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Abstract: Based on the infinite-dimensional algebras we have introduced, SU{o0) is identified
with general hamiltonian flows in 2-d phase-space, SO(oo0) with flows generated by z-p-odd
hamiltonians, and USp{co) with those of hamiltonians of special symmetry. Gauge theories for
SU(o0), SO(o0), and USp(oo) are thus formulated in terms of surface (sheet) coordinates for
toroidal phase-space. Spacetime-independent configurations of their gauge fields directly yield the
quadratic Schild-Eguchi string action.

This is an eclectic summary of recent observations made with David Fairlie and Paul
Fletcher, with whom I introduced new infinite-dimensional algebras involving trigonometric
functions in their structure con§tants[1]. The generators of the algebras we have introduced
are indexed by 2-vectors m = (m;,m;). The components of these vectors do not need to
be integers to satisfy the Jacobi identities, but we take them to be integral for the sake of
interpreting them as Fourier modes:

[Km, Kn] =r Sin(k m X n) Km+n +am 6m+n'0 . (1) i

Here, m X n = myn; —mgny, r and k are arbitrary (complex) constants;and a is an arbitrary
2-vector . The Casimir invariants are

> KmK-m ,
m
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m,n

Z eik(mxn+mxp+...+mxr+nxp+...+nxr+...+pxr) KmKnKp-'-KrK—m—n —

. These algebras include as a special case that of SDiffo(T?), the infinitesimal area-preserving
diffeomorphisms of the torus(®?: r = 1/k in the limit k£ — 0 yields the algebra

(L, Lo} =(m X n)lmyn +2a-m émyno - )
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You may find the supersymmetric extension of our algebra (1) and the observations to follow
in Ref.[1]. The representation and| character theory of these algebras is an open problem.

The algebra (3) is known to be, in a particular basis optimal for the torus, that of the
generic area-preserving (symplectic) reparameterizations of a 2-surface. Taking z and p to
be local (commuting) coordinates for the surface, and f and ¢ to be differentiable functions
of them, a basis-independent realization for the generators of the centerless algebra isl?:

af J af J
Ly= 8z dp 9p 0z )
[Ly,Lo) = L{f,g} s Ly 9l=1{f.9}, (5)
where
3f ag df g
{fi9}= 5, % " 3pds (6)

the Poisson bracket of classical phase-space. The generator Ly transforms (z,p) to

(z — 8f/dp , p+ 8f/0z). Infinitesimally, this is a canonical transformation!} generated
by f, which preserves the phase-space arza element dzdp. This element is referred to as a
symplectic form and the class of transformations that leaves it invariant specifies a symplectic
geometry. You may regard it as the flow generated by an arbitrary hamiltonian f. For a
small patch of 2-surface, you may expand the functions f(z,p) in any coordinate basis you
choose. If the surface is a torus, I shall prefer a globally adequate coordinate system, such
as exp(inz + imp); if it is a sphere, spherical harmonics®; if it is a plane, powerslS); and
so on. Nevertheless, for the infinitesimal transformations effected by the algebra generators
in a patch, any coordinate basis will do, and may be transformed to other ones. (When
such transformations are singular, however, a number of generators may be lost, leading to a
subalgebra, as noted by Pope and Stelle, and Hoppel®l.)

Choosing the torus basis, f = —ei(mz+mzp) apd g = —ef(mztmrp) g < z,p < 27, yields
Ly= L(”‘l,"n) = _iei(m1x+mzp)(mla/ap —m30/0z) , (7)

which obey the centerless algebra in the basis (3). Conversely, given the basis (3), any
function f(z,p) can be reconstituted through

f@.p)=~= 3 F(my,my)eitmiztmae) (8)

my,my
and thus the linear combinations

Z: F(mla mZ)L(m; ;mz) ! (9)

my,m2
are seen to obey the Poisson-bracket algebra (5).

We have found a correspording realization for the torus-basis algebra (1) generators:
- ; . L i)
K(my,mg) = (ir/2) exp(imz + nga—z + itmop — km,a—p) |
= ‘(ir/2) exp(imyz + imyp) exp(kmg—a— —kmy -2) (10)
S0z ap’’

somewhat analogous to the one-variable realization found by Hoppel3. Note the triviality in
this realization of the Casimir operators, as the indices of each of their terms sum to zero.



