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Abstract. This paper presents a new algorithm for computing the QR factorization 
of a rank-deficient matrix on high-performance machines. The algorithm is based on the 
Householder QR factorization algorithm with column pivoting. The traditional pivoting 
strategy is not well suited for machines with a memory hierarchy since it precludes the use 
of matrix-matrix operations. However, matrix-matrix operations perform better on those 
machines than matrix-vector or vector-vector operations since they involve significantly less 
data movement per floating point operation. We suggest a restricted pivoting strategy which 
allows us to formulate a block QR factorization algorithm where the bulk of the work is in 
matrix-matrix operations. Incremental condition estimation is used to ensure the reliability 
of the restricted pivoting scheme. Implementation results on the Cray 2, Cray X-MP and 
Cray-Y-MP show that the new algorithm performs significantly better than the traditional 
scheme and can more than halve the cost of computing the QR factorization.
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1 Introduction

On most high-performance architectures memory access is quite slow compared to 
floating-point (in particular, vector) performance. To overcome this problem, most of to­
day’s high-performance machines incorporate a memory hierarchy (such as global memory, 
cache or local memory, and vector registers). For an overview of high-performance archi­
tectures employing memory hierarchies, see [21,30,37]. Data at low levels of the memory 
hierarchy can be accessed without delay, whereas data at higher levels is available only 
after some delay and (because of memory bank conflicts) may not be available at a rate fast 
enough to feed the arithmetic units. For this reason it is imperative to reuse data as much 
as possible to cut down on data movement overhead.

This goal can be achieved by expressing a computation in terms of matrix-matrix op­
erations. If the matrices involved are of order n, matrix-matrix operations such as matrix- 
matrix multiplication require 0(n3) floating-point operations; with proper implementation, 
however, the data movement overhead is only 0(n2). In contrast, the order of magnitude 
of floating point operations and data movement overhead is the same for vector-vector or 
matrix-vector operations: 0(n) and 0(n2), respectively. Hence, using matrix-matrix oper­
ations, we avoid excessive movement of data to and from memory and achieve a surface-to- 
volume effect for the ratio of operations to data movement. The Level 3 BLAS [18] provide 
the matrix-matrix operations needed for linear algebra. Together with the Level 1 and 2 
BLAS [20,31] implementing vector-vector and matrix-vector operations, respectively, they 
provide a well-defined interface for the elementary matrix and vector operations.

In order to arrive at an algorithm rich in matrix-matrix operations, one usually must 
express the algorithm at the top level in terms of operations on submatrices (the so-called 
“blocks”). Block algorithms have been very successful on high-performance machines (for 
some examples see [2,3,6,9,11,18,22,24,35,34]). As a result block algorithms will play 
an important role in the LAPACK project [4,10,15] that is currently underway to provide 
the functionality of EISPACK [25,36] and LINPACK [16] with algorithms better suited for 
today’s high-performance architectures.

In this paper we develop an algorithm for computing the QR factorization

AP = QR (1)

of a rank-deficient mx n matrix A. Here P is an n x n permutation matrix, Q is an m x m
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matrix orthogonal matrix, and R is an upper triangular mx n matrix. This factorization 
is typically used when we have to identify a basis for the range space of the columns of 
A. It arises for example as the so-called subset selection problem in statistics [26, 28] 
to identify redundant carriers in a linear model. Other applications are the solution of 
underdetermined or rank-deficient least-squares problems [1,28,32] and nullspace methods 
in optimization [14].

The goal is to find a permutation matrix P and a number of columns r such that R can 
be partitioned into

R=(R1 , R2) (2)

where the upper triangular m x r matrix R\ is well-conditioned, but

( -fti , R-2 'j

is ill-conditioned for any subset R2 of columns of R2. This implies that the first r columns 
of AP are a basis for the range space R(A) of A and hence the first r columns of Q are an 
orthogonal basis for R(A). We mention that if 01 > 02 > ... > <7min(m n) are singular 
values of A, then a well-defined gap between oy and oy+i is necessary to find a sensible 
partition (2) [26].

