 

A 1,500 f t  (450 in) thick zone o f  low res i s t iv i ty  a t  the surface northeast 

of The Geysers deepens t o  2,000 f t  (600 m )  below the surface a t  the two 

Chevron Resource Co. exploration wells southwest of The Geysers. T h i s  

suggests that  the post-Miocene east-northeast f a u l t  s e t  a t  the base of the 

Malpais R i m  i s  not a conduit for hot water a t  shal low depths t o  the southwest 

o f  The Geysers. T h e  north-northwest-s t r iking Miocene Dunphy Pass f a u l t  zone, 

immediately east  o f  The Geysers, does display low r e s i s t i v i t i e s  a t  depths 

greater t h a n  2,000 f t  (600 m )  and may provide a deep-seated p a t h  f o r  upwelling 

geothermal water t o  the Malpais R i m  f a u l t  se t .  

A widespread conductive anomaly i n  Horse Heaven appears t o  be dis t inct  

from the anomaly a t  The Geysers. The  res i s t iv i ty  interpretation cannot 

determine whether t h i s  three- by two-mile area ( 5  x 3 km) represents a thick 
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sequence o f  rock saturated w i t h  h o t  water, or carbonaceous or altered units 

w i t h i n  the Ordovician Valmy Formation. Any vast, deep geothermal reservoir 

l i e s  below the depth of resolution o f  these surveys. 
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INTRODUCTION 

The Beowawe geothermal system i n  the Whirlwind Valley, Eureka and Lander 

Counties, Nevada, i s  six miles (10 km)  southwest of the town of Beowawe 

(Figure 1) and l i e s  w i t h i n  The Battle Mountain heat flow h i g h  of north-central 

Nevada. 

1968) and the geothermal system the subject of intermittent exploration 

activity since 1959. I n i t i a l  exploration focused on the area w i t h i n  and 

immediate y adjacent t o  The Geysers area (Figure 2 ) .  Drilling has encountered 

a reservo r of 2OOOC f l u i d  a t  depths less  than  1,000 f t  (300 m )  (Oesterling, 

1962).  

The Geysers have been the subject o f  curiosity for  years (Rinehart, 

a 

The surface expression of the Beowawe geothermal system i s  a 0.75 sq m i  

( 2  sq km) s in te r  terrace w i t h  two c lusters  o f  h o t  springs, fumaroles, and 

weakly active geysers. Present natural  geyser act ivi ty  i s  weak due t o  the 

recent uncapping of we 1s on the terrace w h i c h  e jec t  water and steam t o  

heights of 30 ft  (10 m . Several h o t  springs boi l  a t  95OC (Rinehart, 1968) 

and various chemical geothermometers indicate reservoir temperatures ranging 

from 200°C t o  25OoC (Muffler, 1978). 

Garside and Schilling (1979) review the sett ing and hydrogeology of the 

Beowawe geothermal system. 

and an account of the geologic history of the region, and discusses q u a l i t a -  

tively the resul ts  of g rav i ty ,  magnetic, passive seismic, self-potential ,  and 

bipole-dipole res i s t iv i ty  da ta .  S w i f t  (1979) gives a br ief ,  semi-quantitative 

assessment of the geophysical surveys conducted fo r  Chevron Resources Co. i n  

the Beowawe area. Struhsacker ( i n  preparation) presents a detailed geologic 

map and discusses the structural patterns in the KGRA. 

Zoback ( 1979 ) presents a general i zed geol o g i  c map 

3 
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Chevron Resources Co. has dr i l led two deep wells 1.0 m i  (1.6 km) 

southwest of The Geysers, expanding the area of exploration interest .  

dipol e-di pol e resi st i  v i  t y  and wei gh t -d rop  sei smic data analyzed here were 

collected for Chevron Resources Co., and are now i n  the public domain as p a r t  

of the Department of Energy/Division of Geothermal Energy's Industry Coupled 

Case Studies Program. 

AC07-78ET-28392 as was the detai 1 ed geologic mapping of Struhsacker ( i n  

preparation). 

between the l i thologic and structural patterns as inferred from outcrop and 

geophysical evidence. These papers and t h i s  topical report will contribute t o  

a comprehensive case s tudy  of the Beowawe KGRA area by the Earth Science 

Laboratory ( ESL) . 

