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ABSTRACT 

A computat ional  s tudy was performed t o  f u r t h e r  i n v e s t i g a t e  t h e  

p o t e n t i a l  o f  a  mod i f ied  gamma thermometer as a  mon i t o r  o f  bo th  t h e  l o c a l i z e d  

power l e v e l  and t h e  adequacy o f  co re  c o o l i n g  f o r  a  Pressur ized  Water Reactor.  

The bas i c  gamma thermometer has been proposed as an i ns t rumen t  f o r  

measuring t h e  l o c a l  hea t  genera t ion  r a t e  w i t h i n  a  r e a c t o r  co re .  More 

s p e c i f i c a l l y ,  t h e  gamma thermometer can be viewed as a  means f o r  measuring 

t h e  l o c a l i z e d  (e.g. w i t h i n  a  p a r t i c u l a r  assembly) power l e v e l .  Thus, t h e  

GT can be env is ioned  as p r o v i d i n g  t h e  l o c a l i z e d  da ta  t h a t  de f i nes  t h e  

o v e r a l l  power d i s t r i b u t i o n  w i t h i n  t h e  core--which can be summed t o  y i e l d  

t h e  g l oba l  power l e v e l  o f  t h e  r e a c t o r .  

The vo lume t r i c  hea t  source w i t h i n  t h e  thermometer was updated t o  

i n c l u d e  hea t  depos i ted  by  neut rons as w e l l  as hea t  depos i ted  by decay 

gammas and neutron- induced ganlinas. U t i  1  i z i  ng t h i s  source, a long  w i t h  a  

more d e t a i l e d  thermal -hydraul  i c s  model , a  s e r i e s  o f  thermal -hydraul  i c  

c a l c u l a t i o n s  were performed t o  s imu la te  c e r t a i n  r e a c t o r  t r a n s i e n t s  o f  

i n t e r e s t  ( i  .e., r e a c t o r  scram, LOCA, e t c . )  i n  o r d e r  t o  c h a r a c t e r i z e  t h e  

gamma thermometer response r e l a t i v e  t o  power l e v e l  m o n i t o r i n g  and adequate 

c o r e  cool  i ng i n d i c a t i o n .  

The r e s u l t s  o f  t h i s  s tudy  r e a f f i r m  t h e  f e a s i b i l i t y  o f  u t i l i z i n g  t h e  

GT as a  d u a l - f u n c t i o n  (power l e v e l  and adequate core  c o o l i n g  c a p a c i t y )  

measurement device, w-i 111 ~ C I C ~ I  f u r ~ c t l o n  accompl shed v i  r t u a  l l y  independent 

o f  t he  o t h e r .  The s tudy  a l s o  i n d i c a t e s  l h a t  t h e r e  i s  a t he rma l -hyd rau l i c  

regime f o r  which t h e  GT would no l onge r  g i v e  e a s i l y  i n t e r p r e t a b l e  s i g n a l s .  

However, t h e  p u r s u i t  o f  t h e  GT as a  v i a b l e  n u c l e a r  i ns t rumen t  i s  s t i l l  

encouraged. 



A c o n t r i b u t i n g  f a c t o r  t o  t h e  s e v e r i t y  o f  t h e  Three-Mi le  I s l and -2  

(TMI-2) acc iden t  was t h e  l a c k  o f  i n f o rma t i on  a v a i l a b l e  t o  t h e  r e a c t o r  

ope ra to r s  r ega rd ing  t h e  t he rma l -hyd rau l i c  environment w i t h i n  t h e  p ressure  

vessel .  The r e s u l t s  of  t h i s  s tudy i n d i c a t e  t h a t  a  m o d i f i e d  ve rs i on  o f  a  

gamma thermometer (GT) has t h e  p o t e n t i a l  f o r  p r o v i d i n g  an i n d i c a t i o n  o f  

t h e  l o c a l i z e d  t he rma l -hyd rau l i c  environment w i t h i n  a  r e a c t o r  core--  

s p e c i f i c a l l y ,  an i n d i c a t i o n  o f  t h e  adequacy of  co re  c o o l i n g  capac i t y .  I n  

t h e  case o f  t h e  TMI-2 acc iden t ,  t h e  a v a i l a b i l i t y  o f  such i n f o r m a t i o n  migh t  

w e l l  have prompted t h e  r e a c t o r  ope ra to r s  t o  r e s t o r e  t h e  Emergency Core 

Cool i n g  System (ECCS) , and consequent ly  would have avoided t h e  severe 

co re  damage t h a t  d i d  occur .  

The bas i c  gamma thermometer was o r i g i n a l l y  proposed as an i ns t rumen t  

f o r  t h e  measurement o f  l o c a l i z e d  power genera t ion  w i t h i n  a  r e a c t o r  co re .  1  

I t  i s  s i g n i f i c a n t  t o  no te  t h a t  i n  t h e  m o d i f i e d  v e r s i o n  t h i s  f u n c t i o n  i s  

n o t  compromised; i . e . ,  t h e  m o d i f i e d  ve rs i on  i s  a  t r u e  d u a l - f u n c t i o n  i n s t r u -  

ment. Thus, employment o f  t h e  m o d i f i e d  GT f o r  PWRs [ i n  p l ace  o f  t h e  

e x i s t i n g  Sel f-Powered Neutron Detec to rs  (.'SPNDs) c u r r e n t l y  used f o r  power 

1  eve1 mon i t o r i ng ]  would r e s u l t  i n  a  s i g n i f i c a n t  i nc rease  i n  a v a i l a b l e  

i n fo rma t i on  rega rd ing  t h e  s t a t e  o f  t h e  r e a c t o r  co re  w i t h  no i nc rease  i n  

t h e  i n s t r u m e n t a t i o n  requ i red .  

One c l a r i f i c a t i o n  rega rd ing  t h e  m o d i f i e d  GT i s  i n  o rder ,  however. I n  

t h e  i n i t i a l  s tudy  o f  t h e  d u a l - f u n c t i o n  GT,' t h e  proposed i ns t rumen t  was 

analyzed as a  power l e v e l  i n d i c a t o r  and a  core  c o o l a n t  l e v e l  mon i t o r .  I f  

a  w e l l - d e f i n e d  c o o l a n t  l e v e l  e x i s t s  i n  a  r e a c t o r  core,  t h e  m o d i f i e d  GT 

i s  indeed capable o f  d e t e c t i n g  such a  s i t u a t i o n .  However, i t  i s  n o t  c l e a r  

whether, under acc iden t  cond i t i ons ,  such a  w e l l - d e f i n e d  l e v e l  would e x i s t .  

