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ABSTRACT 

Difficult stiff system problews encountered at LLNL are typified by those ar1smg 
from various atmospheric kinetics models, which include reaction kinetics and transport in 
up to two space dimensions. Approaches devised for these problems resulted in several 
general purpose stiff system solvers. These have since evolved into a new systematized 
collection of solvers, called ODEP ACK, based on backwara differentiation formulas in the 
stiH case. A model_ kinetics-transport problem is used to illustrate the various solvers . 
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1. Introduction 

Stiff Systelil Problems and Solutions 
At LLNL 

Initial value problems for systems of ordinary differential equations (ODE's) have long 

been a topic of great interest at LLN L. Stiff systems are particularly prevalent and are, 

of course, much more challenging. Applications giving rise to stiff ODE systems vary 

widely. But one area that typifies the difficulties encountered is that of atmospheric 

cotuputer models, on which a great deal of effort has been spent at LLNL since about 

lnl. These problems, in most cases, take the form of systems of partial differential 

equations (PDE's) in space and time, involving chernical kinetics and transport processes. 

A aiscretization process leads to large stiff ODE systems. In Section 2, this class of 

problerns and the various approaches pursued for their solution are described. 

The problem features discussed here are not at all unique to this particular 

application, nor to problellls at LLN L, and the software aeveloped for their solution was 

designed with full awareness of that fact. Thus the ODE solvers used were designed to be 

as much general purpose as possible. However, a .great deal has been learned in the 

intet·vening years about methods, algorithms, and software design for general ODE 

solvers. As a result, a new collection of initial value solvers has recently evolved at 

Livermore-the ODEPACK collection. There are currently five solvers in the collection. 

They are based on Adams methods (nonstiff case) and on the backward differention formula 

(BDF) methods (stiff case), and also on an inter-laboratory effort to set user interface 

stanaards for initial value solvers, These are aescribed in Section 3. 

In Section 4, a model problem on kinetics-transport type is used to illustrate the 

capabilities ana relative n1erits of various solvers, including both those in ODEPACK and 

older coaes. 



2. Atmospheric Model Problems 

The computer modellin~?; of various atr11ospheric chemistry and transport process has 

been of great interest in the context of (a) ozone depletion from supersonic transport 

exhausts in the stratosphere [1,2), (b) stratospheric ozone aepletion from terrestial 

fluorocttrbon sources lJ], (c) regional air pollution in the lower· atmosphere [4), among 

others. In all cases, the Iliathematical mouel can be put in the forrn of a set of 

tuue-oependent PDE's in space (or, as a special case, as opE's without space effects), in 

the concentrations c1 of the various chemical species of interest. These PDE's can be 

written 

~i;at ; v • (D'il~i + v~i> + Ki + si (i=l,2, ... ,p) , (1) 

where D is a matrix. of diffusion coefficients, V · is the vector of mean atmospheric 

· motion, Ki is the kinetics rate for species i , and Si is its external source rate. All of 

these quantities can in general depend on time t, on the point in space, and on the 

dependent variable vector c = (c\ •.• ,cP)T . However, in the applications of interest, D 

ana V 
. i 

and the S aepend only on space and possibly time. The number of space 

aimensions is usually 2, but sometimes 1 or 0. The kinetics rates Ki usually involve 

diurnally varying rate coefficients, corresponaing to photochemical reactions in the system. 

The particular kinetics system involved varies from one application to another, but in 

<ill cases there is a mixture of fast ana slow rea~tions (large ana small rate coefficients), 

and the rates are nonlinear. The fast reactions correspona to strong damping effects with 

short time constants, i.e. they cause stiffness. This means that the ODE problem will be 

stiff regardless of the transport processes in the model, although they can also contribute 

to stiffness. The small time constants from the kinetics are usually in the microsecond 

range or smaller, while the time range of interest is usually measur·ed in yeat·s. Thus 

stiffness ratios exceeding lO 12 are common in these problems. 
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Historically, the spatial operator in (1) has usually been treated by finite difference 

approxi1uations; because of their. simplicity and their long history of use. In 2-D, a 

rectangular uiesh is used. Actually, however, there is nothing inherent in the problem to 

prevent the use of a finite element, collocation, or Galerkin treatment, although in the 

latter case the local integrals pose some difficulty. 

To illustrate the spatial differencing process, consider the one-dimensional operator 

Lc =;, [D(x) ~ + V(x)c] • (2) 

On a 1uesh x
1 

< x2 < ••• <xlV! , the standard central differencing of (2), in terms of discrete 

values ci:::::c(xi), is 

+ 

where, by definition, 

V (xi+l )ci+l - V(l1-l)ci-l 

xi+l - xi-1 

xi+l/2 = (xi + xi+l)/ 2, 

c (x. 
112

) =(c. 
1

- c.)/(x. 
1

- x.), 
X 1+ 1+ 1 1+ -l. 

