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SUMMARY

This assessment of artificial intelligence (Al) has been prepared for the U.S. Army's
Depot System Command (DESCOM) by Pacific Northwest Laboratory.@ The report describes
several of the more promising Al technologies, focusing primarily on knowledge-based sys-
tems because they have been more successful in commercial applications than any other Ai
technique. The report also identifies potential Depot applications in the areas of procedural
support, scheduling and planning, automated inspection, training, diagnostics, and robotic
systems.

One of the principal objectives of the report is to help decisionmakers within DESCOM to

evaluate Al as a possible tool for solving individual depot problems. The report identifies a
number of factors that should be considered in such gvaluations.

(a) Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Mamorial
Institute under Contract DE-ACO6-76RLO 1830.






SUMMARY ... e S ifi
1.0 INTRODUCTION . . i et ettt na s 1.1
1.1 BACKGROUND ...ttt ittt ra et e ieiens 1.1
1.2 ADVANTAGES OF ARTIFICIAL INTELLIGENCE ..ot 1.4
20 METHODS IN ARTIFICIAL INTELLIGENCE ..........c.ciiiiiiiiinin 2.1
21 RULE-BASED EXPERT SYSTEMS . ... .ceveneeneennaenennnnns S 2.1
2.1.1 Composition of Expert Systems ..........coiviiiiiniiiin 2.2
212 TheKnowledge Base ... 23
213 TheInfereNnCe ENGINE .. ... oo e 24
2.1.4 The Human-Computer Interface ........... ... .ot 2.4
2.1.5 Applications of ExpertSystems .......... ... ... 25
22 MODEL-BASED REASONING SYSTEMS ... ... i 2.5
221 Qualitative PhysiCs ...t i i 2.7
23 BLACKBOARD SYSTEMS ... . i i 2.8
2.3.1 COMPOSHION Lt i i e e 2.9
2.3.2 Problem-Solving Activity ............ .. 2.11
2.3 3 AGVaNAgES ... i e e 2.12
24 NEURALNETWORKS ... ..o e e e e i e 2.12
2.4.1 Physical Structureofthe Network . ............. ... ... .. ... .. 2.13
o S 7 = I o 2.14
243 Activation Rates ... ...c.ovviiiiiii e 2.14
2.4.4 Leamning RUIeS .. ...ttt i i i e e e e 2.14



2.4.6 Future Applications .......... ... i i i 2.16

25 ADAPTIVE SEARCHALGORITHMS ... ... .. . .. 2.16

26 GENETIC ALGORITHMS ... .. . i i 2.17
3.0 APPLICATIONS IN ARTIFICIAL INTELLIGENCE ........ ... o, 3.1
31 CONTROL .. e e e e e e e 3.1
3.2 DESIGN i e e 3.3
3.3 DIAGNO SIS . e s 3.5
34 TRAINING ... e 36
35 MONITORING ... it i ettt e e e 38
3.8 PLANNING ... 3.9

3.7 PREDICTION Lo e 3.1

3.8  REPAIR .. e e 3.13

3.9 PERCEPTION AND ANALYSIS ....... ... .. i e 3.14
B0 TOOL S ittt i b e 4.1
41 SOFTWARE TOOLS .. ittt it i it 4.1
42 GENERAL-PURPOSE LANGUAGES ............... ..o, 4.3
4.3 ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES ........... 4.4
4.3.1 Functional LangUages « ... vvtin vt ittt ey it 4.4
43.2 Logical LANQuages . ... .. ...t e 4.4
4.3.3 Object-Oriented LANGUAGES. . v v v e e iiieiaianaanans 4.5
4.3.4 Knowledge Engineering Tools ... ..., 4.6
435 Small Systems ... ... . 4.7

24.5 Computational Rule ... i 2.15

vi



5.0

6.0

7.0

8.0

4.3.6 Large SystemS . ... e 48

44 HARDWARETOOLS ...... R L EREREEE 48
4.4.1 Personal Computers . ... i 4.10
442 Workstations ....... ... ittt i i e 4.11
4.4.3 Dedicated Artificial Intelligence Machines ........................ 4.1
EMERGING ISSUES IN ARTIFICIAL INTELLIGENCE ............. ..o 5.1
5.1 PARALLEL PROCESSING . ... . e 5.1
5.2 PARALLELHARDWARE . ... i e 5.1
5.3 SOFTWARE DEVELOPMENT ... .ttt i 5.2
DEPOT APPLICATIONS ... i i it aans 6.1
6.1 PROCEDURAL SUPPORT ...ttt e ee e e 6.4
6.2 SCHEDULING AND PLANNING ........ ... i 6.5
6.3 AUTOMATED INSPECTIONTASKS ... ... i, 6.7
6.4 PERSONNEL TRAINING (INSTRUCTION) ...l 6.9
6.5 DIAGNOSTIC SYSTEMS ... ... e 6.12
6.6 ENHANCEMENT OF ROBOTIC SYSTEM FLEXIBILITY ................ 6.13
EVALUATION OF APPLICATIONS . ... .. i e 7.1
7.1 DEPOT-RELATED TASKS SUITABLE FOR Al APPLICATIONS ......... 7.1
7.2 APPROPRIATENESS OF APPLICATIONS ... ...t 74
REFERENCES ... i e et e e 8.1



10.

11.

Expert System Components . ... ... iviiitiriieiniiienaae e iriannnnns 2.3
Blackboard System Structure ........ .. . o 2.10
Neural Network .. ... e e e e 2.12
Operation of a Genetic Algorithm . . . . ... ... i i i eeinans 2.20
L0 T4 o1 I T o PN 341
Initial ValuestoGoal Values .. ...t s 3.2
Planning Example . ......... oo iiiiiinnnanns N E TR 3.10
Predictive System .. .. i e et e e 3.1
Perceptive System . ... . . e e 3.15
Expert System Interface . .. ..o e 6.5
Perception and Recognition System ......... . i il i 6.7

viii



1.0 INTRODUCTION

This report, prepared at the request of the U.S. Army Depot System Command
{DESCOM), provides a general technical assessment of artificial intelligence (Al) for an
audience with limited knowledge of this specialized fieid. The assessment is intended to
assist managers in deciding whether artificial inteiligence is an appropriate tool tor solving
individual depot problems. It identifies optional approaches and methods viable for
developing real-world appiications. This report has three main objectives:

1. 1o acquaint the reader with Al - The characteristics of Al versus traditional computing will
be discussed, as weil as common methods or techniques of artificial intelligence.

2. o define common applications for Al - General application categories will be discussed
to afford the reader a broad understanding of the role of Al in the real world. Potential

Depot applications will subsequently be discussed, including references to examples
from industry. Finally, a brief checklist for evaluation of candidate problems for expert
system development will be provided.

products - The Iist :s not comprehenswe new productsare released daily, and exnstlng
products are frequently enhanced. The list provided is intended as a starting point for
exploration of available commercial products.

Because most successful commercial applications are knowledge-based systems (also
known as expert systems), thay are given a more thorough discussion than the other, less
frequently applied Al techniques. This report describes what knowledge-based systems are
and how they are used and also provides a brief outline of the characteristics of other
successful applications (Section 7). More in-depth information concerning evaluation of
candidate problems is provided in a report entitled A Methodology of Evaluating Potential
Knowledge-Based Systems Applications (Maeiton et. al. 1989), which considers goals,
appropriateness, resources, and other considerations invoived in the analysis of a potential
knowledge-based system application.

1.1 BACKGROUND

Digital computers have been used to perform mathematica! calculations for decades. It
is the goal of Al to allow computers to go beyond a strictly mathematical framework, extending
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the uses of the computer as a human tool. Al is the discipline invoived with enabling
machines to iearn new information, to reason, and to solve problems using knowledge. In
other words, Al is a man-made means of representing and processing knowledge.

Knowledge is more than a collection of numerical values. It is a combination of
information and experience. Information includes data (i.e., raw input), while experience
includes associations, beiiefs, and vaiues about this information. Conventional programming
techniques rely on extensive manipulation of numerical quantities. Al programming, on the
other hand, relies on the manipulation of knowledge. Offen, though not exclusively, this
knowledge is in the form of symbols, such as words.

A problem that is understood well enough that relationships between facts can be
completely and rigidly specified is a candidate for traditional computational techniques. [n this
case, an algorithm is developed which invariably produces the appropriate response. When a
problem is not understood completely, experience is a useful tool. For example, dim lights
and a weak radio lead us through experience to believe that a car's battery may be low.
However, many other alternatives are possible, such as a film of dirt covering the headlights
and a broken antenna.

In certain probiem domains, such as the diagnosis of a complex system, the proper
application of experiential knowledge can provide significant problem-solving power. The
types of problems that an At apb'roach fits best are precisely those which are poorly
understood, inexact, and highly complex. Engine diagnosis, investment decisions, even recog-
nition of a face are among the hundreds of common human tasks that fail into this category.

Because of its reliance on knowiedge gained through experience, much of the
computation in Al is symbolic in nature. The concepts captured in knowledge may have no
precise numerical interpretation, but the symbols which represent them can be combined in
specified ways through chains of reasoning. If the lights are dim and the radio is weak, then
there is a 92% chance that the battery needs charging. This is an example ot experiential
knowledge. When a number of these nules interact together, a more exact diagnosis may be
made (e.q., faulty wiring from the battery).

For complex systems, the total number of possible difficulties is very great due to a
condition known as combinatorial explosion {(see Section 2.5). Experiential knowledge is
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knowledge about the most likely difficuities, which spares the user the necessity of checking
all possible combinations {often clearly an impossible task).

Humans excel at solving certain types of complex problems., An Al approach attempts to
simulate the human mechanism of intelligence by codifying the prototypical human responses
to such problems (i.e., problems characterized by complexities of immense input or solution
sets, uncertainty in the information, or incompiete data).

Using Al methods, people are beginning to address problems that could not be
examined in the past because the solutions required manipulation of too much data; for
example, development of a vision system for a semi-autonomous robot There is no possibility
of specifying a complets catalogue of all visual scenes for a robot. Not enough memory exists.
Changes in the position of the object being viewed, orientation of the robot, lighting variations,
and several other factors would alter the scene and therefore require another image to be
stored in memory. The number of possibie images is essentially infinite, so that using the
catalogue approach to visual scene analysis is only possible in the simplest and least useful
of cases. Al has been used to reduce complexity by selecting key features that do not change
and then drawing inferences about the features. Understanding of natural language and
speech analysis are two more examples of problems which are untractably complex due to the
sheer quantity of information to be analyzed. It is clear that to contend with such complexity,
the simplifications and knowledge which Al utilizes are necessary.

However, extensive data sets are just one type of complexity suited to treatment with Al
methods. Another type involves informational uncertainty. Data values may have a degree of
uncertainty due to insufficient information, lack of understanding, randomness, or unreliability.
In an environment where data may be incomplete or uncertain, natural intelligence performs
admirably. Every day, human beings make successfui business decisions in an environment
that is constantly changing and difficult to predict. Relatively simpie decisions, such as how
many units of a certain commodity a retail store should purchase, require a combination of
uncertain forecasts and unreliable data. Stil, humans decision-makers are able to make such
choices, often very weill. Al methods attempt to mimic human capabilities in these areas by
providing a means to process uncertain or partial information.
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Another important characterislic of the type of complexity which marks the ideal problem
for Al is that part of the information about the problem is heuristic--useful but imprecise.
Heuristic knowiedge is also known as “rule of thumb" knowledge. Heuristic knowledge is
experiential knowledge - knowledge that is cormect most of the time, but not all of the time.

In summary, Al approaches are concemed with the same types of problems at which
human intelligénce excals, i.e., problems characterized by large and frequently complex input
and solution spaces, by uncartainty and/or incomplete information, and by a heuristic nature of
some or much of the knowiedge. These are the types of problems least suited to solution by
traditional computational techniques. Al, therefore, may be regarded as complementary to
computing as a tool for solving problems.

1.2 ADVANTAGES OF ARTIFICIAL INTELLIGENCE

Al techniques are most commoniy used to partially replicate human abilities and the
most succassful Al applications have tended to augment human performance rather than
replace it They may be impiemented to release workers from dangerous or tedious
occupations, to mitigate the effects of shortages of expertise forecasted for a variety of
occupations, or to increase the quality of available expertise by improving the speed and
reliability of expert decisions. The appiication of Al may aiso provide cost-effective aiternatives
for many industrial chores, thereby becoming a competitive necessity. Knowledge-based
systems, and to a lesser extent, other Al technologies have been successfully employed in a
variety of settings, performing a variety of tasks, both inside and outside government.

The following sections describe several of the more promising Al technologies, general
applications for Al, and specific potential Depot applications. Many of the documents listed in
the references (Section 8) provided further information on specific technologies and
applications.
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2.0 METHODRS IN ARTIFICIAL INTELLIGENCE

The basic probiem-solving methods used in Al are reviewed in this chapter. Over the
last thirty years, a number of different approaches have been developed to address a wide
range of problems. Each method can be broadly described as a way of organizing,
representing, and applying knowledge. The most economically promising of these methods
are discussed in the following subsections: rule-based expert systems, model-based
reasoning systems, blackboard systems, neural networks, and adaptive search algorithms {in
particular, genetic algorithms).

in terms of application, these methods need not be exclusive of one another and,
indeed, mixing them may provide the best solutions to a given problem. For example,
computer vision systems may include neural networks for low-level feature extraction in
tandem with a rule-based system to reason about higher-level structurai cues.

2.1 RULE-BASED EXPERT SYSTEMS

A human expert acquires knowledge and skills that enable competent, effective, and
innovative problem-solving. There are three features that characterize van expert:
specialization, accuracy, and efficiency. An expert can be defined as a person who has
amassed a large quantity of specialized knowledge gained from experience in solving
problems of a certain type. The expert is also relatively accurate in terms of solutions; he or
she will be right often enough to be useful and reliable. (Each domain has generally accepted
rates of error. A meteorologist, for instance, may be aliowed more of an error margin than an
operator of a nuclear power plant.) Given uniimited time, novices may perform as well as
experts on some tasks, but an expert is able to arrive at conclusions with relative efficiency.
These characteristics--specialization, accuracy, and efficiency--are the same qualities
simulated in Al expert systems.

In this context, we are concerned primarily with functional expertise, such as that
exhibited by an automobile mechanic or a medical doctor, rather than expertise in broad and
poorly defined areas where knowledge and performance are not easily measured, such as
international relations or history.
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Expert systems, sometimes known as knowledge-based systems, are computer
programs that attempt to simulate the performance of an expert on some well-defined,
narrowly scoped task. These programs, which represent the first commercial success of the Al
industry, are designed to have many of the capabilities of a human expert, such as
specialization, accuracy, and efficiency. Though expert systems may not exceed the
performance of the best of the experts, they often do perform better than the average expert
and therefore serve to increase the overall skill level to a significant degree. Expert systems
also interact with users in ways a human expert might, seeking additional information by
asking questions and explaining conclusions in language appropriate to the user.

Expert systems differ from traditional computing in several important ways. First, the
data used by expert systems is in symbolic form, as well as numeric. Symbols are
non-numeric vaiues used to represent concepts; for humans, these are chiefly words.

