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Abstract. This paper presents a new algorithm for computing the QR factorization
of a rank-deficient matrix on high-performance machines. The algorithm is based on the
Householder QR factorization algorithm with column pivoting. The traditional pivoting
strategy is not well suited for machines with a memory hierarchy since it precludes the use
of matrix-matrix operations. However, matrix-matrix operations perform better on those
machines than matrix-vector or vector-vector operations since they involve significantly less
data movement per floating point operation. We suggest a restricted pivoting strategy which
allows us to formulate a block QR factorization algorithm where the bulk of the work is in
matrix-matrix operations. Incremental condition estimation is used to ensure the reliability
of the restricted pivoting scheme. Implementation results on the Cra;y 2, Cray X-MP and
Cray-Y-MP show that the new algorithm performs significantly better than the traditional
scheme and can more than halve the cost of computing the QR factorization.
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1 Introduction

On most high-performance architectures memory access is quite slow compared to
floating-point (in particular, vector) performance. To overcome this problem, most of to-
day’s high-performance machires incorporate a memory hierarchy (such as global memory,
cache or local memory, and vector registers). For an overview of high-performance archi-
tectures employing memory hierarchies, see [21,30,37]. Data at low levels of the memory
hierarchy can be accessed without delay, whereas data at higher levels is available only
after some delay and (because of memory bank conflicts) may not be available at a rate fast
enough to feed the arithmetic units. For this reason it is imperative to reuse data as much
as possible to cut down on data movement overhead.

This goal can be achieved by expressing a computation in terms of matrix-matrix op-
erations. If the matrices involved are of order n, matrix-matrix operations such as matrix-
matrix multiplication require O(n®) floating-point operations; with proper implementation,
however, the data movement overhead is only O(n?). In contrast, the order of magnitude
of floating point operations and data movement overhead is the same for vector-vector or
matrix-vector operations: O(n) and O(n?), respectively. Hence, using matrix-matrix oper-
ations, we avoid excessive movement of data to and from memory and achieve a surface-to-
volume effect for the ratio of operations to data movement. The Level 3 BLAS [18] provide
the matrix-matrix operations needed for linear algebra. Together with the Level 1 and 2
BLAS (20,31} implementing vector-vector and matrix-vector operations, respectively, they
provide a well-defined interface for the elementary matrix and vector operations.

In order to arrive at an algorithm rich in matrix-matrix operations, one usually must
express the algorithm at the top level in terms of operations on submatrices (the so-called
“blocks”). Block algorithms have been very successful on high-performance machines (for
some examples see [2,3,6,9,11,18,22,24,35,34]). As a result block algorithms will play
an important role in the LAPACK project [4,10,15] that is currently underway to provide
the functionality of EISPACK [25,36] and LINPACK [16] with algorithms better suited for
today’s high-performance architectures.

In this paper we develop an algorithm for computing the QR factorization

AP =QR (1)

of a rank-deficient m X n matrix A. Here P is an n X n permutation matrix, ¢} is an m X m



matrix orthogonal matrix, and R is an upper triangular m X n matrix. This factorization
is typically used when we have to identify a basis for the range space of the columns of
A. It arises for example as the so-called subset selection problem in statistics [26, 28]
to identify redundant carriers in a linear model. Other applications are the solution of
underdetermined or rank-deficient léast—squares problems [1,28,32] and nullspace methods
in optimization [14].

The goal is to find a permutation matrix P and a number of columns 7 such that R can
be partitioned into

R=(R , R ) (2)

where the upper triangular m X r matrix R; is well-conditioned, but
( Ry , Ry )

is ill-conditioned for any subset Ry of columns of Rz. This implies that the first r columns
of AP are a basis for the range space R(A) of A and hence the first 7 columns of @ are an
orthogonal basis for R(A). We mention that if o9 2 07 > ... 2> T min(m.m
values of A, then a well-defined gap between o, and o,4; is necessary to find a sensible
partition (2) [26].