The 

The modeling and interpretation were funded by contract 

S m i t h  e t  a l .  (1979) present an overview o f  the s imilar i t ies  

GEOLOGIC SETTING 

Dur ing  the late-Paleozoic Antler Orogeny, the Roberts Mountain T h r u s t  

placed a t  l ea s t  5,000 f t  (1.4 kin) of eugeosynclinal sediments, the Valmy 

Formation, over autochthonous miogeosynclinal carbonates. The cherts,  

sandstones, shales, and quartzites of the Valmy Formation are riddled w i t h  

h i g h l y  magnetic diabase d ikes .  

associated w i t h  the 4,000+ ft  (1 .2  km) of Tertiary andesite flows that  are 

widely exposed i n  the KGRA. 

s t r i k i n g  mid-Miocene r i f t  or t r o u g h  (Stewart e t  a l . ,  1975) that  i s  bounded on 

the northeast by the north-northwest-trending Dunphy Pass f a u l t  zone 

(Struhsacker, i n  preparation), (Figure 2 ) .  A drastically thinned 200 t o  500 

f t  (60 t o  150 m )  section of volcanic rock extends eas t  o f  the boundary f a u l t  

T h e  d i k e s  are l i k e l y  t o  be  gene t i ca l ly  

The andesite rocks f i l l e d  a north-northwest- 
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zone. 

southwest end of Horse Heaven. 

The flows gradually taper i n  thickness from The Geysers toward the 

The Malpais R i m  f a u l t  zone developed a f t e r  the eruption of the volcanic 

p i le  and i s  one of several east-northeast-striking f a u l t  zones i n  north- 

central Nevada. A complex se t  of steeply inclined normal faul ts  vary i n  

s t r ike  from east-northeast t o  north-south, creating the Mal pais R i m  scarp 

slope and causing the subsidence of Whir lwind Valley and Horse Heaven. The 

general inclination of the Malpais R i m  d i p  slope i s  a b o u t  50 t o  100 southeast. 

The orientations of these f a u l t s  accommodate two cusps i n  the overall 

east-northeast trend of the Malpais R i m .  

cusps i n  an area where several f a u l t  patterns intersect.  A se t  of steeply 

d i p p i n g  east-northeast-trending faul ts  controllinq the Malpais !?im scarp slope 

apparently carry hot f l u i d  t o  the surface. 

The Geysers occur a t  one of these 

A similar f a u l t  may control h o t  

springs a t  the f o o t  of the terrace. 

vertical f a u l t s  may 1 imi t the northeastern and southwestern extent of present 

Northwest and west-northwest-trending 

thermal act ivi ty  a t  the surface. A t  the southwest end of the terrace, the 

Malpais scarp curves t o  the south-west; however, elements of the east-north- 

eas t  f au l t  s e t  appear t o  continue westward i n t o  the valley, creating a subtle 

horst-like structure ( S m i t h  e t  a1 . , 1979) .  

North-south-trending f a u l t s  a t  the eas t  end of  Horse Heaven deflect the 

Mal pai  s R i m  from i t s  general northeasterly trend. The structural complexity 

there offers potential for upward migrat ion of thermal f l u i d s ,  b u t  no thermal 

features are found on the surface. 

7 
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U p l i f t  along the Malpais scarp  e a s t  of the Dunphy Pass  f a u l t  zone exposes 

the Valmy Formation, a swarm of the chalcedony-carbonate veins, and broad 

a reas  of s i l i c i f i c a t i o n ,  a r g i l l i z a t i o n ,  and b recc ia t ion .  Apparently, the 

f a u l t s  c o n t r o l l i n g  the Malpais scarp  a l s o  served a s  condui t s  f o r  hydrothermal 

f l u i d s  e a r l i e r  i n  the evolu t ion  of the scarp.  

GEOPHYSICAL SETTING 

The mid-Miocene r i f t  i s  a deep-seated f r a c t u r e  zone t h a t  has undergone 

both tensional  and strike-slip movement (S tewar t  e t  a l . ,  1975).  I t  d i sp l ays  a 

prominent aeromagnetic high t h a t  extends from south-central  Eureka County, 

Nevada, through the northern Shoshone Range five miles (8 km) west of  The 

Geysers t o  near the Nevada-Oregon border.  The h i g h l y  magnetic diabase dikes 

t h a t  cut  the Paleozoic  sec t ion  and fed t h e  a n d e s i t i c  f lows a r e  presumably the 

source of the aeromagnetic anomaly (S tewar t  e t  a1 . , 1975).  Magnetotel lur ic  

t enso r  resistivities show a pronounced e l e c t r i c a l  an iso t ropy  a t  low frequen- 

cies,  w i t h  an electrical  strike north-northwest,  p a r a l l e l  t o  the trend o f  the 

diabase dikes ( S w i f t ,  1979).  The Ounphy Pass f a u l t  zone i s  assoc ia ted  w i t h  a 

prominent seismic groundnoi se anomaly (Ea r th  Science Laboratory,  1979) and a 

low-resist ivity zone ( t h i s  r e p o r t )  sou theas t  o f  T h e  Geysers. T h u s  i t  appears 

t h a t  several  geophysical techniques respond t o  the regional north-northwest 

s t r u c t u r a l  g ra in .  Others respond t o  the near ly  perpendicular  f a u l t  zone a t  

the base of the Malpais Pass. 

a 500 mv (peak t o  peak) asymmetric d i p o l a r  anomaly over the a rea  of T h e  

Geysers and best de l inea te s  the loca l  convection system. These and o the r  da ta  

wil l  be addressed i n  an ESL c a s e  study and a r e  beyond the scope of th is  

r epor t .  