Second, experts systems have a different control structure. Traditional programs combine
control with knowiedge in the form of algorithms; expert systems, on the other hand, have a
separate controi structure that knows how to use a body of problem specific knowledge
expressed in an appropriate form such as if-then rules. Finally and most importantly, expert
systems, unlike traditional computing systems, are constructed to behave like experts, linking
together groups of information, forming a chain of reasoning, and describing this knowledge to
the user of the system.

2.1.1 Composition of Expert Systemns

Expert systems have three primary components: the knowledge base, the inference

-

engine, and the human-computer interface. The knowledge base is the store of information;
the inference engine defines ways the information in the knowledge base can be combined;
and the human interface is a way to communicate between the computer and the user.
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Knowledge Base inference Engine

Human-Computer
Interface

Figure 1. Expert System Components

2.1.2 The Knowledge Base

The knowledge base may be represented in many forms, including frames, logical
expressions, semantic nets, and rules. Each of these terms refers to a distinct way of storing
pieces of information in symbolic form so that they can be efficiently combined with other
pieces of information. Knowledge representation by rules has traditionally predominates and
is the focus of this section. Rule-based knowledge systems are composed of both facts and
rules.

Facts are objective statements describing a known reaiity. Rules {heuristics) describe
the relations between facts. For instance, a vision system might capture the forms of three
objects on a conveyor belt. A knowledge-based expert system might be used to extract
features from the images (e.g., size, shape, centroid) and then combine this information
through rules (heuristics) to conciude that one object was a box, one a wrench, and one a
bomb casing. The rules established in an expert system are used to integrate and relate facts
and, ultimately, to draw conclusions.

The facts and rules of the knowledge base embody the expertise. Much of this
knowledge is gained from an expert's experience specific to a single domain. This experience
determines the rules (heuristics) relevant to the knowiedge base. To develop this knowledge
base, facts and heuristics are gathered from experts who serve as the system model. How is
this done? For small programs and simple problems, the expert may simply purchase a
skeleton of an expert system, an expert system minus any domain specific knowiedge , and
transfer his knowledge to the shell. But for larger problems, a knowledge enginser may be
necessary. A knowledge engineer, trained in the process of extracting relevant knowiedge
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through interview techniques, logically structures this knowledge into a knowledge base.
Whichever the case, construction of the knowledge base is often the most difficult and
time-consuming chore in creating an expert system.

2.1.3 Ihe Inference Engine

The second major component of an expert system architecture is the inference engine,
which controls the reasoning process that infers new knowiedge from the existing knowledge
base. There is more than one way to create new informatlon by inference, including forward
chaining and backward chaining, two methods commaonly used in rule-based expert systems.

In forward chaining, the discovery proceeds from known facts to new facts. The
ilustration of object recognition described above is an example of forward chaining: the facts
are used to form a conclusion. Backward chaining involves hypothesizing a particular
conclusion and then “reasoning backwards” to ascertain whether facts could support this
hypothesis. Forward chaining and backward chaining may be combined in a rule-based
system. For example, forward chaining could be used if the nature of the conclusions to be
reached are indefinite (thereby making formulation of an hypothesis difficult); backward
chaining could be used when the conceivable number of possibie inferences made from basic
facts is very large, and evaluation of each choice would therefore be time consuming. A
control strategy inherent in the expert system must not only control the direction of the
reasoning process, but must also provide the inception point and resoive conflicts that may
occur if two distinct reasoning paths could possibly be used at the same time.

2.1.4 The Human-Computer Intertace

The last component of a rule-based expert system to be discussed is the
human-computer interface, which provides three primary functions. First, it serves as a port for
knowledge acquisition--from an expert (for domain knowledge) or from a user (for
environmental knowledge). Second, it provides explanations to the user for particuiar choices
the expert system has made. Third, it provides utilities for input, output, and online help. This
component is usually sophisticated, because a module that acquires and explains knowledge
and reasoning to a user is critical to the success of a knowledge-based system.
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2.1.5 Applications of Expert Systems

Although expert systems have been applied successfully on many occasions and
represent a technology that has matured in recent years, there are still several considerations
to be made before an expert system is constructed. The problem to be solved shouid be well
defined, as discussed before. Historians will probably not be replaced by expert systems in
the near future. On the other hand, problems that are completely described by mathematical
analysis are not appropriate for the domain of expert systems. In addition, some problems are
either too simple or too compiex to justify the production of an expert system. Even if the
problem matches weil with current capabilities, it must be determined whether solving the
problem with an expert system is economically justifiable.

Expert systems do have many proven advantages. They are consistent, accurate, fast,
reliable, and accessible relative to their human counterparts. These qualities may translate
directly into cost savings when appropriately appilied.

2.2 MODEL-BASED REASONING SYSTEMS

Al methods that reason about the physical system itself and do not simply capture the
rules identified by human experts have a wider range of operation. The most detailed form of
model based reasoning is an algorithmic (analytic) model of the rea system. in Al
applications, the modei is typically accurate in representing the qualitative behavior of the
system and only addresses quantitative behavior of the system to a limited extent. The
objective is to create a model explicit enough to provide predictions about the important
behaviors of the actual system, but simple enough not to bog developers down in the
complexity of complete numerical modeis.

Model-based reasoning necessitates the construction of a model that behaves, at some
leve! of abstraction, the same as the real systeam. While modeling can inciude the modelling
of natural systems, the scope of this overview is limited to models of man-made systems, such
as engines, pumps, or assembly lines. In this context, models are built to identify complex |
sequences of behavior and to ensure that the system functions according to its purpose. The
components and the interactions among components are identified so a sensed error in the
system can be traced to its initial malfunction. Model-based reasoning, therefore, involves
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drawing conclusions about the condition or likely future condition of a physical system. The
specific goal of the reasoning process, in our context, Is to develop the knowledge necessary
to enable the system to function according to its intended purpose.

The process of reasoning about physical systems has several components. The first
component is a thorough understanding and description of the system. To model a car
gngine, knowledge and understanding of the engine components and the interrelationships
among the components is required. For example, all engine parts, their functions, and their
expected intaractions must be identified and described. This understanding has several
possible laevels, from a specified set of deterministic and stochastic equations to
common-sense or functional understanding.

The second component in the reasoning process is a determination of the current status
of the system. Sensors provide information about key components that describe the system
state (i.e., "is it working or not working"). From a functional standpoint, sensors wouid
determine, for example, "the wiper blades are not working."

The third component is the ability to apply an underlying knowledge of the operation of
the physical system, given current conditions, to determine some functional classification (i.e.,
normal, critical, etc.) or probable future state. In the above example, sensors determined that
the wiper blades are not functioning. Given hot and dry weather conditions, the model would
classity the malfunction as noncritical; if weather conditions changed to rainy, however, the
model would reclassity the function of wiper blades as critical.

The final component is the ability to determine actions to be taken to rectity abnormal
operation or to maintain normal operating conditions. In the case with the wiper biades,
alternative solutions might be offered, such as the following:

"Check wiper blades. Replace if cracked.”

"Check wiper biades. Are they in normal position?”

"Check wiring to wiper blades. If wiring is OK, check battery."

Through this iterative reasoning process, the initial malfunction can be found and repaired.
This final component may or may not be included in a modei that reasons about physical
systems, but it is implied if the intention is to troubleshoot for system errors.
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These four components (understanding the system, determining the system state,
classifying the system status, and determining any necessary actions) interact to produce a
model-based reasoning system. The characteristics common to an altermnative reasoning
approach about physical systems, known as qualitative physics, are discussed below. This
approach was seiected for discussion because of its increasing popularity and apparent utility.

2.2.1 Qualitative Physics

Qualitative physics is also known naive physics or common-sense physics. Qualitative
physics tries to define a system's mechanical operations without relying on a compiex
mathematical description. It is a simplification that seeks to retain in the modet only those
abstract components essential to the functioning mechanism. In a sense, qualitative physics is
an attempt to capture the human approach to reasoning about the physical world. Humans do
not consciously diagnose their environment in terms of thousands of nonlinear differential
equations. Nonetheless, humans operate very well in the real world. Qualitative physics has
sought to identify the basic characteristics of the knowledge that humans use when reasoning
about their environment and apply those characteristics to computers. As a resuit, Al can gain
a relative advantage in the rapid, accurate, and robust anticipation of physicai behavior.

Several characteristics are common to Al systems that are based on qualitative
reasoning. The integration of these features describes the basic methods used in qualitative
reasoning.

The first idea common to qualitative reasoning approaches is the gystem. A system s a
set of interacting components. Each distinct component must be defined in terms of its
characteristics and its behavior--a car engine, for example. The system must then be
described in terms of the interactions between the components, essentially answering the
question of how a distributor rotor affects a spark piug. These relationships must be defined
for every component. The overall behavior of the system then arises from the overall
interaction of component behaviors. The description of behaviors and interactions are
mathematical simplifications.

These mathematical simplifications give rise to the second common feature, causality.
Causality is modeled by the interactions among components described above. The causal
relationships are important for defining overall system behavior. For instanca, a spark plug

2.7



failure may be causally related to failure of a battery. The discovery of a failed battery
encourages the verification that the spark plug is really working. Therefore, causality implies
that system behavior is predictable with a deeper understanding than simply the modeling of
component behavior.

Another common feature is functionality. Again, this concept separates qualitative
reasoning from other forrms of modeling. From a purely mathematical perspective,
components to do not possess a purpose, only a structure and other stochastic and
deterministic features of operation. In qualitative physics, the mechanism is viewed from the
human perspective. A functional requirement or purpose is imparted to the components and
to the system. The reasoning process can then be augmented by the requirement that each
part performs a task, and this supports reasoning about the overall system behavior.

Finally, qualitative reasoning systems rely on the guantiziation of information, (chunking
continuous data into discrete pieces) to simplify the description. A state is defined as the
condition of a system at a particular time and is measured by the value of specific parameters.
Behavior is described as a sequence of physical states. States of a system are represented
by discrete values, not continuous ones. For example, if the rate of current flow into a circuit
element is designated by the symbeol di/dt (a time derivative), this symbol may be limited to
either + or -, thereby compressing the infinite range of real numbers to two values. These
values may be physically significant because of some behavioral change that takes place at
this point, while the actual numerical value is unimportant to system behavior.

The features described above provide an introduction to the characteristics of qualitative
reasoning systems. These systems, like others that reason about physical mechanisms, can
be applied to a range of activity, from simulation and verification {o diagnosis and analysis.
They seem to offer a solution to the rule-based systemns that operate without “deep level”
knowledge and, therefore, are more easily confounded. It shouid be pointed out that the
techniques empioyed by qualitative physics couid be applied to many types of systems.

2.3 BLACKBOARD SYSTEMS

A classical approach to problem solving is the process of breaking down a large
problem into a group of less complex problems that are more easily identified and defined and
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that fit together to form a solution. For example, the operation of a technical conference can be
broken down into smaller tasks such as registration, technical abstract review and selection,
hotei accommodations, meals and reservations, technical session planning, poster sessions,
guest activities, finances, media relations, and other tasks necessary to make the conference
run smoothly. The blackboard approach to solving problems draws from this paradigm. A
large problem is separated into subtasks using a variety of reasoning strategies and
knowledge sources capable of acting separately to achieve a single goal. These tasks are
usually at differant levels of abstraction and information flows up or down between the levels
to assist the problem solving.

Blackboard systems effectively use division of labor and organizational plans to create a
powerful and flexible problem-solving strategy. In blackboard systems, division of labor is
embodied as a collection of functionally independent knowledge pools. That is, each
knowledge pool represents a subtask of information. The organizational plan gathers
appropriate knowledge pools together to reason towards a solution. These two components
can be envisioned as a group of experts (each represented by a knowledge pool) who know
how and when to contribute (as spécified by the organizational plan) to a large probiem
requiring the full range of their expertise.

2.3.1 Composition

The broad scope of activity that characterizes blackboard systems arises from the
interaction of three basic components: 1) the group of knowiedge sources, 2) the blackboard,
and 3) the control structure. Each component contributes synergistically 1o a solution. These
components are described further beiow.
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Figure 2. Blackboard System Structure

Knowiedge sources, the first component of a blackboard system, can be compared to
human experts. Knowledge sources, or poois, contain adequate knowledge about a specific
domain, but unlike human experts, do not have even rudimentary understanding of any other
domain. This modularity is a key feature of blackboard systems. Knowledge sources are
allowed to be ignorant of other domains because each pool of knowledge determines when to
apply its expertise to alter the contents of the solution. Knowledge sources are represented as
groups of rules or logical assertions which specify a problem state to locate and an action to
initiate.

A second component of a blackboard system is the blackboard itself. The blackboard is
the global structure that provides the only (indirect) interaction between knowledge sources. |t
functions as a central repository of solution information. The nature of the solution process
has been characterized as incremental, iterative, and opportunistic {Nii 1986). Solutions are
incremental in that knowledge sources one at a time alter the contents of the solution
represented on the blackboard. This is equivalent to solving each subproblem on the way to
the overall solution. Through iterative and incremental transformations, which change the
initial state, a solution can be achieved. The soiution process is also opportunistic because
knowledge sources "grab" control of the blackboard when given opportunities allowed within
the organizational framework.

The blackboard represents information as objects. If a solution is thought of as a path
composed of a discrete number of steps, then each object is associated with a single point in
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that path. This can be an initial point, an incomplete or intermediate solution, or a final goal
state. Additionally, this information Is hierarchical, so that the solution of one subproblem
serves as an initlal state, or input, to a higher level of problem design. This implies that there
may be muitiple boards in the blackboard model, corresponding to the multiple subproblems
that are to be solved along the way. Objects may have relationships with other objects, either
in the same or different levels of the hierarchy, and these are identified by a set of link labels.

The third and final component is the control structure, which often takes the form of
control modules. The details of the control strategy are dependent upon both the task and the
implementation, but its constant purposae is specification of the problem-solving behavior of the
system as a whole. The effectors of the control strategy select the behavior of the system by
their choice of either the blackboard object on which to operate, the particular knowledge
source that is to perform the operation, or both.

2.3.2 Problem-Solving Activity

Problem solving in blackboard systems is an iterative process. Initially, a knowledge
source makes some change in the data structure of the biackboard. For illustrative purposes,
the knowledge sources can be thought of as detectors in a visual system. Some of these
detectors respond to simple shapes, such as line segments, curves, or comers. More
complicated detectors respond to combinations of primitives, such as boxes, circles, or cones.
Even more complex detectors are designed to detect combinations of these boxes, circles,
and cones. Therefore, there are three layers in the hierarchy. In analysis of a scene, the most
primitive shape detectors will likely take command of the blackboard first, contributing their
knowiedge about primitive shapes to the global data structure. At each step, the different
knowledge sources contribute their opinions about the strangth of their potential contributions,
and at each step the control structure assists in specifying some combination of shapes and
knowledge source to be the object/operator pair. This procedure continues until some
predetermined condition is met, presumably the successful identification of the visual scene.

In this way, the pieces of the puzzle are put together, beginning at the bottom and working
upward to higher levels of analysis.
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2.3.3 Advantages

Blackboard systems are best suited to problems that are complex or iil defined (Nii
1986). Complex problems are broken down into detailed processes and simple subsystems.
When the subsystems have been divided to a tractabie level of complexity, the smaller pieces
are analyzed and fit together to form the larger solution. lii-defined problems are those for
which the sequence of transtormations leading from initial state to goal state are difficult to
identify. There are many characteristics that characterize a problem as either ill-defined or
complex. Problems fitting these characterlzations may lend themselves to solution by
blackboard systems.

