


215  
4-7-82  
R

②

sh. 413



MASTER

DOE/LC/RI-82-2  
(DE82011107)

**SIMULATED IN SITU RETORTING OF OIL SHALE  
IN A CONTROLLED-STATE RETORT**

**III. Dynamic Oil Film Thickness on Partially  
Retorted and Unretorted Shale**

By  
John J. Duvall

February 1982

Laramie Energy Technology Center  
Laramie, Wyoming

TECHNICAL INFORMATION CENTER  
UNITED STATES DEPARTMENT OF ENERGY

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A03  
Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: *Energy Research Abstracts, (ERA)*; *Government Reports Announcements and Index (GRA and I)*; *Scientific and Technical Abstract Reports (STAR)*; and publication, NTIS-PR-360 available from (NTIS) at the above address.

**SIMULATED IN SITU RETORTING OF OIL SHALE  
IN A CONTROLLED-STATE RETORT**

**III. DYNAMIC OIL FILM THICKNESS ON  
PARTIALLY RETORTED AND UNRETORTED SHALE**

by

John J. Duvall

Department of Energy  
Laramie Energy Technology Center

February, 1982

## TABLE OF CONTENTS

|                               | <u>Page</u> |
|-------------------------------|-------------|
| LIST OF FIGURES               | ii          |
| LIST OF TABLES                | iii         |
| ABSTRACT                      | 1           |
| INTRODUCTION                  | 1           |
| EXPERIMENTAL PROCEDURE        | 2           |
| RESULTS AND DISCUSSION        | 3           |
| Heated Region of the Retort   | 3           |
| Unheated Retort of the Retort | 4           |
| SUMMARY AND CONCLUSIONS       | 6           |
| BIBLIOGRAPHY                  | 27          |
| APPENDIX                      | 28          |
| ACKNOWLEDGEMENTS              | 45          |

## LIST OF FIGURES

| <u>Figure</u> |                                                                                               | <u>Page</u> |
|---------------|-----------------------------------------------------------------------------------------------|-------------|
| 1             | Schematic diagram of an in situ oil shale retorting process                                   | 7           |
| 2             | Controlled-state retort                                                                       | 8           |
| 3             | Effect of temperature on oil film thickness, group I                                          | 9           |
| 4             | Effect of temperature on oil film thickness, group II                                         | 10          |
| 5             | Effect of gas flow rate on oil film thickness                                                 | 11          |
| 6             | Effect of retorting zone breadth on oil film thickness                                        | 12          |
| 7             | Effect of heating rate and retorting advance rate on oil film thickness, $N_2$ atmosphere     | 13          |
| 8             | Effect of heating rate and retorting advance rate on oil film thickness, $N_2/O_2$ atmosphere | 14          |
| 9             | Effect of retorting atmosphere on oil film thickness                                          | 15          |

## List of Figures (cont.)

| <u>Figures</u>                                             | <u>Page</u> |
|------------------------------------------------------------|-------------|
| 10 Effect of retorting atmosphere on oil film thickness    | 16          |
| 11 Effect of oil shale particle size on oil film thickness | 17          |
| 12 Effect of oil shale particle size on oil film thickness | 18          |
| 13 Effect of oil shale particle size on oil film thickness | 19          |
| 14 Effect of viscosity (38°C) on oil film thickness        | 20          |
| 15 Effect of viscosity (54°C) on oil film thickness        | 21          |

## LIST OF TABLES

| <u>Table</u>                                                                                                      | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------------------|-------------|
| 1 Raw oil shale data                                                                                              | 22          |
| 2 Retorting conditions                                                                                            | 23          |
| 3 Statistical analysis of oil film thickness as related to temperature                                            | 24          |
| 4 Organic carbon content for shales                                                                               | 25          |
| 5 Viscosity data                                                                                                  | 26          |
| A1 Dimensions of raw shale particles picked at random from a batch sieved to - 1.3, + 0.3 cm (- 1/2 in, + 1/8 in) | 30          |
| A2 Raw oil shale size and size distribution data                                                                  | 31          |
| A3 Data for CSR 14                                                                                                | 32          |
| A4 Data for CSR 17                                                                                                | 33          |
| A5 Data for CSR 19                                                                                                | 34          |
| A6 Data for CSR 23                                                                                                | 35          |
| A7 Data for CSR 25                                                                                                | 36          |
| A8 Data for CSR 26                                                                                                | 37          |
| A9 Data for CSR 27                                                                                                | 38          |

**List of Tables (cont.)**

| <u>Tables</u>       | <u>Page</u> |
|---------------------|-------------|
| A10 Data for CSR 28 | 39          |
| A11 Data for CSR 31 | 40          |
| A12 Data for CSR 32 | 41          |
| A13 Data for CSR 33 | 42          |
| A14 Data for CSR 37 | 43          |
| A15 Data for CSR 58 | 44          |
| A16 Data for CSR 60 | 45          |

SIMULATED IN SITU RETORTING OF OIL SHALE  
IN A CONTROLLED-STATE RETORT

III. DYNAMIC OIL FILM THICKNESS ON  
PARTIALLY RETORTED AND UNRETORTED SHALE

by

John J. Duvall<sup>1</sup>

---

---

ABSTRACT

The amount of oil washed from the partially retorted and unretorted shales from 14 interrupted runs of the controlled-state retort has been used to estimate dynamic oil film thickness on those shales. The data obtained indicated that factors that affect oil viscosity determine oil film thickness. For example, in the heated region of the retort, temperature was the controlling factor for oil film thickness. In the unheated region controlling factors included proximity to the heated region, gas composition and flow rate, retorting advance rate, and breadth of retorting zone. Factors that affected oil composition and thereby increased viscosity, such as increased gas velocity, oxygen in the retorting gas, slower retorting advance rate, and thinner retorting zone, increased oil film thickness. In the unheated region of the retort the oil film was thickest nearest the heated region gradually tapering to a more or less constant value approximately 1 meter from the heated region. Oil shale particle size did not affect oil film thickness.

INTRODUCTION

Retorting of oil shale, a vast natural resource, has received much attention in recent years. In several schemes for retorting oil shale, product oil flows down over partially retorted and unretorted shale. Mathematical models have been developed describing retorting (1,2,3) and should lead to a better understanding of the processes involved and how to maximize energy production. A factor of some importance to these mathematical models is the thickness of the product oil film that exists on the partially retorted and unretorted oil shale below the retorting zone during retorting (see Figure 1). This oil film consists of two parts, a static part that would stay on the shale if it was allowed to drain and a dynamic part that is flowing down over the shale. This paper uses data from interrupted runs (4) of the controlled-state retort

---

<sup>1</sup> Research Chemist

(CSR), to estimate the dynamic oil film thickness. Factors that affect the viscosity of the product oil such as gas flow rate, temperature and retorting gas composition have been shown to affect oil film thickness. A thicker oil film can have the consequence of decreasing oil yield and affecting the composition of the product oil through coking.

## EXPERIMENTAL PROCEDURE

The CSR and its method of operation have been described in detail previously (4,5). Briefly, it is a vertically mounted, 4m long, 7.62 cm ID steel tube that is surrounded by a contiguous series of electric heaters that are nominally 15.2 cm long (see Figure 2). Temperatures are measured in a 2.54 cm steel tube that is concentric to the outside tube. Experiments are conducted by filling the annulus between the tubes with crushed, sieved oil shale and then successively turning on the heaters starting with the top heater. Input gas flows down through the retort during the experiment.

The oil shale used in the experiments reported here was obtained from the Department of Energy facility near Rifle, Colorado. Four separate batches of shale were crushed and screened into the desired size ranges to yield the material used. A 18 kg sample of each shale batch was screened into 0.32 cm cuts to determine the size distribution within a batch. Data pertaining to the batches of raw shale are shown in Table 1. Several sets of retorting conditions were used and they are shown in Table 2.

For an interrupted experiment, the retorting zone was allowed to pass part way down the shale bed and then the retort was shut down, laid on its side and water was passed through the center tube and over the outside tube to quickly cool the retort and stop the retorting and the movement of the product oil down the retort. The retort was then cut into sections that corresponded to the 15.2 cm heaters and the oil coated shale samples obtained were maintained separately. The oils coating the surface of the shale and the retort tubes of each section were washed from the shale with cyclohexane and the dried, washed shale was weighed. Solvent was evaporated from aliquots of each of the oil solutions and the residual oil was weighed to determine the total amount of oil in each section.

The oils collected at the bottom of the CSR were analyzed through Hempel distillation and the specific gravities of the oils and each of the distillation fractions were determined. These data along with the weights of oil washed from the shale and retort tubes were used to estimate the volume of oil washed from each section of retort. The oil volume was used with the combined surface area of the retort tubes and shale to calculate the oil film thickness in each oil wet section of the retort. The method used to calculate shale surface area and the data used for the calculation of surface areas, oil film thicknesses, etc. for the 14 experiments are shown in the appendix of this report.

## RESULTS AND DISCUSSION

The data on oil film thickness on partially retorted and unretorted, unheated oil shale are shown in Tables A3 through A17 in the appendix and in the next several figures. There are two groupings of data, one from the heated region of the retort and the unheated region of the retort. Within each of the two general groupings are smaller groupings depending on retorting parameters.

### Heated Region of the Retort

A statistical analysis of the data of Tables A3 through A17 for those zones of the CSR located in heated region of the CSR is shown in Table 3. An analysis of the slopes and y intercepts shows two general groupings plus values from two experiments that do not fit into either grouping. The first group includes CSR 14, 17, 28, 31, 32, 58, and 60, the experiments run in  $N_2$  atmosphere. The second grouping includes CSR 23, 25, 26, 27, and 37, the three experiments run in a  $N_2/O_2$  atmosphere plus an experiment run at a high flow rate relative to other retorting parameters (CSR 23) and an experiment using a very slow heating rate. The two experiments that do not fit into either grouping are CSR 19, an experiment done with a wide retorting region and CSR 33, an experiment done with smaller shale pieces than usual.

Figure 3 shows the data for the first grouping, most of the  $N_2$  atmosphere experiments, and Figure 4 shows the data for the second grouping of experiments. Least squares analysis gave the heavy line on each figure while statistical analysis (6) gave the area between the lighter lines, i.e., variance in y. The statistical analysis shows the variance in y, oil film thickness, to be  $\pm 16\%$  in Figure 3 and  $\pm 13\%$  in Figure 4. The data show a temperature dependence for oil film thickness in the heated region of the retort. The difference between the two major groupings is most likely a consequence of retorting conditions that yielded oils with different viscosities. Indeed, previous work (7) has shown a smaller amount of low boiling materials in the oils washed from the shale of the  $N_2/O_2$  experiments than in the  $N_2$  experiments; this would cause a higher viscosity which would give thicker oil films. Also, CSR 23 was conducted with a relatively high gas flow rate which would cause lower boiling materials to be swept away, again giving higher viscosity and thicker oil films. CSR 37 was conducted at a very slow heating rate, retorting advance rate, etc. (8); that meant that the oil films on the shale were exposed to gas flow for much longer periods of time, again causing lower boiling materials to be swept away resulting in higher viscosities and thicker oil films.

### Unheated Region of the Retort

The data for the unheated regions of the retort show a broader dependence of oil film thickness on retorting conditions than do the data for the heated regions of the retort. Examples are given in the following paragraphs and figures. The figures show oil film thickness for those sections of the retort whose final or maximum temperature was 100°C or less plotted versus zone of the retort (left to right on the figures reads top to bottom of the retort) with zone 3 on each figure corresponding to the highest unheated zone of the retort. The data for the lowest zone of the retort was left off the figures because of end effects.

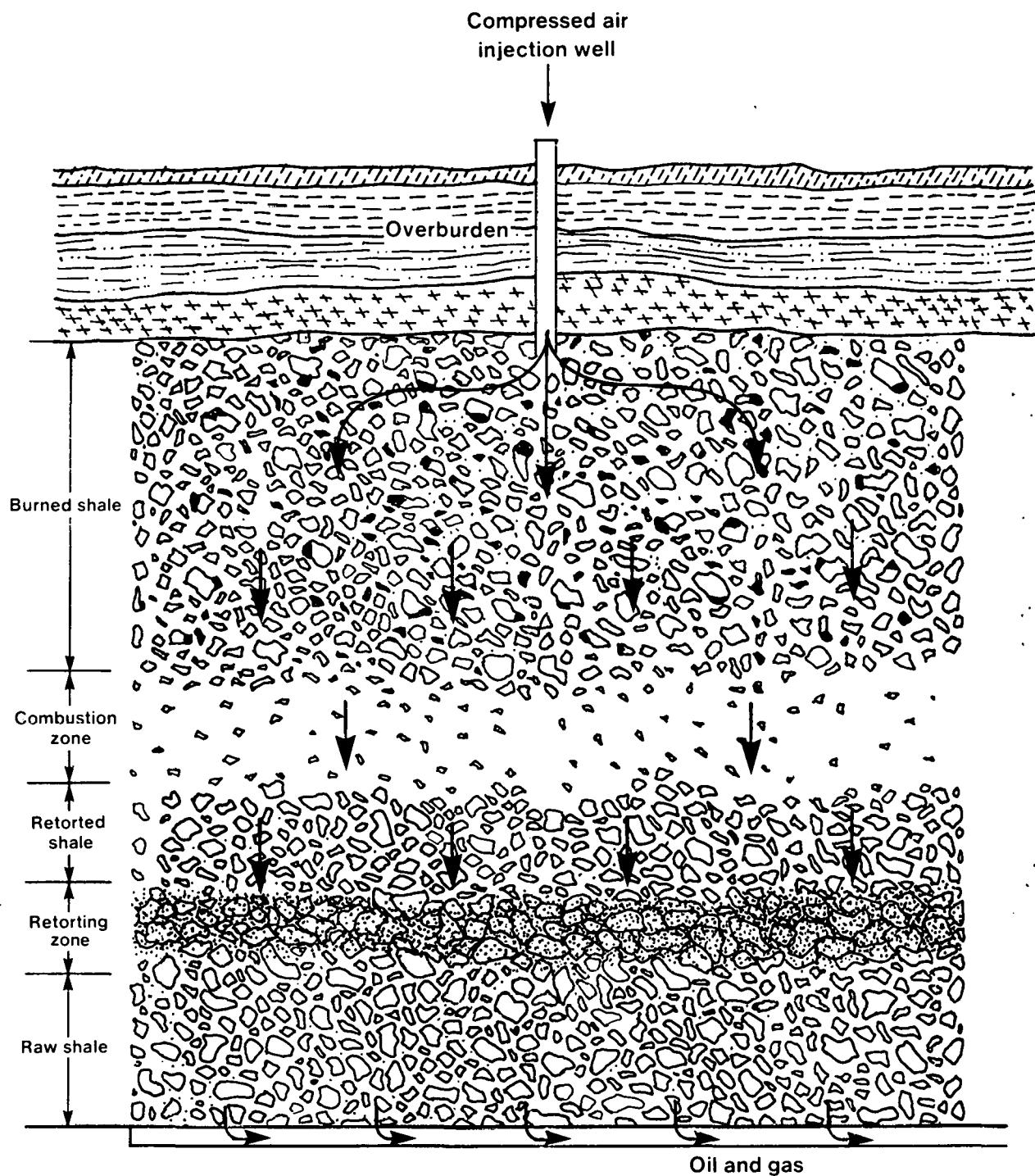
Data are shown in figure 5 for two experiments for which all retorting parameters were the same except nitrogen flow rate (7.3 scmh/m<sup>2</sup> for CSR 17 and 68.9 scmh/m<sup>2</sup> for CSR 23). The oil film for CSR 23 was considerably thicker than that for CSR 17, probably because the higher nitrogen flow rate swept away the lower boiling materials leaving a more viscous oil on the surface of the shale as suggested previously (4). Also, the oil film thickness was greatest in the region of the retort immediately below the heated region gradually thinning to a more or less constant value further down the retort (best shown in the data for CSR 17 which had the longest unheated region of any of the experiments).

