§ ' UCRL--8740¢ UCRL-87406
PREPRINT

DE82 009393 (//297‘ FAO435 —-3.

STIFF-SYSTEM PROBLEMS AND SOLUTIONS AT LLNL

—

Alan C. Hindmarsh

MASTER

This paper was prepared for presentation at the
International Conference on Stiff Computation,
Park City, Utah, April 12-14, 1982.

March 1982

This is a preprint of a paper intended for publication in a journal er proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

PISTRIBETION OF THIS DOCUMENT pNLYMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Stiff-System Problems and Solutions
At LLNL*

Alan C. Hindmarsh
Mathematics ang Statisties Division, L-316
Lawrence Liverinore National Laboratory

Livermore, California 94550

ABSTRACT

Difficult stiff system probleins encountered at LLNL are typified by those arising
from various atmospheric kinetiecs models, which include reaction kinetics and transport in
up to two space dimensions., Approaches devised for these problems resulted in several
general purpose stiff system solvers. These have since evolved into a new systematized
collection of solvers, called ODEPACK, based on backwara differentiation formulas in the
stiftf case. A model Kinetics-transport problein is used to illustrate the various solvers.
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Stift Systein Problems and Solutions
At LLNL

l. Introduction

" Initial value probleimns for systems of ordinary differential equations (ODE's) have long
been a topic of great interest at LLNL. Stiff systems are particularly prevalent and are,
of course, much more challenging. Applications giving rise to stiff ODE systems vary
widely. But one area that typifies the difficulties encountered is that of atmospberic
c(?lllputer models, on which a great deal of effort has been spent at LLNL since about
1971, These problems, in most cases, take the form of systems of partial differential
equations (PDE's) in space and time, involving chemical kinetics and transport processes.
A aiscretization process leads to large stiff ODE systeins. In Section 2, this class of
problems and the various approaches pursﬁed for their solution are deseribed.

The problem features discussed here are not  at all unique to this particular
application, nor to problems at LLNL, and the software developed for their solution was
gesigned with full awareness of that fact. Thus the ODE solvers used were designed to be
as much general purpose as possible. However, a great deal bas been learned in the
intervening years about methods, algoritbms, and software design for general ODE
solvers. As a result, a new collection of initial value solvcrs has recently evolved at
Livermore—the ODEPACK collection. There are currently five solvers in the collection.
They are based on Adams methods (nonstiff case) and on the backward differention formula
(BDF) niethoas (stiff case), and also on an inter-laboratory effort to set user interface
stanaaras for initial value solvers, These are described in Section 3.

In Section 4, a model problem on kinetics-transport type is used to illustrate the
capabilities ana relative nierits of various solvers, including both those in ODEPACK and

older coages.



2. Atmosbheric Model Problems

The computer modelling of various atmospheric chemistry and transport process has
been of great interest in the context of (a) ozone depletion froin supersonic transport
exhausts in the stratospbere [1,2], (b) stratospheric ozone depletion from terrestial
fluorocarbon sources [3], (c) regional air pollutioﬁ in the lower atmosphere [4], among
others. In all cases, the mathematical mocuel can be put in the form of a set of
time-gependent PDE's in space (or, as & special case, as ODE's without space effects), in
the councentrations ci of the various chemical species of interest. These PDE's cah be

written
del/at = Ve (DVl + vel) + gl + 81 (i=1,2,..,,p) (1)

where D is ;a métrix_of diffusion coefficients, V. is the vector of mean atﬁ\ospheric
-inotion, Ki is the kinetics rate for species i, and Si is its external source rate. All of
these quaﬁtities can in general depend on time t, on the point in space, and on the
dependent variablé veetor ¢ = (cl,...,ep)T . However, in the applications of interest, D
ana V and the Si aepend only on space and possibly time. The number of space
aunensions 1s usually 2, but sometimes 1 or 0. The kinetics rates Ki usually involve
diurnally varying rate coefficients, corresponaing to photochemical reactions in the system.