2.4 NEURAL NETWORKS

Humans are astonishingly efficient at many tasks that traditionai digital computers
perform very poorly. Image and speech analysis are two examples. In recognition of this,
researchers have studied the structure of the human brain for clues to its operation. The field
of artificial neural systems (ANS) was inspired by bioiogical discoveries within the human
nervous system. Due to theorstical, algorithmic, and hardware developments, neural
networks are currently being applied to several types of problems.

Basically, ANS, also known as connectionist modeis, parallel distributed models, or
neural networks, are collections of simple but highly interconnected processing units.

Figure 3. Neural Network
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The operation is therefore both parallel, in that all units are capable of receiving and outputting
information at the same time, and distributed, in that each unit is connected to many other
units.

What neural networks do is easier to describe than how they do it. Neurai networks
receive many signals from an environment in paraliel. Using rules that differ from algorithm to
algorithm, they modify their connection weights to produce a desired output. This is learning
in a neural network. These networks are capable of storing many associations in the same
collection of units. The associatlons may be images of faces with names, sounds with words,
or positional signals onboard an autonomous vehicle with the proper control signal. The key
is that connectionist systems are capable of making any mapping between input and output
pairs and that multiple associations can be learned and simultaneously stored in the same
network,

Each of the simple units receives input, processes the input, and then transmits output.
Generally, each unit has weighted connections to other units. The input to a selected unit is
the weighted sum of the outputs of the other units connected to it. This sum is typically passed
through a nonlinearity (one of several types), and the result is a unit output. In this way, units
pass messages in the form of activation values. The system operates by accepting input, then
passing activations until it "settles” to a solution. The nature of this solution depends upon the
ANS implemented.

A variety of models exist, each with its own algorithmic intent and physical structure.
Rather than a comprehensive discussion, we will provide a brief list of features that
characterize their diversity: 1) the physical structure of the network, 2) data types, 3) the
activation rules for determining how the input received is converted to an output signali, 4) the
leaming rules for adaptation, and 5) the computational rules.

2.4.1 Physical Structure of the Network

The physical structure of the network refers to topological characteristics and may
include design considerations, such as the number of processing units and the number and
order of connections. For example, some networks are arranged in sfrict layers. Connections
are aliowed only between units in impinging layers. Other networks have each unit connected
with every other unit in the network. Some of these characteristics can be network parameters

2.13



as well. The number of nodes, for instance, may depend on the probiem size and will change
from problem to problem. Topological characteristics, interdependently with other system
features, determine many important functional properties of the system. These physical
characteristics are one feature of neural network diversity in Al systems.

2.42 Data Types

Network models are aiso distinguished by the data ranges and data types that are
allowed. Some models limit activation values, weight values, or both to small positive ranges.
Some incorporate negative (inhibitory) values, as well. ANS can also be separated into
groups that accept analog values and discrete values.

2.4.3 Activation Rates

The activation rules, or processing unit (node), characteristics provide other
distinguishing features. Most units are sum and fire accumulators (that is to say that they
simpiy add all the input signal strengths together and send off a an output signal if that sum is
greater than a specified value). Neurons however frequently differ in the choice of output
function. The output is some function of the input and is usually nonlinear. These
nonlinearities have a variety of forms (i.e., a threshold). Output noniinearity is important
because it imparts the capability to create essentially any nonlinear mapping between input
and output. This frees the network model to make any association required.

2.4.4 Learning Rules

One of the most intriguing characteristics of neural networks is the ability to learn. The
network's leaming process creates correspondences between input and output patterns. if the
network learns to complete a pattem from incomplete input, it is termed autoassociative. It can
recognize and reproduce a pattern even if the patterns do not exactly match. If, on the other
hand, the network creates a correspondence between two distinct pattems, it is
heterassociative, or simply associative. Other networks map input in pattern classes.

There can be two learning types, supervised and unsupervised. Supervised learning
requires a teacher to supply the correct response during the training process. Unsupervised
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leaming requires no teacher. During supervised leaming, the network weights its answers
until it independantly and correctly responds. During unsupervised learning, the network
makes associations based on the underlying algorithm.

To leam, the network is trained by a training set. A representative sample of input
patterns is repeatedly entered to the first layer of procaessing units. Over time, the network
learns to respond to these input patterns in a prescribed manner. The error-back propagation
model forces the output units to answer correctly (the desired output pattern). It iteratively
alters connection weights to units that have a large discrepancy between the actual and the
desired outputs. This is a form of supervised leamning.

Networks can also learn without supervision. Leaming rules, which form the basis for
adaptive leaming in a neural system, differ substantially among algorithms. Many are based
on the Hebbian ruie that strengthen a link weight in proportion to the correlated activities
between the sending and receiving nodes. The memory capacity and the speed with which
the system leams is closely related to the leamning rules used. An increase in the complexity
of the leaming rules will slow the learning speed.

2.4.5 Compuiational Rules

The final feature of model diversity is the rule set that defines computation. These rules
describe the reasoning process to achieve an outcome. Connectionist systems often have two
distinct operational phases: learning and computation, Leaming is described above as the
adaptive process of forming new associations while retaining the old ones. Computation
follows learning. it is the phase of network activity whereby a network produces a proper
response to a given input. In other words, computation is the dynamic course of activated
message passing as arranged to form a solution. The precise nature of this process is
different from modef to model.

ANS are used in several application areas. Neural systems are frequently used in
pattern classification, especially when large data sets are required. QOptimization problems are
another well-suited application. Optimizations are often composed of many simultaneous
mutual constraints. These constraints map very well to the neural network architecture.
Robotic movement is yet another application area where the complexity of the task matches
well with connectionist capabilities. The muitidimensional transfer function between a robot's
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sensory inputs and motor outputs can be mapped in a neural network. Sensor fusion and
adaptive signal processing are related functions that have also been performed by neural
networks.

Connectionist models (neural networks) have several advantages over other
computational models. The foremost advantage is parallelism. The speed of a parallel
network is essential for many iarge processing chores. Parallel procassing is independent of
problem size. A second advantage is a high fault tolerance possessed by connectionist
models. Distributed computations imply that the failure of a small number of processing units
may not severely affect performance. Finally, neural networks are adaptable. This ability
offers improvement of performance over ime. For systems responding to new situations (i.e.,
control applications), the capability to learn online is valuable. Because of these advantages,
ANS will be used more and more frequently.

2.4.6 Fuhire Applications

Neural network technology is beginning to make the transition from research to
application. Several companies have begun to apply it to areas ranging from the classification
of seismic signatures to speech recognition to the guidance of autonomous land vehicles. A
major impetus to the variety of new applications will be the development and implementation
of new hardware. Currently, neural networks are run as simulation on single-processor digital
computers, or on parallel computers, or on special purpose digital array processor. None of
these hardware implementations captures the potential throughput of neural networks. Chips
are currently being designed and tested to implement neurai networks directly. When chip
technology is able to construct thousands or millions of interconnections on a single chip, the
full computing power of neural networks will become available. The usefulness of this
technoiogy should increase correspondingly.

2.5 ADAPTIVE SEARCH ALGORITHMS

Many problems in Al do not have a clearly defined solution strategy. Perhaps a
deterministic solution strategy does not exist. In these cases, knowledge of a problem may
consist only of certain initial conditions and constraints that describe the nature of the problem
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parameters and variables and a final goal state to be reached. As a result, a search for the
proper combinations of variables and parameters may be the best way to arrive at an optimal
solution.

Search problems are fairly common. A manager trying to decide where, when, and how
to spend limited funds is searching for the optimal combination of projects and budgets to
maximize profits. Indeed, many optimization problems are found in resource allocation or in
optimal control. These search problems involve an initial state, a goal state, and operators
that transform intermediate siates to new states. The operators change a given state into a
new state according to the nature of the search scheme. Then the new state is compared to
the goal state. The goal state may be the unique and "correct” combination of variable and
parameter values, or it may be the optimal combination of these values as measured by some
established criterion.

The primary difficulty with searching through combinations of values is that many
domains are susceptible to combinatorial expiosion. This implies that the number of possible
solutions is too large to search in a reasonable period of time. Therefore, heuristics are
developed to streamline the search and to direct it to variable combinations more likely to
inciude the goal state. There are a number of heuristic searches commonly used by Al
practitioners to narrow the number of feasible states to be searched. Among these algorithms
are the A" algorithms, hill-climbing algorithms, and genetic algorithms.

2.6 GENETIC ALGORITHMS

Genetic algorithms, which perform an optimization, are based roughly on the principles
of genetics as appiied to evolution. Essentially, the forces of evolution affect survival among
populations of plants and animals. Evolutionary success, measured by survival, depends on
the adaptability of individuals within a species to their environment. Genetics, then, is a study
of the adaption mechanism in living organisms. More specifically, geneticists study the
selection of particular genetic units, called genes.

Genetic algorithms cast optimization problems in the framework of a survival struggle: a
popuiation of solutions is modified from generation to generation using principles derived from
genetics. The best solutions of one generation contribute heavily to the next generation's
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solutions. Applications of genetic algorithms are very promising for a number of problems
particularly difficult for other search algorithms. Genetic algorithms are ideally suited to
problems with a very large number of potential solutions with very little a priori knowledge
available. Though genetic algorithms vary widely in form and application, there are three
basic steps common to all:

1. construction of an initial population

2  development of a performance measure for each member of the population
3.  creation of new populations using genetics principies.

Each step requires some explanation.

The first step, construction of an initial population, translates a given problem into an
evolutionary paradigm. A tentative solution state is formed as a vector of state variables that
characterize it. These are the parameters of the probiem whose optimal combination is the
goal of the search. Generally, research indicates it is advantageous, due to the nature of the
genetic recombination, to represent these state variables as bit strings for manipulation. For
example, if a given variable can assume eight possible values, then it should be represented
as three bits in the state varniabie vector. The length of a state vector for a given problem will
then depend on two things: the number of parameters to be considered and the number
vaiues each parameter can assume. In the absence ot solution structure information, a
population of random bit vectors can be generated to represent the initial population. The
generation of the initial population is the first part of the genetic paradigm.

After an initial population is created, a performance measure must be devised to
evajuate the soundness of each state. This is key to the operation of the algorithm. For
population genetics, the measure reflects the capacity of the individual to survive and find a
suitable mate. The nature of this metric clearly depends on the nature of the problem. For
exampie, if combinations of workers with different skilt levels can accomplish a particular task,
the metric may reflect the total production time for each combination of employees. When
determining the evaluation criteria, the score for an individual will reflect the fitness of that
individual. Thus, the percentage of contribution to the next generation is determined. Not only
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do the fittest survive, they also have a greater influence in the structure of the offspring. Those
less fit are removed from the population. The creation and weights of performance measures
are the second structure to the genstic paradigm.

The final step of genetic algorithms is determining the composition of new generations.
Genetic operators are the agents of evolution. They act on each member of the current
population to produce the next. These operators apply two basic principies of population
genetics, crossover and mutation.

Crossover is a phenomena of sexual reproduction. Two parents mix traits to pass to
offspring in varying combinations and amounis. Two state vectors analogously share their
traits with a variable number of next generation state vectors. The mixture has a degree of
randomness to assure variability. Crossover is the primary means of moving towards optimal
solutions in genetic aigerithms, preserving the surviving small building blocks and testing new
combinations.

Mutation is the second principle of population genetics. In the terms of optimization,
mutation is the feature used to escape spurious local minima. In the practice of genetic
algorithms, mutation is the flipping of one bit for each predefined interval of total bits. For
instance, an average of 1 in 1000 bits might be reversed. Crossover and mutation are
demonstrated in the following diagram. Using genetic operators, such as crossover and
mutation, the search builds new populations of solutions as it progresses toward an optimal
solution.

Genetic algorithms can be classified as an Al method because of its adaptive ability.
Like all forms of Al, genetic aigorithms use experience to direct a solution. Similar to neural
networks, and unlike most other methods, it adapts due to its own experience instead of
utilizing the experience of a human in the form of heuristic rules. Also like neural networks, it
performs adaption in parallel, thereby efficiently recording environmental information by
simultaneously evaluating the worthiness of each offspring.

Genetic algorithms perform across a wide range of applications. They have been used
to specify parameters in muiticomponent systems, to restore images in medical imaging, to
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Figure 4. Operation of a Genetic Algorithm

create lisp code for predefined algorithms, and to control the parameters of other genetic
algorithms. They are generally better at using avaiiable information than other heuristic
search mechanisms and require no knowiedge of the problem domain other than the
knowledge of the parameters and a method for evaluating their combinations. They also have
the advantage of parallelism; each candidate can be evaluated in parallel to determine fitness.

Reasearch into genetic algorithms and their applications has recently increased, as in
many areas of Al. The expectation is that with more interest will come more uses for this

promising class of search algorithms.
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3.0 APPLICATIONS IN ARTIFICIAL INTELLIGENCE

This chapter describes the types of problems that may be soived with Al. Selecting a
method, such as using a rule-based system, is made with a specific problem in mind. In the
following subsections, several general categories of applications are described, which
represent the types of problems Al systems are designed to solve: control, design, diagnosis,
training, monitoring, planning, prediction, repair, and perception and analysis.

3.1 CONTROL

Control is essential to the proper operation of many mechanisms. The human body has
an immensely sophisticated control system, which is demonstrated each time a human hand
reaches for a cup of coffee or a computer keyboard. The challenge posed for control is
guidance; the behavior of a system is urged toward the proper value. A missile traveling
through space can be used as an example of a control application. The missile includes
sensors that, at regular intervals, send its location to a control module. The control module
measures the actual trajectory against the desired trajectory and adjusts the steering
mechanism to reduce the difference between the two. The cycle of sensing, comparing, and
correcting continues until the target is reached.

-

F Y

Feedback Signal

Control Signal

Figure 5. Control Loop

Guiding the missile may be specified for all environmental conditions. Modification of the
pitch, roll, yaw, and thrust all affect the missile heading. In this case, the system (missile) and
factors affecting the system (pitch, etc.) are clear and well defined.

However with some problems, the relationship between a system's behavior and the
factors affecting the system are not so well understood or are so complicated that a solution is
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effectively beyond the time constraints of the application. Such problems are well suited for Al,
because they imply a compiaxity beyond a mathematlcal tractability. In other words, heuristics
may be infroduced.

Heuristics are usefui for reasoning through unlikely or difficult control situations--to
handle unexpected or drastic fluctuations in the environment, to simplify immense
computations that would otherwise be necassary, or fo accommodate a goal (target)
modification.

A trajectory can be associated with the behavior of a system through time. It is most
simply a sequence of variable values. The first state of the trajectory is the system's initial
condition. Using a central heating system as an example, the initial condition is the starting
temperature of the room. If the thermostat is tumed up, the goal state is the temperature to
which the thermostat was set. This would be the endpoint of the trajectory. The temperature
values of the system between these two points comprise its trajectory or temporal behavior.
The object of the controller is to regularly adjust the system to achieve or maintain a desired
path. The controller or thermostat continually monitors the room temperature and turns the
heater on or off, depending on fluctuations in the environment.

