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ABSTRACT 

Bifurcations, chaos, and extensive periodic windows in the chaotic 

regime are observed for a driven LRC circuit, the capacitive element being 

a nonlinear varactor d.iode. Mea-surements include power spe.ctral analysis; 

rea.l time amplitude d·ata; phas·e portra:its; and a bifurcation diagram, 

obtained by sampling methods. The effects of added external noise a-re 

studied. These data yield experimental detenninations of several of the 

un·iversal numbers pred·i'cted to characterize nonlinear systems having this 

route to chaos. 
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I. Introduction 

There is at present a revival of interest in nonlinear dissipative 

systems, largely due to recent theoretical developments from topology and 

the computed behavior of simple recursion relations, or maps, e.g., the 

logistic· difference equation xn+l = AXn{l-xn). 1
-

3 This is perhaps the 

simplest nonlinear expression, and much more readily calculable than the 

nonlinear diffepentiaZ equations of most physical systems. As discussed 

in Section III, the logistic model predicts period doubling bifurcations; 

onset of chaos (noise); and periodic windows in the chaotic region. The 

behavior is quantitatively characteriz.ed by several 11 Universal numbers .. , 

obtained by computer iteration. These are somewhat analogous to critical 

exponents in the theory of critical phenomena. The prediction and the 

hope is that the behavior of such s·imple maps will qualitatively and even 

semi-quantitatively explain the actual behavior of real systems. There 

are many examples of nonlinear behavior in condensed matter physics which 

give ris.e to instabiliti'es and noise, not yet well understood. The objective 

of this report is to study in detail a driven nonlinear semiconducting 

oscillator, using several methods, and to compare its behavior with the 

logistic model. The d-ata yield .. measured values 11 for several of the universal 

numbers, some for the first time. The overall agreement is surprisingly 

good. Studies of similar physical systems are in progress; the tentative 

results are also understandable in terms of the logistic model. Feigenbaum1 

has shown that a large class of maps having a quadratic maximum exhibit 

the same universal behavior as the logistic map. 
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II. System 

The nonlinear electrical oscillator used in this experiment was a 

LRC circuit as shown in Figure 1. A heavily doped silicon diode, type 

1N953 manufactured by TRW Company, supplied the nonlinear capacitance. 4 

The capacitance across the varactor varies.with reverse applied voltage as 

c 
C(V) = 0 (2.1) 

(l+V/b) 8 · 

where C
0 

= 300 pF, b = 0.6 volts, and B = 0.5. For the reversed half of 

· a eye 1 e when the diode is in the nonconducting capacitance state, the 

circuit driven by an oscillator obeys the e.quation 

where the relation 

Ld2~ + R.QQ. + { 1 + V) B Q = V sin ( 2rrft) 
dt dt b· co 0 

B 
V(Q) ~ (1' + ~) g 

0 

(2.2) 

(2.3) 

ca·n be used to elimi-n-ate V in the third tenn on the left. This yields a 

complicated nonlinear oscillator of fonn LQ + RQ + t f(Q) = V(t). In the 
0 

forwa:r.d (conducting) phas.e the function f(Q) is different, the diode being 

chiefly conducting, with negligible capacitance. The objective of this 

paper is not to solve these intractable equations, but rathe.r to take data 

on this physical system and compare it to the predictions of the simple 

logistic model. However, for the form f(Q)=Q-4Q 3 , the driven nonlinear 

oscillator problem has been solved by computer, 5 with solutions exhibiting 

behavior similar to the logistic model. 

III. Theory 

One of the paths a driven system can take that leads to chaotic, or 

turbulent, behavior is that of period doubling bifurcations, calculable, 

e.g. from the logistic recursion relation 
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xn+l = AXn(l-xn), (3.0) 

where A is the control parameter or driving force. For o <A< 4, x lies in 

the interval o < x < 1; the resulting bifurcation diagram is shown in 

Figure 2. As A is increased, there is a threshold value Al where the 

iteration of Eq. 3.0 yields two values of x, and the power spectrum shows 

a new component at f/2. A.s the system is driven harder (>. further increased) 

more bifurcation thresholds (denoted by An) and subharmonics appear at 

f/4,. f/8,. f/16, .•• , (f/2~). •• , until n + •, which is the threshold for 

the chaotic state a-t '-c· At this point pseudo-random noise begins. For 

>. > >.c, a s·equence of inverse bifurcations or noise band mergings occurs, 

Figure 2, at Mn, n = ... 3, 2, 1, 0, where 2n+l bands merge to 2n bands.2 

After the point where chaos (noise) occurs is reached, there appear 

windows (see Fig. 2) in this noisy region that are noiseless. These 

windows are periodic at subharmonic frequencies f/m, where m = 1, 2, 3, 

4 •.. ; some show subse.quent bifurcations within the window width. These 

new bifurca.tions lead to chaos (nots·e) a.gain. 