The particular kKinetics system involved va-t'ies from one application to another, but in
all cases there is & nmixture of fast ana slow reactions (large ana small rate coefficients),
and the rates are nonlinear. The fast reactions cbrrespono to strong dainping effects with
short time constants, l.e. they cause stiffness. This means that the‘ ODE pt’oblem will be
stift regardless of the transport procésseé in the model, although they can also contribute
to stiffness. The small time constants from the kinetics are usually in the microsecond

range or smaller, while the time range of interest is usually measured in years. Thus

stiffness ratios exceeding 1012 are coimmon in these problems.



vh‘istoricauy, the spatial operator in (1) bas usually been treated by finite différencé
approximations; because of their simplicity and their long bistory of use. In Z-D, a
rectangular iesh is used. Actually, however, there is nothing inberent in the problem to
prevent the use of a finite element, collocation, or Galerkin treatment, although in the
latter case the local integrals pose some difficulty. |

To illustrate the spatial differencing process, consider the one-dimensional operator
__9o ac _ '
Le =+- (D(x) »x T Vel . (2)

On a4 lesh x < X, e X the standard central differencing of (2), in terms of discrete

values ;= c(xi) , 1S

e DOx L1790 S (X,1/0) = DXy 3500 (x4 4 /5)
X, ® (Xi+l - xi_l)/?
(3)
Vx3,10€5,1 - V0§ 1)C5 1
+ X - X '
i+l i-1

where, by definition,
Xisyg = & * X)/2

ey Kiapy2) = Cag — )/ Ky — %))

and similarly at x The differencing process is handled in a similar way for two

i-1/2 °
dimensional operators. Boundary conditions are similarly approximated in discrete form.

For example, a zero normal derivative boundary eondition, say

5 b
— :U,
x 1

is approxiniuated by setting c,=¢ in the ODE's corresponding to x=Xx, .
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In this way, a set of p species PDE's becomes a coupled stiff system of ODE's whose

size is
N =p in 0-D (space-independent),
N =pM in 1-D (inesh size M),
N = pl\dx My in 2-D (mesh size Mx by My)

[t is clear that for a reasonably realistic model in 2-D, the systein size can easily exceed
10,000. |

In 197l, the only reliable stiff system solver available (to us) was C. W. Gear's
DIFSUB. This routine was installeaq, Lnodit‘ied and iinproved, and used as the GEAR pacAkage
L5}, For 0-D problems or sinall 1I-D problems, it workea well, and proaucea accurate
answers with efficiericies that were quite impressive wﬁen compared with anything else
tried (including a number of nonstiff methods, before the nature of stiffness was
recognized). The GEAR package (lik;e DIFSUB), also had a nounstiff method option (using
Adams methods), so that it was widely usable (and used) as a general purpose ODE solver.
'Still, the GEAR package gave little hope of solving the full atmospheric models, be.cause it
haa to construct, and perforin LU factorizations on, full N x N matrices, followed by
backsolve operations for solutions 61‘ lineur systems.q If the ODE system is written

y =dy/dt = {(t,y) (4)
and has a systen Jacobian matreix

3 =at/ay, 5)
then the linear systems take the forni |

Px = (BDF residual vector), (6)
where x is & correction vector and P is an approximation to I-thJ . Here ] denotes the
identity matrix, b is a time step size, and bo 1S a scalar depending only on the 'current
niethod order. The N x N system (6) occurs within a modified Newton iteration to solve
the implicit BDF relatioﬁ. .

The next step was the realization that our problems had a very sparse Jacobian

matrix, and that the LU method was extendable to sparse matrices. This was clearest if



-J  was tho&gnt of as pandedy, and so a variant soIvér, with J treated as banded, was
written, ana called GEARB [6). This approach c,ould be app‘lied to the atinospheric
problems if the depenuent variables in the ODE system were correctly ordered. The
appropriate ordering 1s to group together ull p values ci at one node, then all the ci at
the next node, and so on, with a natural linear (in 1-D) or rectangular (in 2-D) ordering of
the nodes. QOrdering in the reverse manner (by nodes, then by species) may seem natural,
but produces much larger bandwidths, as long as p is small compared to either of the
niesh dimensions. In two dimensions, the bandwidth is also minimized by nﬁmbering the
nodes in the shorter direction first (if there is one). GEARB was used successfully in
solving the 1-D models of interest, and small 2-D models.

The tull 2-D models still seemed out of reach. Combining GEARB with reordering
algorithms to reauce bandwidth failed because of the regular structure of the problem. A
general sparse LU approach seeined inappropriate (though it was not thor'oughly pursued)
because matrix till-in woula result in much the same storage costs as for the bandéd
treatment.

Inasiniueh as the matrix eleinents in (6) are rather easily generated, the idea of
iterative linear system: imethods was a natural next choice. For example, successive
overrelaxation (SOR), with careful attention to l{.'he choice of relaxation parameter, was
known, both theoretically and experimentally, to do well on linear systems based on
transport PDE's of the type (1), with a siAngle species and no kinetiecs. The implementation
of SOR for (6) requires that P be written as

P=L+D+Uwith . (1)

L strictly lower triangular, |

D diagonal and nohsinguiar,

U strictly upper triangular,



that one can generate (or access from memory) the eleinents of D , and that one can
easily generate matrix-vector products (L+U)x. Specifically, for a given - relaxation

paranieter w, the vth SOR iteration in the solution of Px = r is given by

v+l

(D +wL)x = + (l—w)va -wUx"Y . (8) |

This can be rephrased as

xwl = (lw)x ¥ + W,

(9)
1)Z=I'-Ux\'-1,x\)+l .