The b a s i c  t he rma l -hyd rau l i c  s i g n a l  o f  t h e  m o d i f i e d  GT i s  r e l a t e d  t o  t h e  

hea t  t r a n s f e r  c o e f f i c i e n t  o f  t h e  r e a c t o r  environment.  Thus t h e  m o d i f i e d  

GT a c t u a l l y  p rov ides  a  measure o f  t h e  adequacy o f  t h e  hea t  removal process 

i n  a  l o c a l i z e d  r e g i o n  o f  t h e  r e a c t o r  i r r e s p e c t i v e  o f  t h e  medium by which 

t h i s  process i s  accomplished ( i  .e., water ,  steam, two-phase f l ow ,  e t c .  ) . 
Hence, r ega rd ing  t h e  m o d i f i e d  GT as a f l u i d  l e v e l  m o n i t o r  i s  t o o  r e s t r i c t i v e .  



It i s  more accurate ( b u t  cumbersome) t o  descr ibe the  thermal -hydraul i c  

s i g n a l  o f  t h e  mod i f i ed  GT as a  measure o f  the  adequacy o f  t he  l o c a l i z e d  

coo l  i ng capaci t y  o f  t h e  thermal -hydraul i c  system. 

The work repo r ted  here represents an extension o f  t he  i n i t i a l  GT 

study,' p r i n c i p a l  l y  i n  t he  area o f  thermal-hydraul i c  model i n g  and ana lys i s .  

As such, much o f  t h e  ana lys i s  and i n fo rma t ion  presented i n  the  i n i t i a l  

r e p o r t  has been omi t ted .  on ly  t he  i n fo rma t ion  requ i red  f o r  c o n t i n u i t y  o f  

t h i s  p resen ta t i on  i s  repeated here, and i n t e r e s t e d  readers are  r e f e r r e d  

t o  t h e  i n i t i a l  document f o r  f u r t h e r  de ta i l s . '  



I I. BACKGROUND 

2.0 Design Ra t i ona le  

Recent l y  c o n s i d e r a t i o n  has been g iven  t o  t h e  p o s s i b i l i t y  o f  us i ng  an 

o l d  concept :  t h e  use o f  the  gamma thermometer as a  replacement f o r  t h e  

SPNDs c u r k d n t l y  u t i l i z e d  f o r  power l e v e l  measurement i n  PWRs. As an 
example, t h e  Tennessee V a l l e y  A u t h o r i t y  (TVA) has i n i t i a t e d  a  $400,000 

program t o  p a s s i v e l y  i r r a d i a t e  gamma thermometers i n  t h e  Oak Ridge Nat iona l  

Labora to ry  Research Reactor (ORNL-ORR) i n  o r d e r  t o  assess t he  c a l  i b r a t i o n  

versus i r r a d i a t i o n  c h a r a c t e r i s t i c s .  

T h i s  inc reased  i n t e r e s t  can be a t t r i b u t e d  p r i m a r i l y  t o  t h e  marked 

d i f f e rence  i n  t h e  s p a t i a l  v a r i a t i o n  o f  t h e  thermal neu t ron  and gamma f l u x e s  

w i t h i n  a  f u e l  assembly. The reduced s p a t i a l  v a r i a t i o n  o f  t h e  gamma f l u x  

(as  compared t o  t h e  thermal neu t ron  f l u x  measured by t h e  SPNDs) i s  a n t i c i -  

pa ted  t o  a l l o w  t h e  accuracy o f  t h e  power l e v e l  measurement t o  be improved. 

Assuming t h a t  t h e  improved accuracy i n  t he  measurement can be t r a n s l a t e d  

i n t o  a  corresponding r e d u c t i o n  i n  t h e  u n c e r t a i n t y  o f  t h e  a c t u a l  power 

genera t ion  r a t e ,  then t h e  p o t e n t i a l  f o r  i n c r e a s i n g  t h e  o p e r a t i n g  l i m i t s  

( w h i l e  m a i n t a i n i n g  t h e  same nominal des ign l i m i t s )  can be env is ioned.  

Furthermore, by i n c o r p o r a t i n g  c e r t a i n  m o d i f i c a t i o n s  i n t o  t h e  gamma 

thermometer design, a  d u a l - f u n c t i o n  i ns t rumen t  s e n s i t i v e  t o  bo th  t h e  power 

l e v e l  and changes i n  t h e  e x t e r i o r  heat  t r a n s f e r  c o e f f i c i e n t  (and hence t o  

t h e  t he rma l -hyd rau l i c  environment w i t h i n  t h e  co re )  i s  dev ised.  It was 

a n t i c i p a t e d  and t h e o r e t i c a l l y  v e r i f i e d  t h a t  t h e  gamma thermnmet.er, 

m o d i f i e d  t o  i n c l u d e  measurement o f  adequate core  c o o l i n g  p o t e n t i a l ,  would 

p rov ide  a  d i r e c t  and unambiguous i n - c o r e  i n d i c a t i o n  o f  b o t h  t he  l o c a l i z e d  

power 1  eve1 and the' thermal -hydraul  i c  environment w i t h i n  t h e  r e a c t o r  vessel  . 

2.1 Phys ica l  D e s c r i p t i o n  

The dev i ce  i t s e l f  c o n s i s t s  o f  a  ho l low,  c y l i n d r i c a l ,  s t a i n l e s s  s t e e l  

r o d  o f  a  l e n g t h  equal t o  o r  g r e a t e r  than  t h e  h e i g h t  o f  t h e  r e a c t o r  co re .  

A t  i n t e r v a l s  a long  t h e  rod, a n n u l i  o f  m a t e r i a l  a r e  removed by machining. 

A  s e r i e s  o f  d i f f e r e n t i a l  thermocouples (TCs) a r e  then l o c a t e d  a t  each 

annul us 1  oca t i on ,  w i t h  t h e  TCs and assoc ia ted  e l e c t r i c a l  1  eads p o s i t i o n e d  



i n  t h e  cen te r  o f  t h e  rod. Magnesium oxide i s  u t i l i z e d  as both packing 

and i n s u l a t i n g  m a t e r i a l  i n  t h e  c e n t r a l  c a v i t y .  Once assembled, z i r c a l l o y  
c l a d d i n g  i s  swaged onto t h e  e x t e r i o r  i n  an i n e r t  atmosphere ( t y p i c a l l y  

argon) .  The r e s u l t i n g  device i s  dep ic ted  i n  F ig.  1, and the  associated 

thermocouple design i s  shown i n  ~ i ~ .  2. The assembled thermometer would 

then  be t y p i c a l l y  i n s e r t e d  i n t o  the  ins t rumenta t ion  guide tube o f  a  f u e l  

assembly. 

