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Abstract

We have undertaken a large-scale computer simulation of the 3d Ising model using the Monte Carlo 
Renormalization Group (MCRG) method. Our calculation improves on past calculations in three ways. 
Firstly, larger lattices are used - we have run on 1283 as well as 643. Secondly, many more spin operators 
- 53 even and 46 odd - are measured. Lastly, we have incorporated more efficient ways of spin update - 
Wolff’s single-cluster variant of the Swendsen and Wang algorithm. In addition to calculating the critical 
temperature, the thermal and magnetic exponents, and improving the estimate of the correction-to-scaling 
exponent, we are aiming to verify the presence of redundant operators. We do not yet have sufficient statistics 
to give final results so here we describe our calculation and present preliminary results which demonstrate 
that we have control over both finite size effects and systematic errors arising from truncation.

* Talk given at the Int. Workshop ‘Lattice 89’, Capri (Sep 1989)
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1. Introduction
The Ising model is the simplest model for ferromagnetism that predicts phase transi­

tions and critical phenomena. This model, introduced by Lenz in 1920 [1] , was solved in 
one dimension by Ising in 1925 [2] , and in two dimensions by Onsager in 1944 [3] . How­
ever, it has not been solved analytically in three dimensions, so Monte Carlo computer 
simulation methods have been one of the methods used to obtain numerical solutions. 
One of the best available techniques for this is the Monte Carlo Renormalization Group 
(MCRG) method [4] . The Ising model exhibits a second-order phase transition in c£ = 3 
dimensions at a critical temperature Tc. As T approaches Tc, the correlation length £ 
diverges as a power law with critical exponent u:

{ = f„(r/rc-i)-' (i)

and the pair correlation function G(r) at T = Tc falls off to zero with distance r as a power 
law defining the critical exponent 77:

G(r) = GQr-^-2+7J\ (2)

Tc, u and tj determine the critical behavior of the 3d Ising model and it is their values we 
wish to determine using MCRG.

Five years ago, this was done by Pawley, Swendsen, Wallace and Wilson [5] in Ed­
inburgh on the ICL DAP computer with high statistics. They ran on four lattice sizes 
- 83,163,323 and 643 - measuring seven even and six odd spin operators. With at least 
one million sweeps, measuring every fourth sweep, they were able to determine the critical 
coupling (inverse temperature) Kc to six decimal digits and the critical exponents u and 
77 to three, within their statistical errors. We are essentially repeating their calculation, 
which from now on we shall refer to as the “Edinburgh” calculation, on the new AMT 
DAP. Why should we do this? There are five main reasons. Firstly, to investigate finite 
size effects - we have run on the biggest lattice used by Edinburgh, 643, and on a bigger 
one, 1283 (we can also go to 2563). Secondly, to investigate truncation effects - qualita­
tively the more operators we measure for MCRG, the better, so we have included 53 even 
and 46 odd operators. Thirdly, we are making use of the new cluster-updating algorithm 
due to Swendsen and Wang [6] , implemented according to Wolff [7] . Fourthly, we would 
like to try to more accurately measure another critical exponent, the correction-to-scaling 
exponent u>. And finally, Edinburgh speculate that they found a redundant operator - we 
would like to substantiate this.

2. MCRG
The formulation of Monte Carlo Renormalization Group (MCRG) was completed in 

1979 by Wilson and by Swendsen [4]; key ingredients were provided earlier by Ma and by
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KadanofF [8] . MCRG combines Monte Carlo (MC) simulations techniques of statistical 
mechanical models [9] with a renormalization group (RG) analysis of their critical proper­
ties [10] . The renormalization group is a set of scale transformations. The basic idea is 
that, since the critical properties of a system are not strongly affected by details on a short 
length scale, some fraction of the variables associated with short wavelength fluctuations 
may be integrated out, transforming the original system into a new one with fewer degrees 
of freedom. Such transformations are called renormalization group transformations. Typ­
ically they involve a local grouping of the variables into “blocks” and assigning a value to 
each “block variable” on the basis of the variables in each block. Block-variable transfor­
mations reduce the linear dimensions of a d-dimensional system by a scale factor s, where 
sd is equal to the number of variables in a block. For the 3d Ising model, we divide the 
simple cubic lattice of spins into 2x2x2 blocks (s = 2) and assign the block spin the values 
+1 or -1 depending on the sign of the sum of the spins in the block. (When the sum is 
zero, +1 and -1 are assigned with equal probability.) If we write the Hamiltonian of the 
original system as