(3) 

and similarly at xi-l/2 . The differencing process is handled in a similar way for two 

dimensional operators. Boundary conditions are similarly approximated in discrete form. 

For example, a zero normal derivative boundary condition, s~y 

is ap~:>roximatea by setting c
0 

= c2 in the ODE's corresponding to x = x 1 • 
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In this way, a set of p species PDE's becomes a coupled stiff system of ODE's whose 

size is 

N =p 

N 

N 

=~M 

= ntvl IV! 
t' X y 

in 0-D (spt~.ce-independent), 

in 1-D (mesh size iV1), 

in 2-D (mesh size lV1 by M ) 
X y 

It is clet~.r that for a reasonably realistic mooel in 2-D, the system size can easily exceed 

w,uoo. 

In 1!171, the only reliable stiff systern solver a vaila.ble (to us) was C. W. Gear's 

DIFSUB. This routine was installea, lliOdifiea and i111proved, ana used as the GEAR package 

L5). For 0-lJ problems or s10all l-lJ problems, it workea well, and proaucea accurate 

answers with efficiencies that were quite impressive when compared with anything else 

tried (including a number of nonstiff methods, before the nature of stiffness was 

recognized). The GEAR package (like DIFSUB), also had a nonstiff method option (using 

Adams methods), so that it was widely usable (and used) as a general purpose ODE solver. 

Still, the GEAR package gave little hope of solving the full atmospheric models, because it 

haa to construct, and perform LU factorizations on, full N x N matrices, followed by 

backsolve operations for solutions of linet~.r systems. If the ODE system is written 

y ::dy;dt = f(t,y)' (4) 

and has a system Jacobian rnatrix 

J = 'df/'Oy ' (5) 

tnen the linear systems take the forrn 

Px = (BDF residual vector), (6) 

where xis a correction vector and P is an approximation to I-hf;i .J . Here I denotes the . ~ 0 

identity matrix, h is a time step size, and p is a scalar depending only on the current 
0 

n1ethoci order. The N x N system (6) occurs within a modified Newton iteration to solve 

the implicit BVF relation. 

The next step was the realization that our problems had a very sparse Jacobian 
. . 

matrix, and that the LU method was extendable to sparse matrices. This was clearest if 
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. J wtts thOU!:!;ht of as t>andeo, and so a variant solver, with J treated as banded, was 

written, ana called GEAH.ti l6J. This abJproach could be applied to the atuwspheric 

- problerns if the depenoent variables in the ODE system were correctly ordered. The 

appropriate ordering is to !:!;roup together ttll p values ci at one node, then all the ci at 

the next node, and so on, with a natural linear (in 1-D) or rectangular (in 2-D) ordering of 

the nodes. Ordering in the reverse manner (by nodes, then by species) may seem natural, 

but produces much larger bandwidths, as long as p is small compared to either of the 

BleSh dimensions. In two dimensions, the bandwidth is also minimized by numbering the 

nodes in the shorter direction first (if there is one). GEARB was used successfully in 

solving the l-D models of interest, and small 2-D models. 

The full 2-D models still seemed out of reach. Combining GEARB with reordering 

al!:!;orithms to reauce bandwidth failed because of the regular structure of the problem. A 

general sparse LU approach seemed inappropriate (though it was not thoroughly pursued) 

/ 

because ruatrix till-in would result in much the same storage costs as for the banded 

t retttment. 

InttSIIIUCh as the matrix elements in (6) are rather easily generated, the idea of 

iterative hnear systen1 methods was a natural next choice. For example, successive 
I, 

overrelaxation (SOR), with careful attention to the choice of relaxation parameter, was 

known, both theoretically and experimentally, to do well on linear systems based on 

transport PDE's of the type (1), with a single species and no kinetics. The implementation 

of SOR for (6) requires that P be written as 

P = L + D + U with (7) 

L strictly lower triangular, 

D diagonal and nonsingular, 

U strictly upper triangular, 
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that one can generate (or access from memory) the elements of D , and that one can 

easily generate matrix-vector products (L+U)x. Specifically, for a given relaxation 

paran1eter w, the vth SOR iteration in the solution of Px = r is given by 

vB v v (D + wL)x = ~ + (l-<.u)Dx - wUx (8) 

This can be rephrased as 

v+l \) x = (1-<.u)x + r..ut, 

Dz = r - Ux v - Lx v+l • 
(9) 

v v+l This pair ot' equations appears circular, but is not; z is con1puted and x updated to x 

one cowponent at a tin1e according to (~}. 