S w i f t  (1979) r e p o r t s  t h a t  an SP survey y i e l d e d  

8 
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Two o f  t h e  t h r e e  r e s i s t i v i t y  surveys i n t e r p r e t e d  i n  t h i s  r e D o r t  were 

conducted and q u a l i t a t i v e l y  i n t e r p r e t e d  by McPhar Geophysics, Inc. ,  i n  J u l y  

and November, 1974. 

c ross  t h e  Malpais  R i m  and Whir lw ind Va l ley ,  s t r i k i n g  north-south,  and are  

designated by t h e  a b b r e v i a t i o n  WV f o r  Whir lw ind Va l ley .  The t h i r d  survey was 

completed by Phoenix Geophysics, Inc. ,  i n  September, 1976. Four l i n e s  s t r i k e  

nor thwest  across Horse Heaven and a r e  designated by the  a b b r e v i a t i o n  HH. The 

a c t i v e  seismic survey was c a r r i e d  o u t  and discussed i n  1975 by C.  B. Reynolds, 

Inc .  

The s i x  d i p o l e - d i p o l e  l i n e s  from these McPhar surveys 

RESIST IV ITY INTERPRETATION 

General 

The t e n  d i  po l  e -d i  po l  e r e s i  s t i  v i  t y  1 i nes have been i n t e r p r e t e d  through an 

i n t e r a c t i v e ,  i t e r a t i v e  computer model ing process. A two-dimensional geometry 

i s  assumed ( i n f i n i t e  s t r i k e  l e n g t h  perpend icu la r  t o  the  survey l i n e s )  and 

i n t r i n s i c  r e s i s t i v i t y  va lues assigned f o r  each body. 

apparent r e s i  s t i  v i  t y  va l  ues are  computed by a f i n i  t e - e l  ement program i n i  t i a l l  y 

developed by L u i z  R i j o  (1977) and subsequently m o d i f i e d  by t h e  E a r t h  Science 

Laboratory  ( K i l l p a c k  and Hohmann, 1979). 

t h e  e l e c t r o d e s  ( i .e. ,  near t h e  sur face)  where t h e  c u r r e n t  d e n s i t y  i s  l a r g e  and 

p o t e n t i a l s  a r e  r a p i d l y  changing. 

increased d is tance from t h e  e l e c t r o d e  p o s i t i o n s  a t  depth. The dimensions of 

the  mesh are scaled i n  u n i t s  o f  "a", t h e  fundamental d i p o l e  length ,  and are 

i n d i c a t e d  i n  t h e  program output .  

The corresponding 

The program uses a f i n e  mesh near 

The rnesh g r a d u a l l y  becomes coarser  w i t h  

9 
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The apparent r e s i s t i v i t y  Val ues a r e  computed f o r  d i p o l e  separat ions 

N=1-6, and then compared by t h e  i n t e r p r e t e r  w i t h  t h e  observed data t o  

determine the  q u a l i t y  o f  f i t  and t h e  model changes needed t o  achieve a b e t t e r  

f i t .  

model data because o f  the  t ime invo lved,  the  three-dimensional  aspects o f  t h e  

f i e l d  r e s i s t i v i t y  d i s t r i b u t i o n s ,  and t h e  a m b i g u i t i e s  o f  p o s i t i o n ,  i n t r i n s i c  

r e s i s t i v i t y ,  and s i z e  o f  body t h a t  cannot be resolved.  

The i n t e r p r e t a t i o n  r a r e l y  proceeds t o  a p e r f e c t  match o f  observed and 

The f i n i t e - e l e m e n t  model computes a l l  t h e  r e s i s t i v i t y l P F E  data values f o r  

a standard d i p o l e - d i p o l e  7 spread ( i .e . ,  f o r  7 t r a n s m i t t e r  e lec t rodes) .  For  

observed p r o f i l e s  w i t h  l a r g e r  spreads o r  m u l t i p l e  spreads i t  i s  necessary t o  

generate several  over lapping model geometries t o  s imu la te  t h e  observed data.  

A f t e r  several  model i t e r a t i o n s  ( 2  t o  9 i n  t h e  present  s tudy) ,  the  

i n t e r p r e t e r  o b t a i n s  a s a t i s f a c t o r y  approx imat ion t o  t h e  observed data and 

through a comparison o f  t h e  l a s t  several  i t e r a t i o n s  develops an awareness of 

the  s e n s i t i v i t y  o f  the  model t o  small changes a t t r i b u t a b l e  t o  probable 

non-two-dimensional aspects o f  t h e  f i e l d  data,  quest ionable f i e l d  data values, 

and the  degree o f  ambigui ty i n  the  model. 

model geometries and e l e c t r i c a l  p r o p e r t i e s  i s  r e q u i r e d  t o  compl e t e  t h e  

i n t e r p r e t a t i o n  of the  observed p r o f i l e s .  