2.2 Use as a  Power 'Ceve l '~1on i to r  

Dur ing opera t ion  o t  a  nuc lear  reac tor ,  t he  var ious  r~eut.ror~ ir~ltrr.acLiur~ 

processes ( i  .e., f i s s i o n ,  capture, e tc .  ) together  w i t h  f i s s i o n  product  

decay produce gamma r a d i a t i o n  as a  by-product. The placement of a  GT 

w i t h i n  a  fue l  assembly would a l l o w  some f r a c t i o n  o f  these gamma rays t o  

i n t e r a c t  w i t h  the  s t a i n l e s s  s t e e l  body o f  t he  proposed GT, depos i t ing  

energy and thereby producing heat. The r e s u l t i n g  heat i s  then t r a n s f e r r e d  

f rom t h e  device t o  t h e  coo lan t  i n  which i t  i s  immersed. The presence o f  

t h i s  vo lumet r i c  heat source, coupled w i t h  t h e  i l l u s t r a t e d  design, w i l l  

produce a  temperature d i s t r i b u t i o n  w i t h i n  the  device i t s e l f .  The 

i nco rpo ra ted  thermocouples measure the  magnitude o f  th is . temperature 

d i s t r i b u t i o n  a t  two l o c a t i o n s  (THOT and TCOLD i n  F ig.  1 )  w i t h i n  the  

. s tandard  device, w i t h  the  d i f f e r e n c e  between THOT and TCOLD being used 

t o  i n f e r  t h e  l o c a l i z e d  heat  generat ion r a t e  (hV1 i n  F ig.  2 ) .  

2.3 Use as  an Adequate' Core Cool ing Moni tor  

Operat ion o f  t he  GT t o  mon i to r  t he  adequacy o f  core c o o l i n g  i s  

based on t h e  f a c t  t h a t  t h e  heat t r a n s f e r  c o e f f i c i e n t  on the  e x t e r i o r  

su r face  o f  t h e  device depends on the  s t a t e  o f  the  c o o l i n g  medium w i t h i n  the  

f u e l  assembly. For example, t h e  e x t e r i o r  heat t r a n s f e r  c o e f f i c i e n t  w i l l  

undergo a dramatic charlye (i..ougkly by a f a c t o r  o f  1,000) at; lilt! cuo l i tn t  

changes phase from l i q u i d  t o  steam a t  constant  pressure. The r a d i a l  heat 

t r a n s f e r  c h a r a c t e r i s t i c s  a t  t h e  "ho t "  and "co ld "  thermocouple l o c a t i o n s  a re  

r a d i c a l l y  d i  f f e r e n t  under normal r e a c t o r  opera t ion  ( i  .e., w i t h  the  a c t i v e  

r e g i o n  o f  t h e  GT immersed I n  coo lan t ) .  The r a d i a l  f l o w  a t  the  "ho t "  thermo- 

couple i s  sharp ly  reduced due t o  the  gas gap (which func t i ons  as an i n s u l a t o r )  
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Fig. 1. Schematic o f  PWR gamma thermometer. 
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Fig. 2. Modified gamma thermometer "dual - d i f f e r e n t i a l  " thermocouple 
design. 



Therefore, the heat f l ow  i n  t h i s  region i s  p r i n c i p a l l y  i n  the a x i a l  

d i r ec t i on .  By way of contrast, the r a d i a l  heat f l ow  a t  the "cold" themo- 

coup1 e i s r e l a t i v e l y  unres t r i c ted  dur ing normal operation. This 

d i f f e r e n t i a l  heat t r ans fe r  r e s u l t s  i n  a r e l a t i v e l y  higher temperature a t  

t he  "hot1' thermocouple. A l o s s  i n  the heat removal capaci ty o f  the coo l ing 
medium v i a  a decrease i n  the e x t e r i o r  heat t r ans fe r  coe f f i c i en t ,  however, 

r e s u l t s  i n  the r a d i a l  heat t r ans fe r  proper t ies  a t  both TC junct ions becoming 

more s i m i l a r  (s ince the llcold" TC junc t ion  more c lose ly  approximates the 

so l id /gas i n te r f ace  o f  the "hat"  junct ion) .  This change i s  r e f l ec ted  as a 
reduced temperature d i f f e r e n t i a l  between thc  two t h c r * ~ ~ ~ o ~ u u y l  e locat ions as 

w e l l  as h igher  absolute temperatures a t  both loca t ions  r e s u l t i n g  from the 

lower ove ra l l  heat removal capaci ty o f  the medium. The ra t i ona le  f o r  the 

use of the modi f ied GT as a monitor o f  the adequacy o f  core cool i n g  i s  

t h a t  t he  shape of the temperature d i s t r i b u t i o n  (as measured by the thermo- 

couples) i s  i n d i c a t i v e  of the degree o f  heat t r ans fe r  s i m i l a r i t y  a t  the two 

junct ions,  and hence o f  the s t a t e  o f  the coolant a t  the l eve l  o f  t ha t  

p a r t i c u l a r  ac t i ve  region i n  a " s t r i ng "  o f  such devices. 

2.4 Theoret ical  Analysis 

The po ten t i a l  o f  t h e  gamma thermometer as a dual-purpose instrument i s  

d i r e c t l y  r e l a ted  t o  the sepa rab i l i t y  o f  the two functions. Thc use o f  the 

device f o r  one tunc t ion  should no t  compromise the s~lcand funct ion,  Corl- 
sequently, the  desired cha rac te r i s t i c  response used f o r  t h ~  power l e v e l  

moni tor  should be a strong func t ion  o f  the reactor  power and a weak funct ion 

o f  t he  heat t r ans fe r  cha rac te r i s t i c s  and hydrau l ic  environment o f  the GT. 

Conversely, the s igna l  u t i l  i zed f o r  the adequate core coo l ing monitor should 

be a weak func t ion  o f  the reac to r  power and a strong func t ion  o f  the heat 

t r a n s f e r  and hydrau l ic  charac te r i s t i cs .  

A one-dimensional steady s ta te  analysi s2 ind ica ted  t h a t  the desired 

power l e v e l  s igna l  i s  a strong funct ion o f  the l o c a l  power and a weak 

funct ion of the  heat t ransfer  proper t ies :  



where q i s  the volumetric heat deposition rate ( related to  the local 

power) and m 2  = 8 . The dimensions are given in Fig. 1.  