For the atmospheric problems, the coupling induced by the kinetics does not even 

come close to satisfying the conditions needed for ordina~y SOR. Thus, to have any hope 

t' or convergence, it is necessary to treat the c vector (of length p) as a unit, and use a 

block-SOR algorithm. This results from replacing scalars in SOR by matrix or vector 

blocks of size p. Thus one 1uust write 

P = L + D + U with (10) 

L strictly lower block-triangular, 

D block diagonal and nonsingular, 

U strictly upper block-triangular. 

one must again generate products (L + U)x , and one rnust generate D and be able to 

solve p x p systems with the diagonal blocks in D. This can be easily done by forrning 

ana using LU factorizations of those blocks. Equations W) also provide an algorithm for 

the blocK-SOh iteration, by updating x \1 in blocks (from first to last). 

For a 2-D atmospheric wodel, a special block-SOR variant of GEAR was written, ana 

later maae into a general-purpose solver, called GEARBI [7] (BI denoting Block-Iterative). 

This was soon modified to take advantage of Large Core Memory (LC!Vl) storage on the 

CDC-7600 colllputer, resulting in a package callea GEAlUHL. The latter stores most of the 

large data arrays in LCl'v1, the largest being the one containing the matrix D in (10} (and 
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later its LU decom~,.>osition), ot size p2MxMy. These two solvers, as they stand, are still 

somewhat specittlized to the ·atmospheric mooels, in thttt the L ana U 111atrices in (10) 

have a regulttr blocK structure (in p x 1:> blocks), with each block being tt. scalar multiple of 

the 1:> x 1:> identity Iuatrix. (The ltttter is due to the tact that D ana V are independent 

of c in (1).) However, it is a straightforward matter to modify the codes to accommodate 

a more general cou~:>ling, and this has been done in at least two instances. 

The GEARBIL package· was used for a variety of studies of kinetics in the 

stratosphere, including ozone depletion from SST's [ l ,2] and from fluorocarbons [3], with 

the two dimensions being altitude and latitude. In most cases, the mesh sizes were 37 x 

44 (1628 spatial nodes), and the number of chemical species p was 9, giving an ODE 

system size of N = 14,652. GEARBIL was subsequently used in several similar models 

developed for regional air quality calculations [4], with the third dimension (altitude) 

accounted for by assuitling uniformity between the ground and the temperature inversion 

layer. One ot these, LI.H.AQ2, is currently used to model the San Francisco Bay Area air 

layer, as an ongoing pollution control tool of regionttl government. 

ln the stratosphere studies, one of the lessons learned concerns the tolerance on the 
I 

~,.>art of the ODE solver for errors in the Jacooian matrix, when supplied by the user. For 

some time, routines to supply J were written by hand, and therefore subject to error, 

especially for these cowplicated systems. Vv hen plots of step size history were generated, 

and in one case published (l,p.58], they often showed great irregularities, as if frequent 

instabilities or problem discontinuities were forcing drastic reductions in step size 

periodically. Subsequently, with the aid of automated Jacobian generators, errors in J 

were found and corrected, and reruns of these problems showed a remarkably smooth, 

nearly iliOnotone, growth in step size • 

Indepenaently of the develol:)ment of complex transport models in 1-D and 2-D, the 

" kinetics mechanisms ot the lower and upper atmosphere were studied. In particular, the 

detailed kinetics processes of the stratosphere, with diurnal effects included, required 

7 



much effort in both the Iuodel-builaing and the numerical solution phases, even in the 

absence of spatial transport, i.e. in 0-D. The stiff ODE systems that arise are further 

complicated by the fact that rate coefficients for photochemical reactions follow a nearly 

square-wave pattern in response to sunlight [8]. 

In many cases, these diurnal kinetics problems were found to cause great difficulty for 

the GEAR package, sometimes causing it to crash irrecoverably. It was found that this is 

aue to the buildup of errors associatea with the use of fixed-step .BDF's with interpolatory 

step changing. As a result, variable-step forn1s of the .BDF's were developed, jointly with 

G. byrne (~). These were i1uplemented in a general solver called EPISODE (lO,ll], along 

with variable-step Adallls methoas for non-stiff peoblen1s. EPISODE resembles GEAR 

externally, but differs internally in all details associated with integration coefficients, 

error estiiHation, ana step selection. EPISODE was found to be able to handle the diurnal 

problems quite reliably, although it was usually somewhat less efficient than GEAR on 

problerns with smooth solutions [12]. A banaed Jacobian variant EPISODES (13] was also 

written, to accommodate diurnal kinetics-transport problems. 

After most of the model building for these atmospheric problems was completed, the 

question of alternative space discretizations was nevertheless studied to some extent. N. 