All of this behavior obeys certain universal properties irrespective 

of the exact details of the system. According to the latest developments 

of the theory of the bifurcations., there are a number of universal numbers 

that occur in a bifurcating system. The first one to be computed, by 

Feigenbaum, 1 is the convergence rate o, which is defined as 

= &n J = 4.669 ... (3.1a) 

where An is the threshold value of the driving parameter for the system 

where the nth bifurcation occurs, and fn = f/2". 

Feigenbaum also computed the number 

a = 2.5029 ... (3.1b) 
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which measures the ratio of the pitchfork separation in the upper and 

lower bifurcations, Figure 2. 

The average height of the peaks of the odd subhannonics in a power 

spectral plot from one bifurcation to the next is predicted to be6 

2n-l 

~ ~ P[(2i+l) fn] 

1 2n n E P( (2i+l) f n+l] 
2 i 

28(2)= 20.963 ... =lim 
. n -+ ... 

(3.2) 

where fn is the fre.quency of the nth bifurcation and P(f] is the power of 

the subharmonic of frequency, f. 

In the chaotic region the noise-free periodic windows are predicted to 

occur in a certain order7 and at certain values of the driving parameter 

lK.q' accordtng to 8 

(3.3) 

Here IK ts the point whe.re. 2K bands merge into 2K-l bands in inverse 

bifurcation; AK,q is the threshold point where the pe.riod q occurs between 

mergings IK and IK-l' and A is a constant. 

A·s K + ... , tt has been computed8 that Y K a·pproaches 

y = 2.948 ... , 

which is another universal number. 

(3.3a) 

The effect of added external noise on the system has been predicted 

to be governed by universal constants, also. Assume that one can observe 

periodic behavior of at most period q·2P at a noise levei AP. If the no·ls~ 

voltage level is reduced by a factor 9 , 12 

IC = 6.619 ... . (3. 4) 

h '11 b 1 1 ddi 1 1 . d 2P+ l t en one w1 be a e to reso ve an a t ona per1o q· . 
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It is also predictedlo that the rms spectral band width at the nth. 

bifurcation, Wn, obeys, 

(3.5) 

where 

B = 3.2375 ••. (3.5a) 

is another universal number. 

The ·integrated noise power spectrum, N().), also obeys a scaling 

relation,lO given by 

(3.6a) 

where 

= 2lnB - 1 5. 247 a ~ - ...•• , (3.6b) 

The Lyapunov characteristic exponent I (not to be confused with the 

control paramete.r ).) also obeys a scaling relation, 11 

whe.re 
r = r <).-). )'t 

0 c 

_ ln2 
-r = 0. 44·98069. . . - l M 

And at ).c' r scales with added noise A a·s 9 

r(). = ). A) = AA e . c' 

where 

e = 0.37 ± 0.01, A= 0.58 ± 0.01 

(3.7a} 

(3.7b) 

(3.8a) 

(3.8b) 

To sumnarize this section, it is clear that a number of computed 

"universal numbers .. exist which characterize the bifurcation route to chaos. 

The simplest logistic model of nonlinearity, Eq. 3.0, has been used to 

compute most of these; however, it appears that essentially the same 

numerical values are computed for any simple nonlinearity with approximately 
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a quadratic maximum. In the next section of this paper we give measured 

values of several of these numbers. 

IV. Experimenta.l Results 

A. Methods 

In the experimental a.rrangement, Figure 1, the sine wave oscillator 

at a frequency fixed near fres =93kHz, and variable voltage V
0 

sin(21Tft) .· 

is fi 1 tered by a narrow band fi 1 ter; a d.i gi ta 1 AC voltmeter reads the 

amplitude V0 to within 1 mV. The role of the control parameter A is 

played by the voltage V
0

• The developed volta.ge across the nonlinear 

capacitor, which correspond~ to x in Eq. 3.0, is amplified by a buffer, 

whose output Vc is used in several ways: 

1) To measure the power spectrum (see Figs. 3 and 4) with a spectrum 

a·nalyzer having a dyliami c range of 85 db and sens i ti vi ty of 300 nV. 