The standard technique for determining such a factorization for a dense matrix A is 
the Householder QR factorization with column pivoting [12,28]. This algorithm is reliable 
in practice, but is computationally inherently limited to matrix-vector kernels. On the 
other hand, when A is of full rank and no pivoting is necessary (i.e. P — I m (1)), block 
algorithms for the QR factorization can be designed by bundling a series of Householder 
updates using the so-called WY representation [11,35].

We suggest a new algorithm that combines the reliability of the column pivoting scheme 
with the computational advantages of block algorithms. By limiting our choice of pivot 
columns to a given block of the current matrix, we can delay updating remaining columns 
until a suitable block transformation has been computed. In order to make this strategy 
reliable, we use incremental condition estimation [7] to assess the effect that the selection 
of a pivot column would have on the condition number of the current triangular matrix R\.

The outline of the paper is as follows: In Section 2 we briefly review the traditional 
Householder QR factorization algorithm with column pivoting. Section 3 review the WY
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representation for products of Householder matrices. The next section introduces the re­
stricted pivoting strategy and shows how incremental condition estimation is used to ensure 
its numerical reliability. Section 5 presents some implementation results on the Cray 2, Cray 
X-MP and Cray Y-MP. These results show that the new algorithm performs significantly 
better than the traditional scheme. Lastly we summarize our contributions and outline 
directions of future research.

2 The Householder QR Factorization Algorithm with Traditional Column Piv­
oting

The traditional technique for computing a QR factorization of a rank-deficient matrix 
is the Householder QR factorization with column pivoting [12,27]. Here Q is computed by 
a sequence of Householder transformations

H = H(u) = I-2uuT ,\\u\\2 = l. (3)

Choosing
 x "b sign(xi) ||z||2 eg
||s+ sign(*1)||z||2 dlk’ ^

we can reduce a given vector x to a multiple of the canonical unit vector ei, since

(7 — 2u uT) x = - sign(xi) ||x||2 ej.

To describe the Householder QR factorization algorithm we use the primitives genhh (gen­
erate Householder vector) and apphh (apply Householder matrix):

[u,y] <— genhh{x)

returns u as defined by (4) and y = H(y)x.

B <— apphh(u,A)

returns H(u)A.
Figure 1 describes the Householder QR factorization algorithm with traditional pivoting 

for computing the QR decomposition of an m x n matrix A. Here a(i :j,k: l) refers to 
the submatrix of A consisting of row entries i to j and column entries k to l. A colon
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foreach i G {1,..., n} do 
pernii = i\ resi - ||a(:,i)||2 

end foreach 
for i = 1 to mm(m,n) do

Let pvt £ {i, n} be such that respvt is maximal 
if (respvt < threshold) then

break { A has numerical rank i — 1 } 
else { exchange columns pvt and i }

permi <-> permpvt; a(:, i) u(: ,pvt); respvt <— res,-;
[ui,a(i:m ,i)] <- genhh(a(i:m ,i));

{ apply H(u) and update residuals } 
a(i:m ,i+l:n) <- apphh(ui ,a(i:m ,i+l:n)); 
foreach j £ {i + 1, . ■., n} do 

resj <- yfresj - a(i,j)2; 
end foreach 

end if 
end for

Figure 1: The QR Factorization Algorithm with Traditional Column Pivoting
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(:) is used as shorthand to design a complete row or column. The vector perm is used to 
store the permutation matrix P. If perm(i) = k, then the k th column of A is permuted 
into the ith column of AP. After completing step i the values resj,j = i + are
the length of the projections of the j th column of the currently permuted AP onto the 
orthogonal complement of the subspace spanned by the first i columns of AP. The pivoting 
strategy can be viewed as choosing at every step this column that is farthest away (in the 
two-norm sense) from the subspace spanned by the columns that were selected before [28, 
p.168, P.6.4-5]. Hence, if resj is small for all j > i, then we can consider A to have rank 
i. Which threshold we choose for termination depends heavily on the application, but in 
general the computation will be terminated if the distance of the next pivot column from 
the already chosen subspace is 0(l/c) where e is the machine precision, resj can be easily 
updated and does not have to be recomputed at every step although roundoff errors may 
make it necessary to recompute resj — ||(a(i : m,y))||2,i = i + l,...,n periodically [16, 
p. 9.17] (we suppressed this detail in Figure 1). Alternative pivoting strategies have been 
suggested by Chan [13] and Foster [23].