Madsen and R. Sincovec showed that collocation methods could be used quite effectively on 

1-V problems of this type, and developed a general purpose PDE package, called PDECOL, 

from that idea [ 14]. In the process, it was clear that a different type of ODE solver was 

neeaea, namely one which would treat linearly illiplicit systelliS, 

Ay = g(t,y) (11) 

(A a square matrix), in a direct and efficient ruanner. To this end, another GEAR variant, 

GEAH.lb, was written ll5] (Its for Implicit systems, Banded matrix treatment), and a 

fliouifled fortH of this is used in P DECOL. Later, an analogous EPISODE variant, 

EPISOVEIB, was also written ll6]. These two ODE solvers are intended 111ainly for the 

case of a nonsingular A matrix in (11), which is the most common situation in POE-based 

problems, but can also be used in the singular case, if used with caution. 
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. 3. The ODEPACK Solvers 

The DIF::iUb, GEA.H., ana EPISODE packages were added to a list of available general 

purpose initial value solvers that was growing quite sizable by 1!:175. The length and 

oiversity or this list caused sou1e concern to users and software developers alike. There 

was much duplica.tiou o!' capabilities otfered, but at the sa.1ne time there was very little in 

con11non a1uong the solvers in terllls of either their external appearance or their internal 

structure. This situation was in sharp contrast to that in other areas in which 

"systeJnatized collections" of Fortran routines were being developed. The earliest 

examples were EISPACK [17], for computing matrix eigensystems, LINPACK [18], for 

solving linear systems, and FUN PACK, for certain special functions. 

3.1 The ODEPACK Concept 

The idea of a systematized collection of initial value ODE solvers, tentatively called 

ODEPACK, was discussed informally as early as 197 4, in workshops attended by people 

from all over the world [1!:1]. However, it was quickly realized tt1at the task was much 

larger in the ODE case than in other areas, partly because of the complexity of the 

subject, and partly because of widely divergent views of what ODEPACK should look like. 

Starting in 1~76, atternpts were made to reduce the problem by involving only people at 

U.s. uepart1uent of Energy laboratories, ana LLNL received funding to study the 

feasibility of ODEPACK frorn the Applied Mathematical Sciences Research Program under 

the Office of Basic Energy Sciences in DOE. 

The natural first step, and a necessary preliminary to any actual development of an 

ODEPACK, is the setting of standards for the interface between the user and the ODE 

solvers. The user interface to a solver consists mainly of the call sequence of the routine 

the user must call, together with definitions of the one or more user-supplied routines 

called by the solver. To the extent that solvers for 'various problem types and using 

various methods must all communicate certain specific things to and froin the user, it is 



possible to formulate a loose set of standards for the user interface. An early proposal is 

given in [20). A sequence of workshops and discussions on user interface standards for ODE 

solvers succeeded in producing a reasonable consensus in HJ7 8 [21
1
Z2]. The resulting tentative 

interface standard was achieved only through considerable compromise by the various 

participants, which included ODE software authors and users at various DOE laboratories. 

At that time, it was agreed that several of the more popular ODE solvers, including 

GEAR, GEARB, DE/8TEP [2:i) and RKF45 [24), would be rewritten to conform with the 

tentative standard interface, resulting in a small collection that was at least systematized 

in its external appearance. The first result of that agreement was a package based on the 

GEAR and GEARB packages, called LSODE (Livermore Solver for ODE's) [25). The LSODE 

solver and variants of it written subsequently (all in accordance with the tentative standard 

interface l21J, with 1ninor rnodilications) are briefly uescribed in the following subsections. 

In the meanti111e, unfortunately, tht:: other software authors involved withdrew from the 

agreement, ana so this collection does not yet have analogous rewritten versions ot' their 

codes. 

3.2 LSODE 

LSODE combines the capabilities of GEAR and GEARB. Thus it solves explicitly given 

stiff and nonstiff systems y = f(t,y) , and in the stiff case it treats the Jacobian as either 

full or banded, and as either user-supplied or internally approximated by difference 

quotients. By comparison with GEAH. and GEARB, LSODE offers a number of new features 

that lllake it Illore convenient, more flexible, more portable and easier to install in 

software libraries. So1ne of these are the following: 

(a) Through the reaesigneo user interface, many new options and capabilities 
are available, ana others are ruuch more convenient than before. Some 
examples are--u10re flexible error tolerance parameters, independent 
Hags for starting and stopping options, internally co.-11puteo initial step 
size, two work arrays in the call sequence for all internal dynamic work 
SI:Jace, uset· names for f an<..i J in the call sequence, easy changing of 
input parameters in mid-problem, convenient optional inputs (such as 
maxiruun1 ruetllod ot·del'), couvenient optional outputs (such as step and 
function evaluation counts), optional provision of derivatives of the 
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solution (of various orders) at any point, and real and integer user data 
space (of dynamic length) available in the f and J routines (with no 
extra burden on the casual user). 

