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Abstract

We have undertaken a large-scale computer simulation of the 3d Ising model using the Monte Carlo
Renormalization Group (MCRG) method. Our calculation improves on past calculations in three ways.
Firstly, larger lattices are used — we have run on 1283 as well as 643. Secondly, many more spin operators
— 53 even and 46 odd — are measured. Lastly, we have incorporated more efficient ways of spin update —
Wolfl’s single-cluster variant of the Swendsen and Wang algorithm. In addition to calculating the critical
temperature, the thermal and magnetic exponents, and improving the estimate of the correction-to-scaling
exponent, we are aiming to verify the presence of redundant operators. We do not yet have sufficient statistics
to give final results so here we describe our calculation and present preliminary results which demonstrate
that we have control over both finite size effects and systematic errors arising from truncation.

* Talk given at the Int. Workshop ‘Lattice 89’, Capri (Sep 1989)
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1. Introduction

The Ising model is the simplest model for ferromagnetism that predicts phase transi-
tions and critical phenomena. This model, introduced by Lenz in 1920 [1] , was solved in
one dimension by Ising in 1925 [2] , and in two dimensions by Onsager in 1944 [3] . How-
ever, it has not been solved analytically in three dimensions, so Monte Carlo computer
simulation methods have been one of the methods used to obtain numerical solutions.
One of the best available techniques for this is the Monte Carlo Renormalization Group
(MCRG) method [4] . The Ising modecl exhibits a second-order phase transition in d = 3
dimensions at a critical temperature 7.. As T approaches T,, the correlation length ¢

diverges as a power law with critical exponent v:
§=E(T/Te—1)7" (1)

and the pair correlation function G(r) at 1" = T falls off to zero with distance r as a power
law defining the critical exponent 7: ‘

G(r) = Gor~(d-24m), (2)

T., v and 1 determine the critical behavior of the 3d Ising model and it is their values we
wish to determine using MCRG.

Five years ago, this was done by Pawley, Swendsen, Wallace and Wilson [5] in Ed-
inburgh on the ICL DAP computer with high statistics. They ran on four lattice sizes
- 83,16%,32% and 643 - measuring scven even and six odd spin operators. With at least
one million sweeps, measuring every fourth sweep, they were able to determine the critical
coupling (inverse temperature) K. to six decimal digits and the critical exponents v and
n to three, within their statistical crrors. We are essentially repeating their calculation,
which from now on we shall refer to as the “Edinburgh” calculation, on the new AMT
DAP. Why should we do this? There are five main reasons. Firstly, to investigate finite
size effects ~ we have run on the biggest lattice used by Edinburgh, 643, and on a bigger
one, 1282 (we can also go Lo 2563). Sccondly, to investigate truncation effects — qualita-
tively the more operators we measure for MCRG, the better, so we have included 53 even
and 46 odd operators. Thirdly, we are making usc of the new cluster-updating algorithm
due to Swendsen and Wang (6] , implemented according to Wolff [7] . Fourthly, we would
like to try to more accurately measure another critical cxponent, the correction-to-scaling
exponent w. And finally, Edinburgh spcculate that they found a redundant operator - we
would like to substantiate this.

2. MCRG
The formulation of Monte Carlo Renormalization Group (MCRG) was completed in
1979 by Wilson and by Swendsen [4]; key ingredients were provided earlier by Ma and by
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Kadanoff [8] . MCRG combines Monte Carlo (MC) simulations techniques of statistical
mechanical models [9] with a renormalization group (RG) analysis of their critical proper-
ties [10] . The renormalization group is a sct of scale transformations. The basic idea is
that, since the critical propcrties of a system are not strongly affected by details on a short
length scale, some fraction of the variables associated with short wavelength fluctuations
may be integrated out, transforming the original system into a new one with fewer degrees
of freedom. Such transformations are called renormalization group transformations. Typ-
ically they involve a local grouping of the variables into “blocks” and assigning a value to
each “block variable” on the basis of the variables in each block. Block-variable transfor-
mations reduce the linear ditnensions of a d-dimensional system by a scale factor s, where
3% is equal to the number of variables in a block. For the 3d Ising model, we divide the
simple cubic lattice of spins into 2x2x2 blocks (s = 2) and assign the block spin the values
+1 or -1 depending on the sign of the sum of the spins in the block. (When the sum is
zero, +1 and -1 are assigned with cqual probability.) If we write the Hamiltonian of the