By ut i l iz ing an additional temperature measurement a t  a point between 

the "hot" and "cold" junctions (denoted as T M I D  in Figs. 1 and 2 ) ,  a  

response that  i s  insensit ive to the power level b u t  strongly dependent on 

the surface heat t ransfer  coefficient (via m )  can be constructed: 
0 

0 

Note tha t  Eq. ( 2 )  does not depend expl ic i t ly  on q,  the volumetric heat 

deposition rate .  An additional favorable character is t ic  of .  t h i s  design i s  

that  the final thermal-hydraulic signal requires no additional information 

other than that available from the GT thermocouple measurements themselves 

( i  . e . ,  the instrument i s  self-contained). 

Physically, the two signals will be measured as voltage drops across 

the di f ferent ial  thermocouples placed in ser ies  (see Fig. 2 ) .  One relat ively 

straightforward manner of obtaining the requisite information i s  to  

incorporate the "dual different ial  " thermocouple design (depicted in Fig. 

2 )  , measuring THOT - T M I D  ( A V ,  in Fig. 2 )  with one different ial  TC and 

T~~~ - T~~~~ (nV2  in Fig. 2 )  with a second different ial  TC. The r a t io  of 

the two signals would yield the adequate core cooling monitor response, 

and the sum of the two signals would yield the power level monitor response. 

A1 ternat i  vely, two different ial  thermocouples (four leads versus three) 

could be used for  the same measurements. 

2.5 Radiation Transport Analysis 

In the i n i t i a l  studyY2 a detailed radiation transport analysis was 
3 performed using the DOT-IV discrete ordinates transport code to  calculate 

and characterize the volumetric energy deposition ra te  within the GT [ i . e . ,  

to determine q in E q .  ( I ) ] .  The characterization included the source of 

the par t ic les  involved ( i  .e., geometrically within the reactor) ,  the origin 

of the par t ic les  ( i  .e .  , neutron-induced reactions or fission product decay), 



and a l s o  t h e  manner i n  which the  p a r t i c l e s  a c t u a l l y  reach t h e  de tec to r .  

For t h e  present  ana l ys i s ,  t h e  a d d i t i o n a l  c o n t r i b u t i o n  o f  neutron hea t i ng  

t o  t h e  t o t a l  energy d e p o s i t i o n  r a t e  w i t h i n  t he  thermometer was determined 

and i s  dep i c ted  i n  F ig .  3. Th i s  r e s u l t ,  coupled w i t h  t he  c o n t r i b u t i o n  

from f i s s i o n  produc t  decay gammas (F ig .  4)  and neutron-induced gammas 

( F i g .  5 ) ,  y i e l d s  t h e  t o t a l  vo lumet r ic  energy depos i t i on  r a t e  shown i n  F ig .  

6. The percentage breakdown of  t h i s  r a t e  i s  4.3% due t o  t h e  neutron 

heat ing ,  20.8% due t o  f i s s i o n  product  decay, and 7'4.9% due t o  neutron- 

induced r e a c t i o n s  ( w i t h  47.1% o f  t h e  neutron-induced reac t ions ,  o r  35.3% 

of  t h e  t o t a l  s i gna l ,  be ing  a t t r i b u t a b l e  t o  f i s s i o n ) .  I n c l u s i o n  o f  t he  

neut ron  hea t i ng  i n  t h e  t o t a l  energy does n o t  a f f e c t  t h e  s p a t i a l  d i s t r i b u t i o n  

o f  t h e  t o t a l  energy d e p o s i t i o n  r a t e .  The r e s u l t s  con t inue t o  i n d i c a t e  a  

r e l a t i v e l y  f l a t  s p a t i a l  d i s t r i b u t i o n  w i t h i n  t h e  gamma thermometer i t s e l f ,  

w i t h  t h e  maximum s p a t i a l  d e v i a t i o n  from c e n t e r l i n e  va lue being approx imate ly  

6%. Thus, much o f  t h e  prev ious  c h a r a c t e r i z a t i o n  o f  t he  power l e v e l  

f u n c t i o n  remains v a l i d  and w i l l  n o t  be repeated here. 

rad ius  (cm) 

F ig .  3. Volumetr ic  energy depos i t i on  r a t e  d i s t r i b u t i o n  i n  t h e  gamma 
thermometer due t o  neut ron  hea t i ng  (w/cm3). 



r a d i u s  (cm) 

F ig .  4. Volumetr ic  energy depos i t i on  r a t e '  d i s t r i b u t i o n  i n  t h e  gamma 
thermometer due t o  f i s s i o n  produc t  decay source (w/cm3). , 

I .  

r a d i u s  (cm) 

F ig .  5. Volumetr ic  energy depos i t i on  r a t e  d i s t r i b u t i o n  i n  t he  g.amma 
thermometer due t o  a1 1 neu t ron - i  nduced reac t i ons  (w/cm3). 



radius (cm) 

F i g .  6. Total volumetric energy deposition rate distribution in the 
gamma thermometer due to all sources (decay + neutron induced + neutron kemtir~y) 
Cw/cm3J - 



111. THERMAL HYDRAULIC ANALYSIS 

A1 though t h e  p rev ious  thermal -hydraul  i c  a n a l y s i s  i n d i c a t e d  t he  

p o t e n t i a l  o f  t h e  gamma thermometer as a  means f o r  address ing t he  adequacy 

o f  t h e  coo l  i ng process, c e r t a i n  ques t ions  .remained concern ing t h e  behav io r  

o f  t h e  dev ice  under acc iden t  c o n d i t i o n s .  'To address these ques t ions ,  

p a r t i c u l a r l y  those  r e l a t e d  t o  t h e  e f f e c t  o f  c o o l a n t - r e l a t e d  parameters on 

t h e  gamma thermometer, a  new p r o t o t y p i c  c a l c u l a t i o n a l  model o f  t h e  GT 

( d e p i c t e d  i n  F ig .  7 )  was cons t ruc ted ;  Th i s  model d i f f e r s  f rom t h e  p rev ious  

thermal -hydraul  i c  model i n  f o u r  s i g n i f i c a n t  aspects :  ( 1  ) r e v i s i o n  o f  t h e  

p h y s i c a l  dimensions t o  i n c o r p o r a t e  t he  r e s u l t s  o f  a  s imp le  des ign s e n s i t i v i t y  

ana l ys i s ,  ( 2 )  ex tens ion  o f  t h e  model t o  address p o s s i b l e  asymmetry i n  t h e  

a x i a l  d i r e c t i o n ,  ( 3 )  an i nc rease  i n  t h e  model ing d e t a i l  f rom 100 t o  625 

nodes t o  o b t a i n  a  f i n e r  (and hence more accura te )  temperature d i s t r i b u t i o n ,  

and ( 4 )  i n c o r p o r a t i o n  o f  a  more p r e c i s e  r e p r e s e n t a t i o n  o f  t h e  boundary 

c o n d i t i o n s  f o r  t h e  argon gap. 