(b) The user aocumentation, which is contained in the initial comment cards 
of the source, is given in ·a two-level foru1. A short and sirnple set of 
instructions, with a short example program, is given first, for the casual 
user. Then detailed instructions are given for users with special problem 
features or a desire for nonstanaara options. The latter is also organized 
so as to allow selective reaaing- oy a user who wants only a fraction of the 
nonstandard capabilities. 

(c) When stiff Ok>tions are selected, linear syste1ns are solved with routines 
fron1 LINPACh. ll8J, which is becoming· a widely accepted standara 
collection of linear system solvers. 

(a) Some retuning of various heuristics was done so that performance should 
be more reliable than for GEAH./GEAH.B. 

(e) The core routine which takes a single step, called STODE, is independent 
of the way in which the Jacobian matrix (if used) is treated. Thus as 
variant versions of LSODE are written for other matrix structures (such 
as LSODES), these will share the same subroutine STODE. 

(f) The writing of all error messages is done in a small isolated 
general-purpose message handler called XERRWV. Two other small 
subroutines are user-callable for. optional changing of the output unit 
number and optional suppression of messages. This trio of routines is 
compatible with a much larger error package (the SLATEC Error 
Handling Package) written elsewhere [26]. 

(g) LSODE easily allows a user to interrupt a problem and restart it later 
(e.g. in switchmg between two or lllore ODE problems). Also, using 
LSODE in overlay mode is very easy, with no loss of needed local variables. 

(h) The various lists of constants needed for the integration, formerly 
appearing in a subroutine called COSET, are now con.puted (once per 
k>rot>len1). This adds to the portability of LSODE. 

3.3 Lf>ODI 

The LSODI solver l25], written jointly with J. F. Painter, (LLN L) treats systems in the 

linearly implicit form A(t,y)y = g(t,y) , where A is a square matrix. Many problems, 

incluaing PDE's treated by finite elements and the like, result in such systems, and it is 

almost always more economical to treat the system in the given forn• than to convert it to 

an explicit form y = f • LSODI allows A to be singular, but the user must then input 

consistent initial values of both y and y In the singular case, the system is a 

11 



a tft:'erential-algt:!braic systen1, ana then the user II lUSt be much wore cautious about 

fortuulatin~ a well-poseo problem, as well as in using LSODI, which was not designed to be 

robust in this case. U::iODl is based on (and supersedes) the GEAlUB package, but corrects 

a number of deficiencies, as follows: 

(a) The matrices involved can be treated as either full or banded, by use of 
the method flag. 

(b) The dependence of A on y is automatically and inexpensively accounted 
for, whether partial derivatives are supplied by the user or computed 
internally by difference quotients. 

(c) When A is singular, the user needs to sup!)ly u11ly the initial value of 
dy/dt, and this array (along with the initial y) is !)assed through the call 
sequence, rather than computed in a user-replaceable package r·outine. 
(Adtnittedly, correct initial data can be difficult to obtain for some types 
of problcniG.) When the initial dy /dt is not being iupplied, an inpl.!t f113g 
instructs LSODI to compute it on the assumption that A 1s uulH:illy 
nonsingular. Thereafter, no such assumption is maae, but ill-conditioning 
can be a problem when A is singular. 

(d) The user-suppllea residual routine includes a flag which allows the user to 
signal either an error conaition or an interrupt condition. 

(e) TO the maxiruUIII extent possible, LSODI shares the same user interface as 
L~OVE, and so reflects all the advantages over GEAlUB that LSODE has 
over GEAl-t and GEAH.B. 

The differences between the LSODI and LSOVE user interfaces occur primarily in the 

user-supplied subroutines. With LSODI, one must supply a routine to compute the residual 

function r = g(t,y) - A(t,y)s for a given t , y , and s , and another routine to add the 

matrix A to a given array. Optionally, the user can supply a routine to compute the 

Jacobian matrix 'ar/'~ • 

By virtue of the modular and systematized organization of LSODE and LSODI, the two 

pAckai:Ses share most of their routines with each other. 

Some exaruples of the use of LSODE and LSODI on systems arising from PDE problems 

can be t:'ouna in l27] ana [28]. In the latter, experiments by Painter on incompressible 

N a vier-Stokes problelliS shea so111e light on the ait'ficulties involved with 

differential-algebraic syste111s. 
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3. 4 LSODES 

The LSODES package solves explicit systems y = f , but treats the Jacobian matrix J 

as a general sparse matrix in the stiff case. LSODES was written jointly with A. H. 

Sherman (Exxon Productiort ~es. Company), and supersedes a sparse variant of GEAR 

callea GEARS [29,30]. In ~SODES, the linear systems (6) are solved using parts of the Yale 

Sparse Matrix Package (YSMP) [31,32]. This involves several phases: 

(a) Determination of sparsity structure. This is either inferrea from calls to 
the f routine, inferred frona calls to a J routine (if one is supplied), or 
suppliea airectly by the user. A user input Hag aetermines which is aone. 

tb) Deterruinatiou of pivot oraer. Diagonal pivot locations are chosen, and the 
choice is base a on lllaximizing sparsity. This is a one by YSJ.\11P. 

(c) Symbolic LU factorization of the matrix P • This is basea only on sparsity 
ana the pivot order, ana uses the moaule in YSMP <.lesignea for 
nonsynametric rHatrices with cotupresseo pointer stot·age. 

ta) Construction of J • This can be done internally by difterence quotients, 
or with a user-supplied routine. In the difference quotient case, the 
number of f evaluations needed is kept to a minimum by a colunan 
grouping technique due to Curtis, Powell, and Reid [33]. In the other case, 
the user-supplied t•outine provides one column of J at a time, in the form 
of a vector of length N (although only non-zero elements neea l>e 
computed and stored), so that users need never deal with the internal data 
structure for J and P • In any case, J is stored internally in an 
appropriate packea form. Evaluations of J are done only occasionally, as 
explained below. 

(e) Construction of P = I - hf)0 J • In contrast to GEARS, LSODES does not 
force a re-evaluation of J whenever the existing P is deemed unsuitable 
for the corrector iterations. Instead, when the value of J contained in 
the stored value of P is likely to be usable (and P is not, only because · 
hi:So has changea significantly), then a new tnatrix P is constructed frona 
the ola one, with careful attention to roundoff error. This cuts down 
greatly on the number of J evaluations necessary. 

(f) Nunaerical LU factorization of P • This is done by YSMP in sparse form, 
ana the array contaimng P is savea in the process (this allows for 
upaating P as aescribed above). Because of the absence of partial 
pivoting for numerieal stability, this operation can conceivably fail. 
However, th1s has only rarely been observea in practice, and if it does 
occur (with a current value of J ), the step size h gets reduced and the 
p robletu oisappears. 

(g) Solution of Px = r • This is done by YSIV!P using the existing sparse 
factorization of P . Because a moaified Newton iteration is used, many 
values of r (i.e., many linear systems) can arise for the same P , and the 
separation of the various phases takes advantage of that fact. 
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Tne tirst three phases, and part of the . fourth (column grou~:>ing for difference 

quotients), are nor1ually aone only at the start of the ~:>roblern. However, the user can 

specify that the sparsity structure is to be reaetermined in the miaale of the problem, ana 

then these operations are re~:>eated. 

Actually, the matrix operated on by YSMP is A = P T , not P , because P is 

generated in column oraer while YSMP requires the 1i1atrix to be described and stored in 

row order. This causes no difficulty, however, because YSlVlP includes a routine for solving 

the transpose problem x T A = r T (which is equivalent to Px = r ) as well as for the direct 

problem A:t. - t> • 

A package called LSODIS, similar to LSOUl (for the AY = g problem) but using YS!VlP 

for general sparse treatment of matrices as in LSUDES, is in the process of being written. 

3.5 LSUUA 

LSOlJA is a· variant of LSUDE of yet another kind. It was written jointly with 

L • .tt. Petzold (Sanoia-Livermore), ana switches auto111atically between nonstiff (Adams) 

ana stiH WUF) lllethoas, by an algorithm aeveloped by Petzold l34]. (The suffix A is for 

Automatic.) Thus it is more convenient than LSOUE for users who would rather not ue 

bothered with the issue of stiffness. Also, it is potentially 1nore efficient than LSODE 

(when used with a fixed method option), when the nature of the ~:>roblern changes between 

stiff and nonstiff in the course of the solution. In place of the method flag parameter of 

LSODE, the user of LSODA supplies only a Jacobian type flag. The storage space supplied 

to the solver can be either static (and thus allow for either the stiff or nonstiff method), or 

dynamic (ana alterea each time there is a method switch, to. an amount specified by the 

solver). 
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3.6 LSODAR 

LSODAR combines the capabilities of LSODA with a rootfinder. It allows one to find 

the roots of a set of functions gi(t,y) of the independent and dependent variables in the 

0 DE system. Thus, for example, it could be used in a particle tracking problem to 

determine when a particle path reaches any of the walls of a container. LSODAR was also 

written jointly with L. :H.. Petzold based on an algorithm [35] developed by K. Hiebert and 

L. F. ::;hampine (:::iandia-Albuquerque). The user must supply, in addition to the LSODA 

inputs, a subroutine that computes a vector-valued function g-(t,y) = (gi, i=l,2, ••• , N G) such 

that a root of any of the N G functions g i is aesirea. Of course there may be several 

such roots in a given interval, ana LSODAH. returns theiii one at a time, in the order in 

which they occur along the solution, with an integer array to tell the user which gi (if 

any) were found to have a root on a given return. 