Some adjustment o f  t h e  over lapping 

~ 

The Malpais  R i m  has as much as 800 f t  o f  r e l i e f  and slopes as g r e a t  as 

30°. The Horse Heaven r i d g e  has as much as 1,600 f t  o f  r e l i e f  and slopes as 

g r e a t  as 250. T h i s  topography has a marked e f f e c t  on t h e  observed apparent 

r e s i s t i v i t i e s .  Where slopes exceed 100, t h i s  topographic  e f f e c t  i s  matched 

mathemat ica l ly  i n  t h e  i n t e r a c t i v e  computer model ing process through the  use of 

non-standard f i n i  t e - e l  ement meshes and by a s s i  gn i  ng a h i g h  r e s i  s t i  v i  t y  ( 105 

10 
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ohm-m) t o  t h e  ' ' a i r "  p o r t i o n  o f  t h e  mesh. F igure  A 1  shows the  c a l c u l a t e d  

apparent r e s i s t i v i t i e s  f o r  a 100 ohm-m homogeneous e a r t h  f o r  t h e  topography 

crossed by L i n e  WV 2 ( s lope l e n g t h  600 ft, s lope angle 240). 

e f f e c t  i s  most extreme a long t h e  d iagonals  corresponding t o  t h e  d i p o l e  l o c a t e d  

upon t h e  slope. It i s  apparent t h a t  erroneous i n t e r p r e t a t i o n s  c o u l d  e a s i l y  be 

made i f  t h e  t e r r a i n  were n o t  i n c l u d e d  i n  t h e  model. F o r  a more d e t a i l e d  

d iscuss ion  o f  topographic e f f e c t s ,  see Fox e t  a l .  (1978). 

The topographic 

The i n t e r p r e t e d  r e s i s t i v i t y  sec t ions  and t h e  observed apparent 

r e s i s t i v i t i e s  f o r  the  l i n e s  t h a t  c ross  t h e  Malpais  R i m  a r e  shown on P l a t e  1; 

t h e  l i n e s  t h a t  c r o s s  Horse Heaven on P l a t e  2. P l a t e s  3-5 p resent  t h e  

i n t e r p r e t e d  i n t r i n s i c  r e s i s t i v i t i e s  a t  t h r e e  key depth-e levat ion hor izons:  

near-sur face (0-400 f t  depth),  3,000 f t  e l e v a t i o n  (2,000-3,000 f t  depth),  and 

1,000 f t  e l e v a t i o n  (4,000-5,000 f t  depth) .  The d i s t r i b u t i o n  o f  r e s i s t i v i t i e s  

shown on P l a t e  5 i s  more specu la t i ve  than those shown on P l a t e s  3 and 4. 

i s  due t o  t h e  ambigu i t ies  i n  t h e  observed data a t  N=6 and t h e  u n c e r t a i n  

r e s o l u t i o n  o f  t h e  model ing a t  t h e  depth i n t e r v a l  2.0 t o  2.5 a. 

This  

A r e p r e s e n t a t i v e  i n t e r p r e t e d  r e s i s t i v i t y  s e c t i o n  across the  Whir l  wind 

V a l l e y  i s  show i n  F igure  3 and summarized i n  Table 1. 

t h e  nearby Chevron w e l l s  (St ruhsacker ,  i n  p r e p a r a t i o n )  p rov ide  c o n t r o l  f o r  t h e  

i n t e r p r e t e d  r e s i s t i v i t y  s e c t i o n  which shows f i v e  d i s t i n c t  e l e c t r i c a l  u n i t s .  

L i t h o l o g i c  l o g s  from 

'? 
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TABLE 1 

ELECTRICAL UNITS 
AND 

CORRELATIVE LITHOLOGIES 

C o r r e l a t i v e  L i t h o l o g y  
E I ec t r ica I I n t e r p r e t e d  I n t r i n s i c  

U n i t  Res is t i v i t y  (ohm -m) 
average range 

I 

3 
4 
5 

9 e 

50 35-200 Tba: Ter t ia ry  basal t ic  andesite. 

/00 50-250 Basal ts  and basal t ic  andesi te.  

30 20-40 Ordovic ian Valmy Fm. (Ov). 

/O 5- /5 H y d r o t h e r m a l  zone, altered T b a  and Ov. 

/O 5- 15 Possible hydrothermal  zone. 