This pair of equations appears circular, but is not; z is computed and xV updated to xwl
one coiiiponent at a tinie according to (9).

For the atmospbheric problems, tﬁe coupling induced by the kinetics does not even
come close to satistying the conditions needed for ordinary SOR. Thus, to bave any hope
for convergence, it is necessary to treat the c vector (of length p) as a unit, and use a
block-SOR algorithni. This results from replacing scalars in SOR by matrix or vector
blocks of size p. Thus one iuust write

P =L+D+ Uwith (10)

L strictly lower block-triangular,

D block diagonal and nonsingular,

U strictly upper block-triangular.

One must again generate products (L + U)X , and one inust generate D and be able to
solve p x p systems with the diagonal bloeks in D. ‘This can be easily done by forming
ana using LU factorizations of those blocks. Equations (9) also provide an algorithin for

V in blocks (froin first to last).

the block-SOK iteration, by updating X
| For a 2-D atmospbheric model, a special block-SOR variant of GEAR was written, and
later niage into a general-purpose solver, called GEARBI (7] (BI denoting Block-Iterative).
'This was soon moditied to take advantage of Large Core Memory (LCM) storage on the

CLC-7600 coinputer, resulting in a package callea GEARBIL. The latter stores most of the

large data arrays in LCiv, the largest being the one containing the matrix D in (10) (and



later its LU decomposition), of size. p2MXMy. These two solvers, as they stand, are still

soniewbhat specialized to the 'atmospheric moaels, in that the L ana U watrices in (10)
have a regular block structure (in p x p blocks), with each block being a scalar multiple of
the p x p identity matrix. (The latter is due to the fact that D ana V are independent
of ¢ in (1).) However, it is a straightforward matter to modify the codes to accomiodate
a more general coupling, and this has been done in at least two instances.

The GEARBIL package was used for a variety of studies of kineties in the
stratosphere, including ozone depletion from SST's [1,2] and from fluorocarbons [3], with
the two dimensions being altitude and latitude. In most cases, the mesh sizes were 37 X
44 (1628 spatial nodes), and the number of chemical species p was 9, giving an ODE
system size of N =14,652. GEARBIL was subsequently used in several similar models
developed for regional air quality calculations [4], with the third dimension (altitude)
accounted fof by assumling unifbrmity between the ground and the temperature inversion
layer. One of these, LIKAQ2, is currently used to model the San Francisco Bay Area air
layer, as an ongoing poliution control tool of regional government.

In the stratosphere studies, one of the lessonsllearned concerns thle tolerance on the
part of the ODE solver for errors in the Jacovian matrix, when suppliea by the user. For
some time, routines to supply J were written by band, and therefore subject to error,
especially for these complicated systems. When plots of step size bistory were generated,
and in one case published [1,p.58], they often showed great irregularities, as if frequent
instabilities or problem discontinuities were forcing drastic 'reductions in step size
periodically. Subsequently, with the aid of automated Jacobian generators, errors in J
were found and corrected, and reruns of these problems showed a remarkably smooth,
nearly imonotone, growth in step size.

Indepenaently of the development of complex transport models in 1-D and 2-D, the
kinetics mechanisms of the lower and upper atmosphere were studied. In particular, the

detailed kinetics processes of the stratosphere, with diurnal effects incluaed, required



much effort in both the wiodel-building and the numerical solution phases, even in the
absence of spatial transport, i.e. in (0-D. The stiff ODE systems that arise are further
complicated by the fact that rate coefficients for photochemical reactions follow a nearly
square-wave pattern in response to sunlight [8].

In many cases, these diurnal kinetics problems were found to cause great difficulty for
the GEAR package, sonietimes causing it to crash irrecoverably. It was found that this is
aue to the buildup of errors associated with the use of fixed-step BDF's with interpolatory
step changing. As a result, variable-step forms of the BDF's were developed, jointly with
G. byrne [9). These were iimplemented in a general solver called EPISODE (10,11], along
with variable-step Adams methoas for non-stitf problems. EPISODE resembles GEAR
externally, but differs internally in all details associated with integration coefficients,
error estimation, ana step selection. EPISODE was found to be able to handle fhe diurnal
probiems quite reliably, ailthough it was usually somewhat less efficient than GEAR on
problems with sinooth solutions {12). A banaged Jacobian variant EPISODEB [13] was also
written, to accominodate diurnal kinetics-transport problems.