n = (3)
a

where the Sa's are combinations of the spins and the K^s are the corresponding cou­
pling constants, then the RG transformation Rs produces a new system with renormalized 
Hamiltonian

H' = R.H = Y,K°S* (4)
a

parameterized in terms of a new set of coupling constants with being combi­
nations of the block spins. Thus the RG transformation is a mapping of the space of 
coupling constants onto itself, with its fixed points determining the critical surface by the 
standard theory [11] . To determine the critical coupling Kc = 1Fic, one performs inde­
pendent MC simulations on a large lattice L of size M3 and on smaller lattices S of size 
(M/2tn)3,m = 1,2,..., and compares the operators measured on the large lattice blocked 
m times more than the smaller lattices. Kx = Kie when

<^n)>L-<5in-rn)>5. (5)

Since the effective lattice sizes are the same, unknown finite size effects should cancel. The 
critical exponents ya are obtained directly from the eigenvalues Aa of the stability matrix 

according to Aa = 2y'1. In particular, the leading eigenvalue of Tap for the even Sa 
gives v from t/i = l/i/, and similarly t/j = (d + 2 - ?/)/2 from the odd Tap. Tap is the 
linearized RG transformation matrix Rs near the fixed point and is defined by

 d/d,’»+1) 

dK^
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By performing simulations at Ki,., one can obtain estimates for the stability matrix by 
solving the linear equations

d<s^+1)> y^,,, d < s(S+1) >
dKg1^ „ 00 dldn+,)

In both eqs. (5) and (7) the best results are obtained from the largest blocking level n. 
Thus, in order to calculate all the quantities of interest using MCRG, we must evaluate 
the operators Sa. Unfortunately there are rather a lot of them. In [5] the calculation 
was restricted to seven even spin operators and six odd; we are evaluating 53 and 46, 
respectively. Specifically we have decided to evaluate the most important operators in a 
3x3x3 cube. We do this by evaluating all of the operators in each of the three 3x3 planes 
forming the sides of the cube along the coordinate directions, and all of the operators in 
the 2x2x2 sub-cube lying in the corner of the 3x3x3 cube. In [12] we show all the spin 
operators for a 3x3 square and a 2x2x2 cube, and describe a computer code written to 
generate them.

3. Implementation on the DAP
The Distributed Array Processor (DAP) is a Single Instruction, Multiple Data (SIMD) 

computer consisting oi D x D bit-serial processing elements (PEs) configured as a cyclic 
two-dimensional grid with nearest-neighbor connectivity. Originally made by ICL with 
D = 64, the DAP is currently made by AMT with D = 32 or 64. The Ising model computer 
simulation is very well suited to such a machine since the spins can be represented as single 
bit (logical) variables. In 3d the system of spins is configured as a M X Af X M simple 
cubic lattice which is “crinkle mapped” onto the D x D DAP by storing N x N pieces of 
each of M planes in each PE: M x M x M = M x (N x D) x (N x D), with N = M/D.

When we began our simulation, we updated the spins using the standard Metropolis 
algorithm [13] , performing 100 sweeps between measurements. Now we are using a hybrid 
algorithm consisting of 10 such Metropolis sweeps plus 1 cluster-update using Wolff’s 
single-cluster variant of the Swendsen and Wang algorithm [14] . Empirically, we found 
that the cluster-update evolves the magnetization more quickly than the energy, whereas 
Metropolis updates evolve the energy faster. By using this hybrid algorithm, we hope to 
obtain the best of both worlds. In fact, on a 1283 lattice, the autocorrelation length of the 
magnetization reduces from 73 ± 2 sets of 100 sweeps for Metropolis alone to 5.0 ± 0.2 sets 
of 10 Metropolis plus 1 cluster-update for the hybrid algorithm.

