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ABSTRACT

Numerical modeling and analysis of surface electrical and seismic data
from the Beowawe KGRA, north-central Nevada, permit extrapolation of mapped
geologic units and structures to approximately a mile (1.6 km) depth from
which inferences about the geothermal system can be made. Detailed numerical
modeling was completed for 78 line-mi. (125 km) of dipole-dipole resistivity
data and includes compensation for topographic effects caused by the Malpais
Rim scarp. The interpreted sections have as many as five distinct electrical
units, one of which occursvonly within the area of hydrothermal alteration
along the fault set at the base of the Malpais Rim. The weight-drop seismic
reflection data show numerous normal faults sub-parallel to the Malpais Rim

within Whirlwind Valley west and southwest of The Geysers.

A 1,500 ft (450 m) thick zone of low resistivity at the surface northeast
of The Geysers deepens to 2,000 ft (600 m) below the surface at the two
Chevron Resource Co. exploration wells southwest of The Geysers. This
suggests that the post-Miocene east-northeast fault set at the base of the
Malpais Rim is not a conduit for hot water at shallow depths to the southwest
of The Geysers. The north-northwest-striking Miocene Dunphy Pass fault zone,
immediately east of The Geysers, does display low resistivities at depths
greater than 2,000 ft (600 m) and may provide a deep-seated path for upwelling

geothermal water to the Malpais Rim fault set.

A widespread conductive anomaly in Horse Heaven appears to be distinct
from the anomaly at The Geysers. The resistivity interpretation cannot

determine whether this three- by two-mile area (5 x 3 km) represents a thick



sequence of rock saturated with hot water, or carbonaceous or altered units
within the Ordovician Valmy Formation. Any vast, deep geothermal reservoir

lies below the depth of resolution of these surveys.



INTRODUCTION

The Beowawe geothermal system in the Whirlwind Valley, Eureka and Lander
Counties, Nevada, is six miles (10 km) southwest of the town of Beowawe
(Figure 1) and lies within The Battle Mountain heat flow high of north-central
Nevada. The Geysers have been the subject of curiosity for years (Rinehart,
1968) and the geothermal system the subject of intermittent exploration
activity since 1959. 1Initial exploration focused on the area within and
immediately adjacent to The Geysersﬂarea (Figure 2). DOrilling has encountered
a reservoir of 2000C fluid at depths less than 1,000 ft (300 m) (Oesterling,
1962).

The surface expression of the Beowawe geothermal system is a 0.75 sq mi
(2 sq km) sinter terrace with two clusters of hot springs, fumaroles, and
weakly active geysers. Present natural geyser activity is weak due to the
recent uncapping of wells on the terrace which eject water and steam to
heights of 30 ft (10 m). Several hot springs boil at 959C (Rinehart, 1968)
and various chemical geothermometers indicate reservoir temperatures ranging

from 2009C to 250°C (Muffler, 1978).

Garside and Schilling (1979) review the setting and hydrogeology of the
Beowawe geothermal system. Zoback (1979) presents a generalized geologic map
and an account of thé geologic history of the region, and discusses qualita-
tively the results of gravity, magnetic, passive seismic, self-potential, and
bipole-dipole resistivity data. Swift (1979) gives a brief, semi-quantitative
assessment of the geophysical surveys conducted for Chevron Resources Co. in
the Beowawe area. Struhéacker (in preparation) presents a detailed geologic

map and discusses the structural patterns in the KGRA.
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Chevron Resources Co. has drilled two deep wells 1.0 mi (1.6 km)
southwest of The Geysers, expanding the area of exploration interest. The
dipole-dipole resistivity and weight-drop seismic data analyzed here were
collected for Chevron Resources Co., and are now in the public domain as part
of the Department of Energy/Division of Geothermal Energy's Industry Coupled
Case Studies Program. The modeling and interpretation were funded by contract
ACO7-78ET-28392 as was the detailed geologic mapping of Struhsacker (in
preparation). Smith et al. (1979) present an overview of the similarities
between the lithologic and structural patterns as inferred from outcrop and
geophysical evidence. These papers and this topical report will contribute to
a comprehensive case study of the Beowawe KGRA area by the Earth Science