After most of the model building for these atmospheric problems was completed, the
question of alternative space Qiscretizations was nevertheless studied to some extent. N.
Madsen and R. Sincovec showed that collocation methods could be used quite effectively on
1-D problems of this type, and developed a general purpose PDE package, called PDECOL,
from that idea [14]. In the process, it was clear that a different type of ODE solver was
neeaea, namely one which would treat linearly iumiplicit systeins, |

Ay =g(ty) i1}

(A a square matrix), in a direct and efficient manner. To this end, another GEAR variant,
GEARIB, was written [15] (Is for Implicit systems, Banded matrix treatient), and é
mouified forii of this is used in PDECOL. Later, an analogous EPISODE variant,
EPISODEIB, was also written [16]. These two ODE solvers are intended mainly for the
case of a nonsingular A matrix in (l1), which is the most common situation in PDE-based

problemns, but can also be used in the singular case, if used with caution.



. 3. The ODEPACK Solvers

The DIFSUB, GEAR, and EPISODE packages were added to a list of available general
purpose initial value solvers that was growing gquite sizable by 1475. The length and
aiversity of this list caused souie concern to users and software developers alike. ‘There
was iuch duplication of capabilities offered, but at the saine time there was very little in
comnion awong the solvers in terins of either their external appearance or their internal
structure. This situation was in sharp contrast to that in other areas in which
"systeinatized collections" of Fortran routines were being deve;oped. Thé earliest
exaitiples wefe EISPACK [17], for computing matrix eigensystems, LINPACK [18], for

solving linear systems, and FUNPACK, for certain special functions.

3.1 The ODEPACK Concept

The idea of a systematized collection of initial value ODE solvers, tentatively called
ODEPACK, was discussed informally as early as 1974, in workshops attended by people
from all over the worla [1Y]. However, it was quickly realized that the task was much
larger in the ODE case than in other areas, partly because of the complexity of the
subject, and partly because of widely divergent views of what ODEPACK should look like.
Starting in 1976, attempts were made to reduce the problem by involvi‘ng only people at
uU.s. Depaptment of Energy laboratories, ana LLNL received funding to study the
feasibility of ODEPACK from the Applied Math&natical Sciences Research Prograin under
the Office of Basic Energy Sciences in DOE.

The natural first step, and a necessary preliminary to any actual development of an
ODEPACK, is the setting of standards for the interface between the user and the ODE
solvers. The user interface to a solver consists mainly of the call sequence of the routine
the user must call, togetheb with definitions of the one or more user-supplied routines
called by the solver. To the extent that solvers for 'various problem types and using

various methods must all communicate certain specific things to and from the user, it is



possible to forinulate a loose set of standards for the user interface. An early proposal is
given in [20]. A sequence of workshops and discussions on user iriterface standards for ODE
solvers succeeded in producing a reasonable consensus in 1978 [2!,22]_The resulting tentative
interface standard was achieved orily through considerable compromise by the vai'ious
participants, which included ODE software authors and users at various DOE laboratories.
At that time, 1t was agreed that several of the more popular ODE solvers, including
GEAR, GEARB, DE/STEP [23] and RKF45 [24], would be rewritten to conform with the
" tentative standard interface, resulting in a small collection that was at least systematized
in 1ts external appearance. The first result of that agreement was a package based on the
GEAR and GEARB packages, called LSODE (Livermore Solver for ODE's) [25]. The LSODE
solver ana variants of it written subseqguently (all in accoraance with the tentative standard
intertace (21], with iinor modifications) are briefly described in the following subsections.
In the meantiiue, unt’oriunately, the other software authors involved withdrew froin the
agreernent, ana so this collection does not yet havé analogous rewritten -versions ot their

codes,

3.2 LSODE
LSODE combines the capabilities of GEAR and GEARB. Thus it solves explicitly given
stiff and nonstiff systems y = f(t,y) , and in the stiff case it treats the Jacobian as either
full or banded, and as either user-supplied or internally approximated by difference
quotients. By comparison with GEAR and GEARB, LSODE offers a number of new features
that iuake it more convenient, more flexible, more portable and easier to install in
software libraries. Soinie of these are the tollowing:
(a) Through the redesignea user interface, many new options and capabilities
are available, and others are much more convenient than before. Some
examples are--imiore flexible error tolerance parameters, independent
flags for starting and stopping options, internally cosmiputed initial step
size, two work arrays in the call sequence for all internal dynamic work
space, user names for .f and J in the call sequence, easy changing of
input parameters in inid-problem, convenient optional inputs (such as

maximum ethod ocder), convenient optional outputs (such as step and
function evaluation counts), optional provision of derivatives of the
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solution (of various orders) at any point, and real and integer user data
space (of dynamic length) available in the f and J routines (with no
extra burden on the casual user).