Goal values for
‘ two variable sy
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Figure 6. initial Values to Goal Values

Complexity in a controi problem is introduced when 1) many factors are necessary to
control system behavior, 2) uncertainty is characteristic of the available knowledge, or
3) unanticipated variations in the environment or goal occur. In very compiex systems, control
may require the application of rules that seem to fit the cumrent conditions. In some systems, a
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functional description that incorporates the relationships among all the variables in the system
may not exist. However, certain relationships generally hold for certain vanable values.
Heuristics of this sort could be added to the control system to handle these situations. A
controller may also be able to adapt to, or leam of, new situations and relationships.

Artificially intelligent control systems may be effectively employed where important
variables, the so-called "system state variables,” can be monitored and their gquantities
changed in response to a system measurement of fitness. Applications seem most readily
apparent in deveioping flexible robotic systems capable of performing a wide range of tasks
that may difter significantly in required behavior.

3.2 DESIGN

The purpose of a good design is optimization. For exampie, one of the purposes of
commercial packaging design is to maximize consumer attention. A good design for a sports
car body minimizes the car's drag coefficient. Optimization problems are characterized by
goals, the factors that are to be maximized or minimized, and constraints, which are the
resource limitations. Al is well suited to optimizing designs with consideration for resource
constraints.

In essence, designing a system invoives a tnial-and-error discovery of what works well.
First, materials are arranged in multiple configurations. Then the configurations are analyzed
and, based on estimated performance, the best design is selected. Al systems efficiently
analyze designs iteratively (i.e., testing and retesting until an optimal design is found).

One example of Al application is in helping design circuit boards. Circuit boards need to
perform certain functions very quickly and efficiently. The design of a circuit board must also
consider space limitations and production constraints. For instance, at Hewiett-Packard, a
system evoived whereby a circuit board design would be submitted to a team of experts, who
would examine the design for workability. (Does it perform the expected functions? Does it fit
well on the circuit board? Can it easily be manufactured?)} This design and review process
would take 4 to 6 months. With the implementation of an Al design system, this design
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optimization process was reduced to two weeks. Not only did the Al system speed up the
process, it also pushed designers to create a more effective circuit board with few changes on
the production floor.

in Al, design and planning applications are similar. In each, the input and knowledge
entered into the system, as well as the goals, constraints, and solutions, produce an optimal
structure. But a designer's creation is basically independent of time restrictions and
unconcerned with environmental behavior, while planning requires that each possible
outcome at each step in time be considered. A design application is also much more likely to
be concrete (i.e., manipulating tangible components and connections instead of behaviors or
actions, as with planning). Design can therefore be classified as a distinct application
category.

Design optimization allows a design probiem to be clearly identified as a fitness
measure to judge the product. Consfraints act to limit the possible number of products.
Consider the design of a repair shop. The product is efficiency; the measuring stick is the
turn-around time from request to repair. Designing the layout of the shop invoives acquiring
the most useful combination of necessary equipment and spatially arranging the equipment
stations so that workers in one area least affect workers in the other areas of the shop. The
designer, of course, faces several constraints (e.g., limitations of space, time, money, and
product avaiiability) that prevent him or her from trying every possible combination of tools,
workstations, and spacial arrangements. The designer, guided by experience and common
sense, has undoubtedly acquired heuristic knowledge about the quality of certain products
and the efficiency of certain arrangements. Therefore, many conceivable combinations may
be eliminated immediately. A workstation for power tools, for exampie, would not likely be
piaced next to sensitive eiectronic equipment.

The more expertise a shop designer has, the greater his or her store of heuristic
knowledge. The remaining possible combinations form a modified search space that is much
smalier than the original. From this narrowed solution space, an optimal design might be
found. Al systems have been readily applied to similar tasks and appear to fit the nature of
such a problem weil.
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Al systems that perform a design function may be applied to time-independent problems
that have identifiable goals and constraints. The design of an integrated circuit is a good
example. Design systems often provide coliaborative information to human designers,
working with them to form a better product.

3.3 DIAGNOSIS

A ciogged fuel filter or an unproductive assembly line are two examples of systems
operating at less than peak efficiency due io a failure of one or many parts. The symptoms
may be a sputtering engine in a car or slower production time on an assembly line. When a
physical, biological, or even social system breaks down, It is necessary to locate the
maifunction so a treatment can be prescribed. Diagnosis is the application of knowledge and
reasoning to identify such malfunctions. A diagnostician, human or computer, acts as a
detective that gathers information through observation and inquiry, analyzes the clues
(symptoms), considers likely possibilities, and identifies a suspect.

Diagnostics is one of the earliest and most successful Al applications. Using the
diagnosis of a mechanical failure as an example, the primary features and difficuities inherent
in a diagnostic task, as well as successes of Al diagnostic systems, will be iillustrated.
Diagnostic knowledge-based systems have frequently outperformed the average expert in a
variety of problem domains in terms of both accuracy and speed. Both humans and
knowledge-based systems must reason about a mechanical failure using rules of judgment,
evidence of symptoms, mechanical facts, knowledge of cause-and-effect patterns, and
experience. A diagnostic system generaily uses four steps: 1) knowledge acquisition,

2) reasoning, 3) prescription, and 4} explanation.

Knowledge acquisition consists of augmenting the knowledge aiready residing in the
database. Through dialogue and inquiry, relevant details are gathered which supplement
existing information. For a mechanic, this information may include describing mechanical
symptoms, dates of malfunctions, data provided in the manual for a particular vehicle, and
other pertinent information. New and existing knowledge is combined to more completely
characterize the problem.
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Reasoning, the second step in diagnosis, consists of trying to fit the facts together to form
a tentative hypothesis. As the hypothesis is formed, supporting facts are identified or sought
through dialogue and through observation {e.g., of a vehicle and its operation). If the initial
hypothesis is refuted by testing or observation, then a new hypothesis is formed. The
reasoning continues until halted by diagnosis (e.g., the car has a clogged fuel filter) or by the
recognition that a diagnosis will not be forthcoming {(e.g., more time and information are
needed). This iterative reasoning process drives the development of a diagnosis.

The third stage of the diagnostic process is prescription. Once the problem has been
identified, what can be done? Depending on the diagnosis, altemative prescriptions may be
offered (e.g., cleaning an old part, instailing a new part, buying a new car, or some optimal
combination of these). In this prescription step, remedies appropriate for the diagnosis are
offered.

The final step in this methodology is explanation. In the case of an automotive
mechanical problem, the reasoning and conclusions wouid be explained to the vehicle's
owner. For many diagnostic systems, the explanatory effort is essential to its usefulness;
otherwise, the utility of a sound diagnosis may be ignored. Therefore, justifying the diagnosis
and the remedy is essential to the success of the diagnostician, whether expert system or
mechanic.

Diagnostic systems can be eftectively applied to numerous systems so complex as to
defy a strictly analytical or mathematical description. Diagnostic systems are also useful when
constraints (e.g., time and money) to identifying all possible functional difficulties are
prohibitive. The wide range of Al applications extends from machine repair to medical
diagnosis and from analysis of governmaent policy to organizational effectiveness.

3.4 IBAINING

Knowledge is a commodity. There is constant need to transfer knowledge from those
who have it to those who need it. Instructional expert systems are deveioped primarily to pass
knowiledge efficiently from a knowledge base to a human user. Efficiency is a fundamental
concern with respect to use of valuabie resources (human expertise) in conveying pertinent
facts. There are several altematives to knowledge-based instructional systems (e.g., human
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instructors; instructional sottware that does not use Ai technology; and media such as video
tapes, audio tapes, and books). An instructional knowledge-based system has definite
advantages, including interactive ability that allows gueries and provides reasoned
responses, reproducibility that allows one instructional system to be distributed to a number of
locations, and cost effectiveness.

Instructional Al systems are important altematives to human experts for several reasons.
Humanr experts charge for their ime, a charge likely to increase with the guality and breadth of
their expertise. Experts in a particular domaln may be a scarce resource and may be difficuit
to attract, even if funds are available. The quality of human expertise also varies drastically, as
does the teaching ability of the expert. On the other hand, a knowledge-based Al system
basically requires a one-time fee and is always available when needed. Furthermore, the
quality of instruction is constant and predictable. For these reasons, Al is a viable alternative
in instructional applications.

Instruction requires three things: 1) knowiedge to be taught; 2) an inference mechanism
to generate new ideas or facts from existing ones; and 3) an interface unit that accepts and
supplies questions, requests, and instruction. Each component must be specially attuned to
the task of teaching. For instance, the knowledge base must include facts attuned to the
information consumer. It is often appropriate, for example, that novices be taught differently
than students who are already familiar with the subject matter.

The human interface of an Al knowledge-based system shouid have a well-designed
query system capable of providing clear and compiete explanations. Human users may ask
questions, the answers to which are not contained in the store of knowledge. A static form of
knowledge representation, such as a book, is of lite use if it does not contain the required
information. With a knowiedge-based system, however, reasoning chains can augment the
knowledge base and create information to answer the user's questions. Because almost
every domain contains virtually limitless potential questions, reasoning is an immensely useful
tool. The number of instructional uses for Al is as great as the number of expert domains,
limited only by imagination and resources.
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3.5 MONITORING

To monitor a process is to measure and compare. At each step in the process, the
monitor is told how a system should run; specific system behaviors are identified as abnormal
if they deviate from the proscribed pattem. The monitoring system is not responsible for
controlling the process but rather observes and reports system errors.

In the simplest terms, monitoring is a pattern recognition task. The number of possible
system errors is matched against the recognized (defined) system patterns. However, as with
. other Al applications, problems often increase in complexity beyond the simplest case, thereby
introducing the need for alternatives to traditional computing.

Monitoring can be thought of as a passive form of control, in which signals are received
and then judged either appropriate or inappropriate; however, there is no active involvement
in the form of control signals. Small fluctuations are typicaily unimportant to a monitoring
system but are addressed by a control system. in a monitoring system, the knowledge held is
predictive, designed to identify trends in the sensing data and to predict the long-term
behavior ot the system. Control systems, on the other hand, are designed to maintain a
particular trajectory and are not concemed with long-terrn system behavior except as a series
of short-term steps.

Two functions are essentiat in the task of monitoring: 1) recognition of an abnormal state
and 2) notification of its existence. A monitoring system acts as an observer, identifying and
reporting deviations from spacified norms. Such a system may or may not be based upon
understanding of the actual process and what is normal, but the greater the knowledge base,
the deeper the inferences that can be made about abnormai modes.

Of course, for every increase in complexity, there is an explosion of possible error
combinations that makes it less reasonabie to specify every possible error. Unforeseen errors
may be left off the list of anticipated error states. Unless the monitor can infer knowledge of
abnormal behavior from a causal analysis, the system will be unable to properly recognizé
and report these unexpected errors. An approach that appears increasingly useful permits
recognition of abhormal states through "deep” knowledge about the causal behavior of the
system. This application is ideal for an Al system designed for a monitoring function.
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An Al monitoring system can be used to check performance in a wide variety of
applications, and what the system is constructed to monitor is, of course, a design
consideration. It may be used to gage the performance of complex and costly machinery or as
an early waming system. A monitoring system in a coal-buming power plant, for example,
may coliect and analyze gage readings from fuel consumption and heat sensors. System
monitoring can be applied to almost any temporal behavior of sufficient complexity. All that is
required is knowledge of what is not allowed and/or the ability to infer what is not allowed
based on reasoning.

3.6 PLANNING

A plan is course or sequence of actions which occur between the input of information
and the attainment of a goal. A plan is formulated with a specific goal in mind. Each step of
the pian is intended to contribute to goal achievement. As goals become more complex, it is
necessary to establish a hierarchy of goals and subgoals to be accomplished. In short, a plan
is sequential, purposeful, and hierarchical, often composed of many parts differing in their
levels of abstraction.

Al systems can be used as planners in diverse areas. In robotics, planning is important,
because a machine that can plan can, in essence, program itseif and therefore become much
more autonomous. Many management decisions can be cast in a planning template,
including common decisions required conceming labor and investment.

Efficient planning requires logical and complete structuring of the problem at a functional
level of detail. To be complete, all the pieces must be present. A plan for moving crates from
one location 1o another must include subgoals of checking to see that the crates exist in the
proper location, that they are movable (not too unwieldy or heavy), that the new location is
available, and that there is enough room for all the crates to be stored at the new location.
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Move LCrates

crates in old crates too large new location sufficient
location or heavy available space available
in new location

oil crates  permiission
avaiiabie gronted to
move

Figure 7. Planning Example

The level of functional detail required differs from task to task. The task of moving crates,
for example, would require mora compiicated specifications if the new location were farther
away, giving rise to many more potential pitfalls. In addition to being complete, the plan must
capture the structural logic of the task, including capturing the temporal relationships among
events {e.g., crates must be picked up before they are set down).

Thae difficulty is that in real life, an almost limitless supply of surprises may be
encountered. In the above exampie, the robot may pick up an empty box, encounter objects
along the way, drop a c¢ontainer, find a closed door, and so on. The pianner must be able to
replan based on new information. Al is applied to reduce the number of viable altemnatives
and generate an effective plan of action.

A “good" plan, whether the product of a human mind or a knowledge-based system,
must satisfy certain requirements. The first and primary criterion is success: Does the plan
accompiish its goal? If so, then other criteria, such as flexibility and efficiency, may be
assessed. A flexible pian not oniy responds to foreseeable events but effectively contends
with unforeseen events, either solving the problem despite unanticipated circumstances or
minimizing their harmfulness. Efficiency is important because carrying out a plan requires
actions to be taken that require expenditures of resources. All else being equal, a plan which
optimizes the use of resources is superior to one that does not.

Planning systems require several forms of knowledge: e.g., knowledge of the problem
domain (i.e., problem, cause, and effect), how to translate the problem domain into actions that
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can achieve a goal, and how to anticipate which actions may enhance an understanding of
the environment and its potential hazards. In addition, such systems require effective
reasoning, a capability offered by Al.

As complexity of a problem structure increases, the potential for effective use of Al
increases. Planning tasks appropriate for application of Al are frequently associated with
industrial robots. For each chore assigned to a robot, a set of movements must be planned to
enable successful performance. Even tor uncomplicated tasks, the planning of the robot's
movements can require several layers of subgoals. Other examples of planning tasks suitable
for Al applications can be identified by searching for similar problems characterized by a
series of stages which must be accomplished sequentially. Al is becoming more and more
applicable as planning problems increase in complexity.

3.7 PREDICTION

Predictions are informed guesses based on facts about the current situation and
experience with similar situations in the past. A talent for prediction can be extremely useful
for solving problems that rely on estimates of future environments. Prediction involves
reasoning about temporal tendencies from knowledge of 1) causal relations or 2) historical
data or experience. Prediction entails having at least partial knowledge about how a system
operates angd forecasting when and why failures may occur. For example, if the domain of
interest is future prices of a plece of equipment, then relevant factors would likely include
recent changes in prices of major components, prices of similar equipment, and interest rates
that affect production costs.

Parameter Values

steel prices
heavy equipment prices
interest rates Predictive

Sysiem

e - Pre dic tion

Figure 8. Predictive System
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in real-world problems, many variables, some very obscure, may be important for
accurately predicting future behavior. In such cases, the application of Al methods may be
appropriate because of the complexity that arises from the poorly understood interaction of
many environmental vanables. In addition, Al may be useful in such tasks becausse of its
ability to use experiential or heuristic knowledge.