To Fourier-compose this to a basis-independent realization, we first define, as in (9),

9 9
=y F(ml,mz)a(mlm)_ f(z+zka Pikao), (11)

my,m2
where the last side of the equation is a formal expression to evoke (8)/(4): the “normal

ordering” of its derivatives is specified in its Fourier-series definition, in which they stand to
the right of all coordinates, by virtue of eq. (10).

The analog of the Poisson bracket in this case is the sine, or Moyal, bracket {{f,q}}.
This is the extension of the Poisson bracket {f, g} to statistical distributions on phase-space,
introduced by WeyllYl and Moyall™, and explored by several authorsl”l in an alternative
formulation of quantum mechanics, regarded as a deformation of the algebra of classical
observables. It is a generalized convolution which reduces to the Poisson bracket as £, repraced
by 2k in our context, is taken to zero:

- 1
{{f’g}} — ____r___ dp,dp”dI’d-'C” f(z’,p’)g(I”,P”) sin _1 p(I"—I”)+.'E(p”—p,)+p,1” p”I, .
472k? : k (12)
‘ 12
The argument of the sine above is

1 1 p = 1
—det{ 1 p z' |= —-/p-dq , (13)
k 1/ '/ k

Pz

1

i.e. 2/k times the area of the equilateral phase-space triangle with vertices at (z, p), (z/,p’),
and (z”,p”). The antisymmetry of f with g is evident in the determinant. The sine brackets
satisfy the Jacobi identities™, just as their Fourier components (1) (see the next paragraph)
do, and thus determine a Lie algebra. These brackets help reformulate quantum mechanics

in terms of Wigner’s phase-space distribution(™} .

The Fourier transform of the sine bracket results from substitution in (12) of the expo-
nential basis used in (7):

{{f, g}} = g;_;;:?z./;ipldplldzldz/l ei(mlzl+n]z:l)+£(m2pl+n2pn) %

x (ef(p(:'—z”)+:(p"—p')+p’z”—p”.r') _ (k - —k)) = —r sin(km % l‘l) ei(m; +n3)r+i(ma+nz)p .

(14)
As in (9), it then follows through the hnearltv of the operators defined in (11), and (1), that
these indeed obey the algebra

[Kp Kgl=1 E F(my,m;)G(n1,n2)sin(km X n) Ky = Kyren - (15)

my,m2,n4,R2

Our algebra is thus identified with that of sine brackets. Mutatis mutandis, you might wish to
expand it in alternate bases, such as spherical harmonics, so as to specify the coiresponding
generalizations of SDiffp(S52), powers for the planel®], and so on. ‘

Focus now on an interesting centerless family of the algebras (1), namely the cyclotomic
family: the one for which k£ = 2« /N, for integer N > 2. In this family, there is an additional
Z x Z algebra isomorphism

K (my,mz) = K (my,ma)+(Nt,Nq) (16)
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for arbitrary integersit and ¢. Since the structure constants sin"}v—"(mlng —~ nyma) are only
sensitive to the modulo-/V values of the indices, the 2-dimensional integer lattice separates
into N x N cells, each of which may be referred to some fundamental cell, e.g. around the
coordinate center of the lattice, by proper N-translations. The fundamental N x N cell’
contains N? index points, but the operator K (0,0), like its lattice translations K4, factors
out of the algebra: it commutes with all As and cannot result as a commutator of any two
such. Thus the fundamental cell involves only N2 — 1 generators, and there are no more
structure constants than those occurring in this cell. In consequence, the infinite-dimensional
centerless cyclotomic algebras, with the Kn,q)’s factored out, possess the following finite-
dimensional invariant subalgebra of “lattice average” operators K: o

- " . 27
K(m],mz) = Z-ﬁ(m1+Ns,m2+NU)7 [Aqn, Kn] = Tsln(xr_m X n) K[n.{.n, (17)
3,V
where m,n,m~n are indices in the fundamental cell, and an infinite normalization has been
absorbed in 7.