(b) The user aocumentation, which is containeda in the initial comment cards
of the source, is given in ‘a two-level form. A short and simple set of
instructions, with a short example program, is given first, for the casual
user. Then detailed instructions are given for users with special problem
features or a desire for nonstanaard options. The latter is also organized
so as to allow selective reaaing by a user who wants only a fraction of the
nonstandard capabilities.

(¢)  Wwhen stift options are selected, linear systeins are solved with routines
from LINPACh (18J, wbhich is becoming a widely accepted standara
collection of linear system solvers. '

(@) Sonie retuning of various heuristics was done so that performance should
be more reliable than for GEAR/GEARB.

(e) The core routine which takes a single step, called STODE, is independent
of the way in which the Jacobian matrix (if used) is treated. Tbhus as
variant versions of LSODE are written for other matrix structures (such
as LSODES), these will share the same subroutine STODE.

(f) The writing of all error messages is done in a small isolated
general-purpose - message handler called XERRWV. Two other small
subroutines are user-callable for . optional changing of the output unit
number and optional suppression of messages. This trio of routines is
compatible with a much larger error package (the SLATEC Errov
Handling Package) written elsewhere [26].

() LSODE easily allows a user to interrupt a problem and restart it later
(e.g. in switehing between two or imore ODE problems). Also, using
LSODE in overlay inode is very easy, with no loss of needed local variables.

(h) The various lists of constants needed for the integration, formerly
appearing in a subroutine called COSET, are now computed (once per
problem). This adds to the portability of LSODE.

3.3 LSODI

The LSODI solver [25), written jointly with J. F. Painter, (LLNL) treats systems in the
linearly implicit form A(t,y)§ = g(t,y) , where A is a square matrix. Many problems,
incluaing PDE's treated by finite elements and the like, result in such systems, and it is
alimost always more economical to treat the system in the given form than to convert it to
an explieit form 3'1 = f . LSODI allows A to be singular, but the user must then input

consistent initial values of both y and 3‘1 . In the singular case, the system is a
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aifferential-algebraic systeri, and then the user inust be much wmore cautious about
forinulating a well-posea problem, as well as in using LSODI, which was not designed to be
robust in thié case. LSODI is based on (and supersedes) the GEARIB package, but corrects
a number of deficiencies, as follows:

(a) Tbe matrices involved can be treated as either full or banded, by use of
the method flag.

(b) The dependence of A on y is automatically and inexpensively accounted
for, whether partial derivatives are supplied by the user or computed
internally by difference quotients.

(e) when A is singular, the user needs to supply vnly the initial value of
dy/dt , and this array (along with the initial y) is passed through the call
sequence, rather than computed in a user-replaceable package routine.
(Admittedly, correct initial data can be difficult to obtain for some types
of problcnis:) When the initial dy/dt is not being supplied, an input flag
instructs LSODI to compute it on the assumption that A 1s imually
nonsingular. Thereafter, no such assumption is made, but ill-conditioning
can be a problem when A is singular,

(d) Tbe user-supplied residual routine includes a flag wbhich allows the user to
signal either an error conaition or an interrupt condition.

(¢) To the maximwn extent possible, LSODI shares the same user interface as
LSODE, and so reflects all the advantages over GEARIB that LSODE bhas
over GEAR and GEARB.
The differences between the LSODI and LSODE user interfaces ocecur primarily in the
user-supplied subroutines. With LSODI, one must supply a routine to compute the residual
function r = g(t,y) - A(t,y)s for a givent, y, and s, and another routine to add the

matrix A to a given array. Optionally, the user can supply a routine to compute the

Jacobian mateix 3r/3y .

By virtue of the modular and systematized organization of LSODE and LSODI, the two

packages share most of their routines with each other.