Prediction problems essentially consist of converting the knowiedge ot a process into an
estimate of the future status of the system, given a history of events and knowledge of causal
relationships and the environmental state. One way to view a predictive problem is as an
inductive leaming task. From the data avaiiable, a global system structure is surmised. This
amounts to discovering the rules by which the system operates. Once these rules are
understood, future behavior can theoretically be anticipated.

Another way to view prediction is as an autoassociative recall task. An autoassociative
memory is capable of retrieving a complete pattern from its store given only a partial stimulus.
In other words, given partial vaiues of certain parameters, other parameter values can be
predicted. in this paradigm, only patterns are identified, not rules. As an example, consider a
study analyzing the use of manpower. Two features of interest may be the number of sick
days taken and the number of vacation days given. Perhaps a relationship is discovered such
that when the number of aliotted vacation days is increased, the number of sick days taken is
reduced by twice that amount. However, it should probably not be inferred as a causal rule
that changing one parameter automatically changes the other. Many other factors wouild
undoubtedly need to be considered, leading to the need for higher-order statistics. For many
types of complex probiems, a statistical refationship is all that can be claimed.

The two approaches, inductive learning and autoassociative recall, are generally
applied to different types of problems. For systems that are well understood and not oo
complex, such as mechanical systems, inferring causal relationships and discovering rules of
operation may be a valid approach. For more complex systems, such as economic or social
systems, prediction through recognition of recurrent patterns is probably the sounder
approach. Heurlstics, a trademark capability of Al systems, may be added to increase
efficiancy or to fill knowledge gaps.
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Obviousiy, the abhility to predict parts failures, labor shortages, or other events can be an
invaiuable asset, well worth the investment required for Al technology.

3.8 BEPAIR

The repair function invoives specification and implementation of steps that return a
system to working order. Such tasks can be especially challenging when performed by
machine and, therefore, require close cooperation between the engineer and the Al expert.
Interfaces between hardware and software must be smoothly designed.

In implementing repairs to a mechanism, Al systems must use not only knowledge of the
mechanism itself but also of the systsm of which the mechanism is a part (e.g., capabilities and
limitations). Using Al technology together with careful integration between the machine to be
repaired and the machine that wiil perform the repair, an Al system can be designed to both
prescribe a remedy and then physically implement the remedy.

Prescription may be defined as formulation of a plan to correct an identified malfunction.
This requires a relatively shallow knowledge of the maifunctioning mechanism compared to
the knowledge necessary for diagnosis. A repair system may be simpler and may require far
fewer inferences conceming the structure and operation of the faulty mechanism. For
example in debugging a computer program or an eiectronic circuit board, designing a remedy
(e.g.. removal of an unwanted character or replacement of a part} may be relatively simple
once the error has been identified. The difficulty in prescription is to specify a repair operation
that is complete enough to allow the implementa-tion component of the system to implement
the plan. Prescription, then, is a sophisticated interface betwesen the operational knowledge,
which provides a diagnosis, and the physical hardware, which performs a repair.

Implementation, the second of the two repair stages, is commonly associated with the
hardware used to perform the physical steps. The implementation component is composed of
the interpreter, which translates prescribed steps into required actions, and the hardware
designed to carry out the instructions. The mechanical characteristics of the hardware depend
entirely on the task to be performed and may include anything from a stationary spot welder to
a flexible robotic am requiring complex movement specifications.
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Repair systems have the common goal of replacing human labor in tedious and
repetitive work. Robots and robotic systems are closely associated with repair applications. In
fact, the development of repair systems are often constrained by the availabie hardware to
perform the physical function. As the hardware becomes more sophisticated, so will the
applications designed for Al repair systems.

3.9 PERCEPTION AND ANALYSIS

As machines perform more of the rudimentary tasks formerly assigned to humans, they
will require an expanded ability to perceive and analyze the environment around them.
Perception is the receipt and transformation of environmental signals into usabie information.
This involves reducing a host of complex environmental inputs into symbol classes. Analysis
is the combination of the new information (symbols) with existing knowledge in a useful
manner.

Through perception and analysis, the environment is separated into relevant and
irrelevant pieces. The primary objects become distinct from background objects, and the
pieces are assembled into a logical whole. For exampile, spoken words are distinguished
from among the auditory signals {e.g., bird songs, music, automobile noises, barking dogs)
that strike a receiver's ears; individually recognized symbols are then assembled to create an
understanding of the utterance.

Humans beings constantly use their five senses--sight, sound, smaell, taste, and touch--to
extract detailed information from the world. Simiiarly, a wide range of task-dependent sensors
have been developed for use by machines. For example, an infrared sensor has been
designed to detect the radiation from a thermal source and is useful for night vision, and other
sensors respond to events such as sound waves or vibrations in the earth's crust. Signals
received by sensors such as these are transmitted for processing to other components of the
system. In this way, sensors work together to form an expanded characterization in order to
recognize an object.



Recognition is the comparison of received impressions with templates stored in memory.
A close match implies recognition. The following diagram illustrates the recognition process:

raw m [PTEPrOCESSING : feature »| classification

signal system extraction

Figure 8. Perception System

After the entity is classified, analysis may take place to determine what it actually
"means” for this entity to be present. If the task is natural language understanding, for
example, then an identified letter is combined with other identified letters so a whole word can
be formed. This is most often a hierarchical analysis. Pieces of low-level information are
combined to give a piece of high-level information. This combination process continues as
long as necessary for successful recognition. Such operations are knowledge-and
memory-intensive and require massive searching and matching time to resolve the pattemns to
be recognized.

Successful application of machine perception and analysis is often dependent upon a
well-chosen combination of Al technologies. The sensors must be chosen to fit the nature of
the task. Various Al methods may then be combined to process, or analyze, the incoming
information. For instance, neural networks may be chosen to perform low-level processing"of
signal data, to extract features, and perhaps classify the information. These classes may then
be combined with facts and rules of reasoning which reside in a knowledge-based system.
The products of these other, similar analyses may be combined using a blackboard system.

There are several appiications for machine perception and analysis. In industry, robots
may require a vision system to perform general chores. Natural language understanding is
important to a variety of goals, including the simplification of human-computer interaction.
Such perceptual and analytical systems provide an interesting mixture of Al methods.
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4.0 TOOLS

Building machines capable of solving problems using human-iike intelligence was one
goal of those who developed the first computers. Early etfforts had little success. The
equipment was primitive and little was then understood about human intelligence. However
recently, since development of sophisticated hardware and advancements in the
understanding of human intelligence, this goal has been reestablished. Al has become a
commercially viable source of solutions for problems previously unrecognized or ignored.

Increased interest has spawned hardware and software improvements that have
resulted in advancss in technology. Currently, the market is filled with a variety of vendors and
an array of products that extend across a wide range of potential applications.

4.1 SOFTWARE TQOLS

Although the purpose of this report is to introduce the general field of Al applications, the
toois discussed are primarily used in knowledge-based systems. There are two reasons for
this. First, knowledge-based systems {expert systems) are the most mature and the most
commercially viable. Therefore, many more products exist for knowledge-based systems than
for other Al systems. Products developed for other Al areas are largely untested due to their
newness. Second, expert systems shells and knowledge engineering tasks are quite different
from other programming tasks. They are, therefore, served well by tools. Cther Al methods,
such as genetic algorithms, are typically developed from existing products that are not
specifically applicable to a particular problem. In other words, C or FORTRAN can be used to
develop a genetic algorithm to perform an optimization task on a commonly available
workstation or personal computer (PC). A whole new development environment is not
required.

Software tools facilitate construction of knowledge-based systems. The number and
types of knowledge-based system tools has proliferated in recent years. Today, there exists a
wide variety of such tools. Some are as basic as new versions of computer languages, with
characteristics that provide advantages for the development of knowledge-based systems.
Cthers are complete and flexible development environments designed for large-scale
applications on expensive and specific hardware. It would be impractical to try to describe all
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of these systams. Rather, it is useful to divide them into the following three categories:
1) programming languages, 2) small tools knowledge-engineering languages, and 3) large
tools knowledge-engineering languages.

Programming languages may be divided into general-purpose languages and Al
languages, the main difference being that general-purpose languages are numerically
oriented and Al languages are symbol oriented. These languages are not identified by
particular proprietary implementation but by characteristics relying on symbolic processing for
the development of knowledge-based systems.

in reference to small toois knowledge-engineering languages, "small® refers to both the
representational capacity of the system and the capabilities of the hardware plattorm. n
discussion of this category, specific commercial examples will be identified.

The third category, large tools knowledge-engineering languages, represents large and
powerful knowledge-based systems tools offering multiple methods for representing
knowledge and for specifying program control.

The range of features and capabilities availabie in knowledge-based systems form a
continuum in terms of both price and power.

A variety of tools are necessary to accomplish a variety of tasks. The first decision faced
by the builder of a knowiedge-based system is whether to build the system from scratch or to
purchase a sheil. This decision relies on several considerations. !f a knowledge-based
system requires new methods of knowiedge representation or program control or new
combinations of established methods, the system will probably have to be built from scratch.
On the other hand, the development of a more stereotyped systermn can proceed by using a
less flexible knowledge-engineering tool, such as a PC-based knowledge-engineering
language.

Broad guidelines are available for choosing the proper tool to efficiently represent the
type of knowledge in question. The type of inferencing or controi paradigm needed is also a
consideration. A knowledge-based systemn developer must also recognize that developing a
system from scratch will probably be much more difficult than using an established
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knowledge-engineering language. The tool selected for a knowledge-engineering task
should be the most specific tool that meets all of the task requirements.

4.2 GENERAL-PURPOSE | ANGUAGES

General-purpose languages are imperative languages reflecting the operation of the
typical sequential computer. They are, in effect, higher-level versions of the architecture
because they manipulate computational resources simiiar to machine language.
General-purpose languages {(e.g., C, Pascal, Modula-2, and ADA), which are familiar to almost
anyone who writes computer programs, have several advantages in the production of
knowledge-based systems. First, because they are designed for general-purpose hardware,
they usually run faster on such hardware than languages designed for Al. Second, because
of the widespread distribution of both general-purpose hardware and programming
languages, these products are broadly available and enjoy a strong support network. Third,
many programmers are available who are experienced in using general-purpose languages.
Finally, knowledge-based systems using general-purpose languages can easily be integrated
with existing software.

These advantages of efficiency and popularity are offset by several disadvantages. First
and most important, general-purpose languages do not support symbolic processing, which is
the essence of knowledge-based systems. Second, these languages do not have automatic
memory management, which is important to the memory-intensive development of
knowiedge-based systems. Third, these languages, by design, concentrate on data
manipulation rather than on the essential algorithm. This may make development of the
system more difficult. Languages that more closely follow mathematical models, such as Al
languages of LISP and PROLOG, can facilitate algorithm design. The shortcomings of general
purpose-languages translate into longer and more difficult knowledge-based system
development. When a general-purpose language is used to implement a knowledge-based
system application, the appilication is first deveioped, then translated into an imperative
language.
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4.3 ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

Because of the disadvantages of general-purpose languages, Al programmers and
knowledge engineers have used other languages, generaily known as Al languages,
although they need not be limited to only Al applications. Al languages ¢an be divided into
three categories: 1) functional languages, 2) logical languages, and 3) object-oriented
languages.

4.3.1 Eupctional Languages

Functional languages are true functions in the mathematical sense. LISP, the first and
most popular Al programming language, is an example of a functional language. There are a
variety of dialects of the LISP language avallable on all common piatforms, from dedicated
LISP machines, to personal computers.

Functional languages provide easy and flexible symbolic manipulation. The primary
data structure, the list, treats all data types as equai, putting alphanumeric symbols on equal
footing with numerical vanables. Built-in capabilities, such as property lists, facilitate the use
of symbols and increase the symbolic computational power. LISP has a concise syntax, which
decreases the amount of code required to accomplish a given task. There is evidence that
functional languages like LISP are relatively easy to "debug,” as well. Extensive editing and
debugging aids ease the chore of writing programs. The uniform treatment of data and control
structures makes self-modification easier. Another very important feature of LISP is automatic
memory management. This feature (called "garbage coliection®) allows for more efficient use
of computer memory.

4.3.2 Leqical Languages

Logical languages are powerful tools for constructing Al programs. The most popular
member of this group is PROLOG, the name of which was derived from words "programming”
and "ogic.” Though not-as old as LISP, PROLOG has a large following among programmers;
in fact, PROLOG was chosen as the sole language for development of the fifth-generation
computer in Japan.
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Like LISP, PROLOG was designed with symbolic processing in mind and is capable of
very efficient list processing. It has sophisticated pattemn-matching capabilities, as well.
PROLOG has a simple syntax when compared with procedural languages, and computation is
controlled chiefly by a process of logical deduction.

Programming in PROLOG is conceptually simple. First, a knowiedge store must be
developed by entering facts and entities into the knowledge base. Then rules must be
specified describing how the entities relate. To use the program, queries are written. As a
simple example, assume that the following fact is entered: “Carolyn loves everybody.” Then
assume that the system is asked, "Does Carolyn love Tom?" The program will respond
affirmatively. Large collections of facts and rules about the facts can describe complex logical
systems.

4.3.3 Qbject-Oriented Languages

Object-oriented programming is a relatively late arrival in the field of mainstream
programming and may therefore be less well known than other language types. The concept
of an object-oriented programming language is somewhat nebuious, at least partly because of
the variety in the languages claiming to be object-oriented. Although definitions and features
are by no means final and definite, certain general characteristics can be identified:
specifically, dynamic binding, data abstraction, and inheritance.

The basic idea of object-oriented programming involves the encapsulation of data and
data operations. Procedural languages establish coded operations in the form of procedures
(i.e., programs that alter data structures that are passed to the procedure). Object-oriented
languages hold the data, as well as the data operations, in a single entity cailed an object.
Each data class belongs to an object. These data classes are known as instances. For
example, integers and operations performed on integers may occupy an instance of an object
class. Each object has two parts, a shared part and a private part. The shared part contains
characteristics shared by other instances in the object class. Private parts make an object
distinct from all other objects.

A simpiified view of programming with an object-oriented programming language is as
follows. Computation is performed by sending messages to a particular object. (A message is
a request to engage a particular operation.) When an object receives a message, it first
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determines whether or not it is able to service it. If it can, it establishes the course of action o
be taken and then performs the required steps. After complstion, the object returns the result
to the sender.

4.3.4 Knowledge Engineering Tools

A knowiedge-engineering fanguage is essentially a package of software tools and a
software system that facilitates the construction, operation, and maintenance of a
knowledge-based system. Using one of the Al programming languages lessens the imposing
task of developing a knowiedge-based system from scratch, allowing more time for designing
the probiem solution.

The features of knowledge-based system tools differ according to the preduct, but the
basic components are similar: 1) a knowledge base that holds the store of factual information,
2} an inference engine that specifies the inference and control mechanisms, 3) an explanation
facility that provides the rationale for decisions, and 4) a user interface that carries information
to and from the systemn user. Each of these components provides support in building one of
the knowledge-based system modules.

