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CHAOTIC BEHAVIOR IN NONLINEAR POLARIZATION DYNAMICS

D. David, D.D. Holm, and M.V. Tratnik
C.N.L.S. and Theoretical Division, MS B238
Los Alamos National Laboratory

Lns Alamos, NM 87545

Abstract. We analyze the problem of two counterpropagating optical laser
beams in a slightly nonlinear medium from the point of view of Hamiltonian systems;
the one~beam subproblem is also investigated as a special case. We are interested in
these systems as integrable dynamical systems which undergo chaotic behavior under
various types of perturbations. The phase space for the two—beam problem is C? x C?
when we restrict to the regime of travelling-wave solutions. We use the method of
reduction for Hamiltonian systems invariant under one-parameter symmetry groupe
to demonstrate that the phase space reduces to the two-sphere S? and is therefore
coinpletely integrable. The phase portraits of the system are classified and we also
determine the bifurcations that modify these portraits; some new degenerate bifurca-
tions are presented in this context. Finally, we introduce various physically relevant
perturbations and use the Melnikov method to prove that horseshoe chaos and Arnold
diffusion occur « consequences of these perturbations.

1. Introduction. In this paper, we treat optical polarization dynamics for two
counterpropagating laser beams (Section 2) in a lossless, cubically nonlinear, Kerr like,
parity-invariant, anisotropic hornogeneous medium with small nonlinearities (for instance,
polarized beams in an optical fiber); the problem of single beam is analyzed in Section 3.
Nonlinear effects in po.arized light beams have been studied for nearly three decades. For
instance, the precession of the polarization ellipse for a beam in a nonlinear medium is
demonstrated in Maker et al.(1964]. Stable configurations of the nonlinear interaction of
two counterpropagating waves in an isotropic medium are studied, e.g., in Kaplan {1983]
and Lytel [1984]. Polarization bistability in such a medium and numerical evidence for
chaos is found in Otsuka et ai. [1985] and Gaeta et al. [1987]. Interpretatiors of experimental
optical data in terms of chaotic behavior are given in Trillo et al.{1986]. Analyses of special
rases of the one-beam and two~beam problem appear in Tratnik and Sipe [1987) where the
authors give physical interpretations for some of the fix.d points and find special solutions.
Here we provide a unified study and a complete analysis of the qualitative properties of
these problems (phase portraits, bifurcations, special solutions) in the regime of travelling-~
wave solutions. Hamultonian techniques are used to reduce the phase space C? x C? for
the travelling-wave dynamics of the two~beam problem and C? in the case of the one-

heam problem to the spherical surface 52, Bifurcations of the phase portraits on 57 are



determined, and homoclinic and heteroclinic orbits connecting hyperbolic fixed roints are
identified. These orbits are the stable and unstable manifolds of the hyperbolic fixed points
and they separate various regions in phase space, each characterized by a different type of
periodic behavior. Under spatially periodic perturbations of the medium parameters, these
stable and unstable manifolds for the travelling-wave solutions are shown to tangle so as
te produce a Smale horseshoe in the Poincaré map of first return induced from the periodic
perturbation; Arnold diffusion is also implied for perturbations that brezk enough of the
symmetries of the Hamiltonian function in the two—beam case. The presence of this tangle
is diagnosed via the Melnikov method, as generalized to higher than three dimensions in
Wiggins [1988]. The location of the chaotic set is characterized analytically, as well as its
dependence on the material parameters and the intensities of the optical beams.

2. The Two—Beam Problem.

2.1. Deflnition and reduction to S?. The two-beam problem for two counterprop-

agating travelling optical wave pulses is described by the following Hamiltonian function
and equations of motion defined on C? x C?%:

H = +x5§'2e(e.-‘e:e~e €jex; +4dele;2,27) (2.1)
080G OF OF oG oG oF 3F G
{F.G} = (x/F) (ae- 3¢ ~ Ge* 6e> <10 (5 5% ~ 5 %) 2
0
é—-—z("/r)x.)“(e ere + 2¢,€,2;) (2.3a)
0¢i e = | 0w . e '
'5_1' =i(x/r) tfflz(e e + 28;cuey) . (2.3b)

The Poisson bracket is canonical; as is usual for Hamiltonian systems, the travelling-wave
evolution of a dynamical quantity F is determined by 0F/8r = {F, H}, where 7 is the
travelling-wave variable. In the above equations, the dependent variables e and & represent
the electric field amplitudes associated with each of the beams and both are complex two-
vectors taking values in C?. The quantity () is the thicd order susceptibility tensor
parametrizing the nonlinear polarizability of the medium and verifying the involutions
x::l, = x()f,)* and xf:l, = x‘,n. = xf::, r and ¥ denote the intensities of the two beams,
and the constants x and X are related to the group velocities of the beams (see David et
al.[1989] for details of the problem formulation and background references to the physics

literature). A remarkable property of the Hamiltonian function (2.1) is that it is invariant



under a diagonal action of the group U(1) x U(1). This allows us to use the Marsden-
Weinstein reduction procedure for Hamiltonian systems with symmetry (see Marsden and
Weinstein [1974]) to show that two consecutive Lie—Poisson maps of C? x C? reduce the

system to the two—sphere S*.