Laboratory (ESL).
GEOLOGIC SETTING

During the late-Paleozoic Antler Orogeny, the Roberts Mountain Thrust
placed at least 5,000 ft (1.4 km) of eugeosynclinal sediments, the Valmy
Formation, over autochthonous miogeosynclinal carbonates. The cherts,
sandstones, shales, and quartzites of the Valmy Formation are riddled with
highly magnetic diabase dikes. The dikes are likely to be genetically
associated with the 4,000+ ft (1.2 km) of Tertiary andesite flows that are
widely exposed in the KGRA. The andesite rocks filled a north-northwest-
striking mid-Miocene rift or trough (Stewart et al., 1975) that is bounded on
the northeast by the north-northwest-trendjngrDunphy Pass fault zone
(Strunhsacker, in preparation), (Figure 2). A drastica]]y thinned 200 to 500

ft (60 to 150 m) section of volcanic rock extends east of the boundary fault



zone. The flows gradually taper in thickness from The Geysers toward the

southwest end of Horse Heaven.

The Malpais Rim fault zone developed after the eruption of the volcanic
pile and is one of several east-northeast-striking fault zones in north-
central Nevada. A complex set of steeply inclined normal faults vary in
strike from east-northeast to north-south, creating the Malpais Rim scarp
slope and causing the subsidence of Whirlwind Valley and Horse Heaven. The
general inclination of the Malpais Rim dip slope is about 59 to 100 southeast.
The orientations of these faults accommodate two cusps in the overall
east-northeast trend of the Malpais Rim. The Geysers occur at one of these
cusps in an area where several fault patterns intersect. A set of steeply
dipping east-northeast-trending faults controlling the Malpais Rim scarp slope
apparently carry hot fluid to the surface. A similar fault may control hot
springs at the foot of the terrace. Northwest and west-northwest-trending
vertical faults may 1imit the northeastern and southwestern extent of present
thermal activity at the surface. At the southwest end of the terrace, the
Malpais scarp curves to the south-west; however, elements of the east-north-
east fault set appear to continue westward into the valley, creating a subtle

horst-1ike structure (Smith et al., 1979).

North-south-trending faults at the east end of Horse Heaven deflect the
Malpais Rim from its general northeasterly trend. The structural complexity
there offers potential for upward migration of thermal fluids, but no thermal

features are found on the surface.



Uplift along the Malpais scarp east of the Dunphy Pass fault zone exposes
the Valmy Formation, a swarm of the chalcedony-carbonate veins, and broad
areas of silicification, argillization, and brecciation. Apparently, the
faults controlling the Malpais scarp also served as conduits for hydrothermal

fluids earlier in the evolution of the scarp.
GEOPHYSICAL SETTING

The mid-Miocene rift is a deep-seated fracture zone that has undergone
both tensional and strike-slip movement (Stewart et al., 1975). It displays a
prominent aeromagnetic high that extends from south-central Eureka County;
Nevada, through the northern Shoshone Range five miles (8 km) west of The
Geysers to near the Nevada-Oregon border. The highly magnetic diabase dikes
that cut the Paleozoic section and fed the andesitic flows are presumably the
source of the aeromagnetic anomaly (Stewart et al., 1975). Magnetotelluric
tensor resistivities show a pronounced electrical anisotropy at low frequen-
cies, with an electrical strike north-northwest, parallel to the trend of the
diabase dikes (Swift, 1979). The Dunphy Pass fault zone is associated with a
prominent seismic groundnoise anomaly (Earth Science Laboratory, 1979) and a
low-resistivity zone (this report) southeast of The Geysers. Thus it appears
that several geophysical techniques respond to the regional north-northwest
structural grain. Others respond to the nearly perpendicular fault zone at
the base of the Malpais Pass. Swift (1979) reports that an SP survey yielded
a 500 mv (peak to peak) asymmetrib'dipolar anomaly over the area of The
Geysers and best delineates the local convection system. These and other data
will be addressed in an ESL case study and are beyond the scope of this

report.