Spe.c.tra.l- components f/2 to f/32 are well resolved. It would be 

poss·i b 1 e to observe components 95 db be 1 ow V 
0 

at f; however, the 

intrinsic noise of the va.ra:.ctor d.iode initiates chaos after f/32. 

2} To di'spla·y I(t) and V
0
(t) along the y and x axes of an oscilloscope, 

respectively, generating a phase portrait (see Fig. 5), analogous 

to the elliptical orbit of a hannonic oscillator in phase space 
. 
X, X. 

3) To generate on a dual beam oscilloscope a real time display Vc(t) 

(see Fig. 6}, which shows directly the bifurcated subharmonic 

periods and the patterns of visitation of the oscillator to its 

various states. 7 

4) To generate by a fast sampling procedurel3 the actual bifurcation 

diagram (see Fig. 7) of the system, analogous to the (computed) 
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diagram of Figure 2. This is the first report of the direct 

measurement of a bifurcation diagram; it is a powerful technique 

for analysis of nonlinear behavior, and shows all the features of 

Figure 2, inc-luding bifurcation thresholds, onset of chaos, band 

mergings, windows, and a veiled structure corresponding to 

regions of high probability density.9 The Figures 7a-7f show 

successive close-ups (using electronic zoom) of the universal 

pitchfork structure, over a scale of 100. 

Sl To genera·t·e, by sampling noise in a very narrow band near f/2 

but not at any dis·crete subharmonic up to f/100, a noise scan 

(s·ee F'ig. 8), which displays directly the onset of chaos at 

V
0 

= Vcrit (i.e. ·A = Ac), and the many noise-free windows in 

the chaotic region. 

B. D.a:ta 

A run. consisted of slowly increasing V
0 

and re.cording the threshold 

value.s V
0
n for bifurcati-on t·o ·a f·requency f/2n. The indication of a bifur­

cation was taken to be the a!i)pearance of this subhannonic in the frequency 

s·pectrum, with a signal· 10 db above the noise level. An alternate but 

less sensitive method was visual observation of a splitting in the phase 

portrait on the x-y oscilloscope. Table I lists events and the voltage 

V
0 

at which they occur, for a frequency f = 99 kHz: periodic bifurcations, 

chaos, and a number of clear noiseless windows were observed·, as well as 

. many noisy windows. Notable is a wide and stable window that begins at 

V0 = 3.081 volts with period 3, and then bifurcates to periods 6, 12, 24, 

and 48, finally becoming noisy at 3.844 volts. These windows have the 
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ordering and the visitation patterns approximately as predicted in Ref. 7, 

and will be discussed in another paperl 3 ; they are visible in the bifurca­

tion diagram, Figure 7, and the window scan, Figure 8 . 

. From the thresholds for the prechaotic periodic bifurcations, we 

calculate for the convergence number 

v - v 
o1 = V04 V02 = 4.257 ± 0.1 

08- 04 

v - v 
4 = 08 °4 = 4.275 ± 0.1 2 V016-V08 

( 4. 1 ) 

• (_4. 2) 

From a·n expansion of the bifurcation diagram, Figure 9, we are able 

to directly measure the number a for the first time; this figure shows the 

ratio of the splitting in the upper and lower branches at period 16, just 

before bi·furcat:ion to 32.. From six independent measu.rements we find 

a. = 2 • 4.J ± 0 . 1 (4.3) 

By addjng external noise from a random noise generator to the sine 

wave e:Xci'tation, it was possible to observe both from the power spectrum 

and the bifurcation diagram that increasing noi"se obliterates successively 

the bi-furcations. In Table U the data are presented. From the voltage 

ratio required to obliterate successive bifurcations, we measure the 

average value 

1C = 6.30 (4.4) 

The number 2e~J, Eq. 3.2, expressed as 10 leg{20.963) = 13.21 db, can 

be experimentally determined by comparing the average of the peaks in the 

power spectra between two successive bifurcations. For our data where 

average peaks between 0 and f/2 are recorded, it is more convenient to 
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compare the individual peaks to the predictions of the logistic model, 

shown, e.g. in Ref. 2, page 53, and as dashed bars in Figure 3. The 

data show reasonable agreement with a rms deviation of ~2 db. 