TEEOREM 1. For isotropic media, the Hamiltonian system (1.1-1.9) reduces to a

two-dimensional Hamiltonian system on the two-sphere S?,

We give only a sketch of the proof; again, for more details, see David et al.[1989]. The
first step of the reduction consists of restricting the phase space C? x C? to the product
manifold $% x $?. This is possible because of the rotational invariances (one in each
C?) of the Hamiltonian function; the conserved quantities associated to these invariances
are the intensities of the beams, r and 7, whose level surfaces define submanifolds of the
initial phase space in which the motion is confined. (The essence of reduction consists of
restricting the phase space tu level hypersurfaces of the various conserved quantities of the
system.) The first reduction is accomplished in the following manner. We first restrict
C? x C? to the subspace § x S by rewriting the system in terms of bilinear forms in the
electric field amplitudes:

(e,8) — (u=e'de, T=8'5%) , (2.4a)
with

W = i, x(h¢Tre = Diag (A1, Az, Aa) (2.4b)

and where & represents the three Pauli spin matrices; this representation is sometimes
refered to as the Stokes representation and each copy of S? is known as a Poincaré sphere.
The Poincaré sphere provides a convenient way of describing the polarization states of a
beam; the north and south poles represent the two opposite circularly polarized states,
equatorial points are associated with linearly polarized states, and all oiher poin's cor-
respond to elliptically polarized states. It proves convenient to introduce the eigenvalues
of W, the A,; here we deal with isotropic media, in which case Ay = A,. The intensities
of the beams, r and 7, are the norms of u and U whose level surfaces form products of
two-spherss in S x S*; these surfaces in fact determine a Hopf fibration of $3 x 5 with
$% x 5 leaves labeled by the conserved intensities. The motion on §? x S? is expressible

as an evolution system for spherical angles on each sphere:

(u,T) — (6.5.8,9) . (
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We remark that the passage from C? x C? to S3 x S3 is similar to the passage from the
Cayley-Klein parameters to the angular momentum representation for the dynamics of the
1igid body. (See, e.g., Crampin and Pirani (1987}, pp. 202-207, for a clear discussion of
Cayley~Klein parameters.) For isotropic media there exists a further S! rotation symmetry
of the Hamiltonian function (as in the symmetric rigid body). The associated conserved
quantity, o, is the total projection of the angular momentum (per unit length) of the two
beams (as defined below) along the direction of propagation. This symmetry allows us to
perform a second reduction step which brings the phase space to a single two—sphere S?,
coordinatized by the angles i and a through the following formulas:

a=¢—~¢, 8=¢+0, o0=~xcosf+Ecosb,

(2.6a)
w() = Kcos@ - Kcosd = w, + Rcos ¥,
where w, and R depend on the value of o as follows:
o2 Rl —|sl: wo=I|sl=IR], R=I|sl+]R-o;
k| =|RK| S o <Rl ~|&]: wo=-~0, R=2l; (2.66)
o<k =[Rl: wo=[R]~I|x|, R=|xl+[Rl+c.

Generically, the above choices (2.6b) ensure reduction to a smooth manifold. Special
situations arise however when ¢ is equal in magnitude to || ~ |X]; for these cases, one of
the poles (or both of them if ¢ = 0,1.e.,|%| = |x|), on the sphere becomes a singular point,
so that the reduced phase space may be formally identified with S?\P. We point out
that this causes no difficulty for the analysis of the motion; in fact, interesting degenerate
bifurcations take place in these singular cases. On 53 the Hamiltonian function, the
Poisscn bracket, and the equations of motion become

H =2 (r? + 7 4+ (r7/R) [[w? + Ao? + 2Ecw + f(¥)f(¥) cosa)) , (2.7a)

2KkR OF 0G O0GOF . OF 3G O0GOF -
{F'G}=___r?Rsinw [5;53-—5;-07;+235mw<-6—53-;—b—550—>] ,  (2.7b)
% ==\ f(¢)f(¥)sina/Rsiny ,

?Tf =2\ (Tw + Ea) + A, [(0 =) f(4)/F(W) = (0 + ) F(¥)/ f(v)] cona,

where w is given by (2.6a) and



P=3(L~-Vp+=-L, A=3(L-Vpse+L, E=3(L-1)p-, L=x/\,
(2.7d)
px = (rR/Te £7r/rR) , f(¥)= \/4~2 -(o+w)?, Ffly) = \/4z2 ~ (o =-w)*.