original system as

M=) KoSa, (3)

where the S,’s are combinations of the spins and the K,’s are the corresponding cou-
pling constants, then the RG transformation I, produces a new system with renormalized

Hamiltonian

H =R,H=)Y KL.S! (4)

parameterized in terms of a ncw sct of coupling constants { K.}, with S), being combi-
nations of the block spins. Thus the RG transformation is a mapping of the space of
coupling constants onto itself, with its fixcd points determining the critical surface by the
standard theory [11] . To determine the critical coupling K. = K;_, one performs inde-
pendent MC simulations on a large lattice L of size A3 and on smaller lattices S of size
(M/2™)*,m = 1,2,..., and compares the operators measured on the large lattice blocked
m times more than the smaller lattices. K}, = IK;_ when

< 8™ > =< §-m) 5 o (5)

Since the efective lattice sizes are the same, unknown finite size effects should cancel. The
critical exponents y, are obtained directly from the cigenvalues A, of the stability matrix
Top according to A, = 2¥+. In particular, the leading eigenvalue of Typ for the even S,
gives v from y; = 1/v, and similarly y; = (d + 2 — 5)/2 from the odd T,g. Top is the
linearized RG transformation matrix 1, near the fixed point and is defined by

aI(£n+1)
(n) °
oK §,

al

af =

(6)
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By performing simulations at I, onc can obtain cstimates for the stability matrix by

solving the linear equations

8 <S¢t s 8 < S\t S
=Yy 7 T

= (7
oK — oKty

In both eqs. (5) and (7) the best results are obtained from the largest blocking level n.
Thus, in order to calculate all the quantities of interest using MCRG, we must evaluate
the operators S,. Unfortunately there are rather a lot of them. In [5] the calculation
was restricted to seven even spin opcrators and six odd; we are evaluating 53 and 46,
respectively. Specifically we have decided to evaluate the most important operators in a
3x3x3 cube. We do this by cvaluating all of the operators in each of the three 3x3 planes
forming the sides of the cubc along the coordinate directions, and all of the operators in
the 2x2x2 sub-cube lying in the corner of the 3x3x3 cube. In [12] we show all the spin
operators for a 3x3 squarc and a 2x2x2 cube, and describe a computer code written to

generate them.

3. Implementation on the DAP

The Distributed Array Processor (DAP) is a Single Instruction, Multiple Data (SIMD)
computer consisting of D x D bit-scrial processing elements (PEs) configured as a cyclic
two-dimensional grid with nearest-ncighbor connectivity. Originally made by ICL with
D = 64, the DAP is currently made by AMT with D = 32 or 64. The Ising model computer
simulation is very well suited to such a machine since the spins can be represented as single
bit (logical) variables. In 3d the system of spins is configured as a M x M x M simple
cubic lattice which is “crinkle mapped” onto the D x D DAP by storing N x N pieces of
each of M planes in each PE: M x M x M = M x (N x D) x (N x D), with N = M/D.

When we began our simulation, we updated the spins using the standard Metropolis
algorithm [13] , performing 100 sweeps between measurements. Now we are using a hybrid
algorithm consisting of 10 such Mctropolis swceps plus 1 cluster-update using Wolff’s
single-cluster variant of the Swendsen and Wang algorithm [14] . Empirically, we found
that the cluster-update evolves the magnetization more quickly than the energy, whereas
Metropolis updates evolve the encrgy faster. By using this hybrid algorithm, we hope to
obtain the best of both worlds. In fact, on a 1283 lattice, the autocorrelation length of the
magnetization reduces from 73 + 2 scts of 100 sweeps for Metropolis alone to 5.0 £ 0.2 sets
of 10 Metropolis plus 1 cluster-update for the hybrid algorithm.