The data in Figure 6 are from experiments conducted with different retorting advance rates (30.5 cm/hr for CSR 19 and 7.6 cm/hr for CSR 58 and CSR 60. The latter two were duplicate runs). These data show that broadening of the retorting region from approximately 15 cm to 30 cm (4) decreased the oil film thickness by a factor of around two (as can be estimated from Figure 6). Again it can be seen that the oil film thickness was greatest in the region of the retort immediately below the heated region.

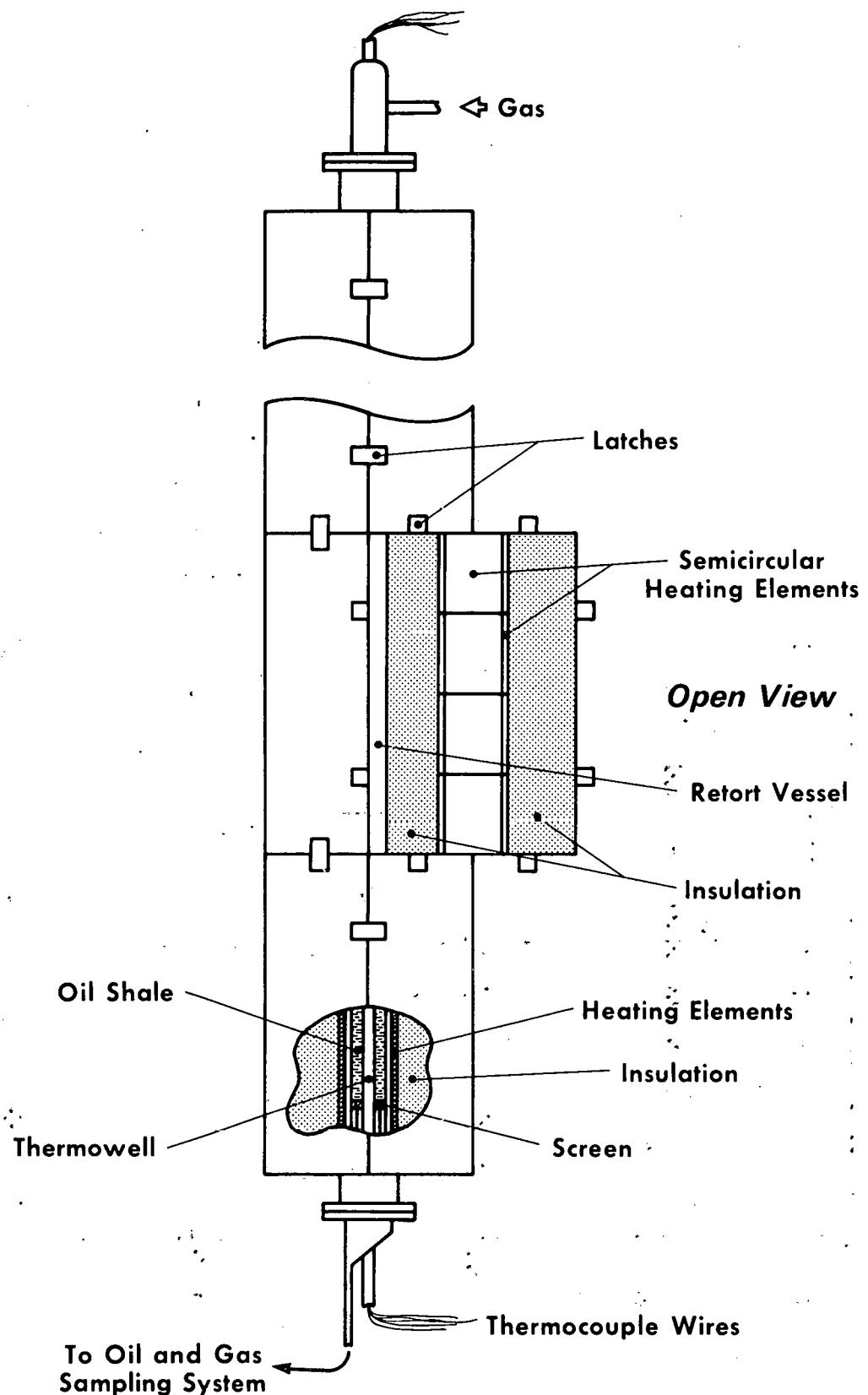
Figure 7 shows data for experiments in which the retorting advance rates (1.5 cm/hr. for CSR 17 and 7.6 cm/hr for CSR 58 and 60) and heating rates (0.22°C/min. for CSR 17 and 1.1°C/min. for CSR 58 and 60) were different. The oil film near the bottom of the retort was somewhat thinner in CSR 17 than the average of CSR 58 and 60. However, two retorting parameters were varied between the experiments and either could have been the major factor. Similar data are presented in Figure 8 for experiments conducted using the same retorting conditions as in Figure 5 (CSR 25 the same as CSR 17 and CSR 26 the same as CSR 58 and 60) except a N<sub>2</sub>/O<sub>2</sub> atmosphere was used instead of N<sub>2</sub>. Again, the data taken at the slower retorting advance rate show a thicker oil film but whether heating rate or retorting advance rate had the major effect is inconclusive except for agreement with the conclusions drawn from Figure 6.

Figures 9 and 10 compare oil film thickness data for sets of experiments conducted using the same retorting conditions, within sets, except the retorting atmosphere was either N<sub>2</sub> or N<sub>2</sub>/O<sub>2</sub>. The data indicate that, in general, experiments conducted in a N<sub>2</sub>/O<sub>2</sub> atmosphere had a thicker oil film than experiments conducted in a N<sub>2</sub> atmosphere.

Data on the effect of shale particle size on oil film thickness are shown in Figures 11-13. The data were taken from three pairs of experiments, where the shale sizes were 1) -0.95, +0.12 cm; 2) -1.3, +0.32 cm; or 3) -1.9, +0.95 cm. Each of the six experiments was conducted using the same retorting conditions (see Table 2). The lines in Figures 12 and 13 are averages determined through polynomial regression analysis; however, the data for the two experiments depicted in Figure 11 were too different to be analyzed in that manner.


In fact, the data for five of these experiments showed that within experimental error, shale particle size had no effect on oil film thickness for the range of particles studied in this work. Further analysis of the data for CSR33 showed that blockage had occurred in the retort near the retorting zone. For example, the periodic gas analyses performed during the experiment showed very low nitrogen values, at or near 0 percent, during the last third of the experiment. This would indicate blockage in the retort causing the nitrogen to leak out of the retort probably through the top gasket. This blockage apparently stopped oil flow below the retorting zone allowing most of the oil to drain from the unretorted shales which gave low values for oil film thickness. Further evidence for the blockage was the fact that overall oil yield (combined receiver oil and oils washed from shale) from CSR 33 was 17 percent lower than that from CSR 32. The oil produced that was prevented from flowing down the retort coked in the retorting zone. Evidence for this is shown in Table 4 where organic carbon analyses of the retorted shales for CSR 32 and CSR 33 are compared. Organic carbon remaining on the retorted shale of CSR 33 was higher than that for CSR 32 indicating that significant coking took place. The coking should have produced hydrocarbon gases in more abundance than usual but the same blockage that caused the coking prevented effective analysis of the gases. The blockage apparent in CSR 33 was an example of how a thicker oil film in the retorting zone could reduce oil yield.

Because oil film thickness appeared to be related to viscosity, an attempt was made to quantify that relationship. Table 5 lists the viscosities at two temperatures for the receiver oils of most of the experiments along with the average oil film thickness in the unheated region of the retort. It should be pointed out that the boiling point composition of the oils washed from the shale usually differed somewhat from that of the receiver oils (4) and, therefore, the viscosities of the oils washed from the shales probably varied somewhat from those of the receiver oils. However, because it was impossible to get an accurate determination of viscosity from the oils washed from the shale, that of the receiver oils was assumed to be a good approximation. The data from Table 5 were plotted in Figures 14 and 15. The lines drawn are the result of least squares analysis (heavy line) and the determination of the variance along the y axis. The data show some scatter but do give approximations for the relationship of viscosity of oil to oil film thickness for two different temperatures.


## SUMMARY AND CONCLUSIONS

Fourteen interrupted experiments have been conducted using the CSR and the oil film thicknesses have been calculated for the partially retorted and unretorted shales in the retort. These data show that, in the heated regions of the retort, temperature and retorting conditions were the factors that controlled oil film thickness. In the unheated region of the retort several factors became important including the following:

- 1) distance from the heated region - the oil film was thickest just below the heated region gradually thinning to a more or less uniform thickness in 7-8 15 cm sections;
- 2) retorting gas velocity - a faster gas flow rate resulted in a thicker oil film;
- 3) slower retorting advance rate and smaller retorting zone had the thicker oil film;
- 4) retorting atmosphere - a comparison of oil film thickness between a  $N_2$  atmosphere and a  $N_2/O_2$  atmosphere showed that the latter had the thicker oil film; and
- 5) coking - thicker oil films in the retorting zone can cause more oil coking which lowers the yield of oil.



**Figure 1. Schematic diagram of an in situ oil shale retorting process**



**Figure 2. Controlled-state retort**

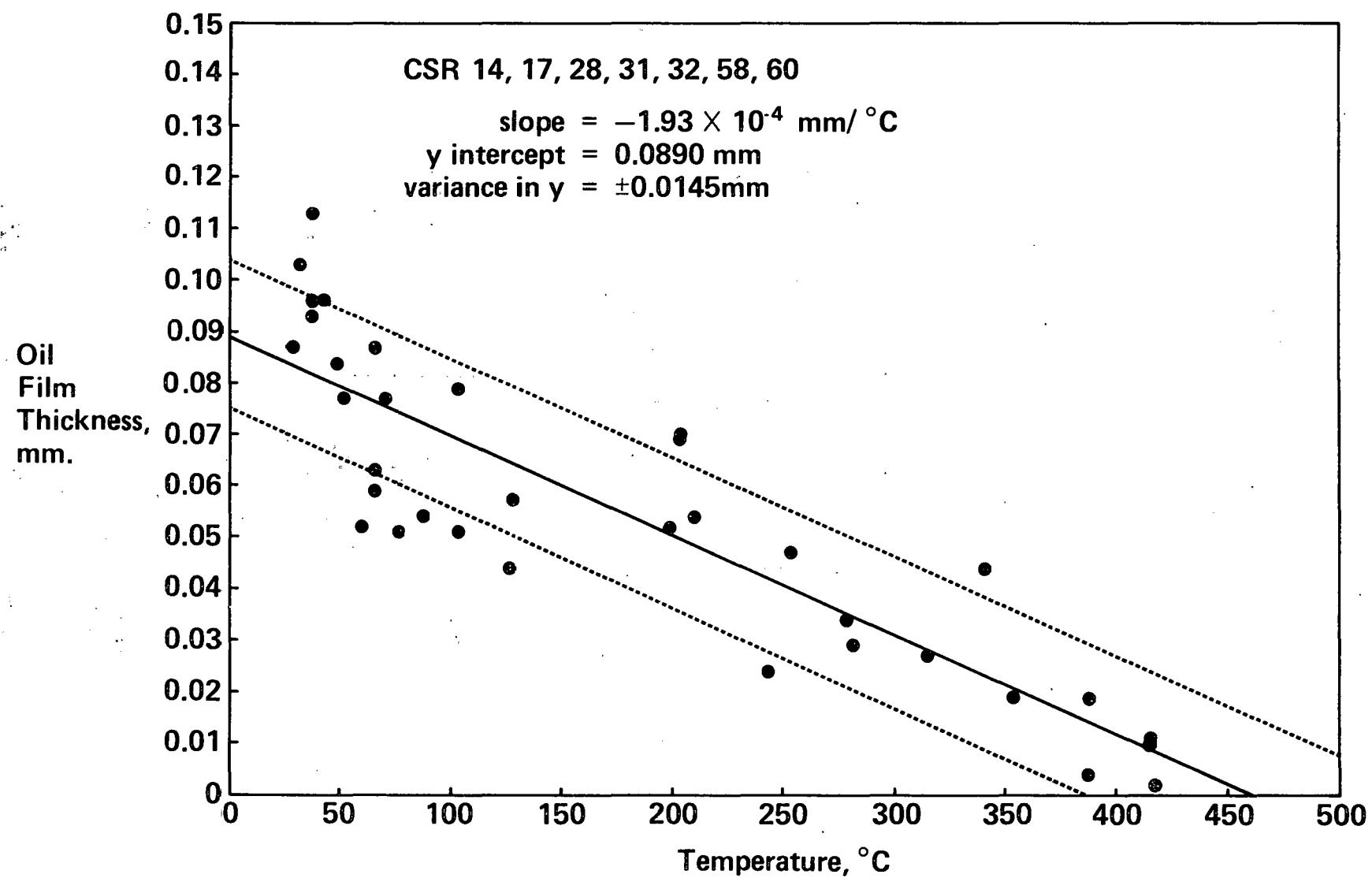



Figure 3. Effect of Temperature on Oil Film Thickness, Group I.