0 . .  a...... 
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Electrical Units 1 a n d  2 

The f i r s t  two electrical  units represent the resis t ive Miocene andesitic 

flow rocks. 

perhaps significant,  variation i n  the res i s t iv i ty  of these rocks: 

volcanic rocks of the Malpais R i m ,  electrical  u n i t  1, consistently have a 

lower res i s t iv i ty  t h a n  do those w i t h i n  the Whirlwind Valley (Plate 1) and 

Horse Heaven (Plate 21, electrical  u n i t  2 .  

rule occurs a t  The Geysers and down the hydraulic gradient from The Geysers 

(Lines WV 1 and WV 5 ,  Plates 1 and 3 ) .  

that  the f i r s t  few hundred feet  of s inter  and volcanic rock are saturated w i t h  

the water t h a t  erupts a t  The Geysers. 

appear t o  a f fec t  the resis t ivi ty  d a t a  further t o  the eas t ,  a long  Line WV 6 

(Plates 1 and 3 ) .  

Two electrical  units are needed t o  distinguish a subtle, and  

the 

The only  exception t o  t h i s  general 

The shallow low r e s i s t i v i t i e s  reveal 

The shallow zone of h o t  water does n o t  

Electrical u n i t  1 i s  identified only on the l ines  t h a t  cross the Malpais 

R i m .  

R i m .  Permeable zones w i t h i n  the volcanic sequence -- breccia, rubble or 

fractured flows -- may allow the h o t  water t o  flow down-dip t o  the south or 

southeas t ,  toward t h e  Crescent Val l ey .  A1 t e r n a t e l y ,  t h e y  may form channels 

This u n i t  may indicate the limits of diffusion of  h o t  water w i t h i n  the 

f o r  upwelling thermal f l u i d s .  Regardless of the direction of water f low,  the 

series o f  f a u l t s  w i t h i n  the Dunphy Pass f a u l t  zone and the numerous cross- 

fau l t s  south  of The Geysers (Figure 2 )  appear t o  enhance the permeability and 

reduce the res i s t iv i ty  of the basal t i c  andesite of the Mal pai s R i m .  

The highest interpreted r e s i s t i v i t i e s  t h a t  

Beowawe area (50-250 ohm-m) belong t o  the andes 

Valley, electrical  unit 2 .  This u n i t  reaches a 

/o 

can be traced across the 

t i c  rocks w i t h i n  the Whirlwind 

maximum inferred thickness of 

IC) 
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more than 4,000 f t  (1 .2  km) i n  an east-west-trending graben less  t h a n  1.0 m i  

(1.6 km) n o r t h  of the two Chevron wells (Plates 1, 4 ,  and 5 ) .  The wells 

penetrated slightly more t h a n  4,000 f t  ( 1 . 2  km) of andesitic rocks of which 

the lower 2,000 f t  (0.6 k m )  are hydrothermally altered (Struhsacker, i n  

preparation). The alteration may explain why the interpreted section for  WV 2 

(Figure 3 and Plate 1) does n o t  show a f u l l  4,000 f t  (1 .2  km)  of h i g h  res i s t i -  

v i t y  (e lectr ical  u n i t  2 )  directly below the extrapolated position of the 

we1 1 s. 

approximately the same depth as the al terat ion.  

Electrical u n i t  4 , a1 tered volcanic and sedimentary rocks , appears a t  

Electrical u n i t  2 can be identified a long  a l l  l ines except the eastern- 

most, Line WV 6 (Plate 1). Line WV 6 crosses the Dunphy Pass f a u l t  zone where 

the volcanic rocks t h i n  so abruptly t h a t  they cannot be resolved w i t h  2,000 f t  

dipoles. A more gradual t h i n n i n g  of the basalt ic andesite t o  the southwest 

and west occurs w i t h i n  the Whirlwind Valley and Horse Heaven. Electrical u n i t  

2 i s  rarely more t h a n  1,000 f t  (0.3 km) t h i c k  a long  Lines H H  2-4 (Plates 2-4). 

The westward t h i n n i n g  of the basalt ic andesite has been noted by Zoback (1979) 

and Struhsacker ( i n  preparation). 

Electrical U n i t  3 

The t h i r d  electrical  u n i t  shown i n  Figure 3 underlies electrical  units 1 

and 2 and  appears i n  every interpreted section (Plates 1 and 2) .  T h i s  u n i t  

corresponds t o  the Ordovician Valmy Formation, a eugeosynclinal sequence t h a t  

i s  significantly more conductive than the overlying basal t i c  andesite. The 

low res i s t iv i ty  suggests t h a t  the more carbonaceous members of the formation 

dominate i t s  electrical  response. The contacts between the resist ive and 

15 



conductive horizons shown i n  Figure 3 and Plates 1 and 2 should n o t  be 

construed to i l l u s t r a t e  precisely the Ordovician-Tertiary unconfomi t y .  