In order to measure the spin opcrators S,, the DAP code simply histograms the spin
configurations so that an analysis program can later pick out each particular spin operator
using a look-up table. In fact, four histograms are made: three with 512(= 2?) entries
for the 3x3 planes and one with 256(= 2%) for the 2x2x2 sub-cube. The obvious way to
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implement this on the DAP, namnely by storing one histogram per PE, is inefficient because
the PEs lack the hardware functionality to individually index different locations in their
respective memories. Instead, we store a 512-entry histogram in D pieces along rows of
the DAP. Then each of these histogram parts is decomposed as D columns and H memory
locations, with D x I = 512. During the measurement, the D partial histograms are
updated in parallel and then sumnmed into the complete histogram. Currently the code
requires the same time to do 1 four-histogram measurement, 1 Wolff single-cluster-update
or 100 Metropolis updates. Therefore, our hybrid of 10 Metropolis plus 1 cluster-update

takes about the same time as a measurement.

4. Preliminary Results

We have run on lattices of size 64° and 128% at two values of the coupling: 0.221654
(Edinburgh’s best estimate of the critical value) and 0.221644. On the smaller lattice we
have measured 10K histograms, on the larger we have 30K for 0.221654 and 20K for
0.221644. These statistics arc not very imnpressive compared to Edinburgh who had 250K
measurements. However, our measurcinents are scparated by either more (100 vs. four)
Metropolis sweeps or by cluster-updates so our autocorrclation length is much smaller,
and we are still running. Morcover, as will be demonstrated below, we have control over
both finite size effects and systemaltic crrors arising from truncation of the number of spin
operators.

In order to analyze our results, the first thing we have to decide is the order in which
to arrange our 53 even and 46 odd spin operators. Naively, they can be arranged in order of
increasing total distance between the spins [12](as was done in [5]). However, the ranking
of a spin operator is determined, physically, by how much it contributes to the energy of
the system. Thus we initially did our analysis with the operators in the naive order to
calculate their energies, then subscquently we used the “physical” order dictated by these
energies. This physical order of the first 20 even operators is shown in Fig. 1 with six of
Edinburgh’s operators indicated; the scventh Edinburgh operator (E-6) is our 21st. This
order is important because in order to acccss the systematic effects of truncation we are
going to analyze our data as a function of the number of operators included. Specifically,
we successively diagonalize the 1x1, 2x2, ..., 53x53 (for even, 46x46 for odd) stability matrix
Top to obtain its eigenvalues and thence the critical exponents. Therefore, it is important
both physically and numerically to have the operators arranged in order of decreasing
importance. Since here we arc reporting preliminary results, we shall present only plots of
the eigenvalues, not the values of the critical exponents.

Firstly, we look at the truncation eflccts in the leading even eigenvalue which deter-
mines v. In Fig. 2 we plot this eigenvalue vs. number of spin operators included in the
analysis for the second, third, fourth and fifth RG blocking levels starting from the 1283