The standard technique for determining such a factorization for a dense matrix A4 is

) are the singular

the Householder QR factorization with column pivoting [12,28]. This algorithm is reliable
in practice, but is computationally inherently limited to matrix-vector kernels. On the
other hand, when A is of full rank and no pivoting is necessary (i.e. P = I in (1)), block
algorithms for the QR factorization can be designed by bundling a series of Householder
updates using the so-called WY representation [11,35].

We suggest a new algorithm that combines the reliability of the column pivoting scheme
with the computational advantages of block algorithms. By limiting our choice of pivot
columns to a given block of the current matrix, we can delay updating remaining columns
until a suitable block transformation has been computed. In order to make this strategy
reliable, we use incremental condition estimation [7] to assess the effect that the selection
of a pivot column would have on the condition number of the current triangular matrix R;.

The outline of the paper is as follows: In Section 2 we briefly review the traditional
Householder QR factorization algorithm with column pivoting. Section 3 review the WY



representation for products of Householder matrices. The next section introduces the re-
stricted pivoting strategy and shows how incremental condition estimation is used to ensure
its numerical reliability. Section 5 presents some implementation results on the Cray 2, Cray
X-MP and Cray Y-MP. These results show that the new algorithm performs significantly
better than the traditional scheme. Lastly we summarize our contributions and outline

directions of future research.

2 'The Householder QR Factorization Algorithm with Traditional Column Piv-
oting

The traditional technique for computing a QR factorization of a rank-deficient matrix
is the Householder QR factorization with column pivoting [12,27]. Here Q is computed by
a sequence of Householder transformations

H=H@) =TI -2uu? ,|ful] = 1. (3)

Choosing
z + sign(z1) ||z]l2 &1

U = ~ )
llz + sign(z1) ||z]l2 e1ll2

we can reduce a given vector z to a multiple of the canonical unit vector e;, since

(4)

(I-2u uT)a: = —sign(z1) ||z]}2 &1

To describe the Householder QR factorization algorithm we use the primitives genhh (gen-
erate Householder vector) and apphh (apply Householder matrix):

[u,y] « genhh(z)
returns u as defined by (4) and y = H(u) z.
B « apphh(u,A)

returns H (u) A.
Figure 1 describes the Householder QR factorization algorithm with traditional pivoting
for computing the QR decomposition of an m X n matrix A. Here a(i: 7,k : 1) refers to

the submatrix of A consisting of row entries ¢ to 7 and column entries k to [. A colon
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foreach i € {1,..., n} do
perm; = i; res; = |la(:,1)]]2
end foreach
for i = 1 to min(m,n) do
Let pvt € {3, ..., n} be such that res,,: is maximal
if (respyt < threshold) then
break { A has numerical rank i -1 }
else { exchange columns pvt and ¢ }
perm; < permpyt; a(t,1) «> a(:,pvt); respyt «— T€8;;
[ui,a(i:m )] — genhh(a(i:m,7));

{ apply H(u) and update residuals }
a(i:m,i+1:n) « apphh(u;,e(i:m,i+1:n));
foreach je {i+1,...,n} do

res; « \/res§ - a(3,7)%;
end foreach

end if
end for

Figure 1: The QR Factorization Algorithm with Traditional Column Pivoting



(3) is used as shorthand to design a complete row or column. The vector perm is used to
store the permutation matrix P. If perm(z) = k, then the kth column of A is permuted
into the ith column of AP. After completing step ¢ the values res;,7 = 24 1,...,n are
the length of the projections of the jth column of the currently permuted AP onto the
orthogonal complement of the subspace spanned by the first ¢z columns of AP. The pivoting
strategy can be viewed as choosing at every step this column that is farthest away (in the
two-norm sense) from the subspace spanned by the columns that were selected before [28,
p.168, P.6.4-5]. Hence, if res; is small for all j > ¢, then we can consider A to have rank
i. Which threshold we choose for termination depends heavily on the application, but in
general the computation will be terminated if the distance of the next pivot column from
the already chosen subspace is O(1/¢) where € is the machine precision. res; can be easily
updated and does not have to be recomputed at every step although roundoff errors may
make it necessary to recompute res; = ||(a(i: m,j))||2,7 = i+ 1,...,n periodically [16,
p. 9.17] (we suppressed this detail in Figure 1). Alternative pivoting strategies have been
suggested by Chan [13] and Foster [23].