The model was u t i l i z e d  i n  t h e  t r a n s i e n t  heat  conduc t ion  code HEATING-5 4  

t o  c a l c u l a t e  bo th  t h e  s p a t i a l  and t ime-dependent behav io r  o f  t h e  gamma 

thermometer temperature d i s t r i b u t i o n  us ing  c o o l i n g  parameters t y p i c a l  o f  

t h e  environment w i t h i n  a  PWR f u e l  assembly. The a n a l y s i s  i nco rpo ra ted  t he  

t o t a l  vo lume t r i c  hea t  source ( F i g .  6 )  ob ta ined  v i a  t he  r a d i a t i o n  t r a n s p o r t  

c a l c u l a t i o n s  t oge the r  w i t h  temperature-dependent m a t e r i a l  p r o p e r t i e s  f rom 

t h e  Nuclear  Systems M a t e r i a l s  Handbook. 5  

The a n a l y s i s  cons idered t h e  behav io r  o f  t h e  GT s i g n a l s  (see F ig .  2 )  

d u r i n g  normal r e a c t o r  o p e r a t i n g  c o n d i t i o n s  as w e l l  as d u r i n g  and sub- 

sequent t o  va r i ous  r e a c t o r  t r a n s i e n t s .  The t r a n s i e n t s  analyzed were: ( 1 )  

a  r e a c t o r  scram, modeled as an instantaneous t e r m i n a t i o n  o f  t h e  gamma 

source a t t r i b u t a b l e  t o  neut ron- induced r e a c t i o n s  ; ( 2 )  an ins tan taneous  

l o s s  o f  c o o l a n t  acc iden t  (LOCA), modeled as an ins tan taneous  change i n  t he  

e x t e r n a l  hea t  t r a r i s f e r  c o e f f i c i e n t  f ram approx imate ly  30,000 w / m 2  O C  

(wh ich  represen ts  normal r e a c t o r  co re  c o n d i t i o n s )  t o  approx imate ly  

1,800 W/m2 "C (which represen ts  sa tu ra ted  steam a t  15.5 MPA and 315°C) ; 

( 3 )  a combinat ion of  a  r e a c t o r  scram and LOCA a t  15.5 MPA, ( 4 )  a  l a r g e  

p i p e  break LOCA, modeled as an instantaneous change i n  t h e  e x t e r n a l  hea t  





t r a n s f e r  c o e f f i c i e n t  f rom approx imate ly  30,000 W/m2 O C  t o  50 w/.m2 O C  

(wh ich  represen ts  sa tu ra ted  steam a t  0.1 MPA and 315OC); ( 5 )  a  combinat ion 

o f  a  r e a c t o r  scram and LOCA a t  0.1 MPA; an'd ( 6 )  ,a p a r t i a l  LOCA, modeled 

as an instantaneous drop i n  t h e  c o o l a n t  l e v e l  which uncovers t h e  upper h a l f  

o f  t h e  thermometer ( i  .e., from t h e  t o p  o f  t h e  GT t o  t h e  cen te r  o f  t h e  

argon gap i n  F ig .  7 )  t o  a  sa tu ra ted  steam environment a t  15.5 MPA and 315OC. 

Two c h a r a c t e r i s , t i c  parameters a r e  cons idered  app rop r i a te  rega rd ing  t h e  

a p p l i c a b i l i t y  o f  t h e  GT as a  power l e v e l  m o n i t o r :  t he  c a l i b r a t i o n  o f  t h e  

dev ice  w i t h  r espec t  t o  t h e  Local Heat Generat ion Rate (LHGR), and t h e  t ime  

cons tan t  o f  t h e  i ns t rumen t  i t s e l f .  The c a l i b r a t i o n  o f  t he  dev ice  w i t h  

r espec t  t o  t h e  LHGR can be expressed as 

LHGR = aW(THOT - TCOLD) + B 

where a i s  t h e  p r o p o r t i o n a l i t y  cons tan t  r e l a t i n g  t h e  l o c a l  heat  genera t ion  

r a t e  t o  t h e  temperature d i f f e r e n t i a l  and B i s  an adjustment f a c t o r ,  

r e q u i r e d  s i n c e  t he  r a t i o  o f  f i s s i o n  p roduc t  LHGR t o  t o t a l  LHGR i s  n o t  

i d e n t i c a l  t o  t h e  r a t i o  o f  f i s s i o n  p roduc t  GT s i g n a l  t o  t o t a l  s i g n a l .  

2 The p rev ious  s tudy  i n d i c a t e d  va lues f o r  a and 13 o f  14.96 W/cm O C  and 

-55.19 W/cm r e s p e c t i v e l y .  As a  r e s u l t  o f  t h e  changes i n  t h e  therma l -  

h y d r a u l i c s  model, s p e c i f i c a l l y  t h e  l eng then ing  o f  t h e  argon gap, t h e  s l ope  

( i .e . ,  a )  o f  t h e  c a l i b r a t i o n  curve  dep i c ted  i n  F ig .  8  changed cons ide rab l y .  

The c u r r e n t  des ign produces va lues f o r  a and B o f  8.88 W/cm "C and -56.63 

W/cm r e s p e c t i v e l y .  The s i g n i f i c a n c e  o f  t h i s  r e s u l t  i s  t h a t  i t  i n d i c a t e s  

t h e  l a r g e  s e n s i t i v i t y  o f  t h e  power l e v e l  s l g n a l  t o  t h e  phys i ca l  des ign 

and f a b r i c a t i o n  o f  t h e  ins t rument .  I t  a l s o  appa ren t l y  i n d i c a t e s  t h a t  each 

d e t e c t o r  must be c a l i b r a t e d  sepa ra te l y .  

The second c h a r a c t e r i s t i c  o f  t h e  gamma thermometer t h a t  i n f l u e n c e s  i t s  

a c c e p t a b i l i t y  as a  power l e v e l  mon i t o r  i s  the  t ime cons tan t  o f  t h e  i n s t r u -  

ment i t s e l f .  The r e s u l t s  o f  t h i s  s tudy  i n d i c a t e  a  thermocouple response 

t i m e  o f  approx imate ly  0.0856 "Cis (as compared t o  t h e  p rev ious  va lue  o f  

0.0508 "CIS) .  Th i s  change i s  a l s o  a t t r i b u t a b l e  t o  t h e  a l t e r a t i o n s  i n  t h e  

t he rma l -hyd rau l i c s  model, p a r t i c u l a r l y  t h e  dimensional  changes. 