lattice at an inverse temperature of 0.221654. (We ignore the first blocking level because
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it suffers from strong transicnt cllects and the sixth because being only 22 it is too small
to accommodate all of the opcrators.) We sce that there are strong truncation effects -
the value of the eigenvalue does not scttle down until at least thirty and perhaps forty
operators are included. Also shown in Ilig. 1, as horizontal lines, are the relevant results
from the Edinburgh calculation: the dotted line is their value of the eigenvalue from the
corresponding blocking level starling from their 64* lattice, and the dashed line is their
extrapolation to the infinite lattice also taking into account their significant truncation
errors. Firstly, note that our value agrees with Edinburgh’s when around seven operators
are included - this is a significant verification that the two calculations are consistent.
Secondly, Edinburgh’s 64° rcsult is systematically off from our value with all 53 operators
included. In fact, on the fifth blocking lcvel, their value is off the top of the plot which
is presumably due to the fact that their lattice is only 2% in size forcing them to drop
their E-7 operator and thercfore incur cven worse truncation errors. Lastly, amazingly,
Edinburgh’s “phenomenological” extrapolation [15] appears to have saved the day on the
higher blocking levels so that within statistical errors their result agrees with ours!
Turning to finite size cllects, we show our results for the leading even eigenvalue on
the first four blocking levels starting froin the G4* lattice in Fig. 3, and on the first five
blocking levels from the 128* lattice in IMig. 4, both at 0.221654. The values on the
respective lattices agree, and the agreement immproves with increasing blocking level. Thus
we feel that we have overcome the finite size effects so that a 642 lattice is just large enough.
However, the advantage in going to 128" is obvious in Fig. 4: there we can perform one
more blocking, which reveals that the results on both the fourth and fifth blocking levels

are consistent. This mcans that we have elimninated most of the transient effects near the
fixed point in the MCRG procedurec.

Unfortunately, the results for the leading odd eigenvalue are not quite as good as those
for the even. In Figs. 5 and 6 we show the analogous plots to Figs. 3 and 4. The first
three blocking levels are consistent hut the fourth appcars to have too large a value on the
642 lattice. This may be a problem with statistics as we only have 10K measurements on
the 643 lattice; we shall find out when we run some more.

The second largest cven cigenvalue gives the correction-to-scaling exponent according
to A2 = 27%. Our results for this arc shown in Ifig. 7. The fourth and fifth blocking levels
are not consistent and therc is a very strong dependence on truncation so again we should
reserve judgement until we have more statistics.

Finally, perhaps the most important number, as it can be determined the most accu-
rately, K.. Our first set of runs at Edinburgh’s value for the critical coupling K = 0.221654
on the two lattice sizes 614° and 128" indicated that K — K, = 0.000005(2). Therefore we
are carrying out a second set of runs at J{ = 0.221644 hoping to find the same value for

K — K but with the opposite sign. So far, we do not have enough data to extract a reliable
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estimate for this.

5. Conclusions

We set out to do five things and are making good progress. We believe that we have
overcome finite size effects for the lcading even cigenvalue and with more data hope to
do the same for the leading odd and second largest even eigenvalues. We seem to have
control over the truncation cifects — all of the cigenvalues settle down to a constant value
when at least thirty or forty spin opcrators are included. We are successfully using Wolff’s
single-cluster variant of the Swendsen and Wang algorithm, along with some standard
Metropolis sweeps, to update our lattices. We have mcasured the correction-to-scaling
exponent, it comes out significantly less than one but we do not yet have a consistent
value. In order to look for redundant opcrators, one has to calculate the eigenvectors as
well as the eigenvalues of the stability tnatrix; we are just beginning to do this now. As for
our preliminary results, the leading even and odd eigenvalues disagree with Edinburgh’s 643
numbers but agree with their extrapolated valuces; the critical coupling may be a little less
than Edinburgh’s estimate. We intend to at lecast double our statistics before publishing
final results.

While this work was in progress, we lcarned of a simnilar simulation performed on the
DISP at Delft [16] . They mecasured about hall the number of operators as we did and

only ran on the same lattice sizes as ISdinburgh.
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"Fi1g. 1: Our Order for Even Spin Operators
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Fig. 2: Leading Even Eigenvalue vs. No. Operators
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Fig. 3: Leading Even Eigenvalue
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Fig. 4: Leading Even Eigenvalue
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Fig. o: Leading Odd kigenvalue
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Fig. 6: Leading O0dd Eigenvalue
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Fig. 7. Second Even HRigenvalue

8 | | 1 l | T li | ! I | | | !
i 128%%x3 [=.221654 i
B8
4 |
! ﬁ
2 | I 1 | | I | l | ! [ 1_ 1 1 | ]