Two of the three resistivity surveys interpreted in this report were
conducted and qualitatively interpreted by McPhar Geophysics, Inc., in July
and November, 1974. The six dipole-dipole lines from these McPhar surveys
cross the Malpais Rim and Whirlwind Valley, striking north-south, and are
designated by the abbreviation WV for Whirlwind Valley. The third survey was
completed by Phoenix Geophysics, Inc., in September, 1976. Four lines strike
northwest across Horse Heaven and are designated by the abbreviation HH. The
active seismic survey was carried out and discussed in 1975 by C. B. Reynolds,

Inc.
RESISTIVITY INTERPRETATION

General

The ten dipole-dipole resistivity lines have been interpreted through an
interactive, iterative computer modeling process. A two-dimensional geometry
is assumed (infinite strike length perpendicular to the survey lines) and
intrinsic resistivity values assigned for each body. The corresponding
apparent resistivity values are computed by a finite-element program initially
developed by Luiz Rijo (1977) and subsequently modified by the Earth Science
Laboratory (Killpack and Hohmann, 1979). The program uses a fine mesh near
the electrodes (i.e., near the surface) where the current density is large and
potentials are rapidly changing. The mesh gradually becomes coarser with
increased distance from the electrode positions at depth. The dimensions of
the mesh are scaled in units of "a", the fundamental dipole length, and are

indicated in the program output.



The apparent resistivity values are computed for dipole separations
N=1-6, and then compared by the interpreter with the observed data to
determine the quality of fit and the model changes needed to achieve a better
fit. The interpretation rarely proceeds to a perfect match of observed and
model data because of the time involved, the three-dimensional aspects of the
field resistivity distributions, and the ambiguities of position, intrinsic

resistivity, and size of body that cannot be resolved.

The finite-element model computes all the resistivity/PFE data values for
a standard dipole-dipole 7 spread (i.e., for 7 transmitter electrodes). For
observed profiles with larger spreads or multiple spreads it is necessary to

generate several overlapping model geometries to simulate the observed data.

After several model iterations (2 to 9 in the present study), the
interpreter obtains a satisfactory approximation to the observed data and
through a comparison of the last several iterations develops an awareness of
the sensitivity of the model to small changes attributable to probable
non-two-dimensional aspects of the field data, questionable field data values,

and the degree of ambiguity in the model. Some adjustment of the overlapping

model geometries and electrical properties is required to complete the

interpretation of the observed profiles.

The Malpais Rim has as much as 800 ft of relief and slopes as great as
300, The Horse Heaven ridge has as much as 1,600 ft of relief and slopes as
great as 259. This topography has a marked effect on the observed apparent
resistivities. Where slopes exceed 100, this topographic effect is matched
mathematically in the interactive computer modeling process through the use of

non-standard finite-element meshes and by assigning a high resistivity (105

10



ohm-m) to the "air" portion of the mesh. Figure Al shows the calculated
apparent resistivities for a 100 ohm-m homogeneous earth for the topography
crossed by Line WV 2 (slope length 600 ft, slope angle 240). The topographic
effect is most extreme along the diagonals corresponding to the dipole located
upon the slope. It is apparent that erroneous interpretations could easily be
made if the terrain were not included in the model. For a more detailed

discussion of topographic effects, see Fox et al. (1978).

The interpreted resistivity sections and the observed apparent
resistivities for the lines that cross the Malpais Rim are shown on Plate 1;
the lines that cross Horse Heaven on Plate 2. Plates 3-5 present the
interpketed intrinsic resistivities at three key depth-elevation horizons:
near-surface (0-400 ft depth), 3,000 ft elevation {2,000-3,000 ft depth), and
1,000 ft elevation (4,000-5,000 ft depth). The distribution of resistivities
shown on Plate 5 is more speculative than those shown on Plates 3 and 4. This
is due to the ambiguities in the observed data at N=6 and the uncertain

resolution of the modeling at the depth interval 2.0 to 2.5 a.

A representative interpreted resistivity section across the Whirlwind
Valley is show in Figure 3 and summarized in Table 1. Lithologic logs from
the nearby Chevron wells (Struhsacker, in preparation) provide control for the

interpreted resistivity section which shows five distinct electrical units.