The bulk of the computational work in this algorithm is performed in the apphh kernel. 
Computing B <— apphh(u,A) involves a matrix-vector product

z <— ATu

and a rank-one update
B A — 2uzt .

These operations require the same amount of data movement as floating point operations. 
To arrive at a block algorithm relying on matrix-matrix operations, it is necessary to avoid 
updating part of A until several Householder transformations have been computed. This is 
impossible to do for the traditional pivoting strategy, since we must update a(i: m,j) and 
resj before we can choose the next pivot column.

3 A Block Orthogonal Transformation

To arrive at a block formulation of the Householder QR algorithm, it is necessary to 
express a series of Householder reductions in a convenient closed form. Bischof and Van 
Loan [11] expressed the product

Q = Ei--■ Hnb
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of a series of m X m Householder matrices (3) in the so-called WY representation

Q = I + WYt (5)

where W and Y are mxnb matrices. Schreiber and Van Loan [35] refined this representation 
by expressing W = YT where T is a. nb X nb upper triangular matrix. Schreiber and Van 
Loan called the resulting representation

Q = 1 + YTYt (6)

the compact WY representation since it requires only about half as much storage as the 
original WY representation (5) in the typical case where m > nb. To accumulate Y and T, 
observe that a Householder matrix is a special case of the compact WY representation and 
that we can write

Q = QH = I + YTYt

where

z

T =

-2TYtv 

T z ' 
0 -2 .

(7)

Y is simply the collection of Householder vectors and in most applications where the dimen­
sion of Householder vectors decreases at every step Y will be lower trapezoidal. Compared 
to the traditional Householder algorithm the accumulation of T requires 0(mnb2) extra 
flops and ^ extra words for storage. Since typically m ^ nb this is a low-order term in 
the overall algorithmic complexity. The advantage of the compact WY representation is 
that the computation of A <— QTA now involves two matrix-matrix multiplications

Z *- AtYT (8)

and a rank-nh update
A <— A+ YZt (9)

instead of a series of nb matrix-vector multiplications and rank-one updates. Although we 
are performing roughly the same amount of floating point computation, the data movement 
overhead has been reduced by a factor of nb.
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We can now express the block Householder QR algorithm for computing a QR factoriza­
tion A = QR without pivoting in terms of the primitives generate-Y (compute Householder 
vectors), accumulate-T (generate compact WY factor), and appcwy (apply compact WY 
factor):

[Y, R] <— generate- Y(A)

for an m x nb matrix A returns the Householder vectors in Y such that

H(Y)t = H(Y(:, 1)) • • • H(Y(:, nb))TA = R

using the traditional Householder QR algorithm without pivoting. This algorithm is ob­
tained from Figure 1 by deleting all references to res and pvt and processing columns 1 
through n of A in their natural order.

T <— accumulate-T(Y)

accumulates the Householder vectors Y into a compact WY update such that

(7 - YTYt) = H(Y)

as described in (7).

A <— appcwy(Y, T, A)

performs the updates (8) and (9). Figure 2 shows the block Householder algorithm using 
the compact WY representation. Here A is partitioned as M X N block matrix, and 
for simplicity we assume that all blocks are of the same size mb X nb, so m = Mmb and 
n = Nnb. We use the notation A(i,j) to refer to block entry [i,j) and A{i: j,k : l) to refer 
to the submatrix of A consisting of block row entries i to j and block column entries k to 
1.