By integrating the smoothed broad-band noise power P(f) 
l 

N(A) • f1 2P(f)df for spectral analysis data taken at successive band 
0 

merging_s Mn in the chaotic regime, we obtained a measured value of the 

number s, using the expressionlO: 

N (M n+ l ) = N (M n ) S-2 (4.5) 

For data taken at band mergings M3, M2, M1, and r~0 • corresponding to 

the merging t·o 8, 4, 2, and 1 bands, respectively (see Figs. 7a, 7c, and 

Je), we find the average value 

s = 3.26 :!: 0.9 (4.6) 

V • S.urrma.ry 

Ta·ble III collects the principal results of this paper, the measured 

va.lue.s of universal numbers for the real physical system, Fig. 1, and 

compa.res them to the values pred·icted by the logistic model. Considering 

that the a.ctua 1 non Hnear differentia 1 e.quat·i ens, Eqs. 2. 2 and 2. 3, of 

the anharmonic oscillator a:re much more complex than the simple logistic 

nonlin·ear expression, Eq. 3.0, it is concluded ~hat the agreement is 

surprisingly good. These are the first direct experimental measurements 

[as contrasted to computed (numerical) experiments] for a, ~C, .and a. The 

strong similarity between the observed and predicted bifurcation diagram 

gives further support to the utility of simple models as a key to chaotic 

behavior of nonlinear systems. The measurement of the bifurcation diagram 

is a powerful method for assessing the degree to which this route, or other 

routes,l~ a particular physical system will follo~. For exam~le, Figure 10 

shows the bifurcation diagram observed for a circuit like Figure 1, but with 
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a higher driving oscillator impedance: the diagrams differ ar large values 

of V0 ; the bifurcation diagram is quite sensitive to small changes in 

system parameters. 

We wish .to thank Joseph Rudnick, Michael Nauenberg, Jim Crutchfield, 

M. P. Klein, and Howard Shugart for heloful conversations. This work was 
' supoorted by the Director, Office of Energy Research, Office of Basic 

Energy Sciences, Material Sciences Division of the U. S. Department of 

Energy under Contract numbe.r W-7405-ENG-48. 
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Table I 

Pe.riod 
Threshold V

0 nns val ts Comments 

2 0.639 

1 4 1.567 
8 1. 785 Threshold for periodic bifurcation 

16 1. 836 J 32 l.A53 
chaos 1.856 Onset of noise 
12 1. 901 } 24 1.9012 Clear window with bifurcation 

1. 9.05 
16 1. 936 Noisy window 
14 1. 996 No·i sy win dew 
10 2 .. 024 Noisy windcw 

6 2.073 } 12 2.074 Clear window with bifurcation 
2.077 

5 2.353 } 10 2.363 Clear window with bifurcation 
2 .3.71 

9 2 .• 5'0:6 Noisy window 
7 2 .. 6:9··3 } I 

14 2 .•. 09~6· Clea.r wtndow with bifurcation 
2:. 70Q 

3 3 .•. oa:l -
6 3. 53·8 Clear wide window with 

12 3 .. 711 .... e·x-tens i ve b i furca.t ion 
24 3.821 

-48 3.84·1 
3.844 -

18 3 .. 913 Noisy window 

I 15 4. 0'5'6 Noisy window 
• 9 4.14S } 18 4:154 Clear window with bifurcation I 4.15'8 I 3 4·.316 Noisy windcw 
13 5 .. 232 } ' 
26 5.246 

Clear window with bifurcation 

8 6.292 Window wit~ flicker noise 
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Table II 

Periods Observable Noise Voltage {mV nris l 
16, 8; 4, 2, 1 0.2 (initially present) 

8, 4, 2, 1 10 ± 2 

4, 2, 1 60 ± 5 

2., 1 400 ± 25 

1 2500 ± sao 
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Table In 

Computed t4easured 
Universal Number Value Value (This work} 

0 {Eq. 3.1 a) 4.669 ... 4. 26 ± 0.1 ( Eqs . 4. 1 , 4. 2) 

a ( Eq. 3. 1 b) 2 .. 502 •.. 2. 43 ± 0.1 (Eq. 4. 3) 

2,2) (Eq. 3.2) 13.2 db 11 to 15 db (Fig. 3) 

IC (Eq. 3.4) 6.619 ... 6. 29 ± o. 3 (Eq. 4.4) 

a (Eq. 3. Sa) 3.237 •.. 3. 26 ± 0. 9 ( Eq. 4. 6) 
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Figure Captions 

Fig. 1 Schematic diagram of apparatus (XBL 821-7684). 

Fig. 2 Computed bifurcation diagram {xn} vs A, adapted from Ref. 9, 

showing bifurcat'ion thresholds A1, A2 ..• ; chaos threshold Ac; band 

mergings Ml, MO; and windows of period 6, 5, and 3 (XBL 821-7677). 