In addition to (2.7¢), there is a quadrature in the variable 3:

0 - -
22 =20 (30 + Ew) = A [(0 =) f0)/F(0) + (0 + ) F0)/ f(9)] cosa . (27¢)

Since the reduced system is Hamiltonian on a two-dimensional phase space, there imme-
diately follows the

COROLLARY 1. The two-beam system (2.3) is completely integrable.

An important remark is that the reduction procedure just described is not character-
ized by any loss of information about the solutions. Although the reduced system lives on
a lower dimensional subspace of the initial phase space, the full solution may be recon-
structed from the reduced solution via quadratures.

THEOREM 2. The solution manifold of the system (2.8) is completely determined by
that of the reduced Hamiltonian system on S3.

Roughly speaking, Theorem 2 is proved by going backwards through the proof of
Theorem 1. First, by integrating for 3, taking into account that o is a constaat of the
niotion, and inverting (2.5), we construct the solution on the product space §2 x S? of
Poincaré spheres. Next, we invert (2.4a) and use the fact that the intensities of the beamns
define an immersion in the original phase space; this determiner the solution of the initial
system up to a phase for each fleld. These remaining phases ar:' finally reconstructed by
substituting into (2.3): this substitution yields quadrature equations for the phases, whicn
may then be integrated to obtain the full solution.

2.2. Fixed points, bifurcations, and special solutions. The reduced system
(2.7¢) on S? for the variables ¢ and a exhibits several interesting bifurcations, which
take place when certain critical hypersurfaces are crossed in the parameter space. In

particular two degenerate bifurcations occur which we call the Butterfly bifurcation and the



Teardrop bifurcation. The bifurcations arise when tlie reduced space S? has singularities at
either, or both of the poles. These bifurcations involving singular points may be significant
from the dynamical point of view as being a possible source of exponentially small (or
slow) chaos. To appreciate the various types of bifurcations which occur for the two-
beam problem, we begin by determining the set of fixed points (or curves of them), the
conditions for their existence, as well as their stability type on the reduced space S?; these
fixed points correspornd physically to steady state solutions of the two-beam system (2.3).
The parameter spacefor this system is of dimension five (it is, for instance, spanned by
[, o, x, K, and 7/r) and we could expect rather complex sequences of bifurcations as we
travel in the parameter space. Here, we present some sequences that are representative
of the global picture (for a more complete picture of the phase portraits and bifurcations
that exist for both the one-beam and the two-beam problems, see David et al.[1989]).

The most common sequence of portraits with bifurcations is depicted in Figure 1;
this sequence is obtained, for instance, by setting o # 0 and |R|/|x| = 1, and by varying
the remaining parameter I. For large absolute values of this parameter, we observe that
the phase portrait consists of a figure~eight puttern composed of a saddle point to which
are connected two homoclinic loops. These homoclinic loops separate the phase space into
three regions in which periodic motion of different types take place; in addition, each region
possesses a limit orbit which is a center, i.e., 2 stable fixed point. The homoclinic loops
are formed by coincidence of the stable and unstable manifolds of the hyperbolic unstable
fixed point for this integrable case and are objects which will be important later when we
discuss the chaotic behavior of the system under perturbations. In the limit as [['| — oo,
both homoclinic loops deform to the equator which becomes a circle of fixed points. As T
approaches certain critical values I 1, the loops collapse together onto the sadd.e point, at
which point a pitchfork bifurcation occurs, after which the phase portrait on S? consists

of a one-parameter family of periodic orbits with two stable centers.

The second example which we present is the limit of the preceding case when ¢ = 0.
This situation gives rise to a degenerate bifurcation which we term the Butterfly bifurcation
and which is illustrated in Figure 2. This bifurcation is characterized by the two centers
within the homoclinic loops of the preceding case being located at the poles and these
poles always remaining fixed points of the system; in fart, these poles are the singular

points of the reduced phase space for the case ¢ = 0. In contrast with the first cas=, the



Figure 1. The phase portrait and its pitchfork bifurcations for o # 0 and |x| = |x|.