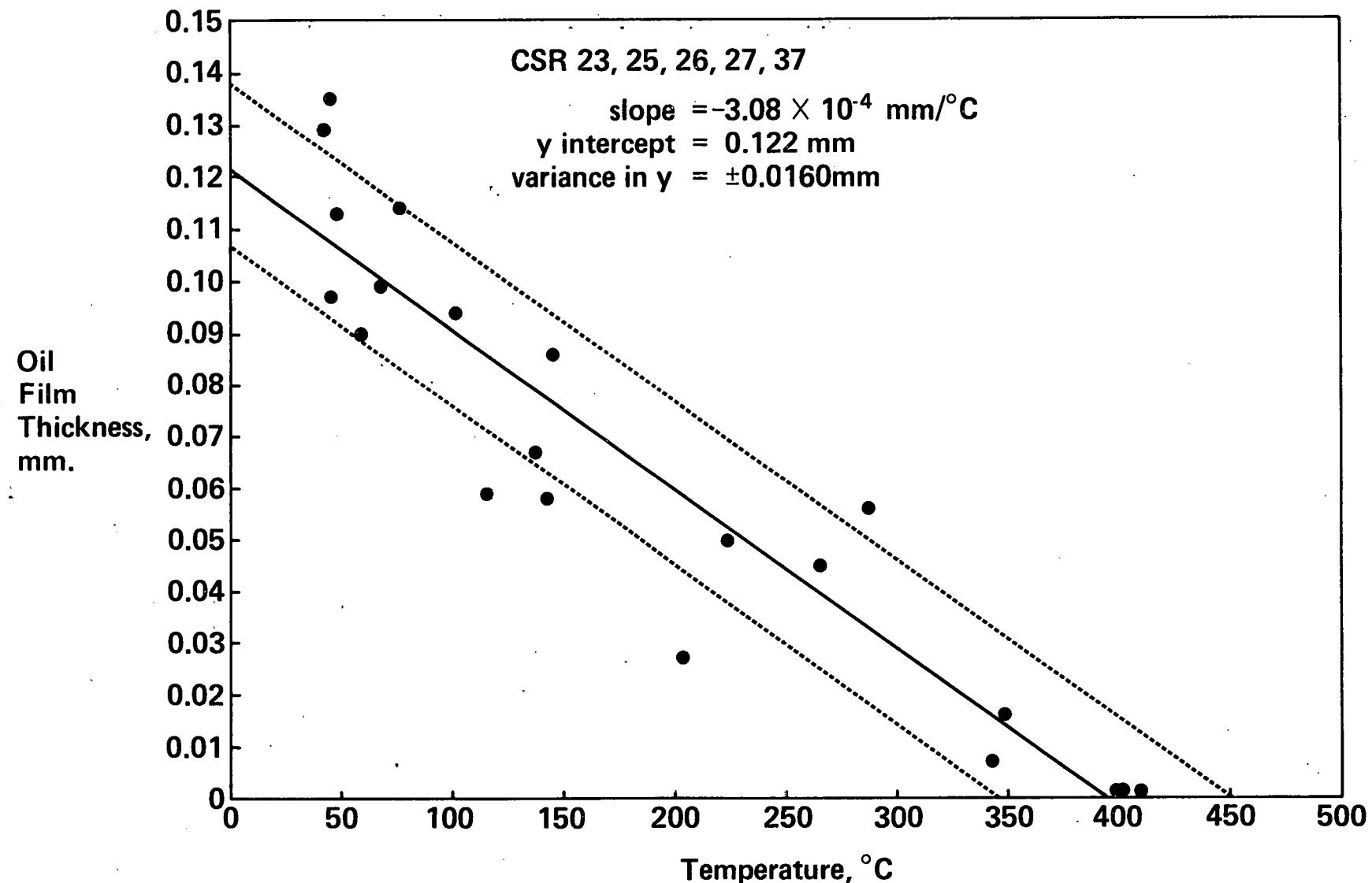



Figure 4. Effect of Temperature on Oil Film Thickness, Group II.

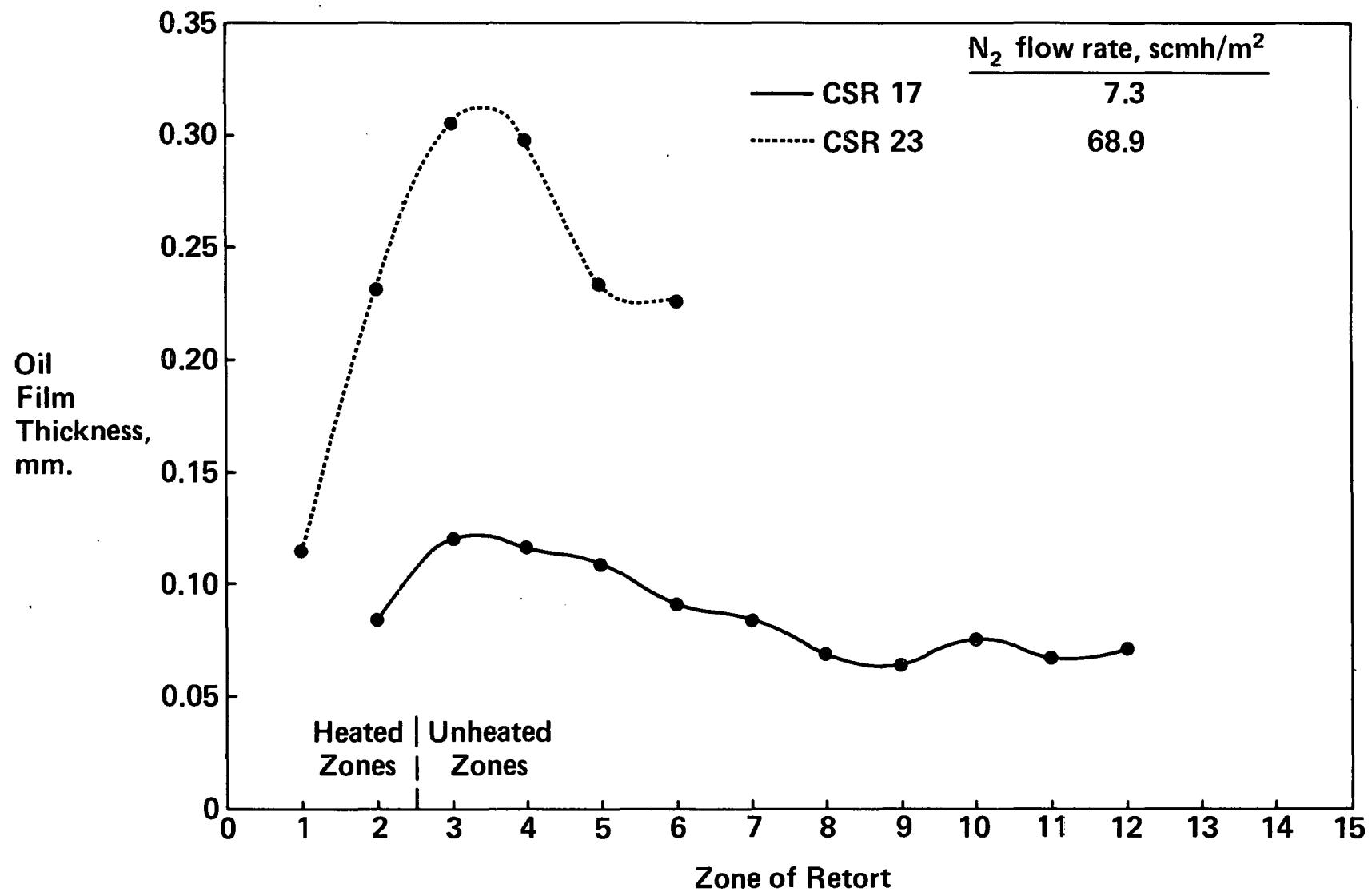



Figure 5. Effect of Gas Flow Rate on Oil Film Thickness.

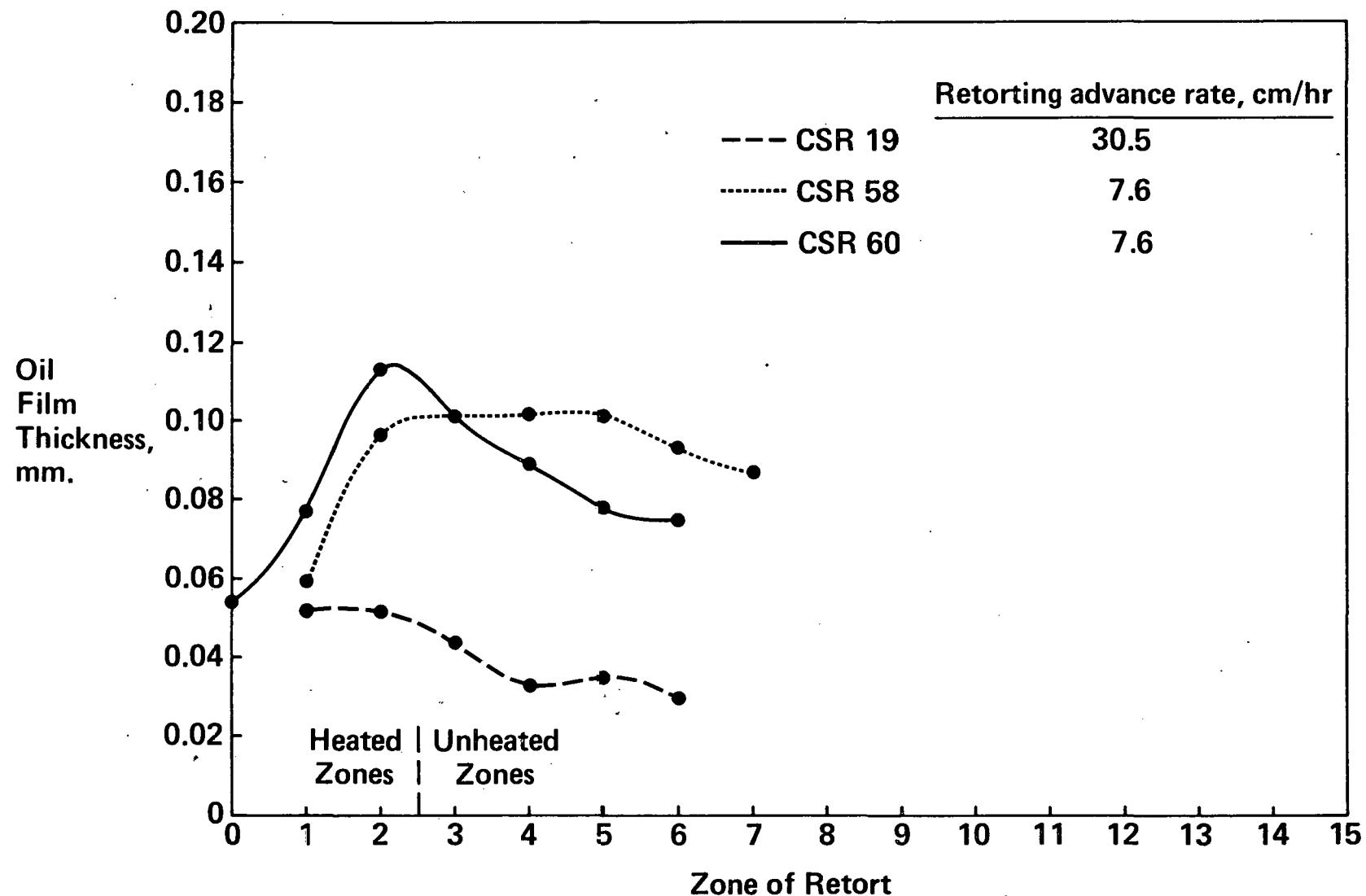



Figure 6. Effect of Retorting Zone Breadth on Oil Film Thickness.

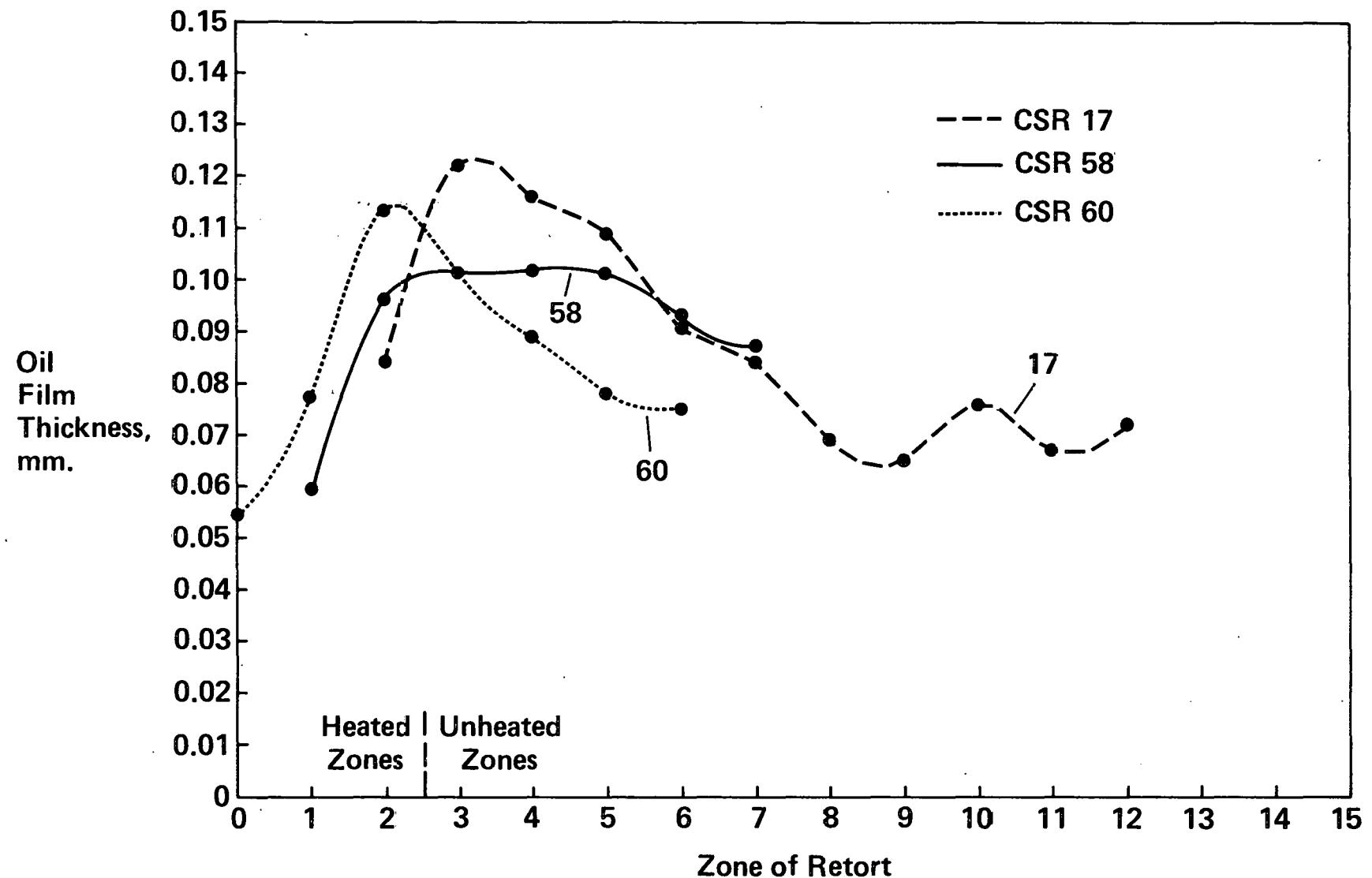



Figure 7. Effect of Heating Rate and Retorting Advance Rate on Oil Film Thickness,  $N_2$  Atmosphere.

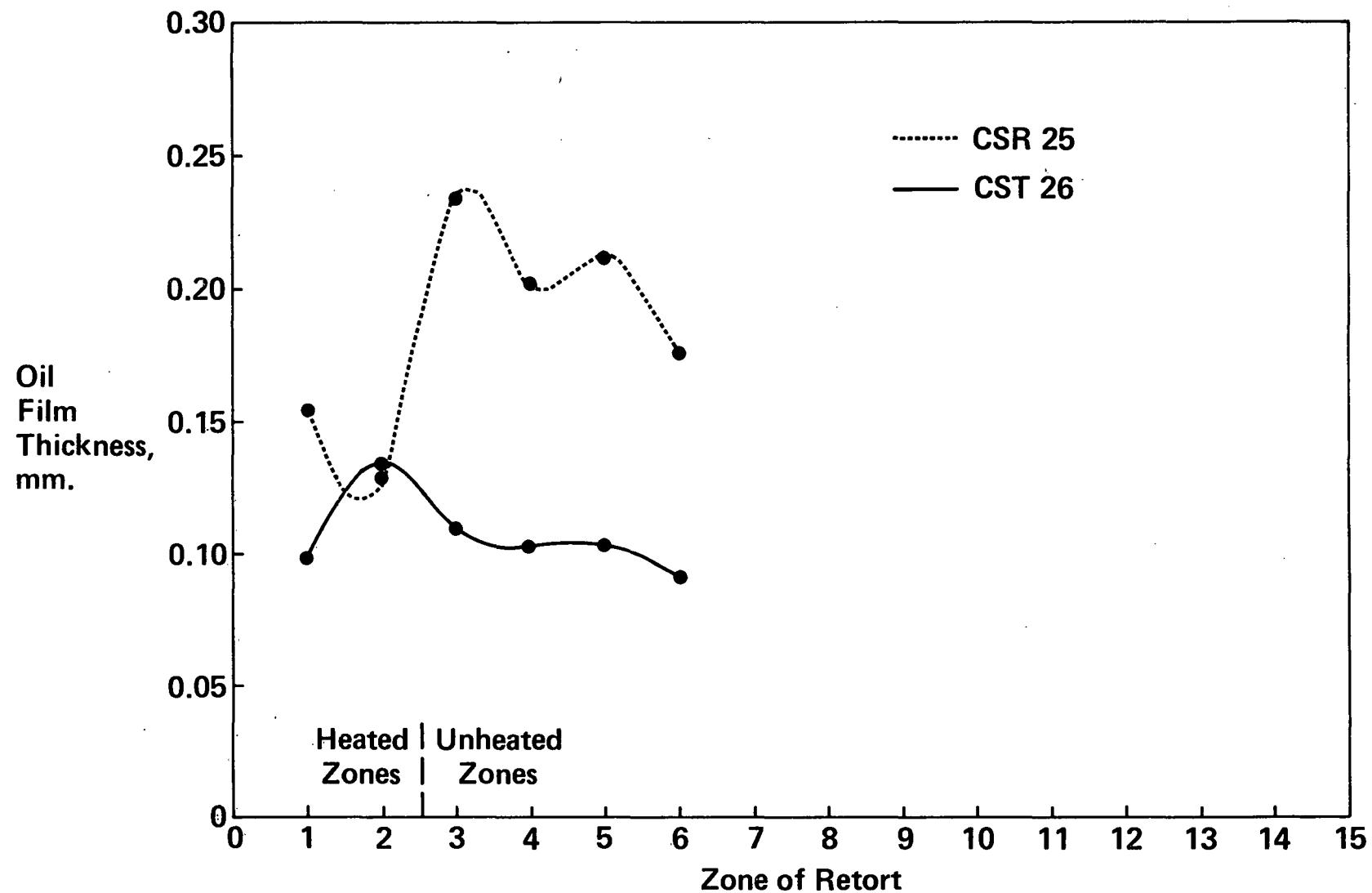



Figure 8. Effect of Heating Rate and Retorting Advance Rate on Oil Film Thickness,  $N_2/O_2$  Atmosphere.

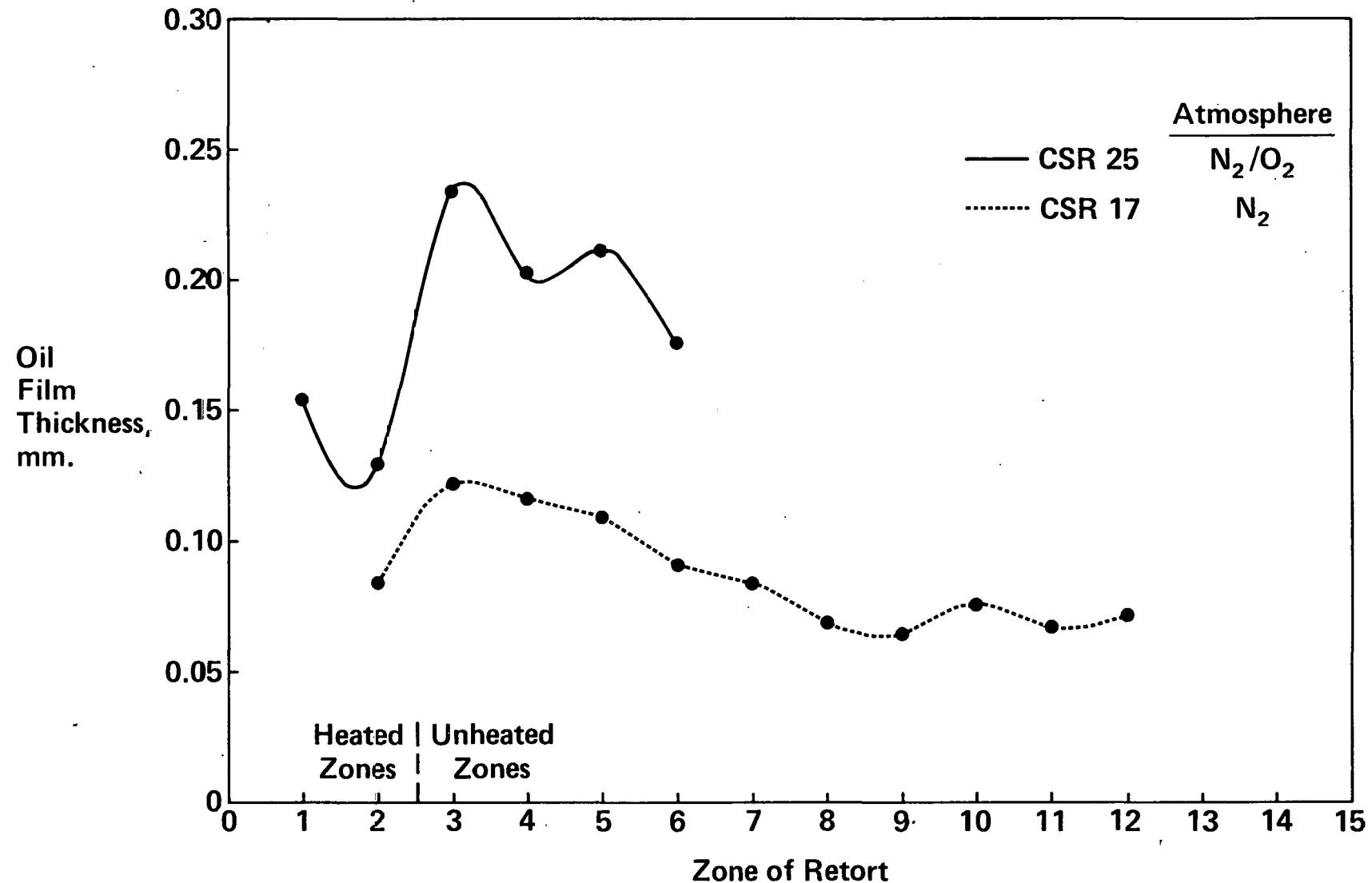



Figure 9. Effect of Retorting Atmosphere on Oil Film Thickness.

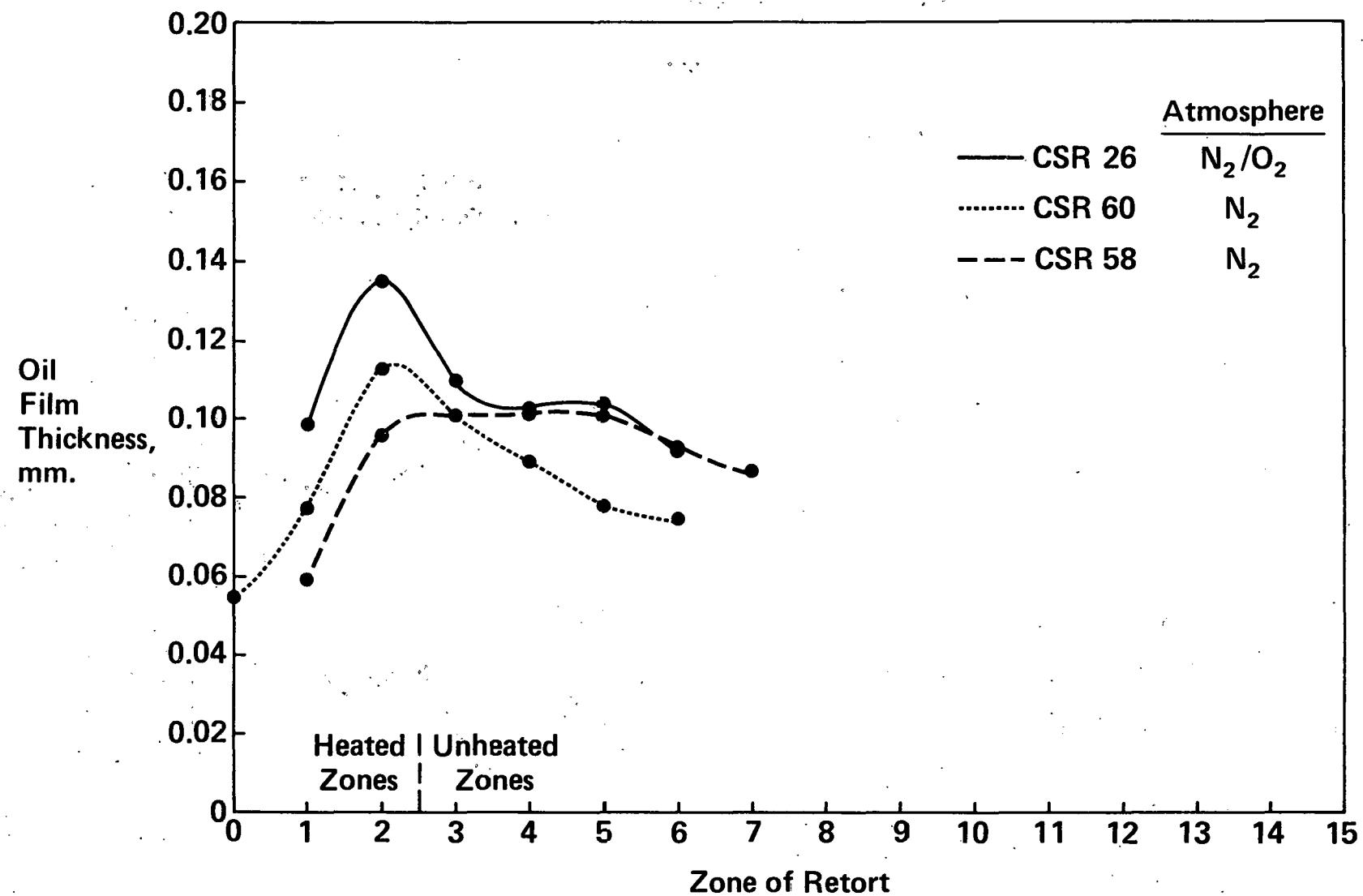



Figure 10. Effect of Retorting Atmosphere on Oil Film Thickness.

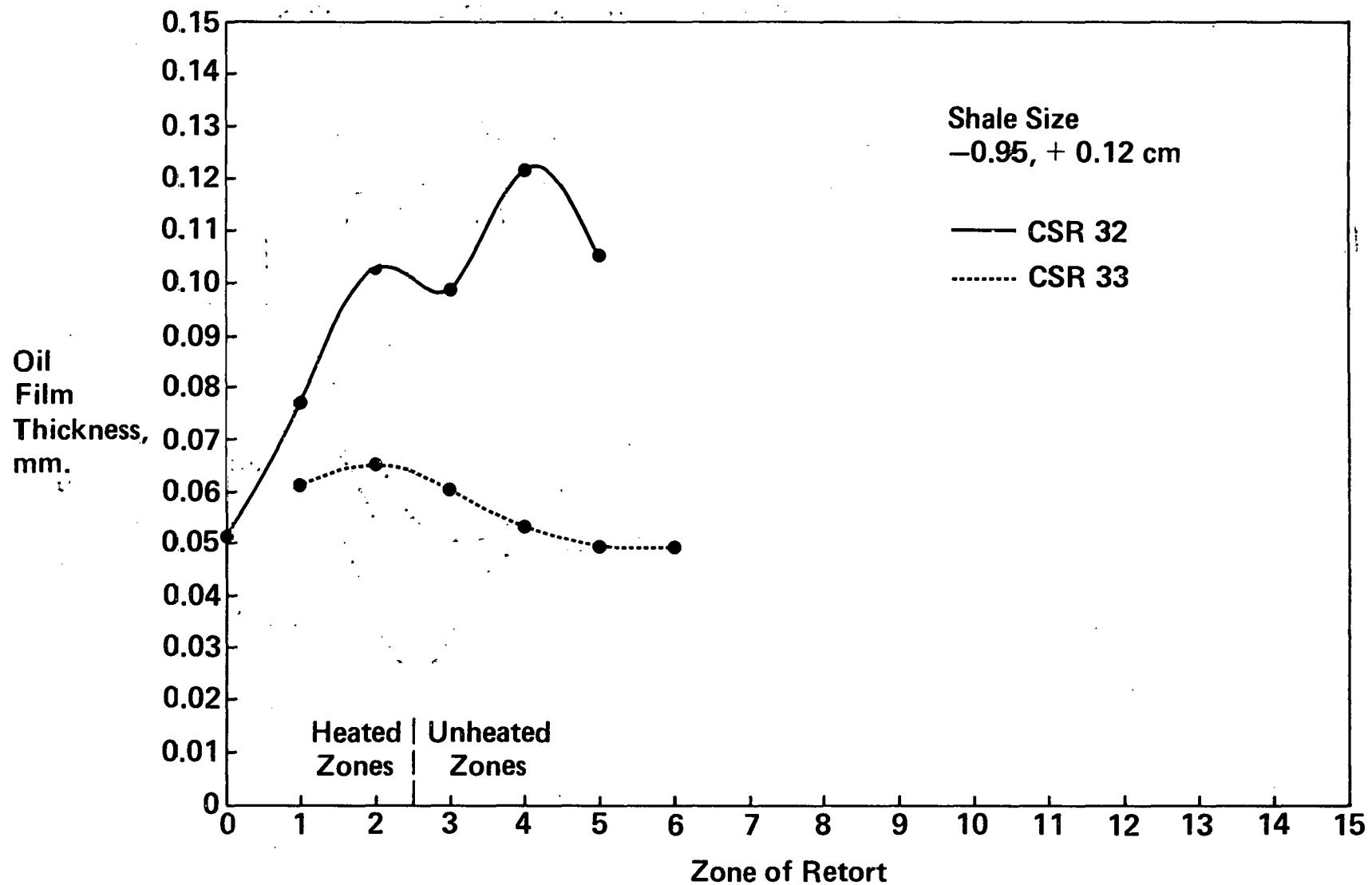



Figure 11. Effect of Oil Shale Particle Size on Oil Film Thickness.

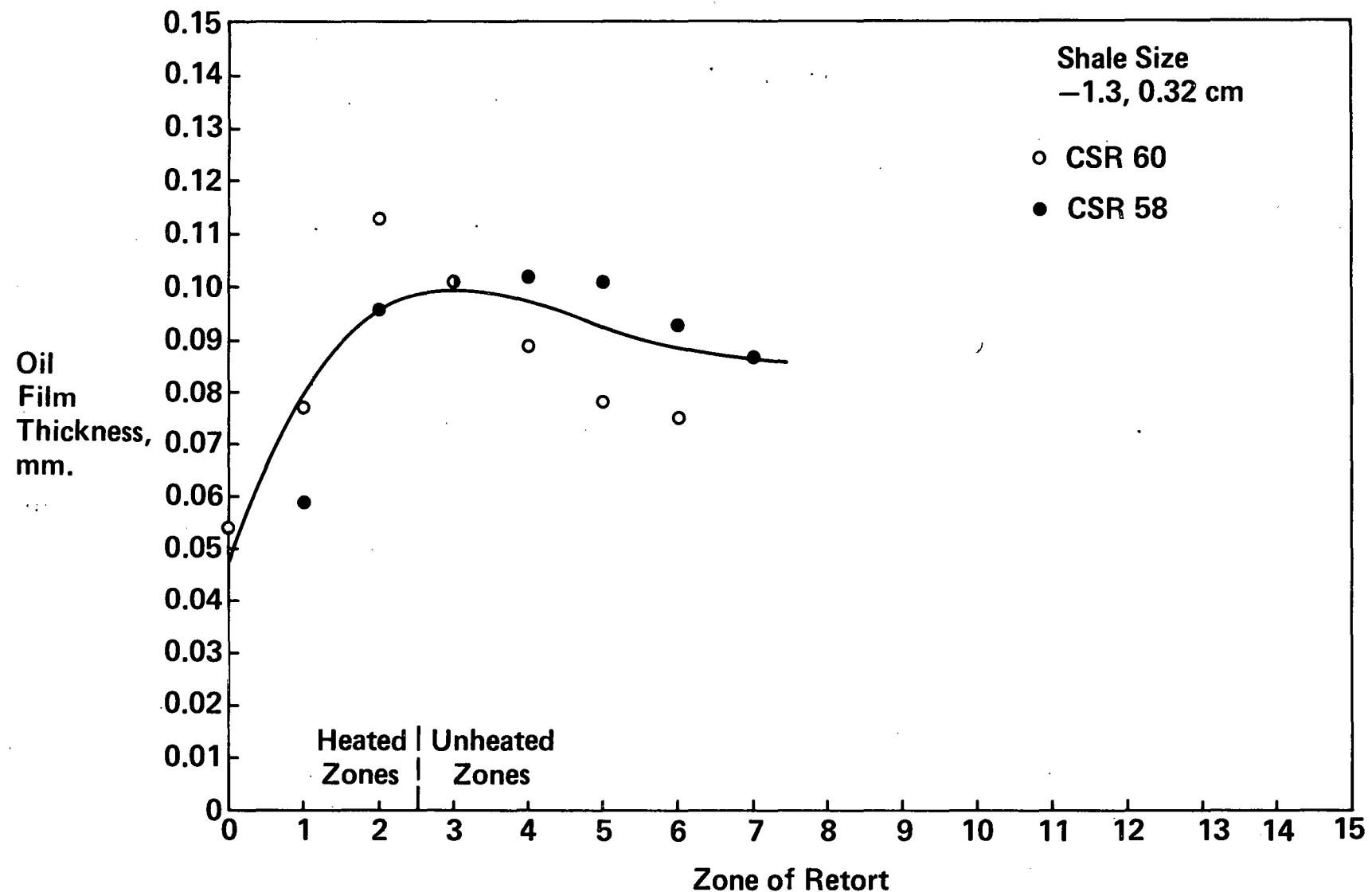



Figure 12. Effect of Oil Shale Particle Size on Oil Film Thickness.

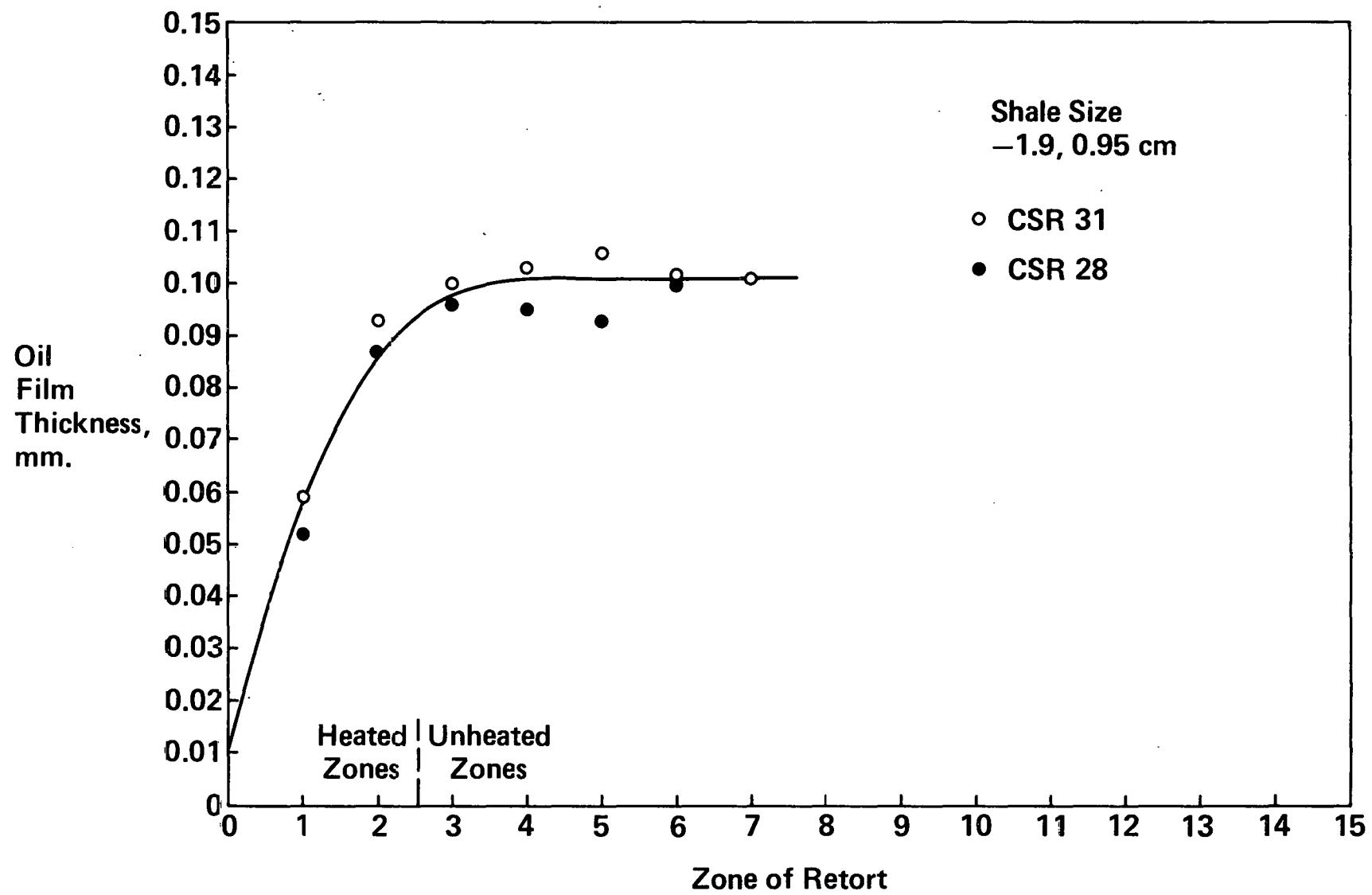



Figure 13. Effect of Oil Shale Particle Size on Oil Film Thickness, C.

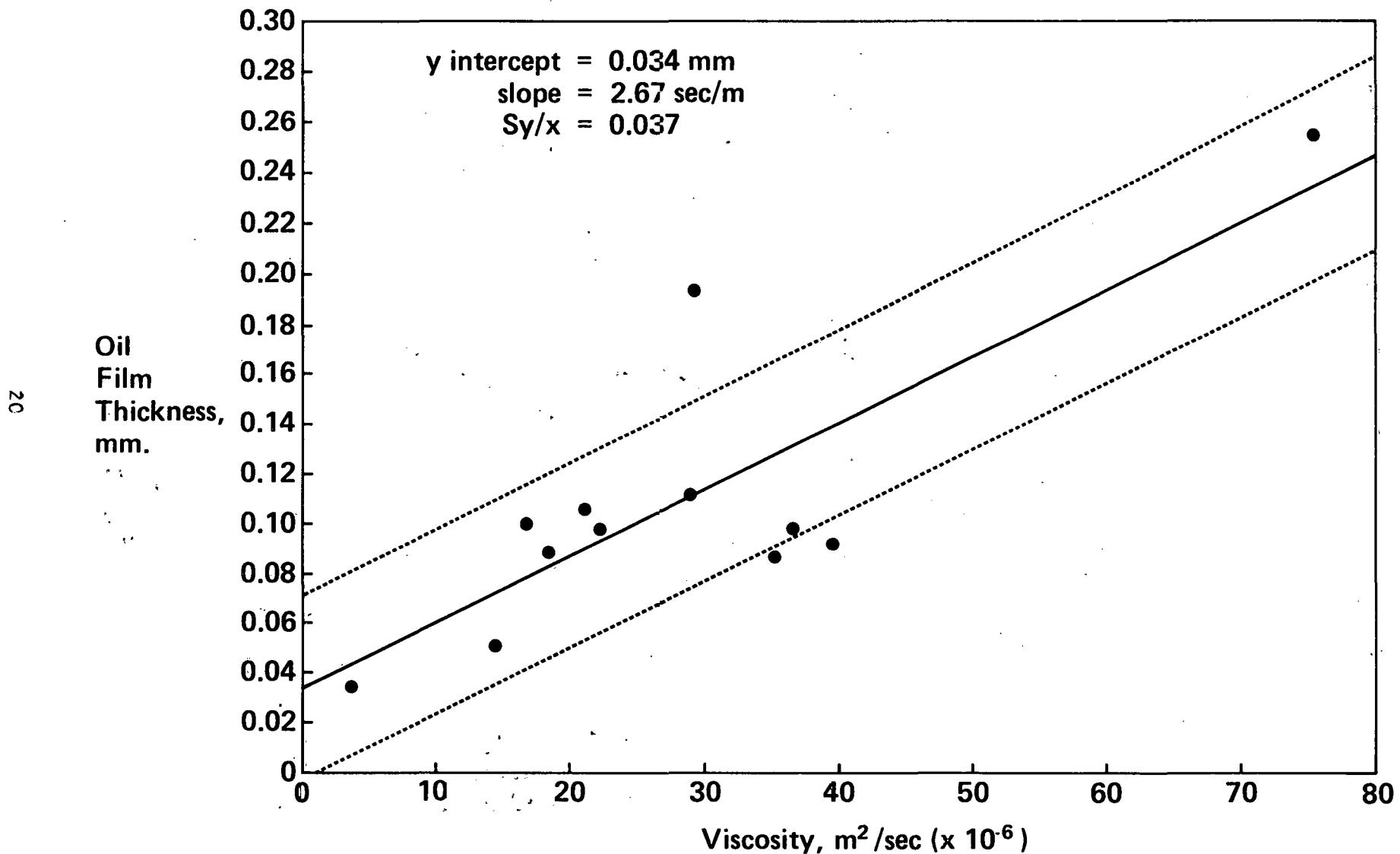



Figure 14. Effect of Viscosity ( $38^\circ\text{C}$ ) on Oil Film Thickness.

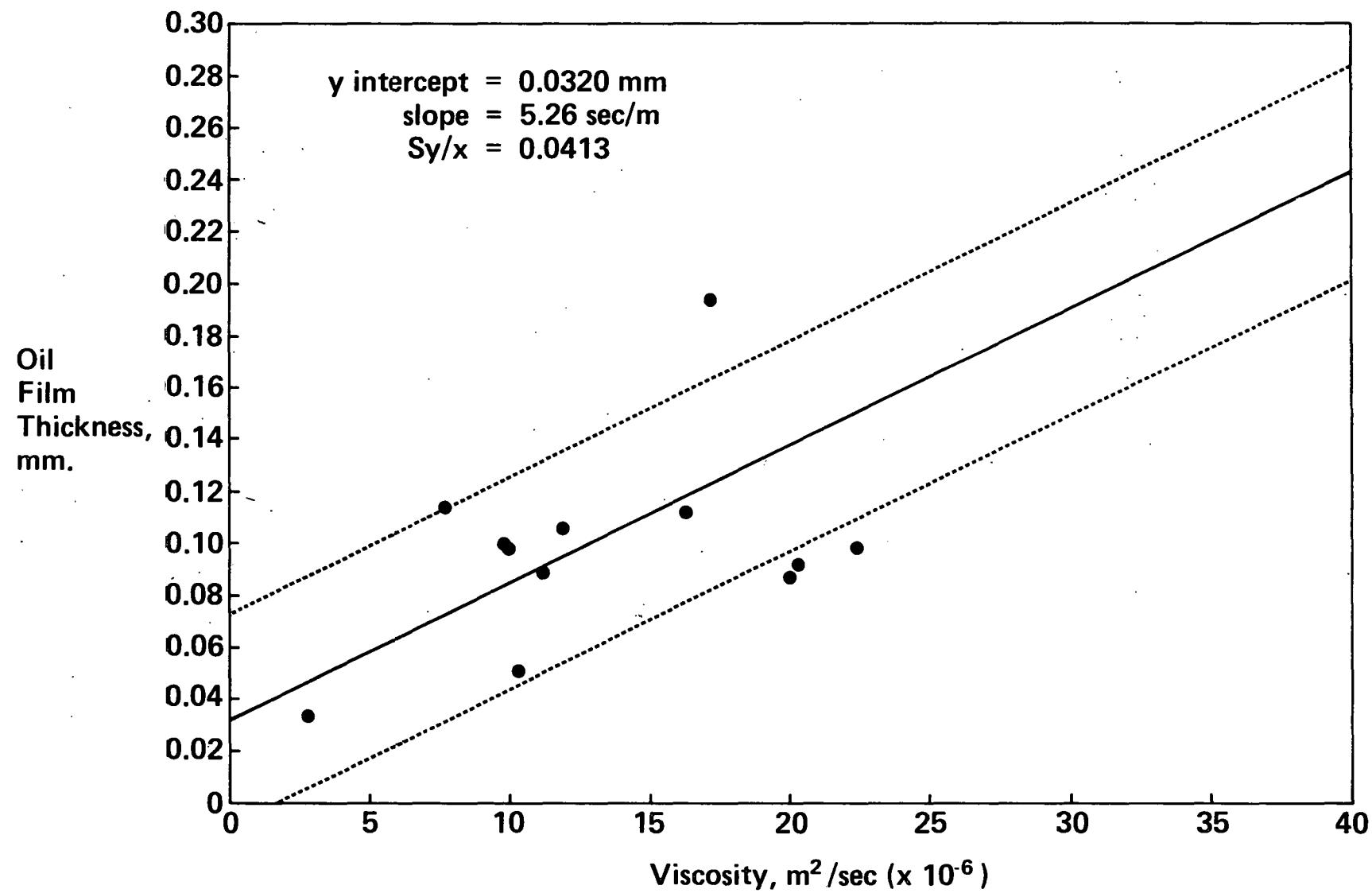



Figure 15. Effect of Viscosity (54°C) on Oil Film Thickness.

TABLE 1  
RAW OIL SHALE DATA

| Batch | Overall<br>Size Range, cm<br>(in) | Fischer Assay<br>Yield, L/tonne<br>(gal/ton) | Specific<br>Gravity,<br>(15.6°/15.6°C) |
|-------|-----------------------------------|----------------------------------------------|----------------------------------------|
| 1     | -1.3,+0.12<br>(-1/2,+3/64)        | 132.3<br>(31.7)                              | 2.121                                  |
| 2     | -1.3,+0.32<br>(-1/2,+1/8)         | 140.2<br>(33.6)                              | 2.095                                  |
| 3     | -1.9,+0.95<br>(-3/4,+3/8)         | 134.4<br>(32.2)                              | 2.114                                  |
| 4     | -0.95,+0.12<br>(-3/8,+3/64)       | 137.7<br>(33.0)                              | 2.103                                  |

TABLE 2  
RETORTING CONDITIONS

| CSR<br>Run<br>Number | Shale<br>Batch | Heating<br>Rate<br>°C/min. | Retorting<br>Advance<br>Rate, cm/hr. | Input Gas<br>Flow Rate<br>scmh/m <sup>2</sup> | Input<br>Gas                   | Number<br>Sections<br>Oil wet | Reference |
|----------------------|----------------|----------------------------|--------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------|-----------|
| 14                   | 1              | 0.56                       | 2.5                                  | 14.8                                          | N <sub>2</sub>                 | 10                            | 4         |
| 17                   | 1              | 0.22                       | 1.5                                  | 7.3                                           | N <sub>2</sub>                 | 15                            | 4         |
| 19                   | 1              | 1.1                        | 30.5                                 | 7.3                                           | N <sub>2</sub>                 | 15                            | 4         |
| 23                   | 2              | 0.22                       | 1.5                                  | 68.9                                          | N <sub>2</sub>                 | 10                            | 4         |
| 25                   | 2              | 0.22                       | 1.5                                  | 7.3                                           | N <sub>2</sub> /O <sub>2</sub> | 10                            | 6         |
| 26                   | 2              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub> /O <sub>2</sub> | 9                             | 6         |
| 27                   | 2              | 2.2                        | 15.2                                 | 68.9                                          | N <sub>2</sub> /O <sub>2</sub> | 10                            | 6         |
| 28                   | 3              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub>                 | 10                            | 6         |
| 31                   | 3              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub>                 | 10                            | 7         |
| 32                   | 4              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub>                 | 10                            | 6         |
| 33                   | 4              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub>                 | 10                            | 7         |
| 37                   | 2              | 0.02                       | 0.2                                  | 0.7                                           | N <sub>2</sub>                 | 9                             | 8         |
| 58                   | 2              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub>                 | 10                            | 4         |
| 60                   | 2              | 1.1                        | 7.6                                  | 7.3                                           | N <sub>2</sub>                 | 10                            | 4         |

TABLE 3  
STATISTICAL ANALYSIS OF OIL FILM THICKNESS  
AS RELATED TO TEMPERATURE

| CSR<br>Number | Slope, mm/ $^{\circ}\text{C}$<br>$\times 10^{-4}$ | y intercept,<br>mm | Variance<br>in y |
|---------------|---------------------------------------------------|--------------------|------------------|
| 14            | 2.20                                              | 0.106              | 0.0075           |
| 17            | 2.20                                              | 0.098              | 0.0039           |
| 19            | 0.96                                              | 0.063              | 0.0057           |
| 23            | 3.10                                              | 0.123              | 0.0183           |
| 25            | 3.35                                              | 0.129              | 0.0161           |
| 26            | 2.89                                              | 0.124              | 0.0249           |
| 27            | 2.93                                              | 0.121              | 0.0120           |
| 28            | 1.63                                              | 0.079              | 0.0123           |
| 31            | 1.73                                              | 0.089              | 0.0193           |
| 32            | 2.09                                              | 0.085              | 0.0171           |
| 33            | 1.05                                              | 0.066              | 0.0074           |
| 37            | 3.36                                              | 0.115              | 0.0175           |
| 58            | 1.30                                              | 0.084              | 0.0175           |
| 60            | 2.06                                              | 0.096              | 0.0202           |

TABLE 4  
ORGANIC CARBON CONTENT FOR SHALES

| Section<br>Number | CSR 32 | CSR 33 |
|-------------------|--------|--------|
| 1                 | 4.87   | 6.96   |
| 2                 | 3.35   | 4.58   |
| 3                 | 3.43   | 3.94   |
| 4                 | 3.35   | 4.17   |
| 5                 | 4.00   | 4.81   |
| 6                 | 4.09   | 4.93   |
| 7                 | 3.81   | 5.23   |
| 8                 | 4.36   | 5.49   |
| 9                 | 3.61   | 7.05   |
| 10                | 5.24   | 7.13   |
| 11                | 4.51   | 8.39   |
| 12                | 3.46   | 7.37   |
| 13                | 4.01   | 7.45   |
| 14                | 4.77   | 5.82   |
| 15                | 7.31   | 9.37   |
| 16                | 16.89  | 17.10  |
| 17                | 15.77  | 13.95  |
| 18                | 15.09  | 14.00  |
| 19                | 15.12  | 13.90  |
| 20                | 16.13  | 14.44  |
| 21                | 14.81  | 14.33  |
| 22                | 14.43  | 15.45  |
| 23                | 15.24  | 14.31  |
| 24                | 15.51  | 13.16  |

TABLE 5  
VISCOSITY DATA

| CSR<br>Number | Viscosity, $m^2/sec$ ( $\times 10^{-6}$ ) |      | OFT <sup>1</sup><br>mm |
|---------------|-------------------------------------------|------|------------------------|
|               | 38°C                                      | 54°C |                        |
| 14            | 35.2                                      | 20.0 | .087                   |
| 17            | ND                                        | ND   | .087                   |
| 28            | ND                                        | ND   | .102                   |
| 31            | 21.0                                      | 11.9 | .106                   |
| 32            | 16.7                                      | 9.8  | .100                   |
| 33            | 14.4                                      | 10.3 | .051                   |
| 58            | 22.2                                      | 10.0 | .098                   |
| 60            | 18.4                                      | 11.2 | .089                   |
| 23            | 75.4                                      | 32.9 | .255                   |
| 25            | 29.2                                      | 17.2 | .194                   |
| 26            | 36.5                                      | 22.4 | .098                   |
| 27            |                                           | 7.7  | .114                   |
| 37            | 39.6                                      | 20.3 | .092                   |
| 19            | 3.7                                       | 2.8  | .034                   |
| 33            | 14.4                                      | 10.3 | .051                   |

<sup>1</sup> OFT = oil film thickness

## BIBLIOGRAPHY

1. Fausett, D. W. "A Mathematical Model of an Oil Shale Retort." Quarterly of the Colorado School of Mines, v. 70, 1975, pp. 272-313.
2. Braun, R. L. and R. C. Y. Chin, "Progress Report on Computer Model for In Situ Oil Shale Retorting." UCRL-52292, 1977, 28 pp.
3. Dockter, Leroy and H. Gordon Harris, "A Mathematical Model of Forward Combustion Retorting of Oil Shale." LETC/TPR-78/1, 1978, 20 pp.
4. Duvall, John J., "Simulated In Situ Retorting of Oil Shale in a Controlled State Retort: I. Nitrogen Atmosphere, Interrupted Runs." LETC/RI-79/7, 1979, 62 pp.
5. Duvall, J. J. and H. B. Jensen, "Simulated In Situ Retorting of Oil Shale in a Controlled-State Retort." Quarterly of the Colorado School of Mines, v. 70, 1975, pp. 187-205.
6. Duvall, J. J., unpublished data.
7. Bartke, T. C. and J. J. Duvall, "Effects of Particle Size on Retorting Oil Shale in a Controlled-State Retort." ANS Proceedings NTIS Number Conference770440, 1977, pp. 516-527.
8. Duvall, J. J. "Simulated In Situ Retorting of Oil Shale in a Controlled-State Retort: II. Heat Soaking Experiments, LETC/ RI-79/10, 1979, 24 pp.
9. Crow, Edwin L., Frances A. Davis, Margaret W. Maxfield, "Statistics Manual." Dover Publications, Inc., New York, NY, 1960, p. 156.
10. Duvall, John J., unpublished data.
11. Smith, John Ward, "Relationship Between Rock Density and Volume of Organic Matter in Oil Shales." LETC/RI-76/6, 1976, 11 pp.
12. Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot, "Transport Phenomena." John Wiley & Sons, Inc., New York, NY, 1960, p. 197.

## APPENDIX

### Calculation of Oil Shale Surface Area

The quantities needed to calculate oil film thickness that were known were the weight of oil washed from the surface, the weight of shale, the size distribution of shale, the volume of the section of the retort, and the density of the shale (9). The determination of oil film thickness required, in addition, a knowledge of the wetted surface area of the shale in a particular section of the CSR. An equation adapted from Bird, Stewart, and Lightfoot (12) allowed calculation of wetted surface area (a) per unit volume of bed as follows:

- 1)  $a = a_v (1 - E)$  where  $a_v$  is the "specific surface" (the total particle surface divided by the volume of the particles) and E is the void volume. The quantity  $a_v$  was used to define the mean particle diameter ( $D_p$ ) as follows:
- 2)  $D_p = 6/a_v$  where  $D_p$  equals the diameter for spherical particles. Combining equations 1) and 2) gives:
- 3)  $a = 6/D_p(1 - E)$ . The void volume (E) can be calculated from the weight of shale in a section, the volume of the section, and the density of the shale (9). The mean particle diameter ( $D_p$ ) of a shale particle of a batch of shale can be estimated from the particle size distribution of the shale (Table 1), the mean sieve opening (S) for a shale cut (e.g., the mean sieve opening for the shale cut -6.4, + 3.2mm is 4.8 mm), and the assumption that a shale particle can be treated as a rectangular box. The relationship of the lengths of the sides of a shale particle was estimated from actual measurements of 25 pieces of shale (see Table A1) picked at random from a batch of shale, to be  $1.6W \times W \times 0.6W$  where W is the width of the shale particle. Substitution of the mean sieve opening of the above example (4.8 mm) for W gives the volume of an average shale particle in that sieve cut:

$$\begin{aligned} \text{Volume} &= 1.6W \times W \times 0.6W \\ &= 0.96S^3 \\ &= 106 \text{ mm}^3. \end{aligned}$$

The mean diameter ( $D_p$ ) of a sphere of equivalent volume can be calculated as follows:

$$\text{Volume} = \frac{4\pi}{3} r^3$$

$$r = \left( \frac{106 \times 3}{4\pi} \right)^{1/3}$$

$$= 2.9 \text{ mm}$$

$$D_p = 2r = 5.8 \text{ mm}$$

These calculations gave the average particle diameters which are shown in Table A2 along with the particle size distribution and the average particle diameter for each batch of shale.

The average  $D_p$ 's of Table A2 were used in equation 3) to calculate the raw shale surface areas in each of the oil wet sections in interrupted CSR experiments as in the following example (for CSR 14, section 18).

$$a = \frac{6}{D_p} (1 - E)$$

$$a = \frac{6}{0.56} (1 - 0.45)$$

$$= 5.89 \text{ cm}^2/\text{cm}^3$$

The  $a$  above, when multiplied by the volume of that section of the retort ( $645 \text{ cm}^3$ ), gave  $3800 \text{ cm}^2$  as the calculated surface area of the shale in that section of the retort.

In addition, the surface area of the retort also must be taken into account. The surface area of the retort of CSR 14, section 18 was calculated to be  $507 \text{ cm}^2$ . Because the oil was flowing over the shale and retort surfaces and was not allowed to drain, the oil film thickness on the shale and retort was assumed to be the same and were added together to give the total surface area in each section of the retort. For CSR 14, section 18 this gave a total surface area of  $4307 \text{ cm}^2$ . This surface area divided into the cubic centimeters of oil ( $41.4 \text{ cm}^3$ ) washed from the surface of the retort and shale gives  $0.096 \text{ mm}$  as the oil film thickness on the shale and the retort pipe of section 18 of CSR 14.

These types of calculations led to the oil film thickness data shown in Tables A3 through A16.

TABLE A1  
DIMENSIONS OF RAW SHALE PARTICLES PICKED AT RANDOM FROM  
A BATCH SIEVED TO -1.3, +0.3 cm (-1/2 in, +1/8 in)

| Particle<br>Number | L, cm     | W, cm     | H, cm     |
|--------------------|-----------|-----------|-----------|
| 1                  | 3.3       | 1.1       | 0.8       |
| 2                  | 1.8       | 0.8       | 0.6       |
| 3                  | 1.8       | 1.5       | 0.6       |
| 4                  | 2.2       | 1.1       | 1.0       |
| 5                  | 1.5       | 1.4       | 1.0       |
| 6                  | 1.0       | 0.8       | 0.4       |
| 7                  | 1.5       | 1.3       | 0.3       |
| 8                  | 2.4       | 1.5       | 0.4       |
| 9                  | 1.3       | 0.9       | 0.8       |
| 10                 | 1.5       | 1.0       | 0.6       |
| 11                 | 2.3       | 1.5       | 0.8       |
| 12                 | 1.5       | 1.0       | 0.8       |
| 13                 | 2.3       | 1.0       | 0.9       |
| 14                 | 2.0       | 1.3       | 0.9       |
| 15                 | 2.5       | 1.3       | 0.8       |
| 16                 | 2.3       | 1.3       | 0.6       |
| 17                 | 2.0       | 1.3       | 0.8       |
| 18                 | 2.0       | 1.3       | 0.3       |
| 19                 | 2.0       | 1.1       | 0.6       |
| 20                 | 1.9       | 1.5       | 0.5       |
| 21                 | 1.5       | 1.0       | 1.0       |
| 22                 | 1.8       | 1.3       | 0.6       |
| 23                 | 1.5       | 1.1       | 0.8       |
| 24                 | 2.4       | 1.1       | 0.8       |
| 25                 | 1.9       | 1.5       | 0.8       |
| Average            | 1.9 ± 0.5 | 1.2 ± 0.2 | 0.7 ± 0.2 |

TABLE A2  
RAW OIL SHALE SIZE AND SIZE DISTRIBUTION DATA

| Sieve<br>Size<br>Range<br>(mm) | Mean<br>Sieve<br>Openings<br>(mm) | D <sub>p</sub><br>(mm) | Fraction of Shale in Size Range<br>Batch |      |      |      |
|--------------------------------|-----------------------------------|------------------------|------------------------------------------|------|------|------|
|                                |                                   |                        | 1                                        | 2    | 3    | 4    |
| -3.2,+1.2                      | 2.2                               | 2.7                    | 0.02                                     | -    | -    | 0.20 |
| -6.4,+3.2                      | 4.8                               | 5.8                    | 0.30                                     | 0.26 | -    | 0.37 |
| -9.5,+6.4                      | 7.9                               | 9.7                    | 0.39                                     | 0.26 | -    | 0.43 |
| -12.7,+9.5                     | 11.1                              | 13.6                   | 0.29                                     | 0.48 | 0.44 | -    |
| -15.9,+12.7                    | 14.3                              | 17.4                   | -                                        | -    | 0.37 | -    |
| -19.0,+15.9                    | 17.5                              | 21.4                   | -                                        | -    | 0.19 | -    |
| D <sub>p</sub> for batch (mm)  |                                   |                        | 5.6                                      | 7.2  | 15.2 | 3.4  |

TABLE A3  
DATA FOR CSR 14

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>pipe, cm <sup>2</sup> | Surface<br>Area of<br>shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 15                       | 15.9                        | 726         | 4.7                     | 47                         | 507                                         | 3657                                         | 0.011                        | 416                                 |
| 16                       | 17.1                        | 764         | 30.8                    | 48                         | 547                                         | 3847                                         | 0.070                        | 204                                 |
| 17                       | 17.5                        | 728         | 36.7                    | 52                         | 557                                         | 3665                                         | 0.087                        | 66                                  |
| 18                       | 15.9                        | 746         | 41.4                    | 45                         | 507                                         | 3800                                         | 0.096                        | 43                                  |
| 19                       | 15.9                        | 716         | 63.7                    | 48                         | 507                                         | 3617                                         | 0.155                        | ambient                             |
| 20                       | 17.1                        | 763         | 44.4                    | 48                         | 547                                         | 3854                                         | 0.100                        | "                                   |
| 21                       | 17.1                        | 761         | 37.3                    | 48                         | 547                                         | 3832                                         | 0.087                        | "                                   |
| 22                       | 15.9                        | 732         | 36.8                    | 46                         | 507                                         | 3687                                         | 0.088                        | "                                   |
| 23                       | 15.9                        | 705         | 32.8                    | 48                         | 507                                         | 3551                                         | 0.083                        | "                                   |
| 24                       | 21.9                        | 818         | 41.7                    | 57                         | 699                                         | 4119                                         | 0.088                        | "                                   |

TABLE A4  
DATA FOR CSR 17

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 33                       | 10                          | 16.2        | 686                     | 7.7                        | 51                                          | 517                                          | 3456                         | 0.019                               |
|                          | 11                          | 15.9        | 690                     | 21.5                       | 49                                          | 507                                          | 3475                         | 0.054                               |
|                          | 12                          | 17.1        | 718                     | 32.8                       | 51                                          | 547                                          | 3616                         | 0.079                               |
|                          | 13                          | 17.1        | 731                     | 35.6                       | 50                                          | 547                                          | 3680                         | 0.084                               |
|                          | 14                          | 15.9        | 691                     | 48.9                       | 49                                          | 507                                          | 3491                         | 0.122                               |
|                          | 15                          | 15.9        | 665                     | 44.8                       | 51                                          | 507                                          | 3349                         | 0.116                               |
|                          | 16                          | 17.1        | 723                     | 45.8                       | 51                                          | 547                                          | 3652                         | 0.109                               |
|                          | 17                          | 17.5        | 797                     | 41.7                       | 47                                          | 557                                          | 4026                         | 0.091                               |
|                          | 18                          | 15.9        | 627                     | 30.9                       | 54                                          | 507                                          | 3157                         | 0.084                               |
|                          | 19                          | 15.9        | 665                     | 26.8                       | 51                                          | 507                                          | 3359                         | 0.069                               |
|                          | 20                          | 17.1        | 723                     | 27.0                       | 51                                          | 547                                          | 3757                         | 0.065                               |
|                          | 21                          | 17.1        | 746                     | 32.8                       | 49                                          | 547                                          | 3273                         | 0.067                               |
|                          | 22                          | 15.9        | 648                     | 25.5                       | 53                                          | 507                                          | 3273                         | 0.067                               |
|                          | 23                          | 15.9        | 690                     | 28.7                       | 50                                          | 507                                          | 3486                         | 0.072                               |
|                          | 24                          | 21.9        | 1030                    | 51.9                       | 45                                          | 699                                          | 5187                         | 0.088                               |

TABLE A5  
DATA FOR CSR 19

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 10                       | 16.2                        | 707         | 7.6                     | 49                         | 517                                         | 3650                                         | 0.019                        | 382                                 |
| 11                       | 15.9                        | 708         | 12.1                    | 48                         | 507                                         | 3567                                         | 0.030                        | 349                                 |
| 12                       | 17.1                        | 775         | 15.0                    | 47                         | 547                                         | 3902                                         | 0.034                        | 310                                 |
| 13                       | 17.1                        | 799         | 18.3                    | 46                         | 547                                         | 4024                                         | 0.040                        | 282                                 |
| 14                       | 15.9                        | 692         | 15.8                    | 49                         | 507                                         | 3485                                         | 0.040                        | 260                                 |
| 15                       | 15.9                        | 739         | 18.3                    | 46                         | 507                                         | 3721                                         | 0.043                        | 227                                 |
| 16                       | 17.1                        | 744         | 22.8                    | 50                         | 547                                         | 3745                                         | 0.053                        | 174                                 |
| 17                       | 17.5                        | 788         | 27.6                    | 48                         | 557                                         | 3970                                         | 0.061                        | 104                                 |
| 18                       | 15.9                        | 697         | 20.8                    | 49                         | 507                                         | 3509                                         | 0.052                        | 77                                  |
| 19                       | 15.9                        | 685         | 19.8                    | 52                         | 507                                         | 3313                                         | 0.052                        | 32                                  |
| 20                       | 17.1                        | 750         | 18.2                    | 49                         | 547                                         | 3776                                         | 0.044                        | ambient                             |
| 21                       | 17.1                        | 722         | 13.4                    | 51                         | 547                                         | 3635                                         | 0.033                        | "                                   |
| 22                       | 15.9                        | 698         | 13.3                    | 49                         | 507                                         | 3485                                         | 0.035                        | "                                   |
| 23                       | 15.9                        | 692         | 11.7                    | 49                         | 507                                         | 3485                                         | 0.030                        | "                                   |
| 24                       | 21.9                        | 1182        | 16.3                    | 37                         | 699                                         | 5953                                         | 0.026                        | "                                   |

TABLE A6  
DATA FOR CSR 23

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 15                       | 15.9                        | 577         | 0.3                     | 57                         | 507                                         | 2297                                         | 0.001                        | 399                                 |
| 16                       | 17.1                        | 739         | 15.8                    | 49                         | 547                                         | 2942                                         | 0.045                        | 266                                 |
| 17                       | 17.5                        | 765         | 21.8                    | 48                         | 557                                         | 3192                                         | 0.058                        | 143                                 |
| 18                       | 15.9                        | 687         | 37.0                    | 49                         | 507                                         | 2734                                         | 0.114                        | 77                                  |
| 19                       | 15.9                        | 664         | 72.8                    | 51                         | 507                                         | 2644                                         | 0.231                        | 49                                  |
| 20                       | 17.1                        | 757         | 113.0                   | 48                         | 547                                         | 3161                                         | 0.305                        | ambient                             |
| 21                       | 17.1                        | 788         | 109.6                   | 46                         | 547                                         | 3137                                         | 0.298                        | "                                   |
| 22                       | 15.9                        | 729         | 79.5                    | 46                         | 507                                         | 2902                                         | 0.233                        | "                                   |
| 23                       | 15.9                        | 724         | 76.8                    | 46                         | 507                                         | 2881                                         | 0.227                        | "                                   |
| 24                       | 21.9                        | 1087        | 107.2                   | 42                         | 699                                         | 4327                                         | 0.213                        | "                                   |

TABLE A7  
DATA FOR CSR 25

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g. | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|--------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 15                       | 15.9                        | 593          | 0.2                     | 56                         | 507                                         | 2360                                         | 0.001                        | 402                                 |
| 16                       | 17.1                        | 782          | 18.5                    | 46                         | 547                                         | 3112                                         | 0.050                        | 224                                 |
| 17                       | 17.5                        | 754          | 23.8                    | 49                         | 557                                         | 3002                                         | 0.067                        | 138                                 |
| 18                       | 15.9                        | 784          | 46.8                    | 53                         | 507                                         | 3120                                         | 0.154                        | 56                                  |
| 19                       | 15.9                        | 784          | 46.7                    | 42                         | 507                                         | 3120                                         | 0.129                        | 43                                  |
| 20                       | 17.1                        | 750          | 82.6                    | 48                         | 547                                         | 2986                                         | 0.234                        | ambient                             |
| 21                       | 17.1                        | 737          | 70.6                    | 49                         | 547                                         | 2934                                         | 0.203                        | "                                   |
| 22                       | 15.9                        | 696          | 69.4                    | 48                         | 507                                         | 2769                                         | 0.212                        | "                                   |
| 23                       | 15.9                        | 707          | 58.5                    | 48                         | 507                                         | 2815                                         | 0.176                        | "                                   |
| 24                       | 21.9                        | 1155         | 76.9                    | 38                         | 699                                         | 4596                                         | 0.145                        | "                                   |

TABLE A8  
DATA FOR CSR 26

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 15                       | 15.9                        | 652         | 0.4                     | 52                         | 507                                         | 2594                                         | 0.001                        | 410                                 |
| 16                       | 17.1                        | 757         | 20.0                    | 48                         | 547                                         | 3014                                         | 0.056                        | 288                                 |
| 17                       | 17.5                        | 757         | 21.1                    | 49                         | 557                                         | 3014                                         | 0.059                        | 116                                 |
| 18                       | 15.9                        | 711         | 33.0                    | 47                         | 507                                         | 2830                                         | 0.099                        | 68                                  |
| 19                       | 15.9                        | 687         | 43.7                    | 49                         | 507                                         | 2734                                         | 0.135                        | 46                                  |
| 20                       | 17.1                        | 712         | 37.3                    | 51                         | 547                                         | 2833                                         | 0.110                        | ambient                             |
| 21                       | 17.1                        | 776         | 37.4                    | 47                         | 547                                         | 3089                                         | 0.103                        | "                                   |
| 22                       | 15.9                        | 685         | 33.3                    | 49                         | 507                                         | 2727                                         | 0.104                        | "                                   |
| 23                       | 15.9                        | 679         | 29.3                    | 50                         | 507                                         | 2702                                         | 0.092                        | "                                   |
| 24                       | 21.9                        | 910         | 34.4                    | 51                         | 699                                         | 3622                                         | 0.080                        | "                                   |

TABLE A9  
DATA FOR CSR 27

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 16                       | 17.1                        | 748         | 5.6                     | 49                         | 547                                         | 2977                                         | 0.016                        | 349                                 |
| 17                       | 17.5                        | 779         | 31.3                    | 47                         | 557                                         | 3102                                         | 0.086                        | 146                                 |
| 18                       | 15.9                        | 697         | 29.6                    | 48                         | 507                                         | 2775                                         | 0.090                        | 60                                  |
| 19                       | 15.9                        | 695         | 36.8                    | 48                         | 507                                         | 2760                                         | 0.113                        | 49                                  |
| 20                       | 17.1                        | 743         | 65.1                    | 49                         | 547                                         | 2956                                         | 0.186                        | 32                                  |
| 21                       | 17.1                        | 779         | 53.4                    | 47                         | 547                                         | 3102                                         | 0.146                        | ambient                             |
| 22                       | 15.9                        | 682         | 31.4                    | 49                         | 507                                         | 2715                                         | 0.097                        | "                                   |
| 23                       | 15.9                        | 716         | 32.6                    | 47                         | 507                                         | 2850                                         | 0.097                        | "                                   |
| 24                       | 21.9                        | 1158        | 61.6                    | 38                         | 699                                         | 4610                                         | 0.116                        | "                                   |

TABLE A10  
DATA FOR CSR 28

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 15                       | 15.9                        | 606         | 1.6                     | 55                         | 507                                         | 1128                                         | 0.010                        | 416                                 |
| 16                       | 17.1                        | 724         | 6.5                     | 51                         | 547                                         | 1347                                         | 0.034                        | 279                                 |
| 17                       | 17.5                        | 708         | 10.7                    | 53                         | 557                                         | 1317                                         | 0.057                        | 129                                 |
| 18                       | 15.9                        | 683         | 9.2                     | 50                         | 507                                         | 1271                                         | 0.052                        | 60                                  |
| 19                       | 15.9                        | 693         | 15.6                    | 49                         | 507                                         | 1290                                         | 0.087                        | 29                                  |
| 20                       | 17.1                        | 654         | 16.9                    | 55                         | 547                                         | 1217                                         | 0.096                        | ambient                             |
| 21                       | 17.1                        | 747         | 18.4                    | 49                         | 547                                         | 1388                                         | 0.095                        | "                                   |
| 22                       | 15.9                        | 698         | 16.8                    | 49                         | 507                                         | 1299                                         | 0.093                        | "                                   |
| 23                       | 15.9                        | 664         | 17.4                    | 51                         | 507                                         | 1235                                         | 0.100                        | "                                   |
| 24                       | 21.9                        | 1083        | 34.7                    | 42                         | 699                                         | 2016                                         | 0.128                        | "                                   |

TABLE A11  
DATA FOR CSR 31

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 5                        | 15.9                        | 693         | 4.9                     | 49                         | 507                                         | 1290                                         | 0.027                        | 316                                 |
|                          | 17.1                        | 639         | 12.0                    | 57                         | 547                                         | 1190                                         | 0.069                        | 204                                 |
|                          | 17.5                        | 766         | 11.7                    | 49                         | 557                                         | 1425                                         | 0.059                        | 66                                  |
|                          | 15.9                        | 678         | 16.5                    | 50                         | 507                                         | 1261                                         | 0.093                        | 38                                  |
|                          | 15.9                        | 682         | 17.8                    | 50                         | 507                                         | 1269                                         | 0.100                        | ambient                             |
|                          | 17.1                        | 713         | 19.3                    | 51                         | 547                                         | 1327                                         | 0.103                        | "                                   |
|                          | 17.1                        | 741         | 20.4                    | 50                         | 547                                         | 1380                                         | 0.106                        | "                                   |
|                          | 15.9                        | 666         | 17.8                    | 51                         | 507                                         | 1240                                         | 0.102                        | "                                   |
|                          | 15.9                        | 666         | 17.8                    | 51                         | 507                                         | 1245                                         | 0.101                        | "                                   |
|                          | 21.9                        | 1094        | 34.6                    | 42                         | 699                                         | 2036                                         | 0.126                        | "                                   |

TABLE A13  
DATA FOR CSR 32

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 15                       | 15.9                        | 650         | 1.4                     | 52                         | 507                                         | 5514                                         | 0.002                        | 418                                 |
| 16                       | 17.1                        | 783         | 20.6                    | 46                         | 547                                         | 6642                                         | 0.029                        | 282                                 |
| 17                       | 17.5                        | 814         | 32.6                    | 45                         | 557                                         | 6902                                         | 0.044                        | 127                                 |
| 18                       | 15.9                        | 697         | 33.0                    | 49                         | 507                                         | 5912                                         | 0.051                        | 77                                  |
| 19                       | 15.9                        | 735         | 52.0                    | 46                         | 507                                         | 6232                                         | 0.077                        | 52                                  |
| 20                       | 17.1                        | 784         | 74.2                    | 46                         | 547                                         | 6648                                         | 0.103                        | 32                                  |
| 21                       | 17.1                        | 770         | 69.7                    | 47                         | 547                                         | 6531                                         | 0.099                        | ambient                             |
| 22                       | 15.9                        | 733         | 82.1                    | 46                         | 507                                         | 6218                                         | 0.122                        | "                                   |
| 23                       | 15.9                        | 736         | 71.7                    | 46                         | 507                                         | 6242                                         | 0.106                        | "                                   |
| 24                       | 21.9                        | 1108        | 75.3                    | 41                         | 699                                         | 9398                                         | 0.075                        | "                                   |

TABLE A12  
DATA FOR CSR 33

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 16                       | 17.1                        | 834         | 25.1                    | 43                         | 547                                         | 7072                                         | 0.033                        | 360                                 |
| 17                       | 17.5                        | 828         | 27.4                    | 44                         | 557                                         | 7022                                         | 0.036                        | 204                                 |
| 18                       | 15.9                        | 753         | 41.8                    | 44                         | 507                                         | 6385                                         | 0.061                        | 66                                  |
| 19                       | 15.9                        | 741         | 44.2                    | 45                         | 507                                         | 6285                                         | 0.065                        | 38                                  |
| 20                       | 17.1                        | 815         | 44.8                    | 44                         | 547                                         | 6912                                         | 0.060                        | ambient                             |
| 21                       | 17.1                        | 813         | 39.5                    | 44                         | 547                                         | 6894                                         | 0.053                        | "                                   |
| 22                       | 15.9                        | 731         | 33.6                    | 46                         | 507                                         | 6200                                         | 0.049                        | "                                   |
| 23                       | 15.9                        | 752         | 34.0                    | 44                         | 507                                         | 6378                                         | 0.049                        | "                                   |
| 24                       | 21.9                        | 1206        | 46.0                    | 35                         | 699                                         | 10228                                        | 0.042                        | "                                   |

TABLE A14  
DATA FOR CSR 37

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 16                       | 17.1                        | 752         | 2.3                     | 48                         | 547                                         | 2993                                         | 0.007                        | 343                                 |
| 17                       | 17.5                        | 800         | 10.0                    | 46                         | 557                                         | 3184                                         | 0.027                        | 204                                 |
| 18                       | 15.9                        | 717         | 31.6                    | 47                         | 507                                         | 2583                                         | 0.094                        | 102                                 |
| 19                       | 15.9                        | 730         | 33.3                    | 46                         | 507                                         | 2906                                         | 0.097                        | 46                                  |
| 20                       | 17.1                        | 780         | 39.6                    | 46                         | 547                                         | 3105                                         | 0.108                        | ambient                             |
| 21                       | 17.1                        | 759         | 32.3                    | 48                         | 547                                         | 3021                                         | 0.090                        | "                                   |
| 22                       | 15.9                        | 741         | 30.4                    | 45                         | 507                                         | 2949                                         | 0.088                        | "                                   |
| 23                       | 15.9                        | 707         | 26.4                    | 48                         | 507                                         | 2815                                         | 0.080                        | "                                   |
| 24                       | 21.9                        | 1164        | 50.9                    | 37                         | 699                                         | 4632                                         | 0.095                        | "                                   |

TABLE A15  
DATA FOR CSR 58

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Percent | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Shale<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|-------------------------------|----------------------------------------------|-------------------------------|-------------------------------------|
| 15                       | 15.9                        | 722         | 13.4                    | 46                         | 507                           | 2874                                         | 0.044                         | 341                                 |
| 16                       | 17.1                        | 773         | 19.0                    | 47                         | 547                           | 3077                                         | 0.052                         | 199                                 |
| 17                       | 17.5                        | 789         | 21.7                    | 47                         | 557                           | 3140                                         | 0.059                         | 66                                  |
| 18                       | 15.9                        | 693         | 31.5                    | 49                         | 507                           | 2757                                         | 0.096                         | 38                                  |
| 19                       | 15.9                        | 665         | 31.9                    | 51                         | 507                           | 2647                                         | 0.101                         | ambient                             |
| 20                       | 17.1                        | 778         | 37.0                    | 47                         | 547                           | 3096                                         | 0.102                         | "                                   |
| 21                       | 17.1                        | 772         | 36.7                    | 47                         | 547                           | 3073                                         | 0.101                         | "                                   |
| 22                       | 15.9                        | 606         | 27.0                    | 55                         | 507                           | 2410                                         | 0.093                         | "                                   |
| 23                       | 15.9                        | 338         | 16.1                    | 75                         | 507                           | 1346                                         | 0.087                         | "                                   |
| 24                       | 21.9                        | 41          | 8.8                     | 98                         | 699                           | 163                                          | 0.102                         | "                                   |

TABLE A16  
DATA FOR CSR 60

| CSR<br>Section<br>Number | Length<br>of Section,<br>cm | Shale,<br>g | Oil,<br>cm <sup>3</sup> | Void<br>Volume,<br>Percent | Surface<br>Area of<br>Pipe, cm <sup>2</sup> | Surface<br>Area of<br>Shale, cm <sup>2</sup> | Oil Film<br>Thickness,<br>mm | Final<br>Temperature<br>of Zone, °C |
|--------------------------|-----------------------------|-------------|-------------------------|----------------------------|---------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|
| 45                       | 15.9                        | 666         | 5.9                     | 51                         | 507                                         | 2651                                         | 0.019                        | 388                                 |
|                          | 17.1                        | 768         | 16.8                    | 47                         | 547                                         | 3056                                         | 0.047                        | 254                                 |
|                          | 17.5                        | 738         | 19.0                    | 50                         | 557                                         | 2939                                         | 0.054                        | 88                                  |
|                          | 15.9                        | 737         | 26.3                    | 45                         | 507                                         | 2934                                         | 0.077                        | 71                                  |
|                          | 15.9                        | 710         | 37.6                    | 47                         | 507                                         | 2825                                         | 0.113                        | 38                                  |
|                          | 17.1                        | 767         | 36.4                    | 47                         | 547                                         | 3052                                         | 0.101                        | ambient                             |
|                          | 17.1                        | 793         | 33.0                    | 46                         | 547                                         | 3155                                         | 0.089                        | "                                   |
|                          | 15.9                        | 695         | 25.4                    | 48                         | 507                                         | 2765                                         | 0.078                        | "                                   |
|                          | 15.9                        | 769         | 26.6                    | 43                         | 507                                         | 3061                                         | 0.075                        | "                                   |
|                          | 21.9                        | 922         | 45.6                    | 50                         | 699                                         | 3670                                         | 0.104                        | "                                   |

## ACKNOWLEDGEMENTS

Thanks go to the laboratory assistants who helped carry out the experiments and the analysis of samples, especially Kristen K. Mason. Thanks also to Dr. A. L. Hines for helpful discussions during the data analysis.