Bischof and Van Loan [11], Harrod [29] and Mayes [33] used the WY representation to 
compute the QR factorization without pivoting on the FPS-164/MAX, the Alliant FX/8 and 
the IBM 3090, respectively. This algorithm is also currently implemented in the LAPACK 
package.
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for z = 1 to iV do
Y *— generate-Y(A(i:M,i))
T <— accumulate-T(Y)
A(i:M,i:N) *— appcwy(Y,T,A(i:M,i:N)) 

end for

Figure 2: The Block QR Factorization Algorithm without Pivoting

Figure 3: Restricting Pivoting for a Block Algorithm 

4 Restricted Pivoting

We already mentioned that the traditional pivoting strategy prevents a block algorithm 
since it requires the update of all remaining columns at every step. To arrive at a block 
algorithm, we have to restrict pivoting: When we limit our choice of pivot columns, we do 
not have to update the remaining columns until we have computed enough Householder 
transformations to make a block update worthwhile.

The idea is graphically depicted in Figure 3: At a given stage we are done with the 
columns to the left of the pivot window. We then try to select the next pivot columns 
exclusively from the columns in the pivot window, not touching the part of A to the right 
of the pivot window. Only when we have combined the Householder vectors defined by the
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next batch of pivot columns into a WY update, we apply this block update to the columns 
on the right.

We must however be able to guard against pivot columns that are in the span of columns 
already selected. That is, given the upper triangular matrix Ri defined by the first i columns

of QtAP and a new column [ ) determined by the new candidate pivot column, we
V 7 /

must decide whether
M?;)

is still of full rank. Since the smallest singular value crm,n(A) of a matrix A measures the 
distance of A (in the two-norm sense) from the set of rank-deficient matrices [28, p. 19] 
it is natural to use <Jmin(,Ri+i) to decide whether to accept the new column. Computing 
<rmin(Ri+l) exactly is too expensive, but using incremental condition estimation [7] we can 
obtain a good estimate for (Tmin{Ri+i) cheaply.

Given a good estimate amin(Ri) = l/||x||2 defined by a large norm solution x to Rjx =
{ v \

d, ||d||2 = 1 and a new column [ I, incremental condition estimation allows us to obtain
V 7 /

an estimate for crmin(Ri+i) without accessing Ri again. Definining

a = vTx ,/? = ^2xTx -(- a2 — 1 ,77 = /?/(2a:) and n = 0(77 + sign(a)^772 + 1),

the estimate for the smallest singular value of i?,+i is given by

1
m 2

(10)

where

and

z =
sx

(c - sa)/j

s = A4

(11)

(12)
vV2 + 1 ’ t/m2 + 1

The cost of determining dw^iii+i) is Si flops for the inner product vTx and the scaling 
of x by c. Numerical experiments with this conditon estimation scheme [7] show that it is 
reliable in producing good estimates.
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With the incremental condition estimator we now have the tool to ensure the reliability 
of the restricted pivoting strategy. By applying the incremental condition estimator to a 
candidate pivot column, we can cheaply decide whether this column is nearly dependent on 
the space spanned by the columns already chosen. This leads to the algorithm that is shown 
in simplified form in Figures 4 and 5. The outer loop steps through the block columns 
of A, whereas the inner loop tries to identify reasonable pivot columns in the current pivot 
window, k indicates the start of the pivot window, i.e. columns 1 : fc — 1 are “done” in 
Figure 3. Columns that have been rejected as pivot columns are permuted to the end of the 
matrix and will never be part of a pivot window again. The rejected columns are in columns 
sr : n (sr •<=> “start-rejected”). Columns 1 : acc (acc -O “accepted”) have been accepted 
as pivot columns so far. Since the LAPACK implementation of the blocked algorithm of 
Figure 2 uses blocks of fixed width nb (except possibly for the last block) we may in the 
last pass through the inner loop compute Householder vectors based on both accepted and 
rejected columns. This was omitted for simplicity in Figure 5. kb is the width of the 
current block. lacc(& “locally accepted”) is the number of columns that has been accepted 
in the current pivot window, whereas nry(-o “number rejected”) is the number of columns 
rejected in the current pivot window. At any point, columns k + lacc : si (si <£> “search 
limit”) are the columns available as pivot candidates, whereas columns k + lacc \ ul (ul & 
“update limit”) are the columns to the right of the accepted columns in the current pivot 
window. The reason that the update window is larger than the search window is that it 
may contain rejected columns that obviously need not be reconsidered as pivot candidates. 
If we run out of acceptable pivot columns in the current pivot window, we expand it to 
include columns ul : nl (nl & “new limit”) and then try to find acceptable columns in the 
expanded window.

