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CHAOTIC BEHAVIOR IN NONLINEAR POLARIZATION DYNAMICS

D. David, D.D. Hohn, and M.V. Tratnik

C.N.L.S. and Theoretical Division, MS B258

Los Alamos National Laboratory

Los .~lttS1’10S, ~if 87545

Abstract. We analyze the problem of two counterpropagating optical !aser

beams in s slightly nonlineti medium from the point of view of Harniltonian systems;
the onebearn subproblem is also investigated as a special c-. We are interested in
theee systems as integrable dynamical systems which undergo chaotic behavior under
various typea of perturbations. The phase space for the tw-beam problem is C2 x C2
when we restrict to the regime of travelling-wavo solutions. We use the method of
r~uction for Hamiltonian systems invarimt under one+parameter symmetry groups
to demonstrate that the phase space reduces to the two-sphere S2 and is therefore
completely integrable. The phese portraits of the syetem ●re clueified ●nd we ●lso
determine the bifurcations that modify these portraits; some new degenerate bifurca-
tions ●re presented in this context. Finally, we introduce various physically relevant
perturbations and use the Mehikov method to prove that horseshoe chaos snd Arnold
diffusion occur L consequences of these perturbations.

1. Introduction, In this paper, we treat optical polarization dynamics for two

count erpropagat ing laser beams (Section 2) in a Ioasless, cubically nonlinear, Kem like,

parity-invariant, arisotropic homogeneous medium with small nonlinearity ies (for inst ante,

polarized betuns in an optical fiber); the problem of single beam is analyzed in Section 3.

Nonlinear effects in pohrized light beams have been studied for nearly three decades. For

instance, the precession of the polarization ellipse for a beam in a nonlinear medium is

demonstrated in Maker et UL(1964]. Stable conAgurations of the nonlinear interaction of

two counterpropagating waves in an isotropic medium are studied, e.g., in Kaplan [1983]

and I,ytel [1984]. Polarization bistabilit y in such a medium and numerical evidence for

chaos is found in Otsuka et 6J. [1985] and Gaeta et al. (1987]. Interpret atio~s of experimental

optical data in terms of chaotic behavior are given in TriUo et al. [1986]. .4naiyses of special

rases of the one-beam and tw-beam problem appear in Tratnik and Sipe [1987] where the

authors give physical interpretationa for some of the fix~d points and find special solutions.

Here we provide a unified study and a complete analysis of the qualitative properties of

these problems (phase portraite, bifurcation, special soiut ions) in the regime of travelling-

wave solutions, Hamdtonian tech. niqueaare used to reduce the phase space C2 x C’2 for

the travening-wave dynamics of the t we-beam problem and Ca in the case of the one-

karn problem to the spherical surface S2. Bifurcations of the phase portraits on S2 ilre



determined, and homoclinic and heteroclinic orbits connecting hyperbolic fixed ~oints are

identified. These orbits are the stable and unstable manifolds of the hyperbolic fl..ed points

and they separate various regions in phase space, each characterized by a different type of

periodic behavior. Under spatially periodic perturbations of the medium parameters, these

stable and unstable manifolds for the travelling-wave solutions are shown to tangle so as

tc produce a Smale horseshoe in the Poincar4 map of first return induced from the periodic

perturbation; Arnold diffusion is also implied for perturbations that break enough of the

symmetries of the Hamiltonian function in the tw-beam case. The presence of this tangle

is diagnosed via the .Melnikov method, as generalized to higher than three dimensions in

Wiggina [1988]. The location of the chaotic set is characterized analytically, as well as its

dependence on the material parameters and the intensities of the optical beams.

2. The Two-Beam Problem.

2.1. De flnit ion and reduction to S2. The two-beam problem for two counterprop-

agating traveling optical wave pulses is described by the following Hamiltonian function

and equations of motion defined on C2 x C2:

(2.3a)

(2,36)

The Poisson bracket is canonical; aa is usual for Hamiltonian systems, the travelling-wave

evolution of a dynamical quantity F is determined by dF/8r = {F, H}, where r is the

travening-wave variable. In the above equations, the dependent variables e and 3 represent

the electric field amplitudes associated with each of the beams and both are complex two-

v~ctors taking values in Ca. The quantity y(o) is the thitd order susceptibility tensor

parametrizing the nonlinemr polarizability of the medium and verifying the involutions

Y::;t = t:::: and x::!t =
(3) (3)

~tlha = ~ak]t’ r and F denote the intensities of the two beams,

and the constants K and R are related to the group velocities of the beams (see D~vid et

al, [1989] for details of the problem forrmdatiox) and background references to the physics

lit~rature). .4 remukable property of the Hamiltonian function (2,1) is that it is in~a.riw~t



under a diagonal action of the group U(1) x U(1). This allows us to use the X!arsden-

lVeinstein reduction procedure for Harniltonian systems with symmetry (see Yfarsden and

\Y’einstein [1974]) to show that two consecutive Lie-Poisson maps of C* x C2 reduce the

system to the two-sphere S?.