In order to measure the spin operators Sa, the DAP code simply histograms the spin 
configurations so that an analysis program can later pick out each particular spin operator 
using a look-up table. In fact, four histograms are made: three with 512(= 29) entries 
for the 3x3 planes and one with 25G(= 28) for the 2x2x2 sub-cube. The obvious way to
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implement this on the DAP, namely by storing one histogram per PE, is inefficient because 
the PEs lack the hardware functionality to individually index different locations in their 
respective memories. Instead, we store a 512-entry histogram in D pieces along rows of 
the DAP. Then each of these histogram parts is decomposed as D columns and H memory 
locations, with D x II = 512. During the measurement, the D partial histograms are 
updated in parallel and then summed into the complete histogram. Currently the code 
requires the same time to do 1 four-histogram measurement, 1 Wolff single-cluster-update 
or 100 Metropolis updates. Therefore, our hybrid of 10 Metropolis plus 1 cluster-update 
takes about the same time as a measurement.

4. Preliminary Results
We have run on lattices of size 043 and 1283 at two values of the coupling: 0.221654 

(Edinburgh’s best estimate of the critical value) and 0.221644. On the smaller lattice we 
have measured 10K histograms, on the larger we have 30AT for 0.221654 and 20K for 
0.221644. These statistics are not very impressive compared to Edinburgh who had 250Jif 
measurements. However, our measurements are separated by either more (100 vs. four) 
Metropolis sweeps or by clustcr-updatcs so our autocorrelation length is much smaller, 
and we are still running. Moreover, as will be demonstrated below, we have control over 
both finite size effects and systematic errors arising from truncation of the number of spin 
operators.

In order to analyze our results, the first thing we have to decide is the order in which 
to arrange our 53 even and 40 odd spin operators. Naively, they can be arranged in order of 
increasing total distance between the spins [12](as was done in [5]). However, the ranking 
of a spin operator is determined, physically, by how much it contributes to the energy of 
the system. Thus we initially did our analysis with the operators in the naive order to 
calculate their energies, then subsequently we used the “physical” order dictated by these 
energies. This physical order of the first 20 even operators is shown in Fig. 1 with six of 
Edinburgh’s operators indicated; the seventh Edinburgh operator (E-6) is our 21st. This 
order is important because in order to access the systematic effects of truncation we are 
going to analyze our data as a function of the number of operators included. Specifically, 
we successively diagonalize the 1x1, 2x2, ..., 53x53 (for even, 46x46 for odd) stability matrix 
Ta0 to obtain its eigenvalues and thence the critical exponents. Therefore, it is important 
both physically and numerically to have the operators arranged in order of decreasing 
importance. Since here we are reporting preliminary results, we shall present only plots of 
the eigenvalues, not the values of the critical exponents.

Firstly, we look at the truncation effects in the leading even eigenvalue which deter­
mines u. In Fig. 2 we plot this eigenvalue vs. number of spin operators included in the 
analysis for the second, third, fourth and fifth RG blocking levels starting from the 1283 
lattice at an inverse temperature of 0.221654. (We ignore the first blocking level because
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it suffers from strong transient effects and the sixth because being only 23 it is too small 
to accommodate all of the operators.) We sec that there are strong truncation effects - 
the value of the eigenvalue does not settle down until at least thirty and perhaps forty 
operators are included. Also shown in Fig. 1, as horizontal lines, are the relevant results 
from the Edinburgh calculation: the dotted line is their value of the eigenvalue from the 
corresponding blocking level starting from their 643 lattice, and the dashed line is their 
extrapolation to the infinite lattice also taking into account their significant truncation 
errors. Firstly, note that our value agrees with Edinburgh’s when around seven operators 
are included - this is a significant verification that the two calculations are consistent. 
Secondly, Edinburgh’s 643 result is systematically off from our value with all 53 operators 
included. In fact, on the fifth blocking level, their value is off the top of the plot which 
is presumably due to the fact that their lattice is only 23 in size forcing them to drop 
their E-7 operator and therefore incur even worse truncation errors. Lastly, amazingly, 
Edinburgh’s “phenomenological” extrapolation [15] appears to have saved the day on the 
higher blocking levels so that within statistical errors their result agrees with ours!