To buiid the knowledge base, commaercial tools support particular type(s) of knowledge
representation, such as rules, frames, or semantic nets. Larger, more powerfui tools allow
muitiple representations. For creating the inference engine, tools support one or more
inferencing strategies to specify the construction method of new facts from existing facts.
Again, larger and more powerful systems allow more than one reasoning strategy. A facility
for explanation is also typically contained in the commercial tool. This explanation facility will
explain the process of machine reasoning to a user by dispiaying the sequence of firing rules,
for example. The pieces of a user interface are aiso included in most tool packages. Cften
sophisticated debugging and editing capabilities are part of the complete package. These
components speed the time-consuming job of building and testing the knowledge base and
the system as a whole.
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Several measures of knowledge-based system tools can be used to classify the
products available, including the following:

+  the number of rules allowed
»  the number of representation and inferencing methods allowed
. the generality or specificity of the intended use.

Such measures are not complete. Therefore, the types of knowledge-based systems
tools are divided into two broad categories: 1) small systems tools and 2) large systems tools.
As personal computers become more and more powerful and operate with more and more
memory, this division becomes blurred. However in general, larger hardware systems are
used for the more powerful and flexible knowledge-based systems tools.

A few general comments shouid be made about the purchase and use of off-the-shelf
tools. First, although some classifications are usefui in examining knowledge-based system
tools, the characteristics and capabiiities of such tools exist in a continuum; sharp distinctions
may be deceptive. The features and merits of each tool shouid be considered before
purchase. Second, the most specific product that fits the task should be purchased. More
specificity usually means that less time and effort is required to accommodate the user's
specific application.

4.3.5 Small Systems

Small knowledge-based system tools are designed to run on personal computers. {The
two main classes of personal computers are the IBM and {BM compatibles and the APPLE
Macintosh family.) Using these tools, relatively inexperienced users, often experts in their own
fields, have built successful applications without the assistance of knowledge engineers, Less
sophisticated deveiopers, or those whose projects do not require the complete package of
options offered by large system tools, may find it advantageous to use the smaller tools. They
are easier to learn and cost substantially less than large systems. This can be important not
only for developers but also for the end users who will purchase the tool.

Small knowledge-based system tools also differ from larger tools in that they support
fewer rules than large systems, although the number of rules aliowed increases with
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expansion of the power on a personal computer. Because of processing power and memory
constraints, small systems are less flexible than [arger ones. Therefore, they support fewer
inferencing schemes.

4.3.6 Large Systems

Large knowledge-based system tools are usually capable of storing vast amounts of
knowledge in the form of rules, frames, objects, or whatever forms the knowledge base
supports. Large system tools also possess an array of representational schemes and control
structures that allow the tool's capabilities to be tailored to a specific problem. In addition, they
contain sophisticated features to assist in the development process.

Large systemns, because they have more features to both represent knowledge and to
combine it in a process of reasoning, are especiaily useful in construction of large
knowledge-based systems with potentially thousands of ruies. Large systems are, for the most
part, designed to run on larger, more powerful computing equipment, such as mainframes,
workstations, and special-purpose LISP machines. Consequently, they require a more
significant investment, not only in the purchase of the tool itself but also in the purchase of the
supporting equipment and training of personnei.

The choice of which tool t¢ purchase depends on the case and may involve many
considerations. The investment in both money and time is much greater for large system tools,
so the payoff for the system or systems to be developed shouid be expected to be high. The
strategy of the implementing organization may be a factor. if the organization is committed to
development of knowledge-based systems and seeks to build a large and visible system
fiagship, then a more flexible and costly system may be warranted. On the other hand, if the
approach is to put together a series of moderately sized applications, then small systems tools
wouid probably be more appropriate.

4.4 HARDWARE TOOLS

The extension of Al applications has benefited from special-purpose hardware designed
to accommodate their unique processing needs. Development of knowledge-based systems,
in particuiar, required an architecture designed to support the Al programming languages
(indirectly the symbolic processing), which were used to build these systems. Other Al
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applications have their own processing requirements. Neural networks require massive
parallelism and employ simple processors with large capacities for interconnection with other
processors. Special-purpose array processing boards and even more promising neural
network chips have been designed to meset these needs. Genetic algorithms can benefit
extensively from parallelism, as well. Model-based reésonlng. the success of which depends
on the complexity of the model, can be computationally intensive, also requiring a powerful
machine.

The development of spacial machines for symbolic processing has been of special
interest to developers of expert systems. Design features of these machines include a large
memory and a large virtual address space. A high-speed machine for cycle-intensive
operations is also important. Several stand-alone machines have been designed by different
vendors to meet these special requirements.

The drawback of specialization is the loss of general programming capabilities. While
enhanced symboiic processing machines have demonsirated advantages in symbolic
applications, traditional workstations have enjoyed a share in the Al market because of their
general-purpose capabilities. There is a trend toward combining knowledge-based sysiems
applications with traditional software systems. This approach has several advantages,
including lower cost, broader access, and ease of use.

The three categories of hardware platforms--the personal computer (PC), the
workstation, and the specialized symbolic platforms--represent a logicai division of processing
capabilities. They are discussed in the following subsections. Other classes, such as
mainframe computers, appear to be less important to the development of Al applications and
$0 are exciuded from this discussion. (Parallel machines, which are becoming more
important, are discussed in Chapter 5.)

The distinctions among classes of computers are also becoming biurred. New chip
technology has greatly increased the processing power of small systems; and additional
software capabilities, such as windowing, have provided them with expanded functionality.
Also, new machines, such as the SPARC Stations introduced by SUN, fit somewhere between
the boundaries delineated. It is clear that the market for computers has matured tremendously
and has filled many of the gaps that formeriy existed.
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4.4.1 Personal Computers

The dramatic increase in computing power in PCs has made it reasonable to consider
them for Al applications. Experimentation with PC parallel computing is ongoing. The
introduction of Maclvory, a new LiSP chip, marks a major upgrade of minicomputers adapted
to larger tasks. Because of the increasing viability of the PC as a hardware tool, the power
and flexibility of knowledge-based systems products have increased, as well. This is apparent
by the introduction of scaled-down versions of the large products and by the entry of new
products into the commercial marketplace. The trend in computing has been toward
distributed rescurces and small stand-alone systems that can be networked to allow
communication and software sharing. (The list of small systems tools in Appendix A attests to
this trend.)

Minicomputers afford several advantages over other types of platforms. The first is cost.
A range of prices exists, depending on the model and quantity of additional equipment to be
included; however, $3,000 to $5,000 is generally sufficient to purchase substantiai computing
power. Within this price range, a team of users can each be equipped with computers and
software. The distribution of resources may serve to avoid user conflicts that frequently occur
when computers must be shared. Another advantage of PCs is reliability. It is very unlikely
that many PCs will be inoperative at the same time in a group setting, whereas the down time
on a shared computer affects ail users simultaneously. Still another advantage is that new
users can easily be accommodated. Experimental hardware can be added with little
disruption to work. A final advantage is that products developed for small systems
immediately have a wide field of potential users. If a knowiedge-based systemn is developed in
one location, it may easily be exported to other locations without extensive conversion costs.

4.4.2 Workstations

. Workstations have traditionally been considered a tool for general-purpose software
development. They should also be seriously considered as a platform for Al applications.
Besides their capabilities, such as extensive windowing systems, bit-mapped screens for
graphics, multifunction mouses, and weil-developed operating systems, workstations offer the
key potential for integrating knowledge-based systems applications with mainstream
applications. For some applications, such as computer vision, this integration is a requisite for
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increasing speed and usefulness. For other appiications, integration will allow a beneficiai
mixture of techniques from mainstream programming to database technology, thus providing a
wider array of problem-solving tools.

Workstations that have traditionally relied on C, Pascal, FORTRAN or other procedural
languages may now include verslons of LISP, PROLOG, Smalltalk, and other Al languages.
Some are specially altered to increase efficlency. This adds another level of usefulness to
these machines, enabling them to compete with dedicated Al machines.

A brief list of workstations and dedicated symbolic processing machines is included in
Appendix B. PCs are not discussed in the appendix, because information about them is
widely available through magazines that focus on the PC market.

4.4.3 Dedicated Adificial Intelligance Machines

Several manufactures have dedicated stand-alone machines to symbolic processing.
These manufacturers produce hardware piatforms for committed users and developers of
knowiedge-based systems with large applications. These systems are designed to ease the
difficulties of developing compiex pieces of software and increasing processing speed.

Most computers dedicated to Al and LISP processing share a number of common
characteristics. They have high resolution, bit-mapped displays, large physical memories for
memory-intensive knowledge processing, and high-speed processors designed for rapid
impiementation of LISP instructions. These machines also support powerful
knowledge-based system development tools that facilitate editing and debugging of long,
complex chains of code.

An exampie of a dedicated symbolic processing machine is the Texas Instruments
Explorer Il Plus. Texas Instruments utilized state-of-the-art, 1.0-micron LISP chip technology,
which condenses almost 600,000 transistors into a square centimeter of area, in developing a
unique architecture to create an exiremely powerful symbolic processing computer. This
architecture is designed to decrease the time required to perform instructions in the LISP
language and to facilitate the frequent use of memory and particular LISP data structures. The
Explorer Il Plus features a 40-MHz clock. It aiso has a pipelined architecture that performs
microinstructions and many LISP macroinstructions in a single-clock cycle.
Hardware-supported functions for manipulating complex data structures and memory
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management are provided; this hardware support is necassary for rapid symboiic processing

with the LISP language. The uniquely designed LiSP chip has a 32-bit VLS| procassor with a
114K of RAM memory to speed the execution of instructions. Because symbolic processing is
generally memory intensive, the Explorer [l Plus provides up to 128 megabytes of memory for

large applications. There are several other characteristics, such as a high-resoiution monitor

(1024 by 808 pixels), which are designed with the user in mind.

The description of the Explorer |l Plus illustratas many of the features that are essential
for truly efficient symbolic processing using LISP. While other companies have designed their
own dedicated machines with their own mix of technological features, the basic impetus
behind these distinct implementations is the same.
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5.0 EMERGING ISSUES IN ARTIFICIAL INTELLIGENCE

5.1 PARALLEIL PROCESSING

Al and parallel processing are two relatively new technologies. Because both are in
early stages of development, commercial products uniting the two technologies are not readily
available. Also, prices for computationally useful parallei processors are still very high. But
the trend towards more affordable paraliel computers, and even PC-based parallel computing
tools, promises that soon such products will be both available and affordable.

The capabilities of paraliel processing match closely with the needs of Al applications.
Parallel computers provide a number of processors and expanded memory, enabling very
large problems to be soived much more efficiently. Evidence shows that natural intelligence
relies on massive parallel processing for vast amounts of data. Therefore, machine parallel
processing is also a powerful means of achieving the increased processing capabilities
required for many tasks requiring Al.

Parallei processoring can be used with very large and complex applications and works
well with numerically intensive operations (i.e., mathematical modeiing of compiex systems).
Many Al applications (e.g., computer vision systems, speech processing, and large expert
systems) would be well served by parallel processing technology. These include inherently
parallel computational methods of Al, such as neural networks and genetic aigorithms.

Al and parallel processing can form a symbiotic relationship, with each expanding the
potential application areas for the other. Most vendors of parallel machines have expressed
interest, through invested resources, in supporting the development of products that will make
their parallel machines available to members of the Al community. As parallel processing
hardware decreases in price and increases in availability, and as more people use parallel
programming, it is likely that Al will experience a surge in interest.

5.2 PARALLEL HARDWARE

Four basic classes of computers exist. One class is the sequential computer; the other
three are parallel computing models. Any computational device, sequential or parallei,
receives and operates on input according to a set of instructions. A sequential computer is a
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single-instruction stream, or single data stream model (SISD). At any given moment, a single
instruction is manipulating a single piece of information. Parallel machines, on the other hand,
have muitiple processors and are capable of extaended computation. They are capable of
operating with multipie instruction streams on a single data stream (MISD), a single-instruction
stream on multiple data streams (SIMD), or multipie instruction streams on multiple data
Streams.

A particularly useful modet of parallel computers is the SIMD class. These machines
perform the same manipulations on multiple inputs. They are capable of performing many
data-intensive tasks with a high degree of parallelism. In SIMD machines, data is passed
between processors in one of two ways: through shared memory models or interconnected
machines. Shared memory models have a large block of memory available to all processors;
data passed among the processors is written to and read from this shared memory.
Interconnect models are distinguished by a network of connections between the processors.
Ideaily, every processor is connected to facilitate sharing of data. However because of
manufacturing constraints, this kind of interconnection is not economical, so interconnect
models are divided into particular topoiogies, such as linear arrays, mesh arrays, hypercubes,
and perfect shuffle exchanges.

It is necessary to have so many types of parallel machines because, to take full
advantage of the multiple processors, different problems are best suited to different
architectures. For example, the Connection Machine, with up to 64,000 simple processors, is
effective for low-level operations on large data sets and is appropriate for vision and speech
applications; the butterfly machine, which contains no more than 256 processors, may be used
for less specialized Al applications, such as expert system development.

5.3 SOFTWARE DEVELOPMENT

Software development historically lags behind hardware development. Many machines
are still burdened by primitive compiler designs, awkward operating systems, and lack of
higher-level parallel language support. Several paralle! implementations of common
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programming languages have been developed (e.g., Concurrent Common Lisp for Intel's
iPSC parallel processor, developed by Gold Hill). As these languages gain in support and
popularity, and as improvements and new languages are introduced, the task of programming
parallel machines should become less formidable.
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6.0 DEPQT APPLICATIONS

Knowledge may be described as the usable encapsulation of the structure or
organization of the surrounding environment. Applications in Al are efforts to use the
intangible quantity called knowiedge to increase the efficiency of a process. As the industrial
revolution was founded on mechanization and the resources necessary for it, so the cumrent
revolution of the world economy may be built on information and concomitant technologies. Al
is a technology that applies knowledge, a specialized form of information, to complex tasks
facing industry and government.

How and when to bring Al to bear upon the spacific types of problems found within the
Army depot system, both currently and in the future, is the subject of this section of the report.
Experience acquired in Al applications in industry will be discussed in relation to depot system
requirements.

In the next decade, Al technoiogies wiil primarily be used to fulfill two functions. First,
they will augment the physical capabilities of humans. Fiexible, multipurpose robots partly
driven by Al technology wilt inspect assembly line products, test malfunctioning circuit boards,
and operate production machinery. intelligent machines processing sensor signals will be
able to perform many tedious, hazardous, or labor-intensive tasks at a savings. The more
intelligent the robot, the greater the number of tasks it will be able to perform and the greater
the autonomy of its perfformance. Increased utility in this area will depend on technical
advances in both hardware and software.

Second, Al applications will be increasingly used for decision support. This function
may include intelligently filtering huge quantities of data from complex domains, constructing
expert assistants to help with professional and skilled decisions, and intelligently controlling
various processes by automatically adjusting parameters to optimize efficiency.

The role of Al will continue to expand in the development of expert assistance, a
technology that is, to a fair extent, already commercially successful. For a variety of reasons
(e.g., the need to reduce costs, contend with skill shortages, ensure quality, and speed
performance time) decision- support expert and model-based reasoning systems will likely be
implemented in greater numbers,
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The process has aiready begun in the workd's competitive market place. The Japanese,
in their Fifth Generation Computer Project, have invested funds and effort nationwide in
knowledge-based systems research and development designed, in part, to support
decision-support expert systems technology. Many American companies have successfully
implemented such systems, and such technology is expected to become more widespread
during the 1990s.