TPEOREM 1. For isotropic media, the Hamiitonian sy~tem (1. f - 1.9) reduces to a

two-dimensional Hamiltonian system on the two-~phere S2.

\Ve give only a sketch of the proofi again, for more details, see David et ai. [19S9]. The

first step of the reduction consists of restricting the phase space C2 x C2 to the product

manifold S2 x S2. This is possible because of the rotational invariance (one in each

C*) of the Harniltonian function; the conserved qumtities associated to these invariance

are the intensities of the beams, r and 7, whose level surfaces defie submanifolds of the

initial phase space in which the motion is confined. (The essence of reduction consists of

rest rict ing the phase space to level hypersurfaces of the various conserved quantities of the

system, ) The first reduction is accomplished in the following manner, We first restrict

Cz x C2 to the subspace S3 x S3 by rewriting the system in terms of bilinear forms in the

electric field amplitudes:

(e,5)~(u =etde, i3=3td@) , (2.4a)

with

and where 3 represents the three Pauli spin matrices; this representation is sometimes

refered to as the Stokes representation and each copy of S2 is known as a ~oincare sphere.

The Poincar6 sphere provides a convenient way of describing the polarization states of a

beam; the north and south poles represent the two opposite circularly polarized states,

equatorial points are associated with linearly polarized states, and all other poin’.s cor-

respond to elliptically polarized states. It proves convenient to introduce the eigenvalues

of W, the A,; here we deal with isotropic media, in which caae AS rn Al, The intensities

of the beBIIM, r and 7, are the norms of u and U whose level surfaces form products of

tw~sp~ere~ in S3 x S3; these surfaces in fact determine a Kopf flbration of S3 x O’J \vith

SJ x S2 leaves labeled by the conserved intensities, The motion on S2 x S1 i~ expressible

tas an mmlutlon system for spherical angles on each sphere:



\Ve remark that the passage from C2 x C2 to S3 x S3 is similar to the passage from the

Cayley-Klein parameters to the angular momentum represent at ion for the dynamics oft he

ligid body, (See, e.g., Crampin and Pirani [1!387],pp. 202-207, for a clear discussion of

Cayley-Klein parameters.) For isotropic media there exists a further S1 rotation symmetry

of the Hamiltonian f’unction (as in the symmetric rigid body). The associated conserved

quantity, u, is the total projection of the tmguk momentum (per unit length) of the two

beams (as defined below) along the direction of propagation. This symmetry allows us to

perform a second reduction step which brings the phase space to a single two-sphere S2,

coordinatized by the angles @ and CKthrough the following formulas:

(2.6a)

d(y) =X COS6-ZC083 =WO+RCOS$ ,

where LJOand R depend on the value of u as follows:

Generically, the above choices (2.6b) ensure reduction to a smooth manifold. Special

situations arise however when a is equal in magnitude to IKI- ~Fl; for these cases, one of

the poles (or both of them if u = O,i.e., IZI = [xl), on the sphere becomes a singular point,

so that the reduced phase space may be formally identified with S2\P, We point out

that this causes no difficulty for the analysis of the motion; in fact, interesting degenerate

bifurcations take place in these singular cases. On Sz, the Hamiltcmian function, the

Poisscn bracket, and the equations of motion become



In addition to (2.7c), there is a quadrature in the variable U:

83
— = 2Al(Ad+ Ed)-
ar

Al [(0 –W(W7(vJ) +(fl +47(W. W] cos~ . (2.7e)

Since the reduced system is Hamiltonian on a two-dimensional phase space, there imme-

diately follows the

COROLLARY 1. The two-beam system (2.9) is completely integrable,

An important rem~k is that the reduction procedure just described is not character-

ized by any loss of information about the solutions. Although the reduced system lives on

a lower dimensional subspace of the initial phase space, the full solution may be recon-

stmcted from the reduced solution via quad.ratures.