homoclinic loops in this case cannot shrink to the equator because their enclosed centers
must remain at the poles. Instead, the homoclinic loops collapse to lines, so that when
I' =T, = -1 a half-great—circle of fixed points extends from one pole to the other. The
bifurcation then proceeds as I' becomes greater than ~1. The half-great—circle opens up
into two curves which behave like heteroclinic orbits in all respects. As [’ increases above
-1, these heteroclinic orbits rotate azimuthally around the sphere and collide back together
in the back of the sphere as I' = 1, at which point the bifurcation sequence reverses as t..e
colliding heteroclinic orbits transform, once more, into a figure—eight homoclinic pattern,
with the homoclinic point lying on the equutor. Figure 3 illustrates the bifurcations in the
above two cases in the (I',0)-plane, as I is varied at constant ¢. The second case, the

Butterfly bifurcation, occurs at ¢ = 0, along the horizontal (I')-axis.

A third case occurs when o takes its extremal value, equal to the difference of the
magnitudes of the kappas. Figure 4 chows the portrait for ¢ = |x| — |K|; for the opposite
case, ¢ = |R| — |«i, the phase portraits a~e similar to those in Figure 4, up to exchanging

the roles played by the poles. In this case, the north pole is singular. We point out that



Figure 2. The Butterfly bifurcation ocrurs when ¢ = 0 and |} = |x|.
It is degenerate and both poles are singular points on S2.

the preceding case is a limit of this case also: it is recovered when |%| = |x|. Here, the
portraits are characterized by the occurrence of a degenerate bifurcation which we have
termed the Teardrop bifurcation. As the pictures show in Figure 4, when |I'l is sufficiently
large, the phase portrait contains only periodic orbits. The teardrop bifurcation occurs as
{['| becomes smaller than a certain critical value. As this happens, the north pole develops a
singularity and a single homoclinic loop connected to it is created. Note that this contrasts
with the usual siiuation in which homoclinic loops are encountered in pairs; one may also
observe that here (as well as in the preceding case) the Euler index of the phase space
suddenly jumps from 2 to 1 as this bifurcation occurs, which is another indication of the
singular rature of the phase portrait for this case. This homoclinic loop then stretches
out, passes through the south pole, and contracts back to a single pcint at the north pole

where the bifurcation “undoes itself,” as the pole once more becomes a regular point.

We now present a few examples of special (travelling-wave) solutions of the system

(2.3a) and (2.3b), on the Poincaré sphere (for the variables u and u). First, consider



Figure 3. Phase portraits and bifurcations in the (I',#)-plane. Bifurcations occur on the curves 'y (o).

the heteroclinic orbits connecting the poles in Figure 2. The solution u is shown on the
left-hand picture in Figure 5. As r — —o0, the beam is circularly polarized. As the
travelling-wave variable increases, the solution spirals down from the north pole and the
polarization becomes elliptical with increasing eccentricity. At » = 0, the solution passes
through a linear polarization state as the curve crosses the equator. It then proceeds
to spiral down, symmetrically to the motion it underwent in the northern hemisphere,
towards the south pole where the system asymptotically approaches the other circularly
polarized state, opposite to that of the initial state. This solution is reminiscent of a kink
solution in a completely integrable partial differential equation. As a second example,

consider the homoclinic loops in Figure 2. These again give rise to a continuous family of



Figure 4. The Teardrop bifurcation occurs when ¢ = |x| - |%].
A single homoclinic loop is connected to a singular point at the pole.

kink-like travelling-wave solutions with linearly polarized asymptotic states (see middle
picture in Figure 5); soliton-/ike solutions are also obtained, as a special case when the
asymptotic states happen to coincide (see right-hand picture in Figure 5). Notice the
existence of a winding indez: the solution rotates any number of times around the nortn
pole; each solution is thus characterized by this index as well as its shift in azimuthal linear
polarization angle (solitons are those solutions with null shift). The winding index is the
integer part of [J(20) — J(—20)]/27, the nuimnber of periods of J, as determined fron 'he

quadrature formula (2.7e).



Figure 5. Some kink-like and soliton-like solutions u on the Poincaré sphere.