Sore exaniples of the use of LSODE and LSODI on systems arising from PDE problems
can be found in [27] and [28]. In the latter, experiments by Painter on incompressible
Navier-Stokes prooblems shea soime light on the aifficulties involved with

aifferential-algebr'aic systeins,
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3.4 LSODES

The LSODES package solves explicit systems y = { , but treats the Jacobian matrix J
as a general sparse matrix in the stiff case. LSODES was written jointly with A. H.
Sherman (Exxon Production Res. Company), and supersedes a sparse variant of GEAR
called GEARS [29,30). 1n LSODES, the linear systems (6) are solved using parts of the Yale
Sparse Matrix Package (YSMP) [31,32). This involves several phases:

(a) Determination of sparsity structure. This is either inferrea from calls to
the f routine, inferred from calls to a J routine (if one is supplied), or
supplied directly by the user. A user input flag determines which is done.

(b) Determination of pivot order. Diagonal pivot locations are chosen, and the
choice 1s based on maximizing sparsity. This is aone by YSMP.

(c) Symbolie LU factorization of the matrix P . This is based only on sparsity
and the pivot order, &ana uses the moaule in YSMP designea for
nonsymmetric niatrices with coimpressea pointer storage.

(d) Coonstruction of J . This can be done internally by difterence guotients,
or with a user-supplied routine. [n the difference gquotient case, the
number of f evaluations needed is kept to a Imninimum by a coluinn
grouping technique due to Curtis, Powell, and Reid [33]. In the other case,
the user-supplied routine provides one column of J at a time, in the form
of a vector of iength N (aithough only non-zero elements need bLe
computed and stored), so that users need never deal with the internal data
structure for J and P . In any case, J is stored internally in an
appropriate packed form. Evaluations of J are done only occasionally, as
explained below,

(e) Construction of P =1 - hgyd . In contrast to GEARS, LSODES does not
force a re-evaluation of J whenever the existing P is deemed unsuitable
for the corrector iterations. Instead, when the value of J contained in
the stored value of P is likely to be usable (and P is not, only because"
hgo bas changea significantly), then a new inatrix P is constructed from
the ola one, with careful attention to roundoff error. This cuts down
greatly on the number of J evaluations necessary.

(f) Nunierical LU factorization of P . This is done by YSMP in sparse form,
and the array containing P is savea in the process (this allows for
upaating P as aescribed above). Because of the absence of partial
pivoting for numerical stability, this operation can conceivably fail.
However, this has only rarely been observed in practice, and if it does
ocecur (with a current value of J ), the step size h gets reduced and the
probleiu aisappears.

(g) Solution of Px =r . This is done by YSMP using the existing sparse
factorization of P . Because a imodified Newton iteration is used, nany
values of v (i.e., many linear systeius) can arise for the same P , and the
separation of the various phases takes advantage of that fact.
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Toe first three phases, and part of the,fout;th (columin grouping tor difference
quotients), are ‘normally aone only at the start of the problemn. However, the user can
specity that the sparsity structure is to be reueterinined in the miadle of the problem, ana
then these operations are repeated.

Actually, the matrix operated on by YSMP is A = PT , not P , because P ié
generated in column oraer while YSMP requires the natrix to be described and stored in
row order. This causes no difficulty, however, because YSMP includes a routine for solving

the transpose problem xTA = rT (which is equivalent to Px =r ) as well as for the direct

problem Ax -Db.

A package called LSODIS, similar to LSODI (for the A{/ = g problem) bul using YSMP

for general sparse treatment of matrices as in LSODES, is in the process of being written.

3.5 LSODA

LSODA is & variant of LSUDE of yet another kind., It was written jointly with
L. k. Petzold (Sandia-Liverimiore), and switches automatically between nonstiff (Adams)
ana stiff (BDF) wethods, by an algorithm aeveloped by Petzold [34]. (The éuft‘ix A is for
Automatic.) Thus it is more convenient than LSODE for users who would rather not be
bothered with the issue of stiffness. Also, it is potentially imore efficient than LSODE
(when used with a fixed method option), when the nature of the problem changes between
stiff and nonstiff in the course of the solution. In place of the method flag parameter of
LSODE, the user of LSODA supplies only a Jacobian type flag. The storage space supplied
to the solver can be e-ithet' static (and thus allow for either the stiff or nonstiff method), or
dynamic (and alterea each time there is a method switeh, Lo an amount specified by the

solver).
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3.6 LSCDAR

LSODAR combines the capabilities of LSOD'A with a roott’inder. It allows one to find
the roots of a set of funétions gi(t,y) of the independent and dependent variables in the
ODE system. Thus, for example, it could be used in a particle tracking problem to
deteriine when a particle path reaches any of the walls of a container. LSODAR was also
written jointly with L. R. Petzold based on an algorithm [35] developed by K. Hiebert and
L. F. shampine (Sandia-Albuguerque). The user must supply, in addition to the LSODA
inputs, a subroutine fhat comiputes a vector-valued funetion g(t,y) = (gi, i=1,2,...,NG) such
that a root of any of the NG functions g is desirea. Of course there may be several
such roots in a given interval, ana LSODAR returns theiu one at a time, in the order in
which they occur along the solution, with an integer array to tell the user which g; (if

any) were found to have a root on a given return.