The bulk of the computational work in this algorithm is performed in the apphh kernel.
Computing B « apphh(u, A) involves a matrix-vector product

2z ATy

and a rank-one update
B — A-2uzT.

These operations require the same amount of data movement as floating point operations.
To arrive at a block algorithm relying on matrix-matrix operations, it is necessary to avoid
updating part of A until several Householder transformations have been computed. This is
impossible to do for the traditional pivoting strategy, since we must update a(z : m, j) and

res; before we can choose the next pivot column.

3 A Block Orthogonal Transformation

To arrive at a block formulation of the Householder QR algorithm, it is necessary to
express a series of Householder reductions in a convenient closed form. Bischof and Van
Loan [11] expressed the product

Q=Hy---Hpy



of a series of m x m Householder matrices (3) in the so-called WY representation
Q=I+wyT (5)

where W and Y are m xnb matrices. Schreiber and Van Loan [35] refined this representation
by expressing W = YT where T is a nb X nb upper triangular matrix. Schreiber and Van
Loan called the resulting representation

Q=I+YTYT (6)

the compact WY representation since it requires only about half as much storage as the
original WY representation (5) in the typical case where m > nb. To accumulate Y and T,
observe that a Householder matrix is a special case of the compact WY representation and

that we can write

Q=QH=I+YTYT

where

17=(Y R u)
z2=-2TYTy

T=<€ _ZQ).

Y is simply the collection of Householder vectors and in most applications where the dimen-

(7)

sion of Householder vectors decreases at every step Y will be lower trapezoidal. Compared
to the traditional Householder algorithm the accumulation of T requires O(mnb?) extra
flops and 1%2— extra words for storage. Since typically m > nb this is a low-order term in
the overall algorithmic complexity. The advantage of the compact WY representation is
that the computation of A « QT A now involves two matrix-matrix multiplications

Z — ATYT (8)
and a rank-nb update
- A—A+YZT (9)

instead of a series of nb matrix-vector multiplications and rank-one updates. Although we
are performing roughly the same amount of floating point computation, the data movement
overhead has been reduced by a factor of nb.



We can now express the block Householder QR algorithm for computing a QR factoriza-
tion A = QR without pivoting in terms of the primitives generate_Y (compute Householder
vectors), accumulate_T (generate compact WY factor), and appcwy (apply compact WY

factor):

[Y, R} « generate_Y(A)

for an m X nb matrix A returns the Householder vectors in Y such that
HY) = HY(,1)---HY (:,nb)TA=R

using the traditional Householder QR algorithm without pivoting. This algorithm is ob-
tained from Figure 1 by deleting all references to res and pvt and processing columns 1
through n of A in their natural order.

T « accummulate_T(Y")
accumulates the Householder vectors Y into a compact WY update such that
(I-YTYT)= H(Y)

as described in (7).
A « appewy(Y,T, A)

performs the updates (8) and (9). Figure 2 shows the block Householder algorithm using
the compact WY representation. Here A is partitioned as an M X N block matrix, and
for simplicity we assume that all blocks are of the same size mb X nb, so m = Mmb and
n = Nnb. We use the notation A(%,j) to refer to block entry (¢,5) and A(3: 7,k : I) to refer
to the submatrix of A consisting of block row entries 7 to j and block column entries k to
Lo .

Bischof and Van Loan [11], Harrod [29] and Mayes [33] used the WY representation to
compute the QR factorization without pivoting on the FPS-164/MAX, the Alliant FX/8 and
the IBM 3090, respectively. This algorithm is also currently implemented in the LAPACK
package. '



\ fori=1to N do
Y « generate_ Y(A(i:M,7))
T «— accumulate_T(Y)
A(i:M,i:N) «— appcwy(Y,T,A(i: M,i:N))

end for

Figure 2: The Block QR Factorization Algorithm without Pivoting

//

LELH

Figure 3: Restricting Pivoting for a Block Algorithm

4 Restricted Pivoting

We already mentioned that the traditional pivoting strategy prevents a block algorithm
since it requires the update of all remaining columns at every step. To arrive at a block
algorithm, we have to restrict pivoting: When we limit our choice of pivot columns, we do
not have to update the remaining columns until we have computed enough Householder
transformations to make a block update worthwhile.