Many challenges exist to the depot's ability to perform its required function over the next
few years, and Al may be able to play a substantiai role in addressing these problems. As the
complexity of the machines used in everyday life increases, so does the knowledge required
to use and maintain them. However, forecasters predict a siow rate of growth in the number of
skilled, technical personnel. Shortages of experts are expected, just when more expertise is
needed to manage the increased complexity brought by technical advancements. As a result,
organizations in need of technically competent people, especiaily organizations less abie to
compete for them, must find adequate substitutes. Al will be used to reduce this shortage by
effectively increasing the skill level of personnel and decreasing decision time, making
available experts and skilled staft more productive.

Another anticipated constraint within the public sector of the economy is budget cuts.
The size of the federal debt demands that savings be found wherever possible, thus requiring
that all areas of government become more cost conscious and efficient. The military, because
of the generally perceived decrease in iniernational tensions, may be a politically atiractive
target for budget savings. The mechanization of knowledge through Al technology may serve
to ameliorate budget shortages. The percent of manufacturing costs attributed to knowledge
areas such as design, engineering, resource management, and related activities today
represents most of a product's costs, and this percentage is constantly increasing. The
implication is that the best way to streamline an operation may be to streamline
knowledge-dependent activities. When people can be made more efticient by relatively
low-cost support toois, important gains in productivity are possible.

Still another observation that supports an expanded role for Al in the coming decade is
the current waste of "knowledge resources.” it makes sense to conserve the talents and skills
of experienced personnel, especiaily considering the number of years and dollars that an
organization invests in such people. With the retirement or other separation of a skilied
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professional, the skills and expertise of the individual are often lost. Knowiedge-based
systems, and to a lesser extent other Al technologies, provide means of capturing expertise
developed within the organization, which can then benefit the organization even when the
expert leaves the company.

During the past decade, industry has grown increasingly aware of the changes that have
collectively been termed the "knowledge revolution.” Consequently, efforts have increasingly
been made to develop industrial applications of Al techniques. These efforts, particuiarly in
the area of expert system development, have generally proven successful, yielding large
gains in productivity and sizable returns on investment. Much remains to be learned, but
expenence to date encourages a close look at the potentially profitable applications of Al.

Advances in Al are occurring rapidly. One reason is that expenditures for research
made during the past two decades are now producing commercial applications. As the field
matures, the number of industrial, real-world applications shouid increase. In addition,
advances in Al tachnology are closely tied to advances made in computing machinery.
Because Al is essentially the study of how to contend with complexity, more computational
speed translates to wider applications. Advances made in processing power, paraliel
processing, optical storage and optical computing, and computer networking will doubtless
contribute substantiaily to new appiications.

The role of Al problem-solving techniques should also grow because of Al's recently
expanding ties with more traditional software and computer hardware. Embedding Al
techniques within other appiications legitimizes the technology and familiarizes
applications-minded people with their capabilities. Distribution of Al products and languages
to more mainstream computing environments allows Al techniques to be considered as
options for a wider range of problems.

In the following subsections, a representative cross section of depot activities are
discussed for the purpose of identifying those that appear appropriate for Al technology. Itis
hoped that the features identified in these applications will become apparent in other
applications stiil to be identified at individual depot sites.

6.3



6.1 PROCEDURAL SUPPORT

In most large organizations, a comprehensive system exists for purchasing, tracking
supplies and equipment, and accomplishing numerous other tasks, large and small, which
must be accounted for under legal and/or financial regulations. Often, the larger the
organization, the greater the number of rules and procedures which must be followed.
Certainly, the United States Government is no exception to this rule.

In most cases, a repoesitory of rules exists in the knowledge of financial or administrative
experts or secretaries scattered throughout the organization. Several institutions have found it
advantageous to collect such procedural information in a single knowiedge-based system, the
idea being that the user has only one place to go to get the answers to most procedural
questions.

There are several significant advantages to having a procedurail support expert system.
First, having a single location to which users can go (or connect to from their PCs} for
information about a variety of regulated procedures may be both cost effective and stress
reducing. The user saves time and effort, as do the financial experts, managers, or
administrators whose task it is to provide the answers. An expert system is available,
theoretically, 24 hours a day. An expert system may also reduce costs by reducing the
dissemination of inaccurate information and minimizing error. Finally, there is some evidence
that in certain situations, people are more likely to ask an expert system for assistance than to
disturb another person. Expert systems designed to support procedural applications offer
considerable potential for improvements in efficiency.

Al is clearly the best technology for expert systems for a number of reasons. The task is
knowledge intensive, requiring procedural knowledge and efficiency information from a
number of sources, from secretaries and other staff members to voluminous documents and
regulations. Expert systems allow for easy additions or alterations to reflect changes in the
procedures captured by the system. The sophisticated user interface employed by expert
systems allows information to pass both ways in a relatively natural form of exchange (see
Figure 10).
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User Interface — ¥ Expert Reasoning
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Figure 10. Expert System Interface

The user both asks questions of the expert system and responds to questions posed by the
system. This ability to engage in dialogue makes expert system technology easy and
comfortable for many people to use.

tn most cases, the investment required to deveiop a procedural support system would
not be great. Developing and installing such a system can easily be divided into increments;
modules representing different sets of procedures may be built and tested separately and then
added to the operational system. A system of this type could be built on a PC system,
eliminating the large expenses involved in obtaining development hardware and software and
making the system more widely accessible. Commercial expert system tools for PCs should
be adequate for building the knowledge base and developing the complete expert system.

Several examples of similar applications, such as the IBM Capital Asset Expert System
(CASES), exist in industry (Feigenbaum, McCorduck, and Nil,1988). IBM constructed CASES
to simplity the process of disposing of or transferring machinery by providing engineers and
managers with information about which forms are to be completed and how, which signatures
are required, warnings and tips, departments and/or people to be notified, and other pertinent
information. 1BM users are reportedly pleased with the application because of the savings and
convenience it provides and intend to construct more such systems.

6.2 SCHEDULING AND PLANNING

A variety of applications fail under the heading of resource scheduling and planning.
These include appiications designed to ensure efficient use of resources, including supplies,
machinery, vehicles, and even human resources. Scheduling tasks may involve creating
schedules to allow efficient use of frequently occupied machines, scheduling for maintenance
and repair, and task scheduling for human resources. Expert systems can be designed to
optimize the use of scheduled resources.
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Planning systems are basically decision-support systems, assisting experts in predicting
events and in coping with predicted outcomes. Expert systems may be useful in a number of
depot-related planning activities, including decision support for capital purchases, supply
requisitions, performance assessments, manpower assessments, hiring, piant expansion, or
reorganization. The goal of an Al application in this domain is optimization. Decision making
in the area of scheduling and planning is difficult because of the number of items that must be
evaluated simuitaneously. For exampie, when planning for purchase of large capital items,
the decision maker must consider numerous factors, including the value of the product's use
(its dispensability), the state of the equipment to be replaced, projected economic or strategic
advantages of the new equipment, the projected rate of use of the new equipment, and the
cost and quality of the equipment to be purchased. Including facts that are less directly
relevant, such as trends in market pricing, can potentially improve the decision. The decision
maker must also consider numerous constraints that may be imposed upon the decision, such
as the current budget, the cost of storage (for items not immediately used), and availability of
the product With so many fragments of information o contend with, considerabie expertise is
required to make a decision in a complex organizational environment. And when
congiderable expertise is required, Al may help to improve both the quality and the
consistency of the decisions.

Two primary Al technologies are commonly appiied to problems ot scheduling and
planning: expert systems and model-based reasoning. Expert systems represent an
appropriate technology because the task is exceedingly knowledge intensive, often in terms of
heuristic knowiledge, which humans use so profitably. It may be particularly important to
capture the expertise of older, more experienced experts who are near retirement. This
knowledge can be used both in the decision-making process itself and in tutoring less
experienced personnel. Even when a task requires extensive knowiedge in a complex
domain, the innately modular nature of the expert system eases the burden of construction.

Model-based reasoning approaches are especially effective in addressing planning
problems. These systems apply knowledge to produce simulation of a system, and valid
simulations allow valid predictions. When plans are contingent upon future events, such
predictive systems may be essential for choosing optimal courses of action.
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Model-based applications are prevalent in industry. One such application is that of
advising management on purchasing of new equipment. Commercial systems are currently
on the market which are designed to support the decision process by evaluating proposals
and generating alternatives. It is designed for a broad business environment and contains a
general base of knowledge to which specific details must be added for each organization. A
conceptually reiated expert system called COCOMO1, sold by Level Five Research, assists
managers in estimating labor requirements, time schedules, and costs associated with
proposed projects. The system estimates project productivity, providing a quantitative
measure of the project's potential worth.

Another industrial example of an expert system--this one related to scheduling of
resources--is The Boeing Company’s SIMLAB, which generates schedules for the company's
flight simulators, ensuring a high leve! of usefulness. A system constructed by the National
Defense Research Establishment in Sweden has been designed to dynamically schedule
actions in a plan-guided aircraft. In Finland, a knowledge-based system is being used to
paginate newspapers. The number of planning and scheduling activities within any
organization is virtually limitless, as is the number of potential Al applications to such tasks.
Without doubt, there are many depot activities that represent appropriate applications for
expert systems.

6.3 AUTOMATED INSPECTION TASKS

Automated inspection systems are designed to assist and replace humans in sensory
and recognition tasks. These tasks are typically tedious, requiring only minimal skill to
perform. Essentially, the function of a system designed for inspection is to receive input from
sensors aimed at the target and to process the information.

raw signala sensor signals
-
D E =F

object sensor object recognition system

Figure 11. Perception and Recognition System
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The output from the system is a categorization of the target: "good” or "bad" in the simplest
case. Automated inspection systems could be particularly useful to the depot system for
performing tasks such as inspection and automatic testing of electronic components,
automated evaluation of nondestructive testing results, quality assurance of incoming parts,
quality control of outgoing products, and X-ray screening of debris for selected objects (e.g.,
live ammunition).

Traditional pattemn recognition techniques, in which each scene or set of sensory stimuli
is matched with others in memory, are quite expensive in terms of computer time and memory.
Historically, they have aiso been notoriously ineffective in classifying objects when even minor
vanations exist in parameters such as orientation or lighting. Al methods are now being
applied to increase the accuracy of automated classification systems, at the same time
increasing their operationai speed.

Several Al techniques may conceivably be used, either alone or in combination, to
perform an automated inspection function. Neural networks are especially well suited to
simplified recognition tasks and have many advantages over traditional pattem recognizers,
which rely on single-processor digital computers. Neural networks are fast, robust, and
potentiaily tolerant to small variations in conditions, and they may be implemented with special-
purpose array processors. Speed increases by a factor of 1000 have been reported. Even
faster are networks implemented on a single chip. Chips with a relatively small number of
interconnections for smaller problems have aiready been developed, and research is
continuing on chips capable of holding much larger networks. Development of large-scale
applications for neural networks, however, is being impeded by hardware difficulties, including
the smail number of interconnections available per chip and insufficient storage.

Lockheed has developed a probabilistic neural network (PNN) and used it for 2 number
of tasks, including classification of seismic signatures. Such a network provides quantitative
statistical analysis of a problem, as well as the probability of the correctness of a given
solution. It notifies the user when there is insufficient information to provide a solution rather
than providing inappropriate responses. The Pacific Northwest Laboratory (PNL) has applied
neural networks to the classification of signatures for nondestructive testing. Oak Ridge
National Laboratory has used them to perform inspection ot printed material. Neural networks
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are used in one of the New York airports for inspection of passenger juggage. A great deal of
research has been performed on vision systems, much of it for the Department of Defense
(DOD).

Modei-based reasoning and expert systems reprasent two options for application to
more complicated inspection tasks, including those for which there is little regularity in
parameters {e.g., sensing angle and environmental conditions) and those for which criteria for
acceptance vary widely. (In inspection of welds, for example, two distinct welds may be very
difterent but equally adequate.) '

Model-based reasoning systems essentially creats models of the environmental factors
affecting target viewing and compute what a given target’s signature should be. The chief
advantage of such a system is that givean measurable environmental parameters, the system is
very flexible. In effect, what can be modeled can be recognized. However, such systems are
computationaily expensive, and development of real-time model-based reasoning systems
will depend on further technical advances in computation.

Expert systems operate using heuristics defined in terms of sensor output. The expert
system weld inspector, for example, would identify cartain characteristics of a weld as either
good or bad. These characteristics would be recognized within image-by-image processing
techniques. By collectively evaluating these pieces of information and applying rules, the
expert system would evaluaie the state of the weld. Like model-based systems, expert
systems may also face time constraints, because each image must be procassed and
characteristics extracted from the observed image before input to the expert system takes
place. Many factors, such as signature clutter, may affect the success rate of an expert system
designed to perform automated inspection. Best results may be derived from combining
available technologies.

Model-based reasoning and expert system technologies have been applied to complex
tasks undertaken for the DOD by companies such as Martin Marietta in Minnesota.

6.4 PERSONNEL TRAINING (INSTRUCTION)

Shortages of critical expertise are forecast for the United States, both in the government
and in private industry. Shortages imply competition to attract talent. To compete successfully
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for expertisa, the depot system may have to increase saiaries and benefits, provide quicker
advancements, and/or find other ways to induce promising talent to join and discourage
capable empioyees from leaving. Because the govemment is often less flexible than the
private sector in its ability to offer inducements, and because the federal deficit may decrease
the amount of money available for such inducements, the govemment sector might well
expenence the brunt of a skills shortage.

Al may help to diminish the effects of personnel shortages by serving in the role of
teacher. For example, Al methods can be used to provide comprehensive in-house training to
unskilled or moderately skilled workers, with the goal of obtaining more expert performance;
they can be used to traln long-time employees in related job skills or new employees with little
or no experience in a particular assignment. Technicians, diagnosticians, and mechanics
would be likely consumers for such training products. For example, mechanics could be given
online suppart and instruction for operating a new class of machinery; inexperienced
employees couid be taught by an expert system to perform and interpret diagnostics on
particular types of equipment. In addition, Al systems can be used as skill repositories, storing
knowledge of specific skills that are infrequently required (e.g., those required in dealing with
a rarely encountered chemical compound or weapon system).

The task of instruction is particularty complex. A system designed to teach must have
the ability to solve a wide variety of potential problems, because student questions may range
from the simple to the obscure. Such a system must not only be able to perform problem
analysis over the whole domain but must also be adept at explanation. Good solutions plus
poor explanations equals a poor system. Knowledge-based systems are relatively proficient
at describing their own process of reasoning, and the sophistication of their user interface
makes the student/teacher exchange quite natural. Within a narrow domain of expertise,
therefore, knowledge-based systems can be constructed to have the same strengths as a
capable human instructor, if not the flexibility.

In addition, knowledge-based instructors have important advantages over human
teachers. Knowledge-based systems can be on duty around the clock to field inquiries. They
are consistent in their responses, whereas human instructors are likely to differ significantly in
their approach to selected problems and therefore produce students who also exhibit this
divergence. it has also been shown that students are actuaily more likely to approach the
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expert system than a human instructor for help; trainees ask quastions more frequently and
are much more willing to ask a question again when the answer has been forgotten or
misunderstood. The application of expert systems appears to offer potential advantages to all
parties: the organization, the rasident experts, and the trainees.