~/
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TABLE 1

ELECTRICAL UNITS
AND
CORRELATIVE LITHOLOGIES

Electrical Interpreted Intrinsic . .
Unit Resistivity (chm-m) Correlative Lithology

average range

1 ] 50 35-200 Tba: Tertiary basaltic andesite.
2 [ ] o0 50-250 Basalts and basaltic andesite.

3 30 20-40 Ordovician Valmy Fm. (Ov).

.‘] /10 5-15 Hydrothermal zone, altered Tba and Ov.
5 10 5-15 Possible hydrothermal zone,




Electrical Units 1 and 2

The first two electrical units represent the resistive Miocene andesitic
flow rocks. Two e1ectrica1 units are needed to distinguish a subtle, and
perhaps significant, variation in the resistivity of these rocks: the
volcanic rocks of the Malpais Rim, electrical unit 1, consistently have a
lower resistivity than do those within the Whirlwind valley (Plate 1) and
Horse Heaven {Plate 2), electrical unit 2. The only exception to this general
rule occurs at The Geysers and down the hydraulic gradient from The Geysers
(Lines W 1 and WV 5, Plates 1 and 3). The shallow low resistivities reveal
that the first few hundred feet of sinter and volcanic rock are saturated with
the water that erupts at The Geysers. The shallow zone of hot water does not
appear to affect the resistivity data further to the east, along Line WV 6

(Plates 1 and 3).

Electrical unit 1 is identified only on the lines that cross the Malpais
Rim. This unit may indicate the Timits of diffusion of hot water within the
Rim. Permeable zones within the volcanic sequence -- breccia, rubble or
fractured flows -- may allow the hot water to flow down-dip to the south or
southeast, toward the Crescent Valley. Alternately, they may form channels
for upwelling thermal fluids. Regardless of the direction of water flow, the
series of faults within the Dunphy Pass fault zone and the numerous cross-
faults south of The Geysers (Figure 2) appear to enhance the permeability and

reduce the resistivity of the basaltic andesite of the Malpais Rim.

The highest interpreted resistivities that can be traced across the
Beowawe area (50-250 ohm-m) belong to the andesitic rocks within the Whirlwind

Valley, electrical unit 2. This unit reaches a maximum inferred thickness of

14



more than 4,000 ft (1.2 km) in an east-west-trending graben less than 1.0 mi
(1.6 km) north of the two Chevron wells (Plates 1, 4, and 5). The wells
penetrated slightly more than 4,000 ft (1.2 km) of andesitic rocks of which
the lower 2,000 ft (0.6 km) are hydrothermally altered (Struhsacker, in
preparation). The alteration may explain why the interpreted section for WV 2
(Figure 3 and Plate 1) does not show a full 4,000 ft (1.2 km) of high resisti-
vity (electrical unit 2) directly below the extrapolated position of the
wells. Electrical unit 4, altered volcanic and sedimentary rocks, appears at

approximately the same depth as the alteration.

Electrical unit 2 can be identified along all lines except the eastern-
most, Line WV 6 (Plate 1). Line WV 6 crosses the Dunphy Pass fault zone where
the volcanic rocks thin so abruptly that they cannot be resolved with 2,000 ft
dipoles. A more gradual thinning of the basaltic ahdesite to the southwest
and west occurs within the Whirlwind Valley and Horse Heaven. Electrical unit
2 is rarely more than 1,000 ft (0.3 km) thick along Lines HH 2-4 (Plates 2-4).
- The westward thinning of the basaltic andesite has been noted by Zoback (1979)

and Struhsacker (in preparation).

Electrical Unit 3

The third electrical unit shown in Figure 3 underlies electrical units 1
and 2 and appears in every interpreted section (Plates 1 and 2). This unit
corresponds to the Ordovician Valmy Formation, a eugeosynclinal sequence that
is significantly more conductive than the overlying basaltic andesite. The
low resistivity suggests that the more carbonaceous members of the formation

dominate its electrical response. The contacts between the resistive and

15



conductive horizons shown in Figure 3 and Plates 1 and 2 should not be
construed to illustrate precisely the Ordovician-Tertiary unconformity.