The idea is graphically depicted in Figure 3: At a given stage we are done with the
columns to the left of the pivot window. We then try to select the next pivot columns
exclusively from the columns in the pivot window, not touching the part of A to the right
of the pivot window. Only when we have combined the Householder vectors defined by the



next batch of pivot columns into a WY update, we apply this block update to the columns
on the right.
We must however be able to guard against pivot columns that are in the span of columns

already selected. That is, given the upper triangular matrix R; defined by the first i columns

v
of QT AP and a new column determined by the new candidate pivot column, we

5
R, v
Riy1 =
" (0 ")

is still of full rank. Since the smallest singular value o/min(A) of a matrix A measures the

must decide whether

distance of A (in the two-norm sense) from the set of rank-deficient matrices [28, p. 19]
it is natural to use opin(Riy1) to decide whether to accept the new column. Computing
Omin(Rit1) exactly is too expensive, but using incremental condition estimation [7] we can
obtain a good estimate for oyin(Rit1) cheaply.

Given a good estimate G,,in(R;) = 1/||z||2 defined by a large norm solution z to Rfz =

v
d,|ld||]2 = 1 and a new column ( ), incremental condition estimation allows us to obtain
v

an estimate for opmin(Riy1) without accessing R; again. Definining

a=v"z =Tz +a%-1,7=B/(2e) and p = a(y + sign(a)y/n? + 1),

the estimate for the smallest singular value of R;;, is given by

&min(Ri+l) = "’L (10)
llz1l2
where
= ( (c - sa)/v ) ()
and

s = £ c= ! (12)
= VAT VAT

The cost of determining &pin(Riy1) is 37 flops for the inner product vz and the scaling
of z by ¢. Numerical experiments with this conditon estimation scheme [7] show that it is
reliable in producing good estimates.

10



With the incremental condition estimator we now have the tool to ensure the reliability
of the restricted pivoting strategy. By applying the incremental condition estimator to a
candidate pivot column, we can cheaply decide whether this column is nearly dependent on
the space spanned by the columns already chosen. This leads to the algorithm that is shown
in simplified form in Figures 4 and 5. The outer loop steps through the block columns
of A, whereas the inner loop tries to identify reasonable pivot columns in the current pivot
window. k indicates the start of the pivot window, i.e. columns 1 : ¥ — 1 are “done” in
Figure 3. Columns that have been rejected as pivot columns are permuted to the end of the
matrix and will never be part of a pivot window again. The rejected columns are in columns
st :n (st & “start.rejected”). Columns 1 : acc (acc < “accepted”) have been accepted
as pivot columns so far. Since the LAPACK implementation of the blocked algorithm of
Figure 2 uses blocks of fixed width nb (except possibly for the last block) we may in the
last pass through the inner loop compute Householder vectors based on both accepted and
rejected columns. This was omitted for simplicity in Figure 5. kb is the width of the
current block. lace(< “locally accepted”) is the number of columns that has been accepted
in the current pivot window, whereas nrj(< “number rejected”) is the number of columns
rejected in the current pivot window. At any point, columns &k + lacc : sl (sl & “search
limit”) are the columns available as pivot candidates, whereas columns k + lacc : ul (ul &
“update limit”) are the columns to the right of the accepted columns in the current pivot
window. The reason that the update window is larger than the search window is that it
may contain rejected columns that obviously need not be reconsidered as pivot candidates.
If we run out of acceptable pivot columns in the current pivot window, we expand it to
include columns ul : nl (nl & “new limit”) and then try to find acceptable columns in the
expanded window.