The subroutine
[ ||z||2,s,c,a] *— cond_est(x, ||x||2,u,7)

returns a = vTx, s and c as defined in (12) and \\z)\2 with 2: defined as in (11). The 
incremental condition estimation procedure is inexpensive, v = a(l : k + lacc — l,puf) has 
already been computed and 7 = —sign(a(fc + lacc,pvt))res(pvt) is also readily available. A 
call to cond_est costs 2(k + lacc) flops to compute, and only when we decide to accept the 
candidate pivot column, we have to update x at the cost of another k + lacc flops. It is also 
important to note that incremental condition estimation is necessary for the reliability of the
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& <— 1; srj <— n + 1; acc <— 0;
perm(i) +- z, i = 1,..., re
while ((fc < sr) and (k < min(m,n))) do

kb *— min(mm(m, n) — & + 1, n6); lacc <— 0; nrj •*— 0; s/ <— A: + ul *— k + kb] 
res(i) <— \\a(k : m, z)||2, i = k,... ,k + kb — 1
{ Find kb acceptable columns in the pivot window, starting with a pivot 
window of size kb. } 
while (/acc < kb) do

pvt 4- {i | resi = maxk+iacc<j<slrcsj}
7 <-----sign(a(A: + lacc,pvt)) res{pvt)]
[ ||2||2 ,s ,c ,a] <— cond_est(a:, ||a:||2, a(l : A: + lacc — l,pvt) ,7)
see Figure 5 

end while
{ accumulate block Householder transformation based on accepted pivot 
columns and apply them to columns to the right of pivot window}

{compute block transformation determined by Y and apply 
it to } T 4— accumulate-T(Y)]
a(k : m,k + kb : n) <— appcwy(Y, T, a(k : m, k + kb : n)
{ move rejected columns to the end if there is space } 
ti 4— sr;
for i = max(t£Z — nrj, k + kb) to min(u/ — 1, sr — nrj — 1) do 

ti 4— ti — 1;

a(:,i) 4-4 a(:,ti)] perm(:,i) 4-4 perm(:,ti)] 
end for
srj 4— srj — nrj] acc 4— acc + min(kb,ul — k — nrj)] 
k *— k + kb] 

end while
Compute QR factorization without pivoting of a(k : m,k : n) using the algorithm 
of Figure 2. Columns k : n are linearly dependent on the other columns.

Figure 4: The Householder Block QR Factorization algorithm with Restricted 
Pivoting: Top Level Loop.
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if (l/||z||2 > threshold) then
{ candidate pivot column is acceptable. Exchange columns k + lacc and pvt. }
ti *— k -b lacc; lacc +— lacc + 1;
perm(ti) <r+perm(pvt); a(:,ti) <-*• a(:,pvt);
res(pvi) <— res(ti);
{ generate new Householder vector }
[yiacc '■ rn,ti)] ■*— genhh(a(ti : m,ti));
{ apply Householder vector to leftover columns in pivot window } 
a(ti : m,ti + l : ul) <— apphh(yiacc, a(ti : m,ti + 1 : ul));
{ update residuals and approximate singular vector } 
res(j) <— \/res(j)2 — a(ti,j)2, j = ti + 1,... ,ul

else
{ all remaining columns in the pivot window have been rejected.
Expand the size of the pivot window. }
nl <— min(sr — l,ul + kb); nrj <— nrj + (si — lacc);
{ apply Householder transformations determined by j/i,...,yiacc 
to expanded pivoting window } 
for i = 1 to lacc do

a(k : m,ul + 1 : nl) <— apphh(yi, a(k : m,ul + 1 : nl)); 
end for
{ move rejected columns to the end of the expanded pivot window } 
for i = k + lacc + 1 to min(u/, k + lacc + nl — ul) do

a(:,i) <-* a(:,nl + & + lacc — i); perm(i) perm(nl + fc + lacc — i); 
end for
{ initialize residuals for new columns to be considered } 
res(i) «— ||a(fc + lacc + l,i)||2, i = k + lacc + 1,... ,n/ 
si <— lacc + nl — ul; ul <— nl; 

end if

Figure 5: The Householder Block QR Factorization algorithm with Restricted 
Pivoting: Guarding pivot choice with incremental condition estimation and ex­
pansion of pivot window.