4. An Example Problem 

In order to illustrate the various solvers (new and old) described above, and to 

demonstrate their relative Inerits on a realistic pt:oblem, we consider here an example 

problem. The problem is a simple atmospheric model [30] with two chemical species 

unaergoing diurnal kinetics and transport in two space dimensions. The independent 

variables in the PDE system are horizontal position x , altitute z (both in kilometers), 

ana ti1ne t (in sec), with 0 ~ x ~ 20, 30 ~ z ~50, 0 ~ t ~ 86400 (l day). The dependent 

1 2 variables are c (x,z,t) = the concentration of the oxygen singlet [0], and c (x,z,t) =that 

of ~zo11e [0;) (both in Iuolesjcm:>). The concentration oi Inolecular oxygen [0
2

] is assumed 

constant. The equations of the model are: 

ct = (Kv(z)~)z + hh4x + H.i(c 1,c2,t) (i=l,2), 

where .1{1 ana R2 represent the chemistry ana are given by 

H.l(cl,c2,t) = -(kl+k 2c2)cl + k3(t)c2 + k4(t)•7.4•l016 

R2(cl,c2,t) = (kl-k2c2)cl - k3(t)c2 
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Subscripts t , z , and x aenote partial derivatives. The various coefficients are as follows: 

Kv(z) = Ur.8 • exp(z/5), Kh = 4•10-6 , k 1 = 6.03, k2 = 4.66·10-l6, 

= { :xp {-7 .tiOI/sin(nt/4320 U)) 

\ 

{

exp (-22.62/sin(nt/43200)) 
k4(t) = 

0 

The initial conditions are 

- 2 
= w6i ~-ei~o) 

for 

for 

for 

for 

t < 43200 } 

t > 43200 

t < 43200} • 

t > 43200 

(i = 1,2) , 

ana both c 1 ana c 2 are required to satisfy homogeneous Neumann boundary conditions 

along all the x ana z boundaries. 

To solve the systelll (12) nurnerically, we apply the method of Unes using a regular 

square mesh w1th constant rnesh spacings 

4X = 20/(Mx-1) , ~z = 20/(lViz...:l) • 

The spatial aeriva.tives are approximatea by standard :>-point central uiffel~ences, as given 

by (J) in each direction. The boundary conditions are similarly replaced by difference 

relations. The resulting ODE system y = f(t,y) has size N = 2MxlV1z • The initial value 

vector y is taken from the initial condition functions given above. The system Jacobian 
0 

J is sparse, with roughly l2MxMz = 6 N nonzero elements. As a band matrix, with 

component ordering first by species, then by x , and lastly by z , it has a half-bandwidth 

of 2M , and thus a full bandwidth of 4M +l.. 
X X 
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As a nominal case, consider the choice lVl = M = 10 • As to accuracy, a crude model 
X Z 

of this type calls for no more than a few significant figures. To be conservative in 

recognizing that tolerance parameters are applied to local errors, which can accumulate 

-4 into global error, we might impose a local relative tolerance of 10 • We must also 

specify a positive absolute tolerance on the values of c 1 because it decays to negligible 

values at night. A reasonable absolute tolerance is 10-2 • With the ODEPACK solvers, 

specifying such a mixed relative; absolute error control is trivial, but with the GEAR and 

EPISODE huuilies, a slight modification to the driver is necessary. 

Of the various solvers Jllentioned, five are suitable for this particular 

l:)roblern-L::)01JE, LSOJJA, LSODES, EPISODEH, ana GEA.H.BI • Recall that LSODES uses a 

~eneral sparse treatment or the Jacobian matrix, GEA.H.HI uses block- SOR, and the others 

(in this case) treat the Jacobian as banded. The problem was set up for each of these five 

solvers and run on a CDC-7tiUO computer. For all but GEARBI, both the user-supplied 

Jacobian option ana the internal difference quotient Jacobian option were tested. (For 

GEA.H.BI, there is no difference quotient option.) The results of the various runs are given 

in Table 1. The tabulated quantities are: 

R.T. = CPU run time in sec 

NST = number of steps 

NFE = number of f evaluations 

NJE = number of J evaluations 

NLU = number of LU decompositions 

w.s. = total size of work space arrays 

In the table, the notation USJ cenotes the user-supplied Jacobian option, and DQJ denotes 

the internal aitrerence quotient Jacobian option. 
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Table l 
.H.esults of Kinetics-Transport Test Problem 

Solver .H..'f 0 NST NFE NJE NLU w .s. 