4. An Mple Problem

in order.to illustrate the various'solvers v(new and old) described above, and to
demonstrate their rela:cive merits on a realistic problem, we consider here an exanmple
problem, The problein is a simple atmospheric model [30] with two chemical species
undergoing diurnal kinetics and transport in two space dimensions. The independent
variablés in the PDE systeni are horizontal position x :, éltitute z (both in kilometers),
and tiimne t (in sec), with 0 <x <20, 30 <z <50, 0 <t <86400 (1 day). The dependent
variables are c'1 (x,2z,t) = the concentration of thé oxygen singlet (0], and cz(x,z,t) = that
of ‘ozoue [03] (both in xlnoles/cx113). The conecentration of niolecular oxygen [02] is assumed
constant. The equations of the niodel are:

¢l = (Ky(@lebl + Kncky + Kitel,eZt) G=1,2), (12)

where k! ana R? represent the chemistry ana are given by

kliel,e2,t) = -(k +kge2)el + k3(t)e? + ky(t)e7.4¢1016

R2(el,e2,t) = (k]-kge2)el - k3(t)e2

15



Subscripts t, z, and x denote partial derivatives. The various coefficients are as follows:

Ky(@) = 1008 « exp(z/5), Kp = 4°1076, k) =6.03, kg = 4.66°10716,

‘ exp (-7.601/sin(m/43200)) for t < 43200
kg(t) = . ,
0 : for t > 43200
\
exp (-22.62/sin(mt/43200)) for t < 43200
k4(t) = .
0 for t > 43200

T'he initial conditions ure

_ e 2 4 2 ~' 4
cl(x,z,0) = 1061[;1-(——-"‘1'30) + %(-"1(130)1 (1-(——2580> + %(%) ]
(i = 1’2) ’

1 . . .
and both ¢ ana c2 are required to satisfy homogeneous Neumann boundary conditions

aiong all the x ana 2z boundaries.

To solve the system (12) nuinerically, we apply the method of lines using a regular
square niesh with constant inesh spacings

o= 20/(MA) , oz =20/(MZ—1) .
The spatial aerivatives are approximatea by standard 5-point central dillerences, as given
by (3) in each direction. The boundary conditions are similarly replaced by difference
relations. The resulting ODE system y = f(t,y) bas size N = 2M <My . 'The initial value
vector y is taken from the initial condition functions given above. The system Jacobian
J is sparse, with roughly IZMXMZ = 6N nonzero elements. As a band matrix, with
component ordering first by species, then by x , and lastly by 2z, it has a balf-bandwidth

of ZMX , and thus a full bandwidth of 4Mx+l..
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As a nominal case, consider the choice Mx = Mz =10 . As to accuracy, a crude model
of this type calls for no more than a few significant figures. To be conservative in
recognizing that tolerance parameters are applied to local errors, which can accumulate

-4

into global error, we mnight impose a local relative tolerance of 10 We must also

specify a positive absolute tolerance on the values of c1 because it decays to negligible
values at night. A reasonable absolute tolerance is 10—2 . With the ODEPACK solvers,
specifying such a mixed relative/ absolute error control is trivial, but with the GEAR and
EPISODE faniilies, a slight modification to the driver is necessary.

Of the varioﬁs solvers entioned, five are suitéble for this particular
problem—LSODE, LSODA, LSODES, EPISO.DEB, ana GEARBI . Recall that LSODES uses a
general sbarse treatment of the Jacobian matrix, GEARBI uses block- SOR, and the others
(in this case) treat the Jacobian as banded. The problem was set up for each of these five
solvers and run on a CDC-76U0 computer. For all but GEARBI, both the user-supplied
Jacobian option ana the internal difference quotient Jacobian option were tested. (For

GEAKBI, there is no difference quotient option.) The results of the various runs are given

in Table 1. The tabulated quantities are:

R.T. = CPU run time in sec

NST | = number of steps

NFE = number of f evaluations

NJE = . number of. J evaluations

NLU = number of LU decompositions
W.s. = total size of work sbace arrays

In the table, the notation USJ denotes the user-supplied Jacobian option, and DQJ denotes

the internal difference quotient Jacobian option.
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Table 1
Results of Kinetics-Transport Test Problen

Solver R.T. NST  NFE NJE NLU W.S.