2.3 Generation of chaotic behavior. Perturbing a completely integrable system
which possesses either homoclinic or heteroclinic orbits may yield chaotic dynamics. This
is indeed the case for our system, for which the existence of complex dynamics may be
analytically demonstrated for certain classes of perturbations. These perturbations are of
physical relevance in applied fields such as tele—communications using fiber optics tech-
nology and in polarization switching; for instance, periodic perturbations may be created
during the manufacturing as twists occuring when the fibers are wound on spools. Here,
we specifically report the existence of Smale horseshoe chaos for three types of pertur-
bations: first for those perturbations preserving the reduced phase space $?; then, for
constant perturbations breaking ‘e rotational isotropy responsible for the invariance of
the tota) angular momentum o. In the second case, the phase space for the system returns
to 5% x §2. Finally, we ccnsider symmetry breaking periodic perturbations, which cause
Arnold diffusion (see Holmes and Marsden [1982]). The approach we use to demonstrate
the existence of these structures is the Melnikov method. This method relies on show-
ing that under perturbation the stable and unstable manifolds of a given hyperbolic fixed
point intersect transversely. Technically, this is done by calculating the so-called Melnikov
function, which is interpretable us a signed measure of the distance separating the stable
and unstable manifolds. The form of this Melnikov function depends on the nature of the
perturbation; see Wiggins (1988| for details. When the Melnikov function possesses simple
zeroes, in the two-dimensional case, the Poincaré-Birkhoff-Smale theorem implies that

the Poincaré map of first return possesses a horseshoe construction (in higher dimensions,



Arnold diffusion is implied); the horseshoe phenomenon occurs because this Poincaré map

produces both a stretching and a folding of the phase points initially near of the hyperbolic
point.

We will consider three different perturbations for the two-beam problem, each origi-
nating from smail deformations of the matrix W (see equation (2.4b)) and corresponding

to spatially periodic deformations of the nonlinear medium™* (optical fiber):

W = Diag (A1, A2 + ecos [v(T = 79)], A1) (2.8a)
W = Diag(A; +¢,22,y) , (2.8b)
W = Diag () + ecos[v(r — )], A2, A1) , (2.8¢)

where ¢ is a small number. We examine the dynamical consequences of these perturbations
on the travelling-wave system for phase points nearby the heteroclinic orbits appearing
in the Butterfly bifurcation (see middle row in Figure 2). Perturbations of type (2.8a)
preserve S? as the phase space. For this two-dimensional case, the Melnikov function
is the usual one, i.e., it takes the form of tne line irtegral of the Poisson bracket of the
unperturbed H® and perturbation H' Hamiltonian functions (H = H? + eH!) along the

unperturbed heteroclinic orbit:
M(ro) = /;{H°,H‘}[u(r+ro),a(r+ro)]dr, (2.9a)
where H? is given by (2.7a) and the perturbation Hamiltonian is defined as
H' = ie [(r/5) (¢ +w) 4 (F/R) (0 = w)? + 4(rF/xR) (o2 - u’)] cos(vr). (2.9

The Melnikov integral may be shown to be proportional to sin(vry); we present a case

where it has a simple form, for particular choices of the ratios ¥/r and %/x:

3rvin

.\[ nl] = T
(7o) 8\%sin? a,

csch [vr/4A rsina,)sin(vr,) , Fir=1=-%/x, (2.9¢)

where a, is defined by cos{a,) = —(1+L)/2. The existence of simple zeroes of M(r,) yields
horseshoe chaos. The type of physical behavior implied by the horseshoe is intermittent

* Should the deformations be quasiperiodic, essentially the same qualitative phenomena will vccur.
[hus we may think of the perturbations as the dominant spatial (reqrencies of the deformations.



switching between the two circularly polarization states of the beams; this phenomenon is
identifiable with binary symbolic shifts.

Our second type of perturbation, originating from the deformatio : (2.8b), breaks the
isotropy responsible for o-invariance and lifts the reduced phase space to $* x S?. For
this second case, the perturbed system falls within categery III studied in Wiggins {1988)
and the Melnikov integral is expressible as

1
M(3,) = - . %{;— (wya,a,08 + 3,)dt (2.10a)

where H! is given by

H' = {(xf/r)*[1 + cos (a + 3)] + (‘ET/?")2 [1 + cos(a — B3)] + (4r7/x%) (cosa + cos 3)} .

(2.106)
Choosing the same particular ratios 7/r and X/x as in the case above, we see that the
Melnikov function once more adopts a trigonometric form,

r3(2 - cosa,)sin 3,
Al sina,

t\'I(ﬁo) = -

) (210C)

and therefore horseshoe chaos is again implied. One d‘~tinction from the first perturbation
case occurs in the geomeiry of the stable and unstable manifolds. In this case these
manifolds are toroidal objects embedded in §? x S?. For both cases, the phase space is
partitioned into stochastic layers separated by invariant tori (or KAM surfaces) which {orm
impenetrable barriers for regions of the polarization state: the polarizations must wander

only within these tor.