A major disadvantage to expert system technology is the inflexibility of the expertise
residing in the system. Knowledge can be divided into the categories of domain knowiedge
and giobal {or general) knowledge. Expert systems are filled with domain knowledge, while
human problem-solvers hold both domain knowledge and global knowledge (which may be
imported from another domain to aid in solving a particular problem). The knowledge base of
an expert system contains facts and rules about the problem domain, but if a question is posed
that requires information beyond the scope of that domain, the system fails. Knowledge-based
systems have been characterized as "idiot savants,” providing exceilent performance only for
problems that do not require knowledge resources bayond a limited domain.

When the limitations of expert systems present serious difficulties, techniques other than
knowiedge-based systems can be used. Model-based systems include knowledge of how the
domain behaves and why. Such systems can reason out difficult questions by observing the
operation of their own intemal models. These systems are said to have a "deep” knowledge
and are designed to be resilient when confronted by questions requiring knowiedge not
immediately available.

Another Al technology that can contribute to instruction of employees is natural
language processing, the analysis and comprehension of human speech by a machine.
Though the technology is far from a complete understanding of human language, applications
to specific domains with restricted vocabularies have been moderately successful. Natural
language processing can improve the quality of understanding between the machine
instructor and the traines, allowing a natural and successtui channel of communication to be
deveioped between them. This technology can also free the trainee from the requirement of
leaming the system's language, thercby decreasing the overall instruction time.

Here, too, private industry has set the precedent in construction and implementation of
artificially inteligent tutorial systems. One such system was built to train employees who
operate the recovery boilers at paper plants. Another is used as a knowledge store for
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information on how to handle and ship dangerous chemicals. Still another, at one of the
nation‘s leading authomotive companies, serves to train mechanics how to diagnose
problems with a certain class of robots on the production floor. These and other successful
examples illustrate the potential for development of Al applications for depot use.

6.5 DIAGNOSTIC SYSTEMS

Because industry depends so heavily on machines to perform manufacturing processes,
diagnostics represents one of the most common and most successful applications for Al.
Artificially intelligent diagnostic systems analyze and dlagnose problems with machinery and
equipment, such as motor vehicles, or with processes, such as maintenance lines. Such
systems are typically designed to contend with problems after they have arisen, but they may
also be designed for troubleshooting, which involves processing of functional information as
waming signals so that problems may be avoided. Diagnostic systems have frequently been
constructed to identify failed components or subsystems from the supply of diagnostic
information, but they may also be constructed to identify deep or root causes of component or
system failures.

There are many conceivable applications for diagnostic systems in a depot environment.
Such systems can be constructed for many types of machines (e.g., tanks, missiles, computer
hardware), as well as electronic circuit boards and devices. Electronic testing data can be fed
directly into an expert system designed to diagnose faults and failures in these devices.
Diagnostic systems can be constructed to identify more abstract problems within a software
system or within a service line composed of robot workers, Essentially, a diagnostic system
can be built for any process or machine with sufficient complexity.

There are numerous reasons to apply Al to diagnostics. As previously discussed, the
shortage of skilled workers can be ameliorated by making available skilled professionals more
productive. It many documented cases, expert diagnostic systems have been able to do this.
By reducing the list of possible failures to those most likely to occur, such a system allows for
fewer components and subsystems to be taken apart and tested. In this case, decreasing
alternatives increases efficiency. Many diagnostic systems also decrease the time required for
diagnosis, because a computer can carry out a reasoning process much faster than its human
counterpart. Furthermore, although expert systems are often outperformed by the most expert
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of experts, Al diagnostic expert agsistants are often able to raise the collective performance of
a group of workers because they are more eftective than the average worker.

Many different Al technologies have been applied to the task of machine diagnosis.
Expert systems have most often been used, perhaps most importantly because of their ability
to capture and utilize experiential knowiledge. Model-based reasoning systems have also
proven to be effective, especially for providing a "root cause” analysis which not only identifies
inoperable components but also the reasons behind their failure. Other Al systems that have
been implemented to perform diagnosis include object-oriented systems, blackboard systems,
and hybrid systems (i.e., combinations of Al technologies).

Examples of Al dlagnostic systems abound. One system assists teilephone companies
in reducing cable failures by analyzing operational and repair data and prescribing
preventative actions. It was designed to reduce the load on expert cable analysts who were
often overburdened. Texas Instruments developed an expert system for its own use to perform
a similar task for a certain type of reactor used in semiconductor fabrication. The Honeywell
Cormporation buiit an expert system to help field engineers diagnose and repair problems in
air-conditioning systems. Examples of other systems, including an object-oriented fault tree
modeis developed by NASA Ames and a hybrid expert system for monitoring and diagnosis of
nuclear power plants built by the Oak Ridge National Laboratory, are in prevalent.

6.6 ENHANCEMENT OF ROBOTIC SYSTEM FLEXIBILITY

Robots are currently in place in many industries and are likely to become even more
common within the work environment. Flexibility is a key issue in robotics, because flexible
robots can do more tasks, spend less idle time waiting for assignments, and are therefore
more efficient than single-purpose robots. For example, while a single-purpose robot may be
designed to lift a particular type of crate, a more flexible robot may be capable of lifting a
variety ot items,‘large and small, of various shapes. Flexible robots may be provided with a
variety of skills, such as weiding and painting, and may be designed to perform traditionaily
human functions, such as making minor repairs on relatively delicate equipment.

Industry has begun to recognize the advantages of more flexible robots. The Japanese
have made progress in developing flexible systems and currentiy have many more
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multipurpose robots than the United States. The robotic systems in the United States can be
augmented with the help of Al technologies designed to provide them with the following three
components: enhanced planning abilities, enhanced perceptual abilities, and enhanced
motor control.

No single Al method can achieve all of these goals. An Al system that provides
increased flexibility for robots must, in all probability, be a hybrid system, with each component
responsible for a certain function just as different parts of the human nervous system perform
different functions.

Ideally, a robotic system should be able to generate simple plans and address minor
contingencies autonomously; otherwise, the robot must be expressly programmed for every
small task it may conceivably be asked to perform. This requires a great deal of a
programmer's time and makes the system unable to perform when confronted with even the
smallest change in circumstances. Autonomous robots, conversely, save time by reducing the
amount of necessary human intervention. An autonomous spill-cleaning robot being
developed at the University of Tennessee is an example of efforts along these lines.

Knowledge-based systems and modei-based reasoning systems have been developed
experimentally to accomplish this type of planning. Flexibility in planning must be considered
as a matter of degree. Not every possible occurrence can be anticipated, but reasonably
capable systems have been developed to contend with limited but functional environments.
Planning of the type typically performed by these systems involves goal trees.

The second component of flexibility, enhanced perceptual abilities, is essential to
provide robots with the capacity to respond to a dynamic environment. Sensor technology
allows a robotic system to capture a rather compiete “picture™ of an environment, but analyzing
this picture fully enough to allow pianning for changes requires an Al componant.

Though not all environments can be dealt with by any single system, some models, such
as blackboard systems for vision, may be ideal for the muiti-sensor vision required for many
robotic functions. Probiems such as scene analysis require combining diverse sources of
knowledge (multipie sensors, internal knowledge, and input from other Al components). For
example, a robot required to move warehouse items from one location to another may have to
recognize the size and shape of the items to be moved, recall certain characteristics of them
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from memory (e.g., fragility, weight), and adjust the amount of force used for grasping the item
to the weight of the box. This sort of scene analysis is a common, if not completely defined,
task in Al. Expert systems, model-based reasoning systems, and neural networks have each
been applied at one level or another to the vision task.

Providing robotic systems with enhanced motor control requires a computational
expense and precision that is difficuit to attain with conventional means. Al attempts to
augment the motor control of robotic systems and thereby make such systems capable of more
human-like performance on certain chores. The two tasks involved in providing intelligent
control for robotics systems are: 1) to provide contingency control to ailow responses to unfore-
seen extsmal or internal disturbances (e.g., the robot runs into a wall}, and 2) to increase the
precision of the robot's movements. Expert systems have been built to assist intelligent
controllers in coping with unanticipated disturbances. However, they are not designed to
increase the precision of the movements. On the other hand, neural networks seem to be well
suited to the task of enhancing a robot's range of functions. Their parallel nature provides for
rapid generation of control signals and, therefore, for more precise movement. The fault
tolerance of artificial neural systems, which stems from the distribution of processing tasks
among a large number of simple processing units, is also an important feature for robotic
systems. Finally, the adaptive or learning ability of neural networks may eventually greatly
simplify the task of programming the controller characteristics.

Creating more flexibie robots is one of the most difficult applications for Al because it
requires combining several methods and because the subtasks themselves are challenging.
Few successful examples as yet exist in industry. However, the amount of research now being
conducted in this area attests to a growing commitment to develop more flexible robotic
systems. The Ford Motor Company, for example, has invested heavily in robotic systems and,
more recently, in Al systems to augment them. It is expected that during the 1990s,
implementation of more flexible robots will be both possible and profitable.
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7.0 EVALUATION OF APPLICATIONS

In previous sections of this document, Al methods and general applications categories
were highlighted. This section is concemed with more thorough identification and analysis of
applications specific to the depot systern. Applications selected for discussion are those most
apt to benefit from increased efficiency and reliability and/or reduced costs.

The following subsaections discuss specific depot-related tasks that may be served by
technologies and the characteristics of a task that make it suitable for Al applications (or,
conversely, that identify it as unsuitable.)

7.1 DEPQT-RELATED TASKS SUITABLE FOR Al APPLICATIONS

Of course, not every option can be explored. Those working within the depot system
who have basic knowledge of the characteristics and capabilities of Al systems are probably
the ones best abie to identify appropriate applications. It is hoped that this document will help
to supply interested readers with such functional knowledge.

Industrial applications are sometimas difficult to identify because of the complex nature
of the tasks they address. Some industrial chores fall exclusively within the general
application categories previously described, such as repair or diagnosis. But often, real-life
applications are combinations of these basic categories and sometimes represent
combinations of different technologies. For example, robots designed to load and unload
munitions at a depot may require a vision system, perhaps using a neural network for
recognition of physical objects and a modei-based reasoning system to make sense of the
scene as a whole. A rule-based system might be used to augment the controller of the
machine, enabling it to contend with unforeseen and possibly dangerous situations. These

may be united with the other components within the organizational structure of a blackboard
system.

7.2 APPROPRIATENESS OF APPLICATIONS

Most successful Al applications in both industry and government consist of expert
systems. Expert systems were the first Al technology to become commercially available. They
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have been applied to numerous problems and undergone continuous evolution, and today
they can be built upon many available retail expert system shells. But although expert
systems have provided successful solutions to many problems, they are not appropriate for all
problems. Aiso, davelopment of expert systems can be relatively time consuming and
expensive, thereby making them unsuitable solutions to many problems which they fit in
theory. The foilowing discussion will highlight the most salient points of general agreement
among experts today concerning evaluation of expert systems applications.

Many factors play a role in determining whether or not an expert system should be
impiemented, and many of these are difficult to measure effectively. A quantitative analysis is
usually not simple. Nevertheless, an analysis may be quite useful in encouraging evaluation
of the features of a task before construction of the systemn begins, thus weeding out many
projects that ara not likely to succeed before time and money are spent. Furthermore, such an
evaiuation can encourage the consideration of many new applications that share the same
characteristics as the application being considered.

The support the project receives before it is undertaken is an essential and often
neglected consideration. To have good probability of success, the expert system application
must have considerable support from the following three groups: management, consumers,
and the expert or experts from whom the knowledge for the system is to be elicited.

Because of the time and cost involved in large development projects, an uncommitted
management with overriding, short-term goais can make demands upon the system that the
system cannot deiiver, or at least make the project more difficuit than necessary. To be sure
that the project will be allotted the required time and other resources, management must have
a realistic view of the project’s goals and a supportive role in its development.

it is aiso advantageous for consumers of the end product to have an accurate and
realistic appraisal of the system to be developed. They should reasonably expect that
performance of the system will provide a payoff substantial enough to justify their commitment
of time and effort, yet not expect resuits well beyond the actual performance of similar systems.
In some cases, potential users may fear or resent an expert system as a replacement or a
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competitor. Education, including realistic appraisal of the anticipated performance and role of
the expert systemn within the work environment, can be very useful in generating the necessary
support from this group.

Like users, experts may also feel challenged by the introduction of an automated system
and therefore should be helped to understand that the tool is not a threat. An expert who is
interested in the process of developing the system is likely to be much more usefui than one
who is not. Individual characteristics (e.g., the ability to communicate effectively or a tendency
to pontificate) wiil also aftect the process of eliciting knowiedge from the expert. Because
knowledge elicitation is often the most difficult task in building an expert system, considerable
attention should be devoted to analyzing the expert or experts upon whom the system
depends.

Another consideration that arises when the probability of success of an expert system
project is to be estimated is the nature of the task itself. In analyzing the task, it is important to
recognize that not all problems are created equal. There are several relevant features of the
problem domain that require careful consideration: the expertise or knowledge requirements,
the problem’s level of difficulty, the measurability of generated solutions, and the likely
evoiution of the task.

Before undertaking development of an expert system, it may be useful to verify that the
required expertise actually exists; i.e., that there is a man or woman who is considered to be
an expert is this field. If there is such an individual or group of individuals, one should next
consider the extent to which this knowledge is heuristic. Heuristics, as described eariier, are
useful “rules of thumb," acquired by experts during months or years of experience, which when
applied to a problem tend to generate solutions. For the problem to be appropriate for solution
through Al technologies, creativity must not be relied on. Creative solutions require
spontansous generation of new ruies and the unanticipated synthesis of existing knowledge.
Expert systems are not capable of this type of response. |

The level of difficuity of the problem also helps to determine whether expert system
technology is appropriate to a given task. Tasks to which expert systems are to be applied
must not be too large; large problems may require massive stores of information, much of it not
clearly related or defined. When the rules required to connect this information reach the tens
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of thousands, performance and reliability are likely to sutfer significantly. Well-defined
problems rather narrow in scope are much better candidates for expert system development.
Also, the expert system ideally should not rely heavily on other areas of research, such as
general natural language interfaces, which have their own problems and challenges. Adding
further complexity to expert system implementation is likely to lead to unnecessary delays.

Just as tasks that are too difficult are inappropriate, so are tasks that are too easy. Ifa
moderately skilled technician with some training can perform as well as a more experienced
"axpert,” the task may be too easy to require the development of an expert system. The
problem could probably be addressed through more conventional means. If an algorithm can
be developed to solve the problem, then Al techniques, being generally less well understood,
should not be used.

The third consideration for task evaluation is that the task should provide for
measurability of generated solutions. There are two aspects to inventing a meaningful
performance measure: 1) assessment of the solution itself and 2) assessment of the of the
effectiveness of the expert systams soiution relative to other methods (e.g., use of human
experts).

A panel of experts shouid generally agree about the quality of a solution. in keeping
with this restriction, problem domains that are too subjective should likely be discarded. The
day-to-day performance of the expert system should also have a definite measure of success.
Ideally, this measure should be defined before the system is impiemented. Whether this
measure be cost, efficiency, reliability, or some combination of these or other criteria, it should
be devised to gage how adequately the system satisfies the ultimate consumer’'s needs. Initial
generation of this measure should serve to shape the development of a useful system and
encourage a focused and realistic evaluation of the expