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ABSTRACT

Bifurcations, chaos, and extensive periodic windows in the chaotic
regime are observed for a driven LRC circuit, the capacitive element being
a nonlinear varactor diode. Measurements include power spectral analysis;
real time amplitude data; phase portraits; and a bifurcation diagram,
obtained by sampling methods. The effects of added external noise are
studied. These data yield experimental determinations of several of the
universal numbers predicted to characterize nonlinear systems having this

route to chaos.
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I. Introduction

There is at present a revival of interest in nonlinear dissipative
systems, largely due to recent theoretical developments from topology and
the computed behavior of simple recursion relations, or maps, e.g., the

13 1his is perhaps the

logistic difference equation x ., = Axn(l-xn).
simplest nonlinear expression, and much more readily calculable than the
nonlinear differential equations of most physical systems. As discussed

in Section III, the logistic model predictsAperiod doubling bifurcations;
onset of chaos (noise); and periodic windows in the chaotic Eegion. The
behavior is quantitatively characterized by several "universal numbers",
obtained by compufer iteration. These are somewhat analogous to critical
exponents in the theory of critical phenomena. The prediction and the

hope is that the behavior of such simple maps will qualitatively and even

- semi-quantitatively explain the actual behavior of real systems. There

are many examples of nonlinear behavior in condensed matter physics which
give rise to instabilities and noise, not yet well understood. The objectivé
of this report is to study in detail a driven nonlinear semiconducting |
oscillator, using several methods, and to compare its behavior with the
logistic model. The data yield "measured values" for several of the universal
numbers, some for the first time. The overall agreement is surprisingly

good. Studies of similar physical systems are in progress; the tentative

results are also understandable in terms of the logistic model. Feigenbaum}

has shown that a large class of maps having a quadratic maximum exhibit

the same universal behavior as the logistic map.




II. System
The nonlinear electrical oscillator used in this experiment was a

LRC circuit as shown in Figure 1. A heavily doped silicon diqde, type

1N953 manufactured by TRW Company, supplied the nonlinear capacitance.“
The capacitance across the varactor varie;'with reverse applied voltage as
c(v) = --jil——— (2.1)
(1+v/b)%
where C° = 300 pF, b = 0.6 volts, and 8 = 0.5. For the reversed half of
"a cycle when the diode is in the nonconducting capaéitance state, the

circuit driven by an oscillator obeys the equation
2 8
—gLﬁt + R§—$~+ (1 + -\t’;) %o = Vo_ sin(2rft) (2.2)

where the relation

8 .
Q) = rg g (2.3)

can be used to eliminate V in the third term on the left. This yields a
complicated nonlinear oscillator of form L3 + RQ + %bf(Q)= V(t). In the
foruard (conducting) phase the function f(Q) is different, the diode being
chiefly conducting, with negligible capacitance. The'objéctive of this
paper is not to solve these intractable equationﬁ, but rather to take data
on this physical system and compare it to the predictions of the simple
logistic model. However, for the form f(Q)=Q- 4Q3, the driven nonlinear

oscillator problem has been solved by computer,® with solutions exhibiting

behavior similar to the logistic model.

III. Theory
One of the paths a driven system can take that leads to chaotic, or

turbulent, behavior is that of period doubling bifurcations, calculable,

e.g. from the logistic recursion relation
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n+1 = Axn(]'xn)s (3-0)

where A is the control parameter or driving force. For o<i<4, x lies in

X

the interval o0<x<1; the resulting bifurcation diagram is shown in

Figure 2. As X is increased, there is a threshold value A\ where the
iteration of Eq. 3.0 yields two values of x, and the power spectrum shows

a new component at f/2. As the system is driven harder (A further increased)
more bifurcation thresholds (denoted by AH) and subharmonics appear at
f/4,'f/8, f/16, ..., (f/zﬂ)..., until n + =, which is the threshold for

the chaotic state at Aee At this point pseudo-random noise begins. For

A>1., a sequence of inverse bifurcations or noise band mergings occurs,

Figure 2, at M, n = ...3, 2, 1, 0, where 2™ bands merge to 2" bands.2
After the point where chaos (noise) occurs is reached, there appear
windows (see Fig. 2) in this noisy region that are noiseless. These
windows are periodic at subharmonic frequencies f/m, where m = i, 2, 3,
4...; some show subsequent bifurcations within the window width. These

new bifurcations lead to chaos (noise) again.

A11 of this behavior obeys certain universal properties irrespective
of the exact details of the system. According to the latest developments
of the theory of the bifurcations, there are a number of universal numbers
that occur in a bifurcating system. The first one to be computed, by
Feigenbaum,! is the convergence rate &, which is defined as '

. A -2
s= )M [H = sn:[ = 4.659... (3.1a)
where Aq is the threshold value of the driving parameter for the system
where the nth bifurcation occurs, and fn = f/2".
Feigenbaum also computed the number

a = 2.5029... (3.1b)




which measures the ratio of the pitchfork separation in the upper and
lower bifurcations, Figure 2.
The average height of the peaks of the odd subharmonics in a power

spectral plot from one bifurcation to the next is predicted to be®

B on-1
1 L
269 20.963... = |im |2 (3.2)
. ' 1 2 .
1

where fn is the frequency of the nth bifurcation and P[f] is the poWer of
the subharmonic of frequency, f.

In the chaotic region the noise-free periodic windows are predicted to
occur in a certain order’ and at'certain values of the driving parameter
Ag,q» according to®

= as7Ky | (3.3)

Here.Tk is the point where42K bands merge into ZK'] bands in inverse
bifurcation; AK,q is the threshold point where the period g occurs between
mergings X, and X;_;, and A is a constant.

As K - =, it has been computed8 that YK approaches

vy = 2.948..., (3.3a)

which is another universal number.

The effect of added external noise on the system has been predicted
to be governed by universal constants, also. Assume that one can observe
periodic behavior of at most period q-2p at a noise level Ap. If the noise

voltage level is reduced by a factor®:!?

k= 6.619... - (3.4)

then one will be able to resolve an additional period q~2p+].
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It is also predicted!? that the rms spectral band width at the nth

bifurcation, wn, obeys,
Wo=ws" | (3.5)
where |
g8 = 3.2375... (3.5a)
is another universal number.
The integrated noise power spectrum, N(1), also obeys a scaling

relation,l9 given by

N(A) = No(x-xc)d (3.6a)
where
o =& - q5247..., . (3.6b)

The Lyapunov characteristic exponent X (not to be confused with the

control parameter A) also obeys a scaling relation,!!

-= - - T
A xo(x xc) (3.7a)
where
= 0.44 = In2
T = 0.4498069... = Tne (3.7b)
And at AC,'T scales with added noise A as®
Ta=ag, A) = N (3.8a)
where
8 = 0.37 + 0.01, A=0.58 + 0.01 (3.8b)

To summarize this section, it is clear that a number of computed
“universal numbers" exist which characterize the bifurcation route to chaos.
The simp]esf logistic model of nonlinearity, Eq. 3.0, has been used to
compute most of these; however, it appears that essentially the same

numerical values are computed for any simple nonlinearity with approximately




a quadratic maximum. In the next section of this paper we give measured

values of several of these numbers.

IV. Experimental Results

A. Methods

In the experimental arrangement, Figure 1, the sine wave oscillator
at a'frequency fixed near f .. = 93 kHz, and variable voltage Vo sin(vaf)‘~
is fi]tefed‘by a narrow band filter; a digital AC voltmeter reads the
amplitude Vo to within 1 mV. The role of the control parameter A is
played by the voltage Vo' The developed voltage across the nonlinear
capacitor, which corresponds to x in Eq. 3.0, is amplified by a buffer,
whose output Vc is used in several ways:

1) To measure the power spectrum (see Figs. 3 and 4) with a spectrum
analyzer having a dynamic range of 85 db and sensitivity of 300 nV.
Spectral components f/2 to f/32 are well resolved. It would be
possible to observe components 95 db below Vovaf s however, the
intrinsic noise of the varactor diode-inifiates chaos after f/32.

2) To display I(t) and Vo(t) along the y and x axes of an oscilloscope,
respeﬁtiye1y, generating a phase portrait (see Fig. 5), analogous
to the elliptical orbit bf a harmonic oscillator in phase space
X, X. .

3) To generate on a dual beam oscilloscope a real time display Vc(t)
(see Fig. 6), which shows directly the bifurcated subharmonic
periods and the patterns of visitation of the oscillator to its
various states.’

4) To generate by a fast sampling procedurel3 the actual bifurcation

diagram (see Fig. 7) of the system, analogous to the (computed)



diagram of Figure 2. This is the first report of the direct
measurement of a bifurcation diagram; it is a powerful technique
for analysis of nonlinear behavior, and shows all the features of -
Figure 2, including bifurcation_thresholds, onset of chaos, band
mergings, windows, and a veiled structure corresponding to
regions of high probability density.® The Figures 7a-7f show
successive close-ups (using electronic zoom) of the universal
pitchfork structure, over a scale of 100.

5) To generate, by sampling noise in a very narrow band near f/2
but not at any discrete subharmonic up to f/100, a noise scan
(see Fig. 8), which displays directly the onset of chaos at

v ¢ (i.e. A = xc), and the many noise-free windows in

o = Veri
the chaotic region.

B. Data

A run consisted of slowly increasing V, and recording the threshold
values Von for bifurcation to a frequency f/Zn. The indication of a bifur-
cation was taken to be the appearance of this subharmonic in the frequency
spectrum, with a signal 10 db above the noise level. An alternate but
less sensitive method was visual observation of a splitting in the phase
portrait on the x-y oscilloscope. Table I lists events and the voltage
Vo at which they occur, for a frequency f = 99 kHz: periodic bifurcations,
chaos, and a number of clear noiseless windows were observed, as well as
~many noisy windows. Notable is a wide and stable window that begins at
Vo = 3.081 volts with period 3, and then bifurcates to periods 6, 12, 24,

and 48, finally becoming noisy at 3.844 volts. These windows have the



ordering and the visitation patterns approximately as predicted in Ref. 7,
and will be discussed in another paperl!3; they are visible in the bifurca-

tion diagram, Figure 7, and the window scan, Figure 8.

.From the thresholds for the prechaotic periodic bifurcations, we

calculate for the convergence number

Vo, -V
5 = TR—oe = 4.257 £ 0.1 (4.1)
08~ Vo4
V-V |
08~ Vos
5, = 04 . 4,275 + 0.1 - . (8.2)
2" Vo16-Vos

From an expansion of the bifurcation diagram, Figure 9, we are able
to directly measure the number o for the first time; this figure shows the
ratio of the splitting in the upper and lower branches at period 16, just
before bifurcation to 32. From six independent measurements we find

a. = 2.43 £ 0.1 (4.3)

By adding external noise from a random noise generator to the sine
. wave excitation, it was possible to observe both from the power spectrum
and the bifurcation diagram that increasing noise obliterates successively
the: bifurcations. In Table Il the data are presented. From the voltage
ratio required to obliterate successive bifurcations, we measure the
average value

k = 6.30 (4.4)

The number Zsa), Eq. 3.2, expressed as 10 10g(20.963) = 13.21 db, can
be experimentally determined by comparing the average of the peaks in the
power spectra between two successive bifurcations. For our data where

average peaks between 0 and f/2 are recorded, it is more convenient to



compare the individual peaks to the predictions of the logistic model,
shown, e.g. in Ref. 2, page 53, and as dashed bars in Figure 3. The
data show reasonable agreement with a rms deviation of 2 db.
By integrating the smoothed broad-band noise power P(f) |
N(r) = glzP(f)df for spectral analysis data taken at successive band
mergings Mn in the chaotic regime, we obtained a measured value of the
number 8, using the expressionlO:
N, ) = N(M_ )8~ (4.5)
For data taken at band mergings M3, M2, M1, and Mo, corresponding to
the merging to 8, 4, 2, and 1 bands, respectively (see Figs. 7a, 7¢, and
7e), we find the average value
B =3.26 0.9 (4.6)
V. Summar
Table-III collects the principal resuits of this paper, the measured
values of universal numbers for the real physical system, Fig. 1, and
compares them to the values predicted by the logistic model. Considering
that the actual nonlinear differential equations, Eqs. 2.2 and 2.3, of
the anharmonic oscillator are much more complex than the simple logistic
nonlinear expression, Eq. 3.0, it is concluded that the agreement is
surprisingly good. These are the first direct experimental measurements
[as contrasted to computed (numerical) experiments] for @, x, and 8. The
strong similarity between the observed and predicted bifurcation diagram
gives further support to the utility of simple models as a key to chaotic
behavior of nonlinear systems. The measurement of the bifurcation diagram
is a powerful method for assessing the degree to which this route, or other
routes,!* a particular physical system will follow. For examnle, Figure 10

shows the bifurcation diagram observed for a circuit like Figure 1, but with
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a higher driving oscillator impedance: the diagrams differ ar large values
of Vo; the bifurcation diagram is quite sensitive to small changes in
system parameters.

We wish to thank Joseph Rudnick, Michael Nauenberg, Jim Crutchfield,
M. P. Klein, and Howard Shugart for helpful conversations. This work was
supported by the Director, Office of Energy Research, Office of Bﬁsic
Energy Sciences, Méterial Sciences Division of the U. S. Department of

Energy under Contract number W-7405-ENG-48.
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Table I

Threshold V0
Period rms volts Comments
2 0.639
4 1.567
8 1.785 Threshold for periodic bifurcation
16 1.836 ‘
32 1.853 .J
chaos 1.856 Onset of noise
12 1.901
24 1.9012 :}- Clear window with bifurcation
1.905
16 - 1.936 Noisy window
14 1.996 Noisy windecw
10 2.024 Noisy windcw
6 2.073
12 2.074 :}- Clear window with bifurcation
2.077
5 2.353
10 2.363 :}- Clear window with bifurcation
2.371
9 2.506 Noisy window
7 2.693 7
14 2.096 — | Clear window with bifurcation
2.700
3 3.081 7
5 3.538 Clear wide window with
24 31821 — | extensive bifurcation
48 3.841
3.844 |
18 3.913 Noisy window
15 4.056 Noisy window
9 4,145 .
18 4.154 - | Clear window with bifurcation
4.158 |
3 4.316 Noisy windcw
;g gtgig :}- Clear window with bifurcation
8 6.292 Window with flicker noise
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Table II

Periods Observable Noise Voltage (mV rms)
16, 8; 4, 2, 1 0.2 (initially present)
8, 4, 2, 1 10 £ 2
4, 2,1 60 £ 5
2, 1 400 £ 25
1 2500 + 500
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Table IIT

Computed Measured

Universal Number Value Value (This work)

5 (Eq. 3.1a) 4.669... 4.26:0.1 (Egs. 4.1, 4.2)
«  (Eq. 3.1b) 2.502... 2.43%0.1 (Eq. 4.3)

269 (Eq. 3.2) 13.2db 11 to 15 db (Fig. 3)

x (Eq. 3.4) - 6.619... 6.29:0.3 (Eq. 4.4)

8 (Eq. 3.5a) 3.237... 3.26+0.9 (Eq. 4.6)
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Fiqure Captions

Fig. 1 Schematic diagram of apparatus (XBL 821-7684).