Figure 3 contains several transitional 50 ohm-m bodies between the high
resistivities of the volcanic rocks and the low resistivities of the meta-
sedimentary rock. The transitional resistivity values may correspond to
layers of quartzite or chert at the top of the Ordovician section, or to
tuffaceous sediments at the base of the Tertiary section, or to ambiguities of
the numerical modeling. The depth extent of the transitional resistivity

values indicates the range in uncertainty of the depth of the unconformity.

The depth to electrical unit 3 increases from north to south, reflecting
the known regional southeasterly dip (Smith et al., 1979). The offset along
the fault set at the base of the Malpais Rim is reflected in several of the
interpreted sections on Plate 1. Other abrupt offsets in the depth to
electrical unit 3 (e.g., Line WV 4, Plate 2) are also thought to represent
deep faulting. These offsets have been used to extrapolate mapped faults
within the Whirlwind Valley and Horse Heaven (Smith et al., 1979). The
geologic map, Figure 2, indicates the location of the extrapolated faults
inferred from the geophysical modeling with a dashed pattern. The faults
appear to have a normal sense and few are thought to flatten out at depths

less than 3,000 ft (1.0 km).

Electrical Unit 4

The east-northeast fault at the base of the Malpais Rim has been thought
to control the occurrence of The Geysers by all previous workers in the area

(Nolan and Anderson, 1934; Oesterling, 1962; Zoback, 1979). The anomalously

16



low resistivities of electrical unit 4 occur only in The Geysers area (Plate
1) and may therefore indicate the depths at which this fault set is permeable
or has undergone intense hydrothermal alteration. Along Line WV 6 (Plates 1
and 5), a 5 ohm-m body that can only tentatively be assigned to electrical
unit 4 appears at depths greater than 3,000 ft (1.0 km). It underlies a 300
ohm-m body that coincides with an outcrop of brecciated, highly silicified
Valmy siltstone and quartzite, Figure 2, and may reflect alteration or primary
1ithology in the Valmy Formation not associated with hydrothermal activity
(Swift, 1979). On the other hand, the hydrothermal silicification of the
Valmy Formation may effectively seal the Dunphy Pass and Malpais Rim fault
zones; the low resistivity at depth (electrical unit 4) may reveal an area
where hot water is flowing beneath an impermeable fault junction. Electrical

unit 4 disappears altogether west of The Geysers along Line WV 3 (Plate 1).

The limited areal extent and deepening of electrical unit 4 suggests that
the east-northeast-trending, post-Miocene fault set at the base of the Malpais
scarp is a conduit for upwelling geothermal water only in the area immediately
adjacent to The Geysers. Near the Chevron wells, electrical unit 4 may
indicate an area dominated by hydrothermal alteration rather than hydrothermal
circulation. It is not possible to discriminate between the two with the
resistivity data. The self-potential data discussed by Swift (1979) may make
this discrimination by detecting voltages caused by the streaming potential of
upwelling fluids. The SP anomaly is restricted to the area of The Geysers

(Swift, 1979).

17



Electrical Unit 5

The fifth electrical unit shown in Figure 3 is conductive and appears to
lie entirely within the Valmy Formation. Its location three miles (5.0 km)
north of the Malpais Rim places it north of the northern-most inferred fault
(Figure 2). The proximity of the east-northeast-trending fault set within the
Whirlwind Valley to electrical unit 5 tempts the interpretation that this
conductive anomaly represents a fault-controlled hydrothermal resource within
the Valmy Formation. However, electrical unit 5 may merely indicate an area

of carbonaceous or altered Ordovician strata.

A similar ambiguity troubles the interpretation of the large low-
resistivity areas in Horse Heaven (Plate 2). The areal extent and continuity
of Tow resistivity bodies in the Horse Heaven area far exceed those along the
base of the Malpais scarp. The Horse Heaven area may contain a large, as yet
untapped, geothermal resource fed by numerous cross-faults (Struhsacker, in
preparation), (Figure 2). However, anomalously conductive eugeosynclinal
material may be near the surface in Horse Heaven. Thermal gradient holes and

