

CONF-191103--101

MASTER

A Comparison of Potential Radiological
Impacts of ^{233}U and ^{239}Pu Fuel Cycles *

H. R. Meyer, C. A. Little, J. P. Witherspoon, J. E. Till
Health and Safety Research Division
Oak Ridge National Laboratory
Oak Ridge, TN 37830

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

*Research performed for the U. S. Department of Energy under contract W-7405-Eng-26 with Union Carbide Corporation.

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
material covering the article.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Nuclear fuel cycles utilizing ^{233}U are currently the subject of considerable interest in the United States. This paper focuses on the identification of significant differences between the off-site radiological hazards posed by $^{232}\text{Th}/^{233}\text{U}$ (Th/U) and $^{238}\text{U}/^{239}\text{Pu}$ (U/Pu) fuel cycles, and represents a portion of our involvement in the Non-proliferation Alternative Systems Assessment Program (NASAP),¹ to be used in support of the International Fuel Cycle Evaluation (INFCE).

Recycle systems such as these incorporate a number of major components, each a potential source of radionuclide releases. Our research focused on those components anticipated to contribute the majority of off-site dose. The Generic Environmental Statement on Mixed Oxide Fuels² provides data indicating that the major contributors to radiological dose are likely to be uranium mining and milling (58.5% of total fuel cycle dose), reprocessing (33.9%), and light-water reactor power generation (7.3%). The remainder of the cycle, including enrichment processes, fuel fabrication, transportation, and waste management, contributes only 0.3% to total estimated fuel cycle dose. These latter components are therefore not further considered here.

Mining and Milling

Mining and milling activities dominate the dose commitments resulting from nuclear fuel cycle processes.² A study by Sears *et al.*³ assesses dose commitments associated with milling uranium ores for U/Pu cycles. A 1978 study by Tennery *et al.*,⁴ using similar models and assumptions, calculates the dose associated with mining and milling ^{232}Th for Th/U fuels. Radioactivity exists the mill sites as dust and as ^{222}Rn (U milling) or

^{220}Rn (Th milling) gas. Both facilities release similar quantities of radioactive materials. However, the decay products of ^{232}Th are relatively short-lived compared to several ^{238}U daughters (half life of ^{234}U = 2.4×10^5 year; ^{226}Ra = 1600 year; ^{210}Pb = 22.3 year).

Table 1 lists dose commitments for uranium and thorium mill facilities. Uranium milling Cases 1 and 2 bracket the single thorium case, in terms of level of containment assumed to reduce radioactive releases. Based on these data, it appears that thorium milling presents a generally lower hazard to off-site individuals. Additional analysis⁴ indicates that post-operational doses associated with uranium tailings piles may also be significantly greater than post-operational thorium mill doses.

Fuel Reprocessing

Two recent studies allow comparison of off-site doses resulting from routine releases from large-scale U/Pu or Th/U reprocessing operations.^{5,6} Dose commitments to individuals located 1 km from the plant stacks were found to be 2.9, 6.9, and 2.8 mrem to total body, bone and lungs, respectively, for U/Pu reprocessing.⁵ Similarly, for Th/U fuels, the doses were estimated as 3.1, 4.1, and 3.3 mrem, respectively.⁶ Major contributors to total-body doses were ^3H , ^{137}Cs , ^{14}C , and ^{106}Ru for both fuel types. Plutonium-238 contributes 1% to U/Pu total-body dose, ^{232}U contributes 9% to the Th/U dose. Doses were found to be moderate, and similar in magnitude for the two fuel cycles.

Reactor Operation

Analysis of the rates of release of radioactive effluents from reactors indicates few differences related directly to choice of U/Pu or Th/U fuels.¹ Releases of liquids and of airborne particulates should be near-zero for future light-water, helium-cooled or sodium-cooled reactors. Variations in production of gaseous radionuclides are anticipated among reactor types, but no apparent fuel-cycle-related differences exist with respect to radiological dose, with the possible exception of greater levels of tritium production in fast U/Pu reactors.⁷

Conclusions

We conclude that off-site hazards due to routine releases of radionuclides from both Th/U and U/Pu recycle should be acceptable compared to EPA 40 CFR 190 regulations. Dose commitments associated with ore milling facilities represent the major differences apparent in a comparison of the cycles. Moderate variations in production and release of radioactivity from other fuel cycle components are insufficient to justify decisions for or against either generic fuel cycle. We find little evidence of off-site radiological hazard recommending a choice of either cycle, and suggest that other factors, such as proliferation resistance or fuel cycle economics, play key roles in such decisions.

References

1. J P Witherspoon, H R Meyer, C A Little, R B Braid, "Selected Key Environmental Issues of the Nonproliferation Alternative Systems Assessment Program," ORNL/TM 6989 (in press)
2. U.S. Nuclear Regulatory Commission, "Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light-Water Reactors," NUREG-002 (1976)
3. M B Sears, R E Blanco, R C Dahlman, G S Hill, A D Ryon, J P Witherspoon, "Correlation of Radioactive Waste Treatment Costs and the Environmental Impact of Waste Effluents in the Nuclear Fuel Cycle for use in Establishing "As-Low-As-Practicable" Guides - Milling of Uranium Ores," ORNL/TM-4903 (1975)
4. V J Tennery, E S Bomar, W D Bond, L E Morse, H R Meyer, J E Till, M G Yalcintas, "Environmental Assessment of Alternate FBR Fuels: Radiological Assessment of Airborne Releases from Thorium Mining and Milling," ORNL/TM-6474 (1978)
5. V J Tennery, L E Morse, E S Bomar, R D Seagren, W D Bond, L B Shappert, G S Hill, J E Till, "Environmental Assessment of LMFBR Advanced Fuels: A Radiological Analysis of Fuel Reprocessing, Refabrication and Transportation," ORNL-5230 (1976)
6. V J Tennery, E S Bomar, W D Bond, H R Meyer, L E Morse, J E Till, "Environmental Assessment of Reprocessing and Refabrication of Thorium/Uranium Carbide Fuel," ORNL/TM-6493 (1978)
7. H R Meyer, J E Till, E L Etnier, E S Bomar, V J Tennery, "Key Environmental and Dosimetric Problems Associated with Tritium in Fast Breeder Reactors," ORNL/TM 6990 (in press)

Table 1: Estimated 50 year Dose Commitments (from one year of facility operation) to Maximally Exposed Individuals - U and Th Mills (mrem)

	<u>Total Body</u>	<u>Bone</u>	<u>Lung</u>
<u>Uranium milling^a:</u>			
Case 1 ^b	61	640	74
Case 2 ^c	5.3	59	14
Case 6(c) ^d	1.7×10^{-4}	2×10^{-3}	5.1×10^{-1}
<u>Thorium milling^e:</u>			
	0.9	2.8	26

^aFrom Sears *et al.*,³ Table 8.2, VI.

^bCase 1 is representative of mills which will process a major fraction of uranium ore during the next twenty years.

^cCase 2 represents recently constructed uranium mills with dust control procedures in limited current use. Tailings pile dust releases have been eliminated.

^dCase 6(c) represents future uranium mills with a high degree of dust and radon control, estimated to increase containment costs by a factor of 40 over Case 2.

^eFrom Tennery *et al.*,⁴ Table 6.1, modified to reflect milling-related dose only. Normalized to allow comparison to Cases 1 and 2, uranium milling.