Fig. 8. Comparison of ca l ib ra t ion  curves f o r  the  power level  ind ica to r  
(33,800 MWD/MTHM burnup). i 

A f a c t o r  of four  change i n  the  GT power level indicator  signal as a 

resul  t of an instantaneous reac to r  scram had been determined prevciuusly . 
Fursther,  the  time dependence of thc  power level s-ignal subsequent t o  an 

instantaneous LOCA a t  15.5 MPA ( a f t . ~ r  allowing f o r  at1 i n l t l a l  t r an s i en t  
e f f e c t )  returned t o  i t s  i n i t i a l  value. The same t rans ien t s  were calcula ted 
using the  updated thermal-hydraulics model of the  GT. Figure 9,  depict ing 

t he  power level s ignal  subsequent t o  a reactor  scram, and Fig. 10, 

depic t ing the  power level  s ignal  subsequent t o  an instantaneous LOCA a t  
15.5 MPA, provide addi t ional  confirmation of the  i n i t i a l  r e s u l t s ,  main- 

t a in inq  approximately d f a c t o r  o f  ruur change in the power level signal 

f o r  a reac to r  scram. Similar ly ,  the  power level indicator  signal f o r  a 
combination reactor  scram and LOCA a t  15.5 MPA (Fig.  11) and a t  0.1 MPA 

(Fig .  12) show the appropriate response ( i  .e. ,  d fac to r  of four drop 
cons i s ten t  with the strong dependence on the  reactor  power level  ) . In 

conipari ng Figs. 9, 11, and 12, the  r e su l t s  show no discernable d i f ferences .  



TIME AFTER TRANSIENT (SEC) 

Fig.  9. Power l e v e i  i n d i c a t o r  response subsequent t o  an instantaneous 
r e a c t o r  scram. 

' ~ i ~ .  10. Power l e v e l  i n d i c a t o r  response subsequent t o  an instantaneous 
l ubs  o f  coo lan t  acc idcn t  (LOCA) a t  15.5  MPA and 315°C. 



TIME AFTER TRANSIENT (SEC) 

F i g .  11. Power l e v e l  i n d i c a t o r  response subsequent t o  a combinat ion 
r e a c t o r  scram and LOCA a t  15.5 MPA and 315°C. 

TIME AFTER TRANSIENT (SECI 

F i g .  12. Power l e v e l  i n d i c a t o r  response subsequent t o  a combinat ion 
r e a c t o r  scram and LOCA a t  0.1 MPA and 315°C. 



Furthermore, t h e  power l e v e l  i n d i c a t o r  s igna l  f o r  the  p a r t i a l  LOCA ( a t  

15.5 MPA) t raced  the  t ime response curve f o r  t he  complete LOCA a t  15.5 

MPA ( ~ i ~ .  l o ) ,  so t h a t  t he re  was no d iscernab le  d i f ference between the  two 
curves. These r e s u l t s  s u b s t a n t i a l l y  uphold the i n i t i a l  content ion  t h a t  

the  power l e v e l  i n d i c a t o r  response i s  v i r t u a l l y  independent o f  the  thermal- 

hyd rau l i c  environment w i t h i n  the  f u e l  assembly. As an extreme case, the  
l a r g e  p ipe  break LOCA was modeled. This  c a l c u l a t i o n  i s  noteworthy i n  t h a t  
t h e  r e s u l t s  i n d i c a t e  a  s i g n i f i c a n t  l i m i t a t i o n  i nhe ren t  i n  t he  gamma 

thermometer. The power l e v e l  i n d i c a t o r  response f o r  an instantaneous 

LOCA a t  0.1 MPA (F ig .  13) e x h i b i t s  a  f a c t o r  o f  f o u r  drop i n  the  s i g n a l .  

This  i s  a  d i r e c t  c o n t r a d i c t i o n  t o  a l l  prev ious r e s u l t s ,  i n  which 

e s s e n t i a l l y  no change i n  the  power l e v e l  s i gna l  was observed. The ana lys i s  

of t h i s  r e s u l t  i n d i c a t e s  t h a t  t he re  a re  thermal -hydraul i c  regimes f o r  

which t h e  GT no longer produces e a s i l y  i n t e r p r e t a b l e  s igna ls .  P re l im ina ry  

ana lys i s  o f  t h i s  c a l c u l a t i o n  i n d i c a t e s  t h a t  t h i s  phenomenon occurs when 

the  r a d i a t i v e  heat t r a n s f e r  mechanism becomes the  dominant mode o f  heat 

removal f rom the  GT. Consequently, t he  heat t r a n s f e r  process i s  no longer  

l i n e a r  w i t h  the  change i n  temperature (as i s  the  case w i t h  the  fo rced con- 

v e c t i v e  heat  t rans fe r  c o e f f i c i e n t ) .  It i s  a l so  noteworthy t h a t  t h i s  e f f e c t  

d i d  n o t  appear f o r  t he  combined r e a c t o r  scram and LOCA t r a n s i e n t  a t  0.1 

MPA (F ig .  12) due t o  t h e  concurrent  decrease i n  t he  power l e v e l .  For t h i s  

case, t h e  accompanying reduc t i on  i n  t h e  power l e v e l  pe rm i t t ed  opera t ion  o f  

t h e  gamma thermometer t o  remain i n  a  temperature range where the  r a d i a t i v e  
heat t.ransfer mechanism was n o t  t he  dominant mode. I n  summary, t he  o v e r a l l  

r e s u l t s  i n d i c a t e  t h a t  t h e  gamma thermometer's opera t ion  as a power l e v e l  

moni t o r  i s  i n s e n s i t i v e  t o  the  thermal-hydraul ic  environment (except  f o r  

the case o f  t h e  most severe accident ,  a  l a r g e  p ipe  break LOCA w i t h  no 

r e a c t o r  scram), and w i  11 y i e l d  a  s igna l  response p ropo r t i ona l  t o  t he  