13



algorithm. If we were to use threshold pivoting, we would use | 7 | alone in deciding whether 
to accept or reject a pivot column and ignore v’s contribution. In [8], Bischof developed 
a similar controlled pivoting scheme for computing a rank-revealing QR factorization on a 
distributed-memory machine and observed that threshold pivoting fails to identify the rank 
of A whereas incremental condition estimation produces reliable results.

5 Numerical Experiments

To assess the computational performance or our proposed scheme, we performed some 
experiments on the Cray 2, Cray X-MP and Cray Y-MP. We compared the performance of 
three different codes:

SQRDC: The LINPACK implementation of the Householder QR factorization algorithm 
with traditional column pivoting (see Figure 1). This implementation uses the BLAS 
1 vector-vector kernels.

SQRDC2: This is the same algorithm as in SQRDC except that it uses BLAS 2 matrix- 
vector kernels whenever possible.

SGEQRF: The block Householder QR factorization algorithm without pivoting (see Fig­
ure 2) as currently implemented in LAPACK.

SGEQPF: The new block Householder QR factorization algorithm with restricted pivoting 
as described in Figures 4 and 5.

All codes were written in Fortran and linked with optimized versions of the level 1, 2 and 
3 BLAS provided by Cray Research. As test case, we generated random matrices with 
m = 400 rows and n = 200,400,600,800 columns with singular values

(Tl = ... = ^min(m,n)—10 = 1 = • • • = crmin(m,n) = le — 9.

Hence the rank of those matrices is min(7n,n) — 9. We used threshold = le — 7 as our 
cutoff point for accepting or rejecting columns. As expected, the traditional as well as 
the restricted pivoting strategy correctly identified the rank of A and generated a well- 
conditioned Rx in (2).

The run times observed for this problem are shown in Table 1, the corresponding exe­
cution rates are shown in Table 2. We want to stress that these performance results were
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Table 1: Execution time (in seconds) of the QR factorization codes on a problem 
with m — 400 rows on one processor of a Cray-2, Cray X/MP and Cray Y/MP.

Cray-2
n 200 400 600 800

SQRDC 0.56 2.17 3.85 5.44
SQRDC2 0.27 0.94 1.66 2.28

SGEQPF nb = 16 0.191 0.47 0.75 1.02
nb — 32 0.182 0.48 0.75 1.05

SGEQRF nb = 16 0.167 0.49 0.71 0.95
nb = 32 0.175 0.46 0.69 0.99

Cray X/MP
n 200 400 600 800

SQRDC 0.33 1.24 2.33 3.40
SQRDC2 0.201 0.66 1.17 1.75

SGEQPF nb - 16 0.174 0.50 0.84 1.12
nb = 32 0.181 0.52 0.86 1.12

SGEQRF nb = 16 1.160 0.48 0.81 1.14
nb — 22 0.164 0.48 0.82 1.16

Cray Y/MP
n 200 400 600 800

SQRDC 0.27 1.18 1.97 2.82
SQRDC2 0.154 0.51 0.97 1.43

SGEQPF nb - 16 0.147 0.42 0.67 0.93
nb = 32 0.141 0.40 0.73 0.92

SGEQRF nb = 16 0.137 0.37 0.68 0.88
nb = 32 0.126 0.37 0.63 0.92
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Table 2: Execution rate (in MFlops) of the QR factorization codes on a problem 
with m = 400 rows on one processor of a Cray-2, Cray X/MP and Cray Y/MP.