self-potential surveys might resolve this ambiguity.
SEISMIC REFLECTION ANALYSIS

A weight-drop seismic reflection survey delineates several faults in a
nine square mile area southwest of The Geysers (Plate 6). The practical depth
of energy penetration along most lines is about 1,200 ft (0.4 km). This
technique has met with critical disdain because the weight-drop source and the
data recording procedures are much less sophisticated than the techniques used

in oil exploration. Much of the energy produced by the weight-drop source

18



propagates along the surface; only a small component travels vertically. The
data are plagued with noise, "ringing" that can swamp valid reflections. In
this survey reflections along Lines 4-7 cannot be satisfactorily picked due to
noise. Two of these lines (4 and 7) cross an outcrop of basalt (Figure 2);
the source of the noise on the other two partially uninterpretable lines is
unknown. Where the noise is not extreme, the weight-drop technique produces

data that can be used successfully to delineate shallow faults.

The trend of shallow faults inferred from seismic data in the Whirlwind
Valley is predominately east-northeast (Plate 6). Near the southwest end of
the valley, several of the faults merge with faults in the Shoshone Range
mapped by Gilluly and Gates (1965), (Figure 2). Directly west of a low hill
in the valley below the Malpais Rim and north of the Chevron wells is an area
1/2 x 1 1/2 mi (1 x 3 km) where the seismic data detect no faults. This area
is an east-west horst-like structure relative to the Whirlwind Valley to the

north and the base of the Malpais scarp to the south.

The dashed pattern of the faults in Plate § shows areas where the seismic

data are sufficiently internally consistent to allow extrapolation between

lines. The dotted pattern extends these inferred faults to the west where
geologic control is available (Plate 6). The sense and location of these
faults agree with inferences from the resistivity data. The good correlation
between the faults inferred from the weight-drop seismic data and those mapped
on the surface argues that this technique can produce valid geophysical
interpretations in areas where reflections can be traced for several thousands

of feet (1 km).
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CONCLUSIONS

The electrical units inferred from the resistivity data correspond in
area and thickness to lithologies mapped on the surface and encountered in the
deep test wells. A shallow conductive zone has been modeled at The Geysers
and shown to be distinct from the large zone of lTow resistivity in Horse
Heaven. The two conductive zones may merge at depths greater than 4,000 ft
(1.2 km). The seismic data suggest that east-west-trending faults extend west
of The Geysers and form a subtle horst-like structure in the Whirlwind Valley,
and that some continue into the Shoshone Range. The modeled resistivity
sections imply that the north-northwest-trending Dunphy Pass fault zone may be
hydraulically connected with the fault set at the base of the Malpais Scarp.
Both the Horse Heaven and the Dunphy Pass fault zones may be potential

geothermal exploration targets.
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APPENDIX A
NUMERICAL MODEL QUTPUT

Page 25 shows the calculated apparent resistivities for a 100 ohm-m
homogeneous earth for the topogfaphy crossed by Line WV 2 and documents the
distortion caused by topographic effects. This location typifies the terrain
of the Malpais Rim scarp; its slope length is 600 ft and its slope angle 240.

For detailed documentation of topographic effects, see Fox et al. (1978).

Pages 26-43 document all final models. The computed resistivity values
are contoured in the same manner as the observed data (Plates 1 and 2) to
facilitate comparison. The resistivities and node thickness used in the
numerical models are indicated for each model. Unless otherwise indicated,

all node widths are 0.25 dipole lengths.
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TABLE 2

RESISTIVITY DATA SUMMARY
FINAL NUMERICAL MODELS

Whirlwind Valley Area - Plate 1

Line Length (feet) Models Iterations Appendix Pages
Wv 1 40,000 Scarp, North 7,3 26, 27

Wy 2 42,000 Scarp, North 9, 4 28, 29

Wv 3 36,000 Scarp, North 4, 4 30, 31

WV 5 36,000 Scarp 6 32

WV 6 38,000 South, Scarp 2, 5 33, 34

Horse Heaven Area - Plate 2

W 4 30,000 Center 5 35

HH 1 50,000 SE, NW 7, 3 36, 37
HH 2 44,000 SE, NW 4, 9 38, 39
HH 3 46,000 SE, NW 3,5 40, 41
HH 4 42,000 SE, NW 3,3 42, 43
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