1  oca l i zed puwer . 
The c a l c u l a t i o n s  c i t e d  above a l s o  conf i rm the  thermal-hydraul ic  

response o f  t he  GT [i .e., the  adequate core coo l i ng  mon i to r  (THOT 

T ~ ~ ~ / T ~ ~ ~  - T~~~~ 
) ]  t o  be a  s t rong f u n c t i o n  of t he  thermal -hydrau l ic  

environment ( s p e c i f i c a l l y  the  e x t e r i o r  heat t r a n s f e r  c o e f f i c i e n t )  and t o  

be v i r t u a l l y  independent o f  t he  r e a c t o r  power. This  r e s u l t  i s  i l l u s t r a t e d  
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F ig .  13. Power l e v e l  i n d i c a t o r  response subsequent t o  an instantaneous 
LOCA a t  0.1 MPA and 315°C. 

i n  F iys .  14 and 15, which represent  t he  adequate core  c o o l i n g  mon i to r  

(ACCM) response t o  an i n s t a n t a n e o ~ ~ s  LQCA a t  15.5 MPA drld t o  a combinat ion 

reactor st:rarll and LOCA a t  15.5 MPA r e s p e c t i v e l y .  I n ,  each case, t h e  r e s u l t s  

show d f a c t o r  of two decrease i n  t he  s igna l  inlrnediately f o l l o w i n g  the 

t r a n e i c n t .  Aga'i~l i t  should be noted t h a t  f o r  t h e  p a r t i a l  LOCA a t  15.5 MPA, 

t h e  ACCM response t raced  t h e  response f o r  t h e  complete LOCA ( F i g .  14) and 

i s  t h e r e f o r e  n o t  d i sp layed  separa tc ly .  The i n s e n s i t i v i t y  o f  t he  ACCM 

s i g n a l  t o  t h e  r e a c t o r  pnwer l e v e l  i s  dep i c l ed  by t i g .  16, which shows 

t h e  gamma thermometer s i g n a l  du r i ng  and subsequent t o  a r e a c t o r  scram. The 

n o i s e  apparent  i n  t h e  s i g n a l  i s  the  r e s u l t  of rnlrnr lof f  er..r.urs I n  the  cd lcu-  

l a t i o n  and i s  w e l l  w i t h i n  t h e  e r r o r  band f o r  a d i f f e r e n t i a l  thermocouple. 

The r e s u l t s  o f  the  ACCM response du r i ng  and subsequent t o  a LOCA a t  0.1 MPA 

and a combinat ion r e a c t o r  scram and LOCA a t  0.1 MPA are  presented as 

F i  yures 17 and 18 r e s p e c t i v e l y .  These r e s u l t s  would appear t o  y i e l d  t h e  

b e s t  response o f  any o f  t h e  t r a n s i e n t s  ( i  .e., a f a c t o r  o f  14 drop i n  t he  

ACCM s i g n a l  i ns tead  of a f a c t o r  o f  2 ) .  However, as po in ted  o u t  above, 
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F ; ~ .  14. Adequate dore cool i n g  mon i to r  response t o  an instantaneous 
LOCA a t  15.5 MPA and 315°C. 

F ig .  15. .Adequate core c o o l i n g  mon i to r  response t o  a  combinat ion r e a c t o r  
scram and LOCA a t  15.5 MPA and 31 5 ' " ~ .  



Fig. 16. Adequate core cooling monitor response t o  an instantaneous 
reac to r  scram, 

Fig. 17 .  Adequate core cooling monitor response t o  an instantaneous 
LOCA a t  0.1 MPA and 31 5°C. 
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F ig .  18. Adequate core c o o l i n g  mon i to r  response t o  a  combinat ion , 

r e a c t o r  scram and LOCA a t  0.1 MPA and 315°C. 

t h e  thermometer i s  producing a  s igna l  fundamental ly d i f f e r e n t  f rom the  

prev ious  cases. As a  r e s u l t  o f  t h e  changes i n  t he  dominant heat  t r a n s f e r  

mode, t he  two e f f e c t s  (scram and LOCA) a re  no longer  independent and 

separable. For t h e  LOCA a t  0.1 MPA (F ig .  17), t h e  r e s u l t s  i n d i c a t e  s igna l  

inc rease a f t e r  reaching a  minimum ar-out~d 35.0 seconds. Al though n o t  shown, 

t h e  s igna l  even tua l l y  r e t u r n s  t o  i t s  o r i g i n a l  va lue as though no t r a n s i e n t  

had occurred. 

The case o f  t h e  combinat ion r e a c t o r  scram and LOCA a t  0.1 MPA i s ,  

however, s i g n i f i c a n t l y  b e t t e r  regard ing  i n t e r p r e t a b i l i t y .  Even though t h e  

s i g n a l  does reach a minimum, the re  i s  o n l y  a  s l i g h t  increase f o l l o w i n g  t h e  

minimum ( t o  a  cons tan t  va lue o f  1.40). Al though the  response o f  the  ACCM 

i s  n o t  as d e f i n i t i v e  f o r  t h i s  case due t o  t he  increased r a d i a t i v e  heat  

t r a n s f e r ,  t h e  sharp i n i t i a l  drop i n  t he  ACCM reading w i l l  s t i l l  i n d i c a t e  

t h e  inadequacy o f  t h e  c o o l i n g  process t o  t he  r e a c t o r  operator ,  prompting 

c o r r e c t i v e  measures. 



The r e s u l t s  presented i n  t h i s  sec t i on  i n d i c a t e  t h a t  t h e  t ime-  

dependent power l e v e l  i n d i c a t i o n  i s  a  s t rong  f u n c t i o n  o f  t he  r e a c t o r  power 

( ~ i  g. 9 ) ,  y e t  i s  i n s e n s i t i v e  t o  t h e  thermal-hydraul i c  environment ( F i g .  10) .  

S i m i l a r l y ,  t he  ACCM response was demonstrated t o  be a  s t rong f u n c t i o n  o f  

t h e  thermal  -hydraul i c  environment (F ig .  14) b u t  i n s e n s i t i v e  t o  t he  r e a c t o r  

power ( F i g .  16) .  F i n a l l y ,  t h e  r e s u l t s  o f  t h e  combined r e a c t o r  scram and 

LOCA s u b s t a n t i a t e  t h e  r e s u l t s  obta ined i n  t he  prev ious study, f u r t h e r  

s t reng then ing  t h e  c l a i m  t h a t  t h e  gamma thermometer can be u t i l i z e d  as a  

dual-purpose measurement dev ice  ( i . e . ,  power l e v e l  moni tor  and ACCM) w i t h o u t  

compromising i t s  e f f ec t i veness  f o r  e i t h e r  func t ion .  