THEOREM 2. The solution manifold of the Jystem (2.9) iJ completely determined by

that of the reduced Harniltonian JyJtem on Sg.

Rou@y speaking, Theorem 2 is proved by going backwards through the proof cf

Theorem 1. First, by integrating for $, taking into account that u is a constant of t !L@

motion, and inverting (2.5), we construct the solution on the product space S2 x S2 Gf

Poincare spheres. Next, we invert (2.4a) and usn the fact that the intensities of the beams

define an irmnersion in the original phaae space; this determine? the solution of the initial

system up to a phase for each field. These remaining phases art finally reconstructed by

substituting into (2.3): this substitution yields quadrature equations for the phases, which

may then be integrated to obtain the full solution.

2.2. Fixed points, bifurcations, and special solutions, The reduced system

(2.7c) on S2 for the variables # and cx exhibits several interesting bifurcations, which

take place when certain critical hypersurfaces are crossed in the parameter space. In

particular two degenerate bifurcations occur which we call the Butterfly bifurcation ‘and the



Teardrop bifurcation. The bifurcations arise when tLe reduced space Sz has singularities at

either, or both of the poles. These bifurcations involving singular points may be significant

from the dynamical point of view as being a possible source of exponentially small (m

slow) chaos. To appreciate the various types of bifurcations which occur for the tw~

beam problem, we begin by determining the set of fixed points (or curves of them), the

conditions for their existence, as well as their stability type on the reduced space S2; these

fixed points comespor~d physically to steady state solutions of the two-beam system (2.3).

The parameter spacefor this system is of dimension five (it is, for instance, spanned by

I_’,a, K, E, rmd F/r) and we could expect rather complex sequences of bifurcations as we

travel in the parameter space. Here, we present some sequences that are representative

of the global picture (for a more complete picture of the phase portraits and bifurcations

that exist for both the one-beam and the tv -beam problems, see David et al. [1989]),

The most common sequence of portraits with bifurcations is depicted in Figure 1;

this sequence is obtained, for instance, by setting u # O and lZ1/Ixl = 1, and by varying

the remaining parameter r. For large &bSolute values of this parameter, we observe that

the phase portrait consists of a figure+ight pbt tern composed of a saddle point to which

are connected two homoclinic loops. These homoclinic loops separate the phase space into

three regions in which periodic motion of different types take place; in addition, each region

possesses a limit orbit which is a center, i.e., a stable fixed point. The homoclinic loops

are formed by coincidence of the stable and unstable manifolds of the hyperbolic unstable

fixed point for this integrable case and are objects which will be important later when we

discuss the chaotic behavior of the system under perturbations. In the limit as Irl -+ m,

both homoclinic loops deform to the equator which becomes a circle of fixed points. As r

approaches certain critical values I’*, the 100FS collapse together onto the sadd!e point, at

which point a pitchfork bifurcation occurs, after which the phase portrait on S2 consists

of a onepararneter family of periodic orbits with two stable centers.

The second example which we present is the limit of the preceding case when o = 0.

This situation gives rise to a degenerate bifurcation which we term the BuUer/iy bifurcation

and which is illustrated in Figure 2. This bifurcation is characterized by the two centers

within the homoclinic loops of the preceding case being located at the poles and these

poles alway~ remaining fixed points of the system; in fart, these poles are the singldar

points of the reduced phase space for the case u = 0, In contr~t with the first cas”, the
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Figure 1. ‘The phaae portrait and its pitchfork bifurcations for m# O ~nd IX!= {~{,

homociinic loops in this case cannot shrink to the equator because their enclosed centers

must remain at the poles. Instead, the homoclinic loops collapse to lines, so that when

~ =r+= -1 a half-great-circle of fied points extends from one pole to the other. The

bifurcation then proceeds as r becomes greater than -1. The half-great~ircle opens up

into two curves which behave like heteroclinic orbits in all respects. As 1“increases above

-1, these heteroclinic orbits rotate azimut hally around the sphere and collide back together

in the back of the sphere M ~ = 1, at which point the bifurcation sequence reverses as t ~,e

colliding heteroclinic orbits tradorm, once more, into a figureeight homoclinic pattern,

with the homoclinic point lying on the equutor. Figure 3 illustrates the bifurcations in the

above two cases in the (r, cr)-plane, as r is varied at constant a. The second case, the

Butterfly bifurcation, occurs at u = O, along the horizontal (r)-~is.

A third case occurs when u takes its extremai value, equal to the difference of the

magnitudes of the kappas. Figure ~ :+ows the portrait for & = 1~1- 1=1;for the opposite

case, v = IxI - 1~~,the phase portraits a-e similar to those in Figure 4, up to exchanging

the roles played by the poles. In this case, the north pole is singular. We point out that



Figure 2. The Butterfly
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bifurcation occum when u = O and Iitl = IK1.
It is degenerate and both poles are singular points on S2.

the preceding case is a limit of this case also: it is recovered when IZI = I~]. Here, the

portraits are characterized by the occurrence of a degenerate bifurcation which we have

termed the Teardrop bifurcation. As the pictures show in Figure 4, when Ir! is sufficiently

large, the phase portrait contains only periodic orbits. The teardrop bifurcation occurs as

]1’1becomes smaller than a certain critical value. As this happens, the north pole develops a

singularity and a single homoclinic loop connected to it is created. Note that this contrasts

with the usual situation in which hoxnoclinic loops are encountered in pairs; one may also

observe that here (as well aa in the preceding case) the Euler index of the phase space

suddenly jumps from 2 to 1 as this bifurcation occurs, which is another indication of the

singular r,ature of the phase portrait for this case. This homoclinic loop then stretches

out, passes through the south pole, and contracts back to a single pGint at the north pole

where the bifurcation “undoes itself,” as the pole once more becomes a regular point.

lye now present a few examples of special (t ravening-wave) solutions of the system

( 2.3a) and (2.3 b), on the Poincare sphere (for the variables u and U). First, consider



Figure 3. Phase portrsits arid bifurcstioru in the (f, e)-plsne. Bdurcationa occur on the curves I’*(~)

the heteroclinic orbits connecting the poles in Figure 2, The solut~on u is shown on the

left-hand picture in Figure 5. As T + -w, the beam is circularly polarized. As the

t ravening-wave variable incre~, the solution spirals down from the north pole and the

polarization becomes elliptical with increasing eccentricity. At r = (.),the solution passes

through a linear polarization state as the curve crosses the equator, It then proceeds

to spiral down, symmetrically to the motion it underwent in the northern hemisphere,

towards the south pole where the system asymptotically approaches the other circularly

polarized state, opposite to that of the initiai state, This solution is reminiscent of a kink

solution in a completely integrable partial differential equation. .4s a second example,

consider the homoclinic loops in Figure ‘2, These again give rise to a continuous famiiy of
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Figure 4. The Teanfmp bifurcation occurs when & = Ixl - [Fl,
A single homochnic loop is connected to a singular point at the pole.

kink-like travelling-wave solutions with !inearly polarized asymptotic states (see middle

picture in Figure 5); soliton-like solutions are also obtained, M a special case when the

asymptotic states happen to coincide (see right-had picture in Figure 5). Notice the

existence of a winding indez: the solution rotates any number of times around the north

pole; each solution is thus characterized by this index M well aa its shift in azimuthai linear

polarization angle (solitons are those solutions with null shift). The winding index is the

Integer part of [j(m) - ,3(-m )]/2T, the nulnber of periods of ~, as determined fron fhe

q[:adrature formula (2,7e).



Figure 5. Some kink-like and mliton-like solutiom u on the Poincar4 sphera

2.3 Generation

which possesses either

is indeed the case for

of chaotic behavior. Perturbing a completely integrable system

homoclinic or heteroclinic orbits may yield chaotic dynamics. This

our system, for which the existence of complex dynamics may be

analytically demonstrated for certain classes of perturbations. These perturbations are of

physical relevance in applied fields such as tele-commu.nications using fiber optics tech-

nology and in polarization switching; for instance, periodic perturbations may be created

during the manufacturing as twists occunng when the fibers are wound on spools. Here,

we specifically report the existence of Smale horseshoe chaos for three types of pertur-

bat ions: first for those perturbations preserving the reduced phase space S2; then, for

constant perturbations breaking !he rotational isotropy responsible for the invruiance of

the total angular momentum o. In the second CM, the phase space for the system returns

to S2 x S2. FinaUy, we consider symmetry breaking periodic perturbations, which cause

A mold diflusion (me Holmes and Marsden [1982]). The approach we use to demonstrate

the existence of these stmctures is the Meinikou method. This method relies on show-

ing that under perturbation the stable and unstable manifolds of a given hyperbolic fixed

point intersect transversely. Technically, this is done by calculating the s-called )felnikov

function, which is interpretable M a signed me~ure of the distance separating the stalde

and unstable manifolds, The form of this Melnikov function depends on the nature of the

perturbation; see Wiggins [1988] for details. tVhen the Melnikov function possesses simple

zeroes, in the tw-dimensional ceue, the Poincard-Btrkhofl- Smale theorem implies ttltit

the Poincard map of first return possesses a horseshoe construction (in higher dimensions,



.4rno1d diffusion is implied); the horseshoe phenomenon occurs because this Poincare map

produces both a stretching and a folding of the phase points initially near of the hyperbolic

point.

11’ewill consider three dfierent perturbations for the two-beam problem, each orig-

inating from smail deformation of the matrix W (see equation (2.4 b)) and corresponding

to spatially periodic deformations of the nonlinear medium* (optical fiber):

W = f)iag(A~, A2+eco9[v(r -ro)], AI) , (~,g~)

W = Diag(Al +e,A2,~1) , (~,sb)

W = Diag(Jl +ecos[u(r - ro)], A2, A1) , (~m~~)

where e is a small number, LVe extine the dynamical consequences of these perturbations

on the travell.ing-wave system for phase points nearby the heteroclinic orbits appearing

in the Butterfly bifurcation (- middle row in Fi~ire 2). Perturbations of type (2.8a)

preserve S2 as the phase space. For this tw-dimensional case, the Melnikov function

is the usual one, i.e., it takes the form of tne line ir.tegral oi the Poisson bracket of the

unperturbed Ho and perturbation H 1 Harniltonian functions (H = Ho + e~l ) along the

unperturbed heteroclinic orbit:

.11(7. ) =
1

{HO, H1}[w(r+
R

where Ho is given by (2.7a) imd the perturbation

ro), cx(r + ro)]dr ,

Harniltoniem is defied as

(2.9(-1)

The \lelnikov

\vhere it has a

.\/(r,, ) =

integral may be shown to be proportional to sin( v~o); we present a cue

simple form, for p~ticular choices of the ratios Y/r and F/JC:

where a. is defined by cos(~o) = -( 1+ L)/2. The existence of simple zeroes of .tJ( r,, ) yields

horseshoe chaos. The type of physical behavior implied by the horseshoe is Intwmittrnt

● SIIould the deformations be quuiperloclic, wentmlly the same qualitative phenomena WIII occllr.
rhus We may think of the p~rturbations u Lhe dornlnant spatial (reqliencleo of the defotmatlonn.



switching between the two circularly polarization states of the beams; this phenomenon is

identifiable with bin~y symbolic shifts,

Our second type of perturbation, originating from the deformation L(2.8 b), breaks the

isotropy responsible for u-invariance and lifts the reduced phaue space to S2 x S2. For

this second case, the perturbed system falls within category III studied in Wiggins [1988]

and the Jlelnikov integral is expressible as

,}1(/3.) = - [%+al%~+%l~t! (Q,loa)
JR Up

\\ ’here H 1 is given by

H1 = ~{(Kj/r)2 [1 + cos(a +#)] + (l?~/7)2 [1 +cos(a - /3)]

Choosing the same particular ratios F/r and R/x M in the

\felnikov function once more adopts a trigonometric form,

rq (2 - cos aO) sin 30
.U(bm) = -., “/

+ (4rF/KE)(msa + C09 L?)}.
(2.106)

case above, we see that the

(2.iOc)

and therefore horseshoe chaoo is again implied. One d:-tinction from the first perturbation

case occurs in the geometry of the stable and unstable manifolds. In this case these

manifolds are toroidal objects embedded in Sa x Sa. For both c~eq the phme space is

partitioned into stoch=tic layers oeparated by invariant tori (or KAhI surfaces) which fomn

impenetrable barriers for regions of the polarization state: the polarizations must wander

only within these tori.

Perturbations of type (2.8c), in contrut with the other two, yield Arnold diffusif,. i; the

phase space is the five-dimensional manifold S2 x Sz x J? and can no lcnger be partitioned

into disconnected chaotic regions: the stochaat;city domaina form what is called an .+rnold’s

~veb (or transition chain) and the solution cliffusernamong the invariant tori. Here again,

the perturbed system falls within category 111of Wiggins [19881; however, the )Ielnikov

integral is now a t-component vector function given by

/(

dHO t3H1 i3H1 i3H0 9H0 i3H1
.1/1( 1”.,.?.) = ~ ~~- —’— -

Ow Oa =~)dr+~~R$”
(2,11)



Integrating forthesame ratios 7/rand E/xm before, we find

%J2rTf[(h~AI)- COS~o COS&]
.Vl(ro,3. )= ——

16J~sinzcr0
csch [v7r/4Alr sincrd] 9in(v70) ,

(9J~)

.V~(ro,~o) = -
wr [1 - ~ coscrO]sin80

csch [wr/4A1r sin aO]cou(nO) .
4A: sin2 a.

These functions have two fhlies of simultaneous simple zeroes, whose existence is a

necessary conaition for the occurrence of Arnold diffusian. Physically, this difhsion means

that the polsuization state trasfers back and forth mong the nonlinetu modes of the

system in an erratic manner,

3. The one-beam problem.

3.1. Definition and reduction to the sphere. we now restrict attention to the

problem of a single travellil.g-wave optical pulse. We introduce the linear and nonlinear

susceptibility tensors ,y(1J and X(a); far from resonance and in a Iosslew medium, these

tensors are constant, ese Hermitian in each e - e“ p~r~ Md verify the involutions Y$r =
(3)

(3’” and yl, kt~]~tk = #~i = y f ~]t FM before. The equations governing the onebenm problem,

also possess a Hsmiltonian formulation. In fact, the Poimon bracket is canonical and the

Hamiltcmi~ function and equations of motion are given by

(31)

where r is the independent variable for travening waveo. As before, e is a twc-componel]t

electric field amplitude, i.e., e takea value in Ca. Furthermore, the bem intensity r = 1011

conserved quantity,

THEOREM 9. The one- beam problem ~ystem {9, P) reduce~ to a Hamtitonian dynnm.

$y~~e~ ofi s~,

The reduction consists, in effect, in applying the first reduction step that wns Ilsed for rt)r

ttvo-bemrn problem. The preserved intensity is indeed rrlated to a rutationd invn.rinnrr

of the ~vstcm, Going to the Stokes reprmentation on .S3 coortinati,:l’d hy u ({l{ItirIPIl ;LI.



before in (2.4a)), the Harniltonian function, the Poisson bracket, and the equations of

mot ion become

H= b,u+~. Wu [3.3)

{r, G}(u) =u. W’(U) XVG(U) (3.4)

$=( b+ W.u)xu, (3.5a)

where W is defined in (2.4 b), b is the birefringence vector,

b=a+lu[c=a+rc, (3.5b)

while a and c are constant vectors given by

in terms of the susceptibility tensors. Next, changing to spherical coordinates (u 1, U2, U3 )

= (r sin d sin 4, r cos 6, r sin 8 cos d) brings the system down to the Poincar& sphere on which

the Harniltoniun function, the Poisson bracket, and the ●quations of motion take the fol-

lowing form:

Note that equations (3,8a) and (3,8b) again form a completely integrable system, since

it is Harniltonian on a two-dimensional manifold. Note also that the Poisson bracket (3,7)

is the mrne M that for the system describing the motion of a rigid body; in fact, the rigid

body itself is the limit of ou system when b winhee and the motion equation (35a) is

the same M for a rigid body with a flywheel attachment.

Defore studying the qualitative aspects of the equations (3,9), we mention thut in a

pmticulu cue the system (3.5a) reduces to another well known equation possessing bifur -

!’ntiorls to homoclinic orbits, Consider the cw when W is of the form W = Ainq( 1, 1,2)



with b = (61, b2, O). Eliminating the variablea U1 and Ua from the equation of motion for

UJ yields a Dufll.ng equation:

2H 2 (bf + b~)
.4= @2, B= —-r2-

d U1 “

(3.9a)

.4s is well known, when J3 passes through zero, the solutions of this Dufiing equation

undergoes a Harniltonian pitchfork bifurcation to develop homoclinic orbits. As a second

emunple, let W be as above and b = (61 ,0, ha). Eliminating u, and u, in the equation of

motion for US, we obtain:

d2u3
=.4+ BuJ+CU; +DU; ,~

.4 =

c=

Here, the polarization

whose solution can be written in terrnm of elliptic integrals.

bs (H - \tirz) ,

-?wba, D=

dynamics reducee

B=wH-~u2r2-b~-b~,

-+W2 .

to the motion of a particle in a qum tic potential,

3.2. Bifurcation anaiysim We naw consider the case of a non-parity-invariant

material with a C4 discrete rothtion symmetry about the propagation axie; the vector b

then haa a single non-null component: b = (O, b2, 0), but the eigenvalues Ji of W are still

arbitrary, Let us also introduce the following parameters:

The Hamiltonian and the equations of motio~i become

H = ~p [(ra - u2)coe2d + AU2+2&u] + ~Alr2 , (3.11)

du— a~(r2- ua)coadsind , (3.12a)
d r

(3,12b)

where u = r cm (9. The fixed points for (8,12) are easily determined and cln.ssificd, IIsing

~tandard techniques; we list ~hrm in the following table:



Fixed Point Coordinates
f

Constraint Saddle Center

F 4=0 cost9 =3/(1-A)
, @2 < (1 -A)2 A>l A<l

B #=7r cose= @/(1-A)

L b = 7/2 Cose = -lJ/’A @2 < ~2 04<0 A>o
R 4 = -7r/2 cOge= -J/A

Y cogZ4=~+9 0=0 —. o<\+ f3<l A+d$!(o,l )

s COS2(j = A-p e=lr . o< A-/3<l A-3 f!(o,l )
.

Table. The fixed points of system (3. 12) ●nd their types.

The above clmsiflcation is valid only for p # 0, For p = O, i.e., when A. = A~, the

right-hand side of (3.12a) vanishes identically so that the set of fixed points is the circle

cosd = bz/r(A~ - Al) = ~/~. The phaae portrait dependa on two essential parameters,

A and ~, or equivalently, Al - A, and bz/r, Bifurcation take place when the inequalities

in the constraint column of the Table become equalities. Thus, the pairs of fixed points

(F,B) and (L,R) appeax or vanish M the lines@ = +(1 -A) and@ = ●A are crossed in the

(~, J) pmmneter phme; see Figure 6.

This parameter plane is partitioned into nine distinct regions separated by four critical

lines that intersect at four points. Typical phasa portraits corresponding to each of these

regions Me depicted in Figure 7.

Ik’e note that the portraits are invariant under the following discrete tramfonnation:

(3.13)

Hence, a complete knowledge of the phaae portrait necessitates only the study of the

quarter plane (A s 1/2, d z O), i,e,, of regions 1, 2, 4, nnd 5. The .J-~xis (J = O) i~

n speciml line; in this limit, we recover the equations of motion for the rigid bo(ly, M i~

rasily seen from equation (3.5a), On this axia, the phase portrait~ themselvrw nr? %ptwinl,



Figure 6, The pars meter plum and its bifurcation lines,

although no bifurcations occur (except at A = O and A = 1). For instance, consider

region 5, The phase portrait then consists of saddle points at the poles, each of which is

connected to a pair of homoclinic loope, When O vanishes these two pairs of loops merge

together to form four heteroclinic orbito. Thus, on the whole of the J-axis, we recovec

the portrait for the rigid body. Indeed, the portrait consists of the fixed points h- and S

at the poles and of four other ones me distributed on the equator with azimuthal angles

Q = O (F), r/2 (R), r (B), 31r/2 (L). TWO of these are unstable while the other four are

stable centers. JVhich pair is unstable is decided by the value of A = (Aa - Al)/(A3 - Al ):

(F, B) are hyperbolic when A < 0, (N, S) Me hyperbolic when O < A < 1, and (R, L) nre

h!”perbolic when .\ > 1; in each caae, the umtable direction is specified by the A, which is

ll(~lther the leMt nor the greatest among the thmse.

Remark: Bifurcation taking place M the intensity of the beam is varied occur along

\.crticd lines in the parameter plane, and consist mainly of standard pitchfork bifurcations.

3.3. IIomoclinic chaos. \~e now consider spatially periodic modulations of rithcr

the circular -circul~ polwizctticm self-interaction coefficient .i2, or the optical acti J’ity t~’rm



/’-,,/
I



bz. In each case, when the unperturbed medium satisfies the addit ioual cmdition ~s = A~,

the Melfikov technique leads to an analytically tractable integral for the }felnikov function.

In this way, we are able to predict horseshoe chaos in the dynamics .f the single, travelling-

wave stokes pulse. Ii’e concentrate on the north pole u = 1, @ = @o, with cos2 do = ~ + ,J,

and evaluate the conserrecl Hmniltonian at this point t~ find a relation between u and @

the homoclinic orbit:

u = -r - 2b2/p (COS2@- ~) (3.14)

Substituting this expression into the equation of motion for # and iiitegrating produces an

explicit expression for the homoclinic orbit:

(3.15)

262 1- COS240sech2(<r)
u =

‘r - p{cos2 @Otanh2(~r) - A[1 - COS2@Osech2(<r)]i ‘

JVe consider a periodic perturbation in the form

A; ==A*+ e~ COS(I.JZ), b; = 62 + e2CC)S(I/Z) , (3.16)

where Cl,2 < 1 and v is the spatial modulation frequency. The perturbation Hamiltonian

is

H’ = +U(qu +%)cos(~~) , (3.17)

from which we calculate the Poisson bt acket for the Melnikov integwmd,

{HO, Hi}= -psindcos@ (r2 - U2) ucos(uz) , (3.19)

In the particular case AZ = J3, we find that the Melnikov function (formally the integral

of (3,18)) is given by

(3.19)

.4s a function of r. (which is proportional to the time, t) this expression ckarly has

simple zeroes, implying horseshoe chaos, As usual, this means that a region near the

homoclinic point, under the iteration of the Poincar6 map, is stretched, folded, and mapped

I)ack into itself, That is, a Smale horseshoe is created, As t *UShorseshoe folds and



refolds, a rectsmguhu region initially nearby the homoclinic point develops into a Cmtor

set structure whose associated Poincar6 map can be shown to contain countably many

periodic motions, and uncountably many unstable nonperiodic motions. Physically, this

motion corresponds to a (practically unpredictable) meandering of the polarization state

as the beam propagates as a travelling-wave.

4. Conclusion. JVe have presented a dynamical system analysis for two optical

systems describing the propagation of either a single beam, or two interacting and coun-

terpropagat ing beams. The physical interpretation of chaos for several types of spatially

periodic perturbations for the two-beam problem is discussed in Section 2. For the one-

beam problem we have discussed, horseshoe chaa corresponds to a sort of meandering of

the polarization state, that is, an intermittent switching from one elliptical polarization

state to a second one whose semi-major axis is approximately orthogonal to that of the

first state. ‘The trusition betwew these two states is characterized by a passage nearby

the circuk state of polarization, once during each switch. This intermittence is realized

on the Poincare sphere by an orbit which spends most of its time near the unperturbed

figure eight formation with a homoclinic crossing at the north pole (circular polarization)

in Figure 7. Under the periodic perturbations of W or 62 in (3.lb) this orbit switches

deterministicaIly, but with extreme sensitivity to the initial conditions, from one lobe of

the figure eight to the ocher one each time it returns within the crossing region nearby the

north pole where the homoclinic tangle is located.

From considerations of the special case in which the Duflhg equation (3.9) appesxs,

one could have expected homoclinic chaos to deveiop for the onebem problem of nonlinear

optical polarization dynamics; indeed, a related special ccse is studied numerically in

\Vabnitz [1987]. As opposed to such numerical studies, our analytical approach explores

the bifurcations available to the polarization dynamics for both the on~bemn and the twe

hem-n problems under the full rtmge of material parameter variations, demonstrates that

the horseshoe constmct is the mechanism driving the chaotic behavior, and characterizes

the location of the chaotic set, or stochasti~ layer. In some of the casea under consideration,

this layer is bounded by KAM curves on the Poincar& sphere, inside of which the travelling-

wave dynamics is regular and orbitally stable; higher dimensional chaorn also occurs for the

two-beam problem in the form of Arnold diffusion.

The strong dependence on the intensities of the beams in the travelling-wave phwe



portrruts indicates that control ad predictability of optical polarization in nonlinear media

may become an importmt issue for future research, In particular, the sensitive dependence

an initi~ condition found here to be induced by periodic spatial deformations may have

implications for the control of optical polarization switching in birefringent media. For

instance, an input~utput polarization experiment performed with input conditions lying

in the stochastic layer for some set of material and beam parameters would show essen-

t ially rmdom output after sufficient propagation length, depending on the arnpl.itude and

w-avelength of the material inhomogeneities and the type of material used.
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