Perturbations of type (2.8¢), in contrast with the other two, yield Arnold diffusic..1; the
phase space is the five-dimensional manifold $? x §? x R and can no lcnger be partitioned
into disconnected chaotic regions: the stochasticity domains form what is called an Arnold’s
web (or transition chain) and the solution diffuses among the invariant tori. Here again,
the perturbed system falls within category III of Wiggins [1988]; however, the Melnikov

integral is now a two-component vector function given by

0 1 1 0 0 1 0 1
-\h(ro..?,)=/ (aH OH' OH'OH® OHOH )d OHO [ OH
R

% da 0w da 05 05,4t e J o

(2.11)

OH?
Milre, d) = = | ——dr.
2 ) /; 23 T



Integrating for the same ratios 7/r and </« as before, we find

3?rm{(A2/A1) — cos a, cos B,) s
—_ c

M(r,,3,) = 1672 sin? oy ch [v7/4Ar sin a,)sin(vr,)

M7y 36) = _vr [l = cosa,]sin B,

4’\¥ sin? Qo csch [V1I'/4A1r sin ao] co:(vT,) .

These functions have two families of simultaneous simple zeroes, whose existence is a
necessary condition for the occurrence of Arnold diffusion. Physically, this diffusion means

that the polarization state transfers back and forth among the noalinear modes of the

system in an erratic manner.

3. The one-beam problem.

3.1. Definition and reduction to the sphere. We now restrict attention to the
problem of a single travelli.g-wave optical pulse. We introduce the linear and nonlinear
susceptibility tensors x‘!) and x(*; far from resonance and in a lossless medium, these
tensors are constant, are Hermitian in each e — e* pair, and verify the involutions yf:“ =
\(1::1); and xfjl, = x(,:l. = xf:;, as before. The equations governing the one-bez:in problem
also possess a Hamiltonian formulation. In fact, the Poisson bracket is canonical and the

Hamiltonian function and equations of motion are given by

H = e}, en + e eax umetern | (3.1)
Je; OH
—a;Ls{e)‘,H}=—lb?. (32)

where 7 is the independent variable for travelling waves. As before, e is a twc-component
electric field amplitude, i.e., @ takes value in C?. Furthermore, the beam intensity r = |e|?
is a conserved quantity,

THEOREM 3. The one-bearn problem system (3.2) reduces to a Hamiltonian dynam.

tcal system on 52,

The reduction consists, in effect, in applying the first reduction step that was used for the
two-beam problem. The preserved intensity is indeed related to a rutational invariance

of the system. Going to the Stokes representation on S* coordinatizd by u (defined as



before in (2.4a)), the Hamiltonian function, the Poisson bracket, and the equations of
motion become

H=b-u+4 - W-u (3.3)
(F,G}u) =u-VF(u) x VG (u) (3.%)
j—g-(b+w-u)xu, (3.3a)

where W is defined in (2.4b), b is the birefringence vector,
b=a+|ulc=a+rc, (3.3b)

while a and ¢ are constant vectors given by

a=duxiy . ©= 18X (3.5¢)
in terms of the susceptibility tensors. Next, changing to spherical coordinates (u,uz, u;)
= (rsin@sin ¢,r cos @, r sinf cos ¢) brings the system down to the Poincaré sphere on which
the Hamiltoniun function, the Poisson bracket, and the equations of motion take the fol-
lowing form:

H =4 [(Asin? @ + A3cos? ¢" sin? 6 + Az cos? §] (3.6)

+rsind (b singd + bycos @) + barcosd
1 ([OF 0G G OF
{F. G} =;(5¢;6c000—$6coe0) '

:—f- m b cosd —bysind + (A — A3)rsinfcosdsing , (3.8a)

g—f— = by — (bysin¢g + by cos @) cotd —r (), sin® ¢4 Ajcos? b - Az)cosf . (3.8b)

(3.7)

Note that equations (3.8a) and (3.8b) again form a completely integrable system, since
it is Hamiltonian on a two~dimensional manifold. Note also that the Poisson bracket (3.7)
is the same as that for the system describing the motion of a rigid body; in fact, the rigid
body itself is the limit of our system when b vanishes and the motion equation (3.5a) is

the same as for a rigid body with a flywheel attachment.

Before studying the qualitative aspects of the equations (3.8), we mention that in a
particular case the system (3.5a) reduces to another well known equation possessing bifur-

cations to homoclinic orbits. Consider the case when W is of the form W = wdiag(1,1,2)



with b = (4, 42,0). Eliminating the variables u, and u; from the equation of motion for
uj yields a Duffing equation:

d?u .
d-r: = Au, (B - u:z,) ,
\ (3.9a)
4= ju? 3=£_r2_2_(bib%_)
| ,1 .

w o

As is well known, when B passes through zero, the solutions of this Duffing equation
undergoes a Hamiltonian pitchfork bifurcation to develop homoclinic orbits. As a second
example, let W be as above and b = (4;,0, b3). Eliminating u, and u; in the equation of

motion for uj, we obtain:

d?
d:‘: =A+Bu;+Cu§+Dug,
(3.9%)
A=b;(H—§ur2), B=uwid - yurt -3 -3,
= —wby , D= -juw?.