Cray-2
n 200 400 600 800

SQRDC 48 40 39 40
SQRDC2 97 92 90 94

SGEQPF nb = 16 146 186 202 211
nb - 32 158 184 203 206

SGEQRF nb = 16 166 179 213 227
nb — 32 164 193 220 217

Cray X/MP
n 200 400 600 800

SQRDC 80 69 64 62
SQRDC2 133 130 128 123

SGEQPF nb = 16 160 173 179 182
nb = 32 159 171 177 180

SGEQRF nb = 16 173 182 186 188
nb = 32 175 184 185 186

Cray Y/MP
n 200 400 600 800

SQRDC 99 73 76 76
SQRDC2 174 167 155 150

SGEQPF nb = 16 189 205 227 234
nb = 32 205 221 210 235

SGEQRF nb = 16 203 234 222 246
nb = 32 228 239 243 235
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not obtained on a dedicated system. Although the average user will in all likelyhood be 
in a similar situation, these results do not represent the best possible performance of these 
codes and are subject to fluctuations depending on the current load of the system. In order 
to arrive at relevant performance results, each problem was executed as many times as 
was necessary to achieve an aggregate CPU time of 3 seconds. The figures reported here 
represent the average performance over these runs.

Even allowing for some inaccuracy in the observed performance figures, we can however 
make the following qualitative statements:

1. SGEQPF performs significantly better then SQRDC2.

2. SGEQPF performs only little worse than SGEQRF. That is, pivoting does not intro­
duce much extra overhead.

We also see again (see [17,19] for example), that LINPACK performance can be improved 
dramatically by replacing loops with BLAS 1 calls with the corresponding BLAS 2 kernel. 
Table 3 shows in detail by which percentage of the execution time SQRDC2 performs worse 
than SGEQPF. The improvements of SGEQPF over SQRDC2 are greatest on the Cray-2. 
This is not surprising, since each processor on this machine has only one path to memory 
and a relatively long memory cycle time [21]. On the Cray X/MP and Y/MP, each processor 
has two load-pipes and one store-pipe into memory and as a result the improvements on 
those machines are not as spectacular. Nonetheless, SGEQPF performs significantly better 
than SQRDC2.

The choice of block sizes nb = 16 and nb = 32 was guided by previous experience 
with SGEQRF. As can be seen, there is some fluctuation in performance, but it is not 
dramatic on those machines. In general, there are some subtle issues involved in choosing 
the optimal block size. The block partitioning resulting in the fastest execution of the code 
(the ^optimal” block partitioning) is problem-dependent (we can use larger blocks for larger 
matrices), but it is also depends on the architecture of a given machine. A discussion of 
these issues and a suggestion for a methodology to overcome this problem can be found 
in [5].
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Table 3: Percentage by which the execution time of SQRDC2 is worse than that 
of SGEQPF

Cray-2
n 200 400 600 800

nb = 16 41 100 121 124
nb - 32 48 96 121 117

Cray X/MP
n 200 400 600 800

nb = 16 16 32 39 56
nb = 32 11 27 36 56

Cray Y/MP
n 200 400 600 800

nb = 16 5 21 45 54
nb = 32 9 27 33 54

6 Conclusions

We presented a new algorithm for computing the QR factorization of rank-deficient 
matrices on high-performance machines. By using a restricted pivoting strategy guarded 
by incremental condition estimation, we were able to express the bulk of the computational 
work in terms of matrix-matrix operations. The traditional algorithm, on the other hand, 
is limited to matrix-vector operations and as a result suffers from performance degradation 
due to the cost of data movement. Compared to the traditional algorithm, the new approach 
more than halved the execution time on one processor of the Cray 2 and performed up to 
50% better on one processor of the Cray X/MP and Cray Y/MP.

Although the results reported in this paper are preliminary, they add further evidence 
that block algorithms are preferable over algorithms based on matrix-vector kernels. We 
also mention that the same restricted pivoting strategy can be applied to computing the 
Cholesky factorization with column pivoting in a blocked fashion.

The reliability of these restricted pivoting strategies hinges on the reliability of incre­
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mental condition estimation. Although experimental evidence indicates that incremental 
condition estimation is reliable in producing good estimates of the smallest singular value, 
one can construct examples where it fails. What would be ideal is an incremental condition 
estimation technique that computes both upper and lower bounds on the smallest singular 
value. Then one can easily monitor of the reliability of the condition estimator and apply 
countermeasures should degradation of the estimates occur. We are currently investigating 
this issue and will report on it later.
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