Figure 3 contains several t r ans i t i ona l  50 ohm-m bodies between the h i g h  

r e s i s t i v i t i e s  of the volcanic rocks and the low r e s i s t i v i t i e s  of the meta- 

sedimentary rock. The t r ans i t i ona l  res i s t iv i ty  values may correspond t o  

layers of quartzite or chert a t  the t o p  of the Ordovician section, o r  t o  

tuffaceous sediments a t  the base of the Tertiary section, or t o  ambiguities of 

the numerical modeling. The depth extent of the t r ans i t i ona l  res is t ivi ty  

values indicates the range i n  uncertainty of the depth of the unconformity. 

The depth t o  electrical  u n i t  3 increases from north t o  south, reflecting 

the known regional southeasterly d i p  ( S m i t h  e t  a1 ., 1979) .  The offset  a long  

the f au l t  s e t  a t  the base of the Malpais R i m  i s  reflected i n  several of  the 

interpreted sections on Plate 1. Other a b r u p t  offsets i n  the depth t o  

electrical  u n i t  3 (e.g., Line WV 4 ,  Plate 2 )  are also t h o u g h t  t o  represent 

deep f a u l t i n g .  

w i t h i n  the Whirl wind Val ley and Horse Heaven ( S m i t h  e t  a1 . , 1979) .  

These offsets  have been used t o  extrapolate mapped faul ts  

The 

geologic map, Figure 2 ,  indicates the location of the extrapolated faul ts  

inferred from t h e  geophysical modeling w i t h  a dashed p a t t e r n .  T h e  f a u l t s  

appear t o  have a normal sense and few are t h o u g h t  t o  f la t ten o u t  a t  depths 

less  t h a n  3,000 f t  (1.0 k m ) .  

Electrical U n i t  4 

The east-northeast f a u l t  a t  the base of the Malpais R i m  has been t h o u g h t  

t o  control the occurrence of The Geysers by a l l  previous workers i n  the area 

(No1 an and Anderson , 1934; Oesterl i ng, 1962; Zoback , 1979 1. The anomalously 
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low r e s i s t i v i t i e s  o f  e l e c t r i c a l  u n i t  4 occur o n l y  i n  The Geysers area ( P l a t e  

1) and may t h e r e f o r e  i n d i c a t e  t h e  depths a t  which t h i s  f a u l t  s e t  i s  permeable 

o r  has undergone i n t e n s e  hydrothermal a1 t e r a t i o n .  

and 51, a 5 ohm-m body t h a t  can o n l y  t e n t a t i v e l y  be assigned t o  e l e c t r i c a l  

u n i t  4 appears a t  depths g r e a t e r  than 3,000 f t  (1  .O km) . 
ohwm body t h a t  c o i n c i d e s  w i t h  an ou tc rop  o f  b recc ia ted ,  h i g h l y  s i l i c i f i e d  

Valmy s i l t s t o n e  and q u a r t z i t e ,  F i g u r e  2, and may r e f l e c t  a l t e r a t i o n  o r  pr imary 

1 i tho1 ogy i n  the Valmy Format ion n o t  assoc iated w i t h  hydrothermal a c t i v i t y  

( S w i f t ,  1979). On the  o t h e r  hand, t h e  hydrothermal s i 1  i c i f i c a t i o n  of t h e  

Valmy Format ion may e f f e c t i v e l y  seal t h e  Dunphy Pass and Malpais  R i m  f a u l t  

zones; the  low r e s i s t i v i t y  a t  depth ( e l e c t r i c a l  u n i t  4 )  may reveal  an area 

where h o t  water  i s  f low ing  beneath an impermeable f a u l  t j u n c t i o n .  

u n i t  4 disappears a l t o g e t h e r  west o f  The Geysers a long L i n e  WV 3 ( P l a t e  1). 

Along L i n e  WV 6 ( P l a t e s  1 

It under1 i e s  a 300 

E l e c t r i c a l  

The l i m i t e d  area l  e x t e n t  and deepening o f  e l e c t r i c a l  u n i t  4 suggests t h a t  

the east -nor theast - t rending,  post-Miocene f a u l t  s e t  a t  the  base o f  the  Malpais  

scarp i s  a c o n d u i t  f o r  u p w e l l i n g  geothermal water  o n l y  i n  t h e  area immediately 

ad jacent  t o  The Geysers. Near the  Chevron w e l l s ,  e l e c t r i c a l  u n i t  4 may 

i n d i c a t e  an area dominated by hydrothermal a1 t e r a t i o n  r a t h e r  than hydrothermal 

c i r c u l a t i o n .  

r e s i s t i v i t y  data. 

t h i s  d i s c r i m i n a t  on by d e t e c t i n g  vo l tages  caused by t h e  streaming p o t e n t i a l  o f  

u p w e l l i n g  f l u i d s  The SP anomaly i s  r e s t r i c t e d  t o  t h e  area o f  The Geysers 

( S w i f t ,  1979). 