Here, the polarization dynamics reduces to the motion of a particle in a quattic potential,

whose solution can be written in terms of elliptic integrals.

3.2. Bifurcation analysis. We now consider the case of a non-parity-invariant
material with a C, discrete rotation symmetry about the propagation axis; the vector b
then has a single non-null component: b = (0, b3,0), but the eigenvalues A\; of W are still

arbitrary. Let us also introduce the following parameters:
I-‘='\J—'\l ' /\=(A7—;\l)/(AJ—t\|) ’ }3=bg/r(1\3—1\1) . (310)
The Hamiltonian and the equations of motion become

H = yp((r? = u?)cos® ¢ + Au? +20ru] + par?, (3.11)

U (F? = u) condsing (3.12a)

d¢ o ? -—
I = U [,3 (cos’ @ - A) u] , (3.12b)

where u = rcos8. The fixed points for (3.12) are easily determined and classified, using

standard techniques; we list them in the following table:



Fixed Point Coordinates Constraint Saddle Center
F ¢=0 0=3/(1-2A
o A ) B < (1 =21)? A>1 A<l
B p=m cosd=43/(1=-2])
L d=r/2 6 =-4/
T/2 cos / 37 < A2 A< 0 A>0
R $=-m/2 cosf=-3/A
N cos?p=A+3 6=0 ——— O0<A+08<1|A+3¢(0,1)
S cos?p=7\-3 6=mn e —— 0<A=-3<1]A=3¢(0,1)

Table. The fixed points of system (3.12) and their types.

The above classification is valid only for 4 # 0. For u = 0, i.e.,, when A3 = A, the
right-hand side of (3.12a) vanishes identically so that the set of fixed points is the circle
cos@ = by/r(A3 = A;) = 3/A. The phase portrait depends on two essential parameters,
A and 3. or equivalently, A3 — A\, and b3/r. Bifurcations take place when the inequalities
in the constraint column of the Table become equalities. Thus, the pairs of fixed points
(F,B) and (L,R) appear or vanish as the lines 3 = £(1 — A) and 7 = £\ are crussed in the
(A, J) parameter plane; see Figure 6.

This parameter plane is partitioned inte nine distinct regions separated by four critical
lines that intersect at four points. Typical phase portraits corresponding to each of these
regions are depicted in Figure 7.

We note that the portraits are invariant under the following discrete transformation:

¢ —— ok,

¢ — ot —r-60-—-3,;
(3.13)
¢—.¢:h7r/2|’\—.1-'\v/3—‘—/3:

p— /2 \ —1=-\f-—r-9%.

Hence, a complete knowledge of the phase portrait necessitates only the study of the
quarter plane (A € 1/2,4 2 0), i.e., of regions 1, 2, 4, and 5. The \-axis (J = 0) is
a special line; in this limit, we recover the equations of motion for the rigid body, as is

easily seen from equation (3.5a). On this axis, the phase portraits themselves are special,
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A A

Figure 8. The para™eter plane and its bifurcation lines.

although no bifurcations occur (except at A = Q0 and A = 1). For instance, consider
region 5. The phase portrait then consists of saddle points at the poles, each of which is
connected to a pair of homoclinic loops. When 3 vanishes these two pairs of loops merge
together to form four heteroclinic orbits. Thus, on the whole of the A-axis, we recover
the portrait for the rigid body. Indeed, the portrait consists of the fixed points N and S
at the poles and of four other ones are distributed on the equator with azimuthal angles
»=0(F), /2 (R),n (B), 3n/2 (L). Two of these are unstable while the other four are
stable centers. Which pair is unstable is decided by the value of A = (A3 = A )/(Ay = A\ ):
(F.B) are hyperbolic when A < 0, (N,S) are hyperbolic when 0 < A < 1, and (R,L) are
hyperbolic when \ > 1; in each case, the unstable direction is specified by the A, which is

neither the least nor the greatest among the three.

Remark: Bifurcations taking place as the intensity of the beam is varied occur along

vertical lines in the parameter plane, and consist mainly of standard pitchfork bifurcations.