Fig. 2 Computed bifurcation diagram {xn} vs A, adapted from Ref. 9,
showing bifurcation thresholds As Ageees chaos threshold Aes band

‘mergings M1, MO; and windows of period 6, 5, and 3 (XBL 821-7677).

Fig. 3 Power spectral density (db) vs frequency, from zero to f/2 = 49 kHz
in the prechaotic regime, showing subharmonic components f/2...f/32 with
a dynamic range of 70 db. The intensities agree with prediction  dashed

bars (Ref. 2), within an rms deviation = 2 db (XBL 821-7683).

Fig. 4 Power spectral density (db) of bifurcated subharmonic components

in the f/3 window in the chaotic regime (XBL 821-7685).

Fig. 5 The series circuit current I(t) (vertical axis) vs the varactor
voltage Vc(t) (horizontal axis); these phase portraits are shown for a
series of values of the control parameter V° (see Table I). (a) Period f
before first bifurcation. (b) Period 2 after bifurcation. (c) Period 4.
(d) Period 16, expanded view. (e) Clear period 12 window in chaotic
regime. (f) Clear period 5 window. (g) Clear period 3 window. (h) Merge

M, into two bands. (1) Merge My into one band. (XBL 821-7686)

Fig. 6 (a) Varactor voltage Vc(t) and the sinusoidal "clock" voltage Vo(t)
for period 6 window at 2.073 V; the observed visitation pattern of the
oscillator to its states is RLRRR, in agreement with Ref. 7. (b) A similar

real-time signal for a bifurcated period 6 window at 3.538 V, with a
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different pattern, RLLRL. The R signals, corresponding to the varactor
reversed bias voltage, have clearly distinct values. The L signals occur
in forward bias when the varactor diode is highly conducting, so that

the voltage is highly compressed into thg zero line (XBL 821-7682).

Fig. 7 (a) Measured bifurcation diagram, obtained by a scannfng window
comparator whose output V.y measures all the peak values of the varactor
voltage Vc; this is done simultaneously with a much slower sweep (100
sec) of the driving oscillator vo]tage'vo from 0 to 10 volts. The
overall result has a close correspondence with Fig. 2, and various

common points are identified (11 > V], etc.). Clear windows at periods
5,7, 3, 6, 12, and 9 are identifiable. Only the upper half of Fig. 2

is recorded for reasons discussed in Fig. 6 (XBL 821-7678).

(b) Expansion of the bifurcation diagrah of Fig. 7(a).(XBL 821-7687).

(c) Bifurcation diagram further expanded showing more clearly bifurcation
thresholds V3 (period 8) and V4 (period 16); window of period 12; band
merge My; and period 6 window (XBL 821-7679).

(d) Further expansion of the top half of Fig. 7(c) (XBL 821-7688).

(e) Further expansion of the lower half of Fig. 7(c) (XBL 821-7689).

(f) Further expansion of the bifurcation diagram, Eig. 7(c); the universal
metric pitchfork scaling by a = 2.5 is becoming eQ%dent (see Fig. 9)

(XBL 821-7690).

Fig. 8 The noise power (in db) in a 300 Hz band width just below f/2 but

resolved from it, vs the driving voltage V0 (in peak volts), showing the
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onset of noise (i.e. the onset of chaos); its rapid rise; and dips at
windows of period 12, 6, 5, 7, 3, and 9. There is a hysteresis in the

threshold for the period 3 window (XBL 821-7691).

Fig. 9 (a) The universal pitchfork structure, scaled by a = 2.502... as
computed by Feigenbaum (Ref. 1). (b) The measured values of VC (from an
expanded bifurcation diagram) for the apparatus of Fig. 1, at period 16,

Just before the threshold for period 32. From the measured spacing we

find ¢« = a/b = 2.35, and « = ¢/a = 2.61.

Fig. 10 Bifurcation diagram for a system similar to that of Fig. 1, but
with a larger driving source impedance. This diagram resembles Fig. 7(a)

but differs at large values of Vo (XBL 821-7692).
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