It i s  n o t  p o s s i b l e  t o  d i s c r i m i n a t e  between the  two w i t h  the  

The s e l f - p o t e n t i a l  data discussed by S w i f t  (1979) may make 
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E l e c t r i c a l  U n i t  5 

The f i f t h  e l e c t r i c a l  u n i t  shown i n  F i g u r e  3 i s  conduct ive and appears t o  

l i e  e n t i r e l y  w i t h i n  t h e  Valmy Formation. 

n o r t h  o f  the  Malpais  R i m  p laces i t  n o r t h  o f  the  northern-most i n f e r r e d  f a u l t  

( F i g u r e  2 ) .  

I t s  l o c a t i o n  t h r e e  m i l e s  (5.0 km) 

The p r o x i m i t y  o f  t h e  eas t -nor theas t - t rend ing  f a u l t  s e t  w i t h i n  the 

Whir lw ind Va l ley  t o  e l e c t r i c a l  u n i t  5 tempts the  i n t e r p r e t a t i o n  t h a t  t h i s  

conduct ive anomaly represents  a f a u l  t - c o n t r o l  l e d  hydrothermal resource w i t h i n  

t h e  Valmy Formation. However, e l e c t r i c a l  u n i t  5 may mere ly  i n d i c a t e  an area 

o f  carbonaceous o r  a l t e r e d  Ordovic ian s t r a t a .  

A s i m i l a r  ambigui ty  t r o u b l e s  t h e  i n t e r p r e t a t i o n  o f  the  l a r g e  low- 

r e s i s t i v i t y  areas i n  Horse Heaven ( P l a t e  2 ) .  The a r e a l  e x t e n t  and c o n t i n u i t y  

of low r e s i s t i v i t y  bodies i n  t h e  Horse Heaven area f a r  exceed those a long the  

base o f  t h e  Malpais  scarp. The Horse Heaven area may c o n t a i n  a la rge ,  as y e t  

untapped, geothermal resource f e d  by numerous c r o s s - f a u l  t s  (St ruhsacker ,  i n  

p r e p a r a t i o n ) ,  ( F i g u r e  2 ) .  ‘rfowever, anomalously conduct ive eugeosyncl i n a l  

m a t e r i a l  may be near t h e  sur face i n  Horse Heaven. Thermal g r a d i e n t  ho les and 

s e l f - p o t e n t i a l  surveys m i g h t  r e s o l v e  t h i s  ambigui ty .  

SEISMIC REFLECTION ANALYSIS 

A weight-drop seismic r e f l e c t i o n  survey d e l i n e a t e s  several  f a u l t s  i n  a 

n i n e  square m i l e  area southwest o f  The Geysers ( P l a t e  6 ) .  The p r a c t i c a l  depth 

o f  energy p e n e t r a t i o n  a long most l i n e s  i s  about 1,200 ft (0.4 km). T h i s  

technique has met w i t h  c r i t i c a l  d i s d a i n  because t h e  weight-drop source and t h e  

data r e c o r d i n g  procedures a r e  much l e s s  s o p h i s t i c a t e d  than t h e  techniques used 

i n  o i l  e x p l o r a t i o n .  Much o f  t h e  energy produced by t h e  weight-drop source 
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propagates a1 ong the surface; only a small component travel s vertical 1 y.  

data are plagued w i t h  noise, " r i n g i n g "  that  can swam valid reflections. 

t h i s  survey reflections a long  Lines 4-7 cannot be sat isfactor i ly  picked due t o  

noise. Two of these l ines ( 4  and 7 )  cross an outcrop of basalt  (Figure 2 ) ;  

the source of the noise on the other two p a r t i a l l y  uninterpretable l ines i s  

unknown. Where the noise i s  n o t  extreme, the weight-drop technique produces 

d a t a  that  can be used successfully t o  delineate shallow faul ts .  

The 

In 

The trend of shallow faul ts  inferred from seismic d a t a  i n  the Whirlwind 

Near the southwest end of Valley i s  predominately east-northeast (Plate  6:) .  

the Val ley, several of the faul  t s  merge w i t h  f au l t s  i n  the Shoshone Range 

mapped by G i l l u l y  and Gates (1965), (Figure 2 ) .  Directly west of a low h i l l  

i n  the valley below the Malpais R i m  and nor th  o f  the Chevron wells i s  an area 

1 /2  x 1 1 /2  m i  (1 x 3 kin) where the seismic data detect no faul ts .  This area 

i s  an east-west horst-like structure relative to the Whirlwind Valley t o  the 

north and the base of the Malpais scarp t o  the south. 