The subroutine

[llzll2y5,¢, 0] « cond-est(z, [lzll2, v,7)

returns a = vTz, s and ¢ as defined in (12) and ||z||; with z defined as in (11). The
incremental condition estimation procedure is inexpensive. v = a(1 : k + lacc — 1, pvt) has
already been computed and v = —sign(a(k + lacc, pvt))res(pvt) is also readily available. A
call to cond-est costs 2(k + lacc) flops to éompute, and only when we decide to accept the
candidate pivot column, we have to update z at the cost of another k + lacc flops. It is also

important to note that incremental condition estimation is necessary for the reliability of the

11



k—1; strj —n+1; acc « 0;
perm(i) «— i, i=1,...,n
while ((k < sr) and (k < min(m,n))) do
kb « min(min(m,n) — k + 1,nb); lacc — 0; nrj «— 0;sl — k + kb; ul — k + kb;
res(i) « |la(k:m,i)|2, i=k,...,k+kb—-1
{ Find kb acceptable columns in the pivot window, starting with a pivot
window of size kb. }
while (lacc < kb) do
pvt — {i| res; = MaTpplacc<i<siTeS;}
v « —sign(a(k + lacc, pvt)) res(put);
[llz]l2 ,$ yc ,a] < cond_est(z, ||z|l2, a(l : k + lacc — 1,pvt) ,7)
see Figure 5
end while
{ accumulate block Householder transformation based on accepted pivot
columns and apply them to columns to the right of pivot window}
Y < [y15- -5 Ukb);
{compute block transformation determined by Y and apply
it to } T « accumulate. T(Y);
a(k:m,k+ kb:n) — appcwy(Y, T, a(k : m,k + kb: n)
{ move rejected columns to the end if there is space }

11 « s7;

for 1 = max(ul — nrj, k + kb) to min(ul — 1,sr — nrj — 1) do
11« t1 — 1;
a(:,1) « a(:,ti); perm(:,1) « perm(:,ti);

end for

8rj « srj — nrj; acc «— acc + min(kb, ul — k — nry);

k—k+ kb

end while

Compute QR factorization without pivoting of a(k : m,k : n) using the algorithm
of Figure 2. Columns k : n are linearly dependent on the other columns.

Figure 4: The Householder Block QR Factorization algorithm with Restricted
Pivoting: Top Level Loop.
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if (1/||z|l2 > threshold) then |
{ candidate pivot column is acceptable. Exchange columns & + lacc and pvt. }
tt — k + lace; lace — lacc+ 1;
perm(ti) < perm(pvt); a(:,ti) « a(:, pvt);
res(put) « res(ti);
{ generate new Householder vector }
[Yiace, a(ti: m,ti)] « genhh(a(ti : m,ti));
{ apply Householder vector to leftover columns in pivot window }
a(ti :m,ti+ 1 : ul) « apphh(yiaee, a(ti s m,ti + 1 : ul));
{ update residuals and approximate singular vector }
res(7) « /res(§)? — a(ti,5)?, j=ti+1,...,ul

ST
T c—sa ;
p
else

{ all rema.ining columns in the pivot window have been rejected.
Expand the size of the pivot window. }
nl — min(sr — 1,ul 4+ kb); nrj « nrj+ (sl — lacc);
{ apply Householder transformations determined by yi,...,yiacc
to expanded pivoting window }
for : =1 to lacc do
a(k :m,ul + 1 : nl) « apphh(y;, a(k : m,ul + 1 :nl));
end for
{ move rejected columns to the end of the expanded pivot window }
for ¢ = k 4+ lacc + 1 to min(ul,k + lacc + nl — ul) do
a(:,1) & a(z,nl + k + lacc — 1); perm(i) & perm(nl + k + lacc - 1);
end for
{ initialize residuals for new columns to be considered }
res(i) « |la(k + lace + 1,%)||2, i = k + lacc + 1,...,nl
sl « lacc + nl — ul; ul « nl;
end if

Figure 5: The Householder Block QR Factorization algorithm with Restricted
Pivoting: Guarding pivot choice with incremental condition estimation and ex-
pansion of pivot window.
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algorithm. If we were to use threshold pivoting, we would use | 4 | alone in deciding whether
to accept or reject a pivot column and ignore v’s contribution. In [8], Bischof developed
a similar controlled pivoting scheme for computing a rank-revealing QR factorization on a
distributed-memory machine and observed that threshold pivoting fails to identify the rank

of A whereas incremental condition estimation produces reliable results.