LSO.UE 2:>. 2 :>44 51~ o8 o8 14,242 
(USJ) 

LSUUE 2~.4 3:>7 33:>8 0~ I)!:) 14,242 
UJQJ) 

LSODA 2l.3 339 584 55 55 14,242 
(USJ) 

LSODA 24.6 3:>9 27~5 55 55 14,242 
(DQJ) 

LSODES 13.1 364 52!:} lO 70 12,455 
(USJ) 

LSODEI:) 13.5 369 .602 8 72 12,661 
(l)QJ) 

EPISODED l 0.6 264 461 81 81 14;400 
(USJ) 

FPISODEB 25.1 264 3782 81 81 14,400 
(DQJ) 

GEARBI 6.3 316 526 50 50 3,004 
(lOxlO) 

GEARBI UHJ 3!:13 698 96 96 43,324 
(38x38) 

For the sake of illustration, the GEARBI test was repeated on a 38x38 grid, and the 

results given in the last line of Table l. This is the largest square grid that could be 

accomwoaated with that solver on the CDC-7600 within its Small core Memory (about 

57,000 words). As noted, the Large core Memory (about 400,000 words) was used fol' the 

larger actut~.l atlllOS!JheriC 1uode1s. The cray-1 couiputer wiU accept even larger p1·ouleiu 

s1zes. 

several !Joints of interest can be noted in the table, for the lOxlO problei•l. First, the 

number of steps aoes not vary greatly from solver to solver, because that is determined 

almost entirely by the accuracy requirement, and the accuracy is much the same for all 

these runs. The relative merits of the solvers must be judged from other statistics. 

The perfor1nance characteristics of LSODE, LSODA, and EPISODEB are similar, as 

expected, since they all use a banded Jacobian. The variations are partly attributable to 
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differences .in the fine tuning, but the tact that EPISODEB has the s111allest NST and (with 

the USJ option) the shortest run time can be attributed to its use of variable-step 

formulas. (Recall that the diurnal kinetics problems motivated the development of 

EPISODE.) The use of a difference quotient Jacobian is invariably more expensive here, 

owing to its cost of 41 evaluations of f for each evaluation of J • 

The LSODES results show that a general sparse matrix treatment gives a significant 

speedup over the band treatment. This results partly from the matrix software itself, and 

partly from the algorith111 of effectively saving old values of J for greater reuse. Note 

that each computea value of J is usea for 36 to 46 steps, as opposed to only 3 to 6 steps 

with the solvers using a banaed Jacobian. Also, the cost penalty for a difference quotient 

Jacobian is much su1aller with L:SODE~, because each J evaluation here costs only 8 f 

evaluations. The storage requirelllent is only slightly smaller, reflecting the need for 

sparsity intort11ation arrays ana the fact the Newton matrix P is not overwritten with its 

LU decomposition, as it is in the band case. 

The best perforu1ance on this problem, however, is that of GEARBI. This should not 

be a surprise, since the Jacobian has a very regular block structure of which the 

block-SOR method in GEARBI is taking full advantage, both in storage and computation. 

The LU decompositions here are only those of the block diagonal part of the Newton 

matrix (with 2x2 blocks). The total number of block-SOR iterations for the lOxlO grid 

was 607, or an average of less than 2 per step. For the 38x38 grid this cost rose to 2122 

iterations, or an average of· 5.4 per step. The latter run also shows that spatial 

discretization errors in the lOxlO grid answers are as large as 2% • For an earlier 

coruparison test on this problem, see [30]. 

For large stiff systems with wiae-bandwidth coupling, of which this is an example, the 

sin5le most Huportant criterion for selecting a methoa or solver usually turns out to be the 

storage requireu1ent. For this problellt, on a 111 x m grid, the storage for a band-oriented 

solver is .roughly 22f} + 12m3 , while that for GEAl:U3I is 30ru2 • The storage for 

LSODE:::i is harder to predict, but behaves very roughly like 150m 2 in the r~nge m = 15 to 

l~ 



25 • Thus LSODES has an increasing storage advantage over LSODE etc. for m ~ lO , but 

G EARBI has a lower storage requirement than any of them. However, if the problem fails 

to have the regularity needed for such an approach, or if block-SOR is not appropriate for 

nutuerical reasons, then the choices seem to be reduced to 

(a) solvers using a general sparse direct linear system solver, such as LSODES, 

(b) solvers using 1110re suitable (possioly .aa hoc} iterative methods (and which 
econou1ize on matrix stora~e in some way}, and 

(c) raaically different ad hoc treatments such as operator splitting, or 
methoas that combine full implicitness and splitting ideas. 
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