I V .  CONCLUSIONS AND RECOMMENDATIONS 

The i n i t i a l  content ion  t h a t  the  gamma thermometer can be used f o r  

two important  b u t  d ispara te  funct ions (power l e v e l  and adequate core 

coo l i ng )  has been strengthened by the  more d e t a i l e d  c a l c u l a t i o n s  descr ibed 

i n  t h i s  repo r t .  Moreover, t he  r e s u l t s  presented here conf i rm t h a t  t o  a  

l a r g e  ex ten t  each f u n c t i o n  can be i s o l a t e d  from the  other .  The s igna l  

u t i l i z e d  t o  i n d i c a t e  t h e  power l e v e l  i s  p ropo r t i ona l  t o  the  LHGR and i s  

i n s e n s i t i v e  t o  the  thermal-hydraul ic  environment. Conversely, t he  

s igna l  employed as a  mon i to r  o f  adequate core c o o l i n g  i s  responsive t o  

changes i n  t h e  thermal-hydraul ic  environment bu t  i s  n o t  p a r t i c u l a r l y  

s e n s i t i v e  t o  changes i n  reac to r  power. Thus, i t  should be poss ib le  t o  

i n f e r  t h e  s t a t e  o f  t he  reac to r  even i f  both the  power l e v e l  and thermal- 

h y d r a u l i c  environment change simultaneously, as would occur i n  t h e  case o f  

a  ' reac tor  scram i n i t i a t e d  by a  small break LOCA. 

This r e p o r t  a1 so prov ides f u r t h e r  c l a r i f i c a t i o n  o f  t he  i n i t i a l  

content ion  o f  d e f i n i n g  the  mod i f i ed  GT as a  poss ib le  coo lan t  l e v e l  

de tec tor .  I f  a  we l l -de f i ned  coo lan t  l e v e l  e x i s t s  i n  a  r e a c t o r  core, t he  

mod i f ied  GT has been shown t o  be capable o f  de tec t i ng  such a  s i t u a t i o n .  

However, because i t  i s  n o t  c l e a r  whether a  we l l -de f ined l e v e l  e x i s t s ,  

e s p e c i a l l y  under acc ident  cond i t ions ,  and s ince the  GT s igna l  i s  based 

on t h e  e x t e r i o r  heat t r a n s f e r  c o e f f i c i e n t ,  t h e  GT a c t u a l l y  prov ides a 

measure o f  t he  adequacy o f  t he  heat removal process, i r r e s p e c t i v e  o f  

t h e  medium by which t h i s  process i s  accomplished. Therefore, regard ing  

the  GT as o n l y  a  coo lan t  l e v e l  monitor. i s  r e s t r i c t i v e ,  and a  more app rop r ia te  

d e f i n i t i o n  o f  i t s  func t ion  would be measurement o f  t he  adequacy o f  t he  

l o c a l i z e d  c o o l i n g  capac i ty  of t he  thermal -hydrau l ic  system. U t i l i z a t i o n  

o f  t h e  gamma thermometer i n  t h i s  mode ( i .e . ,  ACCM) i n d i c a t e s  t h a t  the  

l e v e l  o f  t h e  coo lan t  i s  of secondary importance so long as the  operators 

know t h a t  t he  volume of coo lan t  present  can s u f f i c i e n t l y  r-emove the  core 

heat  and main ta in  the  i n t e g r i t y  of l h e  f u e l  assemblies. 

Extending t h e  analyses o f  the  gamma thermometer response t o  i nc lude  

t h e  extreme acc ident  scenario o f  a  l a r g e  p ipe  break LOCA (both  coo lan t  and 

pressure l o s s )  i n d i c a t e d  t h a t  t he  thermo~~ie ter  has a  1  i m i t  t o  which t h e  

s igna l  would y i e l d  e a s i l y  i n t e r p r e t a b l e  r e s u l t s .  The ana lys i s  o f  t h e  data 



showed t h e  breakdown i n  t h e  gamma thermometer s igna l  t o  be due t o  a  change 

i n  t h e  pr imary  mode o f  heat  t r a n s f e r  f rom convect ion (bo th  fo rced and 

n a t u r a l  ) t o  r a d i a t i o n .  

A l though t h e  r e s u l t s  ob ta ined i n  t h i s  s tudy suppor t  t h e  r e s u l t s  of 

t h e  p rev ious  study, t h i s  s tudy must s t i l l  be regarded as p r e l i m i n a r y  i n  

na ture- -compr is ing  o n l y  t h e  t h e o r e t i c a l  c h a r a c t e r i z a t i o n  of t h e  device. 

I n  p a r t i c u l a r ,  t h e  adequacy o f  t h e  many approximations and assumptions 

necessary t o  per fo rm t h i s  s tudy must be v a l i d a t e d  by experiment. I n  con- 
j u n c t i o n  w i t h  t h e  recnmmendations preser~ ted  i n  t h e  prev ious repo r t ,  

a d d i t i o n a l  areas r ~ q i l i  r i  ng fu r the r .  5 Ludy h r  more d e t a i l e d  ar la lys i  s  a re  : 

1. Determinat ion o f  t h e  exac t  p o i n t  a t  which the  gamma thernio~lleter 

s i g r ~ n l  1 s no l o ~ g e t .  i r ~ t e r p r e t a b ' l e  (i .e., where t h e  heat  t r a n s f e r  

mode i s  p r i m a r i l y  through thermal r a d i a t i o n ,  o r  where no i se  

obscures l e g i  t ima te  readings.  ) 

2.  Determinat ion .o f  t h e  e f f e c t  o f  two-phase f l o w  on t h e  GT s igna l s ;  

i n  p a r t i c u l a r ,  t h e  e f f e c t  o f  a  t h i n  f i l m  o f  coo lan t  on t h e  e x t e r i o r  

o f  t h e  GT. 

3 .  Determinat ion o f  t he  adequacy o f  t h e  gamllia thermometer t o  model 

t h e  thermal -hydrau l i c  environment experienced by a  f u e l  p i n  

d u r i n g  a  LOCA. 

4. Analyze t h e  ganima theriilometer response t o  a  r e a l  acc ident  scenar io  

such a s  t h e  TMI-2 acc ident ,  d r~d  determine whether t he  device would 

have g iven  t h e  r e a c t o r  npera tors  i n d i c a t i u r l  of inadequate core 

coo l i ng .  

5. Fab r i ca te  an.experimenta1 p ro to t ype  t o  be te,sted i n  a  p ressur ized  

f a c i  1  i t y  f o r  t h e  purpose o f  va l  i d a t i  ng t he  t h e o r e t i c a l  r esu l  t s  

exper imenta l  1.y. 
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