5 Numerical Experiments

To assess the computational performance or our proposed scheme, we performed some
experiments on the Cray 2, Cray X-MP and Cray Y-MP. We compared the performance of
three different codes:

SQRDC: The LINPACK implementation of the Householder QR factorization algorithm
with traditional column pivoting (see Figure 1). This implementation uses the BLAS

1 vector-vector kernels.

SQRDC2: This is the same algorithm as in SQRDC except that it uses BLAS 2 matrix-

vector kernels whenever possible.

SGEQRF: The block Householder QR factorization algorithm without pivoting (see Fig-
ure 2) as currently implemented in LAPACK.

SGEQPYF: The new block Householder QR factorization algorithm with restricted pivoting
as described in Figures 4 and 5.

All codes were written in Fortran and linked with optimized versions of the level 1, 2 and
3 BLAS provided by Cray Research. As test case, we generated random matrices with
m = 400 rows and n = 200, 400,600,800 columns with singular values

01 = ..« = Omin(m,n)-10 = 1 and Omin(m,n)—9 = «++ = Tmin(m,n) = le — 9.

Hence the rank of those matrices is min(m,n) — 9. We used threshold = le — T as our
cutoff point for accepting or rejecting columns. As expected, the traditional as well as
the restricted pivoting strategy correctly identified the rank of A and generated a well-
conditioned R; in (2).

The run times observed for this problem are shown in Table 1, the corresponding exe-
cution rates are shown in Table 2. We want to stress that these performance results were

14



Table 1: Execution time (in seconds) of the QR factorization codes on a problem
with m = 400 rows on one processor of a Cray-2, Cray X/MP and Cray Y/MP.

Cray-2
n 200 400 600 800
SQRDC 0.56 2.17 3.85 5.44
SQRDC2 0.27 0.94 1.66 2.28

SGEQPF nb =16 0.191 0.47 0.75 1.02
nb = 32 0.182 0.48 0.75 1.05
SGEQRF nb =16 0.167 0.49 0.71 0.95
nb = 32 0.175 0.46 0.69 0.99

Cray X/MP
n 200 400 600 800
SQRDC 0.33 1.24 2.33 3.40
SQRDC2 0.201 0.66 1.17 1.75

SGEQPF nb =16 0.174 0.50 0.84 1.12
nb = 32 0.181 0.52 0.86 1.12
SGEQRF nb =16 1.160 0.48 0.81 1.14
. nb=32 0.164 0.48 0.82 1.16

Cray Y/MP
n 200 400 600 800
SQRDC 0.27 1.18 1.97 2.82
SQRDC2 0.154 0.51 0.97 1.43

SGEQPF nb =16 0.147 0.42 0.67 | 0.93
nb = 32 0.141 0.40 0.73 | 0.92
SGEQRF nb =16 0.137 0.37 0.68 | 0.88
nb = 32 0.126 | 0.37 | 0.63 | 0.92
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Table 2: Execution rate (in MFlops) of the QR factorization codes on a problem
with m = 400 rows on one processor of a Cray-2, Cray X/MP and Cray Y/MP.