Fig. 3 Power spectral density (db) vs frequency, from zero to f/2 = 49 kHz 

in the prechaotic regime, showing. subhannonic components f/2 ••• f/32 with 

a dynamic range of 70 db. The intensities agree with prediction 1dashed 

bars (Ref. 2), within an rms deviation :a 2 db (XBL 821-7683). 

Fig. 4 Power spectral dens1ty (db) of bifurcated subhannoni-c components 

in the f/3 window in the chaotic re.gime (XBL 821-7685). 

Fig. 5 The seri e,s ci'rcui t current I ( t) ( ve-rti ca 1 axis) vs the varactor 

vc:rlt'a.ge Vc(t.) (horizan·t'al axis);· these phase portraits a-re shown for a 

s·e·ries of values of the control pa·ramet'er V
0 

(see Ta·ble I). (a) Period f 

bef'ore fi-rst bifurca·t'ion. (b) Pe:riod 2 aft'er b.ifurcation. (c) Period 4. 

(d) Period 16, expanded view. (e) Clear period 12 window in chaotic 

regime.. (f) Clear period 5 w-indow. (g) Clea-r period 3 window. (h) Merge 

M1 into two bands. (-i) Merge M0 into one band. (XBL 821-7686) 

Fig. 6 (a) Varactor voltage Vc(t) and the sinusoidal "clock" voltage V
0

(t) 

for period 6 window at 2.073 V; the observed visitation pattern of the 

os·cillator to its states is RLRRR, in agreement with Ref. 7. {b) A similar 

real-time signal for a bifurcated period 6 window at 3.538 V, with a 
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different pattern, RLLRL. The R signals, corresponding to the varactor 

reversed bias voltage, have clearly distinct values. The L signals occur 

in forward bias when the varactor diode is highly conducting, so that 

the voltage is highly compresse.d into the zero line (XBL 821-7682). 

Fig. 7 (a) Measured bifurcation dia.gram, obtained by a scanning window 

comparator whose output VY measures all the peak values of the varactor 

voltage Vc; this is done simultaneously wtth a much slower sweep (100 

sec} of the driving os·cillator voltage V
0 

from 0 to 10 volts. The 

overall result has a cl~s~ correspondence with Fig. 2~ and various 

common points are i.dentified (). 1 -+ v1, etc.). Clea.r windows at periods 

5, 7, 3, 6, 12, and 9 are identifiable. Only the upper half of Fig. 2 

is recorded for reasons discussed in Fig. 6 (XBL 821-7678). 

(b) Expans·i'an of the bi'fiJrca.tion diag.ram af Fig. 7(a) (XBL 821-7687). 

(c) s·ifurc.a,tion diagram further expanded showing mo:re clearly bifurcati-on 

thresho 1 ds V 
3 

(peri-od. 8} a·nd V 
4 

( pe.ri'od 16); window of period 12; band 

merg.e M1 ; and pe.ri ad 6 window (XBL 821- 7'679). 

(d) Further ex pans ion of the top ha 1 f of Fig. 7 (c) ( XBL 821-7688). 

(e) Fu.rther expansion of the 1 ower ha 1 f of Fig. 7 (c) ( XBL 821-7689). 

(f) Furthe.r expans·ion of the bifurcation diagram, Fig. 7(c); the universal 
. . .: 

metric pitchfork scaling by a = 2.5 is becoming evident (see Fig. 9) 

(XBL 821-7690}. 

Fig. 8 The nois.e power (in db) in a 300 Hz band width just below f/2 but 

resolved from it,~ the driving voltage V
0 

(in peak volts), showing the 
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onset of noise (i.e. the onset of chaos); its rapid rise: and dips at 

windows of period 12, 6, 5, 7, 3, and 9. There is a hysteresis in the 

threshold for the period 3 window (XBL 821-7691). 

Fig. 9 (a) The universal pitchfork structure, scaled by a= 2.502 •.• as 

computed by Feigenbaum (Ref. 1). (b) The measured values of Vc (from an 

expanded bifurcation diagram) for the apparatus of Fig. 1, at period 16, 

just before the threshold for period 32. From the measured spacing we 

find a= a/b = 2.35, and a= c/a = 2.61. 

Fig. 10 Bifurcation diagram for a system similar to that of Fig. 1, but 

with a large.r driving source impedance. This dia.gram resembles Fig. 7(a) 

but differs at large values of V
0 

(XBL 821-7692). 
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