Turning to finite size effects, we show our results for the leading even eigenvalue on 
the first four blocking levels starting from the G43 lattice in Fig. 3, and on the first five 
blocking levels from the 1283 lattice in Fig. 4, both at 0.221654. The values on the 
respective lattices agree, and the agreement improves with increasing blocking level. Thus 
we feel that we have overcome the finite size effects so that a 643 lattice is just large enough. 
However, the advantage in going to 1283 is obvious in Fig. 4: there we can perform one 
more blocking, which reveals that the results on both the fourth and fifth blocking levels 
are consistent. This means that we have eliminated most of the transient effects near the 
fixed point in the MCRG procedure.

Unfortunately, the results for the leading odd eigenvalue are not quite as good as those 
for the even. In Figs. 5 and 6 we show the analogous plots to Figs. 3 and 4. The first 
three blocking levels are consistent but the fourth appears to have too large a value on the 
643 lattice. This may be a problem with statistics as we only have lOif measurements on 
the 643 lattice; we shall find out when we run some more.

The second largest even eigenvalue gives the correction-to-scaling exponent according 
to A2 = 2~w. Our results for this are shown in Fig. 7. The fourth and fifth blocking levels 
are not consistent and there is a very strong dependence on truncation so again we should 
reserve judgement until we have more statistics.

Finally, perhaps the most important number, as it can be determined the most accu­
rately, Kc- Our first set of runs at Edinburgh’s value for the critical coupling K = 0.221654 
on the two lattice sizes Gl3 and 1283 indicated that K — Kc = 0.000005(2). Therefore we 
are carrying out a second set of runs at K — 0.221644 hoping to find the same value for 
K — Kc but with the opposite sign. So bar, we do not have enough data to extract a reliable
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estimate for this.

5. Conclusions
We set out to do five things and are making good progress. We believe that we have 

overcome finite size effects for the leading even eigenvalue and with more data hope to 
do the same for the leading odd and second largest even eigenvalues. We seem to have 
control over the truncation effects - all of the eigenvalues settle down to a constant value 
when at least thirty or forty spin operators are included. We are successfully using Wolff’s 
single-cluster variant of the Swendsen and Wang algorithm, along with some standard 
Metropolis sweeps, to update our lattices. We have measured the correction-to-scaling 
exponent, it comes out significantly less than one but we do not yet have a consistent 
value. In order to look for redundant operators, one has to calculate the eigenvectors as 
well as the eigenvalues of the stability matrix; we are just beginning to do this now. As for 
our preliminary results, the leading even and odd eigenvalues disagree with Edinburgh’s 64s 
numbers but agree with their extrapolated values; the critical coupling may be a little less 
than Edinburgh’s estimate. We intend to at least double our statistics before publishing 
final results.

While this work was in progress, we learned of a similar simulation performed on the 
DISP at Delft [16] . They measured about half the number of operators as we did and 
only ran on the same lattice sizes as Edinburgh.
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Fig. 2: Leading Lven Eigenvalue vs. No. Operators
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Fig. 3: Leading Even Eigenvalue
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Fig. 4: Leading Even Eigenvalue
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Fig. 5: Leading Odd Eigenvalue
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Fig. 6: Leading Odd Eigenvalue
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Fig. 7: Second Even Eigenvalue
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