3.3. Homoclinic chaos. \We now consider spatially periodic modulations of either

the circular-circular polar.zation self-interaction coetficient \y, or the optical activity term
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Figure 7 Phase portraits of system (1.12).



b;. In each case, when the unperturbed medium satisfies the additioual crndition A3 = A,
the Melnikov technique leads to an analytically tractable integral for the Melnikov function.
In this way, we are able to predict horseshoe chaos in the dynamics .f the single, travelling-
wave Stokes pulse. We concentrate on the north pole u = 1, ¢ = ¢q, with cos? g9 = A + 3,
and evaluate the conserved Hamiltonian at this point to find a relation between u and ¢

the homoclinic orbit:

u=—~r—2by/u(cos® ¢ - A) (3.14)

Substituting this expression into the equation of motion for ¢ and integrating produces an

explicit expression for the homoclinic orbit:

tan ¢ = tan ¢,/ tanh((r) , ¢ = dursin(2¢,) ,

(3.13)
2b; [1 = cos? gosech?(¢r)]
u= —r — - * -,
p{cos? ¢, tanh®({r) — A [1 — cos? p,sech?(({r)]} _
We consider a periodic perturbation in the form
A2 = A2 + € cos(vz) , by = by + ez cos(vz) , (3.16)

where ¢; 2 € 1 and v is the spatial modulation frequency. The perturbation Hamiltonian
is
H' = ju(equ + 2¢3) cos(vz) , (3.17)

frorn which we calculate the Poisson bracket for the Melnikov integrand,
{H°, H'} = ~usincos ¢ (r? - u?) ucos(vz) . (3.18)

In the particular case A\; = A3, we find that the Melnikov function (formally the integral
of (3.18)) is given by

2rypd
7
i

M(r,) = {r(elr +¢2) §eyr? [cos2 ¢ + (u/2bg)ﬂ' } csch {vm/ursin(2d,)] sin(v,) .
(3.19)
As a function of ry (which is proportional to the time, ) this expression ciearly has
simple zeroes, implying horseshoe chaos. As usual, this means that a region near the
homoclinic point, under the iteration of the Poincaré map, is stretched, folded, and mapped

back into itself. That is, a Smale horseshoe is created. As t.as horseshoe folds and



refolds, a rectangular region initially nearby the homoclinic point develops into a Cantor
set structure whose associated Poincaré map can be shown to contain countably many
periodic motions, and uncountably many unstable nonperiodic motions. Physically, this
motion corresponds to a (practically unpredictable) meandering of the polarization state

as the beam propagates as a travelling-wave.

4. Conclusion. We have presented a dynamical systein analysis for two optical
systems describing the propagation of either a single beam, or two interacting and coun-
terpropagating beams. The physical interpretation of chaos for several types of spatially
periodic perturbations for the two-beam problem is discussed in Section 2. For the one-
beam problem we have discussed, horseshoe chaos corresponds to a sort of meandering of
the polarization state, that is, an in‘ermittent switching from one elliptical polarization
state to a second one whose semi-major axis is approximately orthogonal to that of the
first state. The transition between these two states is characterized by a passage nearby
the circular state of polarization, once during each switch. This intermittency is realized
on the Poincaré sphere by an orbit which spends most of its time near the unperturbed
figure eight formation with a homoclinic crossing at the north pole (circular polarization)
in Figure 7. Under the periodic perturbations of W or b2 in (3.1b) this orbit switches
deterministically, but with extreme sensitivity to the initial conditions, from one lobe of
the figure eight to the other one each time it returns within the crossing region nearby the

north pole where the homoclinic tangle is located.

From considerations of the special case in which the Duffing equation (3.9) appears,
one could have expected homoclinic chaos to deveiop for the one-beam problem of nonlinear
optical polarization dynamics; indeed, a related special cese is studied numerically in
Wabnitz [1987]. As opposed to such numerical studies, our analytical approach explores
the bifurcations available to the polarization dynamics for both the one~-beam and the two—
beam problems under the full range of material parameter variations, demonstrates that
the horseshoe construct is the mechanism driving the chaotic behavior, and characterizes
the location of the chaotic set, or stochasti. layer. In some of the cases under consideration,
this layer is bounded by KAM curves on the Poincaré sphere, inside of which the travelling-
wave dynamics is regular and orbitally stable; higher dirnensional chaos also occurs for the

two-beam problem in the form of Amold diffusion.

The strong dependence on the intensities of the beams in the travelling-wave phase



portraits indicates that control and predictability of optical polarization in nonlinear media
may become an important issue for future research. In particular, the sensitive dependence
on initial conditions found here to be induced by periodic spatial deformations may have
implications for the control of optical polarization switching in birefringent media. For
instance, an input-output polarization experiment performed with input conditions lying
in the stochastic layer for some set of material and beam parameters would show essen-
tially random output after sufficient propagation length, depending on the amplitude and
wavelength of the material inhomogeneities and the type of material used.
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