The dashed pattern of the f a u l t s  i n  Plate 5 shows areas where the seismic 

data are sufficiently internally consistent t o  alllow extrapolation between 

lines.  The dotted pattern extends these inferred fau l t s  t o  the west where 

geologic control i s  available (Plate  6). The sense and location of these 

faul  t s  agree w i t h  inferences from the res i s t iv i  t;y d a t a .  The good correlation 

between the fau l t s  inferred from the weight-drop seismic data and those mapped 

on the surface argues t h a t  this technique can produce v a l i d  geophysical 

interpretations i n  areas where reflections can be traced for several thousands 

of fee t  (1 k m ) .  
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CONCLUSIONS 

The e l e c t r i c a l  u n i t s  i n f e r r e d  from t h e  r e s i i s t i v i  t y  data correspond i n  

area and th ickness t o  l i t h o l o g i e s  mapped on the  sur face  and encountered i n  the  

deep t e s t  w e l l s .  

and shown t o  be d i s t i n c t  from t h e  l a r g e  zone o f  low r e s i s t i v i t y  i n  Horse 

Heaven. The two conduct ive zones may merge a t  depths g r e a t e r  than 4,000 f t  

(1.2 km) . The seismic data suggest t h a t  east -west- t rending f a u l t s  extend west 

o f  The Geysers and form a s u b t l e  h o r s t - l i k e  s t r i i c t u r e  i n  t h e  Whir lwind Va l ley ,  

and t h a t  some cont inue i n t o  t h e  Shoshone Range. 

s e c t i o n s  i m p l y  t h a t  the  nor th-nor thwest- t rending Dunphy Pass f a u l t  zone may be 

h y d r a u l i c a l l y  connected w i t h  the  f a u l t  s e t  a t  t h e  base o f  t h e  Malpais Scarp. 

Both t h e  Horse Heaven and t h e  Dunphy Pass f a u l t  zones may be p o t e n t i a l  

geothermal e x p l o r a t i o n  t a r g e t s .  

A shal low conduct ive zone has been modeled a t  The Geysers 

The modeled r e s i s t i v i t y  
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APPENDIX A 

NUMERICAL MODEL OUTPUT 

Page 25 shows t h e  c a l c u l a t e d  apparent r e s i s t i v i t i e s  f o r  a 100 ohm-m 

homogeneous e a r t h  f o r  t h e  topography crossed by L i n e  WV 2 and documents the 

d i s t o r t i o n  caused by topographic e f f e c t s .  T h i s  l o c a t i o n  t y p i f i e s  t h e  t e r r a i n  

o f  t h e  Malpa is  R i m  scarp; i t s  s lope l e n g t h  i s  600 f t  and i t s  s lope angle 240. 

For d e t a i l e d  documentation o f  topographic e f f e c t s ,  see Fox e t  a l .  (1978). 

Pages 26-43 document a l l  f i n a l  models. The computed r e s i s t i v i t y  values 

are  contoured i n  the  same manner as the  observedl data ( P l a t e s  1 and 2) t o  

f a c i l i t a t e  comparison. 

numerical models a re  i n d i c a t e d  f o r  each model. Unless otherwise i n d i c a t e d ,  

a l l  node w id ths  are  0.25 d i p o l e  lengths .  

The r e s i s t i v i t i e s  and node th ickness  used i n  the  

23 



TABLE 2 

i o  

RESISTIVITY DATA SUMMARY 
FINAL NUMERICAL M0DE:LS 

Whirlwind Va l ley  Area - P l a t e  1 

- Line  Length ( f e e t )  Model s I t e r a t i o n s  Appendix Pages 

wv 1 40,000 Scarp, North 7 93 26, 27 

wv 2 42,000 Scarp, North 9, 4 28, 29 

wv 3 36,000 Scarp, North 4, 4 30, 31 

wv 5 36,000 Scarp 6 32 

WV 6 38, ooo South, Scarp 2, 5 33, 34 

wv 4 

HH 1 

HH 2 

HH 3 

HH 4 

30,000 

50,000 

44,000 

46,000 

42,000 

Horse Heaven Area - P l a t e  2 

Center 5 

SE, NW 7 ,  3 

SE, NW 4, 9 

SE, NW 3, 5 

SE, NW 3, 3 

35 

36, 37 

38, 39 

40, 41 

42, 43 
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Z 5  ln f r insic Electr ical  Resistivity (ohm-rn) 
note:  Data recorded by McPhtar Geophysics, July 

s i m i l a r  res is t i v i t ies .  

and November 1974, und Phoenix Geophysics, 
September 1976, for Chevron Resources Co. 
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PLATE 6 

SEISMIC REFLECTION LINES 

Good data 
Poor da ta  
Probable faul t  intercept with 

U 
-D sense of  displacement. 

- - - Inferred f r o m  seismic data,  
Inferred f r o m  geologic data. 

I85 Estimated throw o f  f a u l t  
in feet. 

FAULTS 

-c- 

PLATE 6 

SHALLOW SEISMIC REFLECTION SURVEY 
Weight -Drop Method Max. Depth o f  Reso lu t ion4200 Ft. 

BEOWAWE AREA, NEVADA 
CHRISTIAN SMITH, 1979 
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