LSODLE 23.2 344 51y 68 68 14,242
(USJ) , _
LSUDE 28.4 337 3338 69 . 69 14,242
(bQJ)
LSODA 21.3 334 584 55 55 14,242
(Usd)
LSODA 24.6 339 2795 55 55 14,242
(DQJ)

" LSODES - 18.1 364 529 10 70 12,455
(Usd)
LSODEY 13.6 369 602 8 72 12,664
(bQd) :
EPISODED 18.6 264 461 8l 8l 14,400
(UsJ)
FPISODEB 25.1 . 264 3782 8l 81 14,400
(DQJI) :
GEARBI 6.3 316 526 50 50 3,004
(10x10)
GEARBI 199 393 698 96 96 43,324
(38x38) :

For the sake of illustration, the GEARBI test was repeated on a 38x38 grid, and the
results given in the last line of Table. L This is the largest square grid that could be
accominouated with that solver on the CDC-7600 within its Small Core Memory (about
57,000 words). As noted, the Large Core Memory (about 400,000 words) was used for the
larger actual atimospheric models. 'I'né Cray-1 ¢omputer will accept even lurger probleu
sizes.

Several points of interest can be noted in the table, for the 10xl0 problem. First, the
nuinber of steps does not vary greatly from solver to solver, because that is determined
alinost entirely by the accuracy requireiment, and the accuracy is much the same for all
these runs. The relative merits of the solvers must be judged from other statistics.

The perforinance characteristies of LSODE, LSODA, and EPISODEB are similar, as

expected, since they all use a banded Jacobian. The variations are partly attributable to
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- differences in the fine tuning, but the fact that EPISODEB has the sinallest NST and (wi_th
the USJ option) the shortest run time can be attributed to its use of variable-step
forinulas. (Recall that the diurnal kinetics problems motivated the development of
EPISODE.) Tbhe use of a difference quotient Jacobian is invariably more expensive here,
owing to its cost of 41 evaluations of f for each evaluation of J.

The LSODES results show that a general sparse matrix treatment gives a significant
speedup over the band treatment. This results partly from the matrix software itself, and
partly from the algorithin of effectively saving old values of J for greater reuse. Note
that each computea value of J is usea for 36 to 46 steps, as opposed to only 3 to 6 steps
with the solvers using a banded Jacobian. Also, the cost penalty for a difference guotient
Jacobian is much smaller with LSODES, because each J evaluation here costs only 8 f
evaluations. The storage requireinent is only slightly smaller, reflecting the need for
sparsity information arrays and the fact the Newton inatrix P is not overwritten witbh its
LU decomposition, as it is in the band case.

The best performance on this problem, however, is that of 'GEARBI. This should not
be a surprise, since the Jaéobiah has a very regular block structure of whieh the
block-SOR method in GEARBI is taking full advantage, both in storage and computation.
The LU decompositions here are only those of the block diagonal pgrt of the Newton
matrix (with 2x2 blocks). The total number of block-SOR iterations fof the 10x10 grid
was 607, or an average of less than 2 per step. For the 38x38 grid this cost rose to 2122
iterations, or an average of 5.4 per step. The latter run also shows that spatial
discretization errors in the 10x10 grid answers are as large as 2% . For an earlier
coiuparison tést on this problem, see [30].

For large stiff systeins with wige-bandwidth coupling, ot whieh this is an exaniple, the
single most wuportant criterion t‘br selécting a methoa or solver usually turns out to be the
storage requireuient, For this problemi, on a 1 x m grid, the storage for a band-orientved
solver is rougbhly ZZmZ + 12m3 , while that for GEARBI is 30|‘u2 . The storage for

LSODES is harder to predict, but bebhaves very roughly like 150m2 in the rénge m =15 to
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25 . Tbus LSODES has an increasing storage advantage over LSODE ete. for m > 10, but
GEARBI has a lower storage requirement than any of them. However, if the problem fails
to have the regularity néeded for such an approach, or if block-SOR is not appropriate for
numeriéal reasons, then the choices seein to be reduced to

(a) solvers using a general sparse direct linear systerm solver, such as LSObES,

(o) solvers using niore suitable (possibly aa hoe) iterative methods (and which
econoinize on matrix storage in some way), and

(¢) raaqically different ad boc treatments such as operator splitting, or
methods that combine full implicitness and splitting ideas.
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DISCLAIMER

‘This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their emplovees, makes any warranty, ex-
press or implied, or assumces any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring hy the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government thereof, and shall not be used for advertising or product en-
duisement purpuses.
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