Cray-2
n 200 400 600 800
SQRDC 48 40 39 40
SQRDC2 97 92 90 94

SGEQPF nb = 16 146 186 | 202 | 211
nb = 32 158 184 203 | 206
SGEQRF nb = 16 166 179 213 227
nb = 32 164 193 220 217

Cray X/MP
n 200 400 600 800
SQRDC 80 69 64 62
SQRDC2 133 130 128 123

SGEQPF | nb=16 || 160 | 173 | 179 | 182
nb=232 || 159 | 171 | 177 | 180
SGEQRF | nb=16 || 173 | 182 | 186 | 188
nb=232 || 175 | 184 | 185 | 186

Cray Y/MP
n 200 | 400 | 600 | 800
SQRDC 99 73 76 76
SQRDC2 174 167 155 150

SGEQPF nb =16 189 205 227 | 234
nb = 32 205 221 210 | 235
SGEQRF nb =16 203 234 222 | 246
nb = 32 228 239 243 235

16



not obtained on a dedicated system. Although the average user will in all likelyhood be
in a similar situation, these results do not represent the best possible performance of these
codes and are subject to fluctuations depending on the current load of the system. In order
to arrive at relevant performance results, each problem was executed as many times as
was necessary to achieve an aggregate CPU time of 3 seconds. The figures reported here

represent the average performance over these runs.

Even allowing for some inaccuracy in the observed performance figures, we can however

make the following qualitative statements:
1. SGEQPF performs significantly better then SQRDC2.

2. SGEQPF performs only little worse than SGEQRF. That is, pivoting does not intro-

duce much extra overhead.

We also see again (see [17,19] for example), that LINPACK perforrﬁance can be improved
dramatically by replacing loops with BLAS 1 calls with the corresponding BLAS 2 kernel.
Table 3 shows in detail by which percentage of the execution time SQRDC2 performs worse
than SGEQPF. The improverhents of SGEQPF over SQRDC2 are greatest on the Cray-2.
This is not surprising, since each processor on this machine has only one path to memory
and a relatively long memory cycle time [21]. On the Cray X/MP and Y/MP, each processor
has two load-pipes and one store-pipe into memory and as a result the improvements on
those machines are not as spectacular. Nonetheless, SGEQPF performs significantly better
than SQRDC2.

The choice of block sizes nb = 16 and nb = 32 was guided by previous experience
with SGEQRF. As can be seen, there is some fluctuation in performance, but it is not
dramatic on those machines. In general, there are some subtle issues involved in choosing
the optimal block size. The block partitioning resulting in the fastest execution of the code
(the “optimal” block partitioning) is problem-dependent (we can use larger blocks for larger
matrices), but it is also depends on the architecture of a given machine. A discussion of

these issues and a suggestion for a methodology to overcome this problem can be found
in [5).
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Table 3: Percentage by which the execution time of SQRDC2 is worse than that
of SGEQPF

Cray-2
n 200 | 400 600 800
nb =16 41 100 121 124
nb = 32 48 96 121 117

Cray X/MP
n 200 400 600 800
nb = 16 16 32 39 56
nb = 32 11 27 36 56

Cray Y/MP
n 200 400 600 800
nb =16 5 21 45 54
nb = 32 9 27 33 54

86 Conclusions

We presented a new algorithm for computing the QR factorization of rank-deficient
matrices on high-performance machines. By using a restricted pivoting strategy guarded
by incremental condition estimation, we were able to express the bulk of the computational
work in terms of matrix-matrix operations. The traditional algorithm, on the other hand,
is limited to matrix-vector operations and as a result suffers from performance degradation
due to the cost of data movement. Compared to the traditional algorithm, the new approach
more than halved the execution time on one processor of the Cray 2 and performed up to
50% better on one processor of the Cray X/MP and Cray Y/MP.

Although the results reported in this paper are preliminary, they add further evidence
that block algorithms are preferable over algorithms based on matrix-vector kernels. We
also mention that the same restricted pivoting strategy can be applied to computing the
Cholesky factorization with column pivoting in a blocked fashion.

The reliability of these restricted pivoting strategies hinges on the reliability of incre-
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mental condition estimation. Although experimental evidence indicates that incremental
condition estimation is reliable in producing good estimates of the smallest singular value,
one can construct examples where it fails. What would be ideal is an incremental condition
estimation technique that computes both upper and lower bounds on the smallest singular
value. Then one can easily monitor of the reliability of the condition estimator and apply
countermeasures should degradation of the estimates occur. We are currently investigating

this issue and will report on it later.
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