This (N?—1)-dimensional ideal specifies, in fact, a basis for SU{/N ) which may be thought
of as a generalization of the Pauli matricesl®. € on51der odd N'’s first. A basis for SU(N)
algebras, for odd N, may be built from two umtary unimodular matrices:

10 0 ... 0 0106 ...0
0w 0 ... 0 001 ...0
g=] 00 w2 .. 0 , h=] ], dN=mN=1, (18
: : 000 ...1
0 0 0 whV-1 100 ...0

where w is a primitive N’th root of unity, i.e. thh period no smaller than N, here taken to

be e*™/N_ They obey the identity ‘
hg = w gh. (19)

You also encounter these matrices in the context of representations of quantum SU{(2)[19),
The complete set of unitary unimodular N x N matrices

m,m2/2 gm1 hﬂl2 R ' (20)

J(ml,mz) =Ww
where
J(mhmz) = Jcmy,—mz) } TrJ(m,,my) =0 except for m = my = 0 modN , (21)

suffice to span the algebra of SU(N). Like the Pauli matrices, they close under multiplication
to just one such, by virtue of (19):

JmJn = wnxm/z-]m+n . (22)
They therefore satisfy the algebra
.27
[Jm,Jn] = =24 51n(7v-m x n) Jmin - (23)

Consequently, in this convenient two-index basis with the above simple structure constants,
SU(N) describes the algebra (17) of the ideal {K}.



For even N, the fundamental matrices in (18) are not unimodular, as their determinant
may now be -1 as well. One might choose to modify them to

10 0 0 0 10 0
0 w 0 ... 0 0 01 ...0"

g=vw| 0 0 W ... 0 . h= s |, gN=aV =1,
Do : 0 00 1
00 0 wh-1 -1 00 0

| (24)
with w = /N /u = e’"/N They again obey (19), and again serve to define the unitary
basis

Ty ma) = W™ GRS (20)
. " JmJn —_—wnxm/2Jm+n . (22)
The SU(N) algebra is now
[V, Ja] = —2isin(—;—:,-m x n) Jmin - (25)

It might a.ppea.r~tha‘t the fundamental period be 2V instead of N. However, note that, by
virtue of the symmetry

Jm+N(t.q) - (_1)(m1+1)9+(m2+1)tJm , (26)
only indices in the fundamental cell ¥ X N need be considered. Hlustrating this for ¥ = 2
, the Pauli matrices, may be of use to the reader. Naturally, the algebra (25) also holds for
N odd, when w = exp(2ri/N) is used in (18). Thus, the ideal (17) amounts to SU(N) for N
odd and SU(N/2) for N even.? For example, both N = 3 and N = 6 yield SU(3), N = 12

yields SU(6)’s, etc.

In this basis again, the opera.torvs\ Q(mm) = Jmm) — J(n,m) close to ;Lsubalgebra of SU(N)
with N(N — 1)/2 generators

[Q(m,n)7 Q(m',n’)] = —2Zisin gNE(mn,'_ mln\) Q(m+m',n+n’)+2i sin %(mml—nnl) Q(m+n‘,‘n+m’)7
| (21)
which is shown by reduction to the Cartan-Weyl basis'!} to amount to SO(N). Alternative
SO(N)’s may also be fourid, such as the subset of the above Q) With m + n = even
together with the operators Jimn) + J(n,m) With m 4+ n = odd; or else, for even N = 2M,
Jimn) = (=)*J(m,~n)- Finally, the subalgebra of SU(2M): Simn) = Jimm) — (=) J(m,—n) is
seen to be an USp(2M). ;

The 2-index SU(N) basis considered here has a particularly simple large N limit. As
N increases, the fundamental N x N cell covers the entire index lattice; the operators K
supplant the A’s and, in turn, since k£ — 0, the operators L of eq.(3).

More directly, you immédia.tely see by inspection that, as ¥ — oo, the SU(N) algebra
(23) goes over to the centerless algebra (3) of SDiffo(72) through the identification:

iN

2 Actually, in this casel!’)| the generators describe SU(N/2)%, i.e. four mutually commuting SU(N/2)’s.




An identification of this type was first noted by Hoppel® in the context of membrane physics:
he connected the infinite N limit of the SU(NN) algebra in a special basis to that of SDiffp(S5?),
i.e. the infinitesimal symplectic diffeomorphisms in the sphere basis. A discussion of the
group topology of SU(N), or SDiffp(T?) versus SDiffp(S?), or other 2-dimensional manifolds
for that matter(s), exceeds the scope of this type of local analysis; such a discussion has been
suggested in Refs.[6], which consider central extensions that are sensitive to global features

of the 2-surface. -

‘In view of the SO(N) subalgebras described above, we may also simply identify the
SO(c0) subalgebra with the Poisson Bracket subalgebra whose shift potentials f are odd
under interchange of z with p — they correspond to hamiltonians which evolve even functions
to even ones, and odd to odd ones. Likewise, USp(oo) is generated by shift potentials of the
form exp(imz) sin(np — mn/2), i.e. toroidal phase-space hamiltonians odd under p +—
~p, =+ z + 7. (Merely p-odd hamiltonians generate the “sibling” $S0(o0).) Saveliev and
Vershik[!3, and well!] have initiated 2 program of systematizing such results in a unified
framework common with that of the ﬁnite Lie algebras.

Floratos et al.[3] utilized Hoppe's idéntiﬁcation to take the limit of SU(N) gauge theory.
Their results are immediately reproduced without ambiguity, again by inspection, on the
basis of the orthogonality condition dictated by (21) and (22):

TerJn = N6m+n’0 d TerLn = —(_47)‘5611]4.“,0 - (29)

As a result, for a gauge field 4, in an SU(N) matrix normalization with trace 1, the analog
of eq. {9) is

J; 47 -
m Ym m m
A# 1/—N z'N3/2A# Im = Au L, (30)

where summation over repeated m’s is implied, and I have defined /1:}‘ =4 7r/iN3/2)AZ“. As
N — o0, the indices m cover the entire integer lattice, so that I may define

afFP = — 3 Amgitmetnan) (31)
m

Ay

By eq. (5),
[A[.HAV] - [Lau’Lau] = L{a,.,a.,} - (32)

“Hence, by virtue of the linearity of L in its arguments,

Fu = 8,4, — 8,4, +[4,A)] — Ly,

fu =8ua, — o0, + {a,,a.} . (33)
The group trace defining the Yang-Mills lagrangian density is then
NE —N3 : . s ) £
TrFuFu — —Wf“,?:F;,m = Sind ] dzif;’";’,T:'I('"‘+’"’)+"’(’"’+”?)F,£Z"""”Fﬁﬁ“"”

= (=N3/64r") /dzdp f};"”j};"” . (34) '

Thus, in the SU(x) gauge theory, the group indices are surface (torus) coordinates, and the
fields are rescaled Fourier transforms of the original SU(V) fields; the group composition rule
for them is given by the Poisson bracket, and the trace by surface integration.



Now note an intriguing connection to strings which emerges, for the first time directly at
the level of the action: for gauge fields independent of z* (e.g. vacuum configurations), this
lagrangian density reduces to {a,,a,}{a,,a,}, the quadratic Schild-Eguchi action density for
stringsl), where the @, now serve as string variables, and the surface serves as the world-
sheet. This action amounts to the square of the sheet area and it is casily seen that its
equations of motion contain those of Nambu’s action. Thus, at zero energy, the gauge theory
reduces to a string. Whether a superstring follows analogously from the super-Yang-Mills

lagrangian is an open question.

The lagrangian (34) with the sine bracket supplanting the Poisson bracket is also a
gauge-invariant theory, provided that the gauge transformation also involves the sine instead

of the Poisson bracket:

ba, = A — {{A,a,}}, (35)
and hence, by virtue of the Jacobi identity,
6 fuv = ={{A, fw}} - (36)
It then follows that
§ / dzdp fu fu = —2 / dodp fu{{A, fu}} = 0. 37)

At the moment, however, it is not clear what physical system is described by the corresponding
spacetime-independent lagrangian density {{a,,e.}}{{a,,a,}}. It is further obscure whether
a relation exists between the above theories and the Universal Yang-Mills theory(1%],

This compact formulation of SU(c0) gauge theory (and that of its subgroups) ought to be
of use in large-N model calculations, or various “master-field” efforts; membrane physms[2 2l
and the exploration of connections between gauge theory and strings, as above,

I wish to thank the Ohio State University for its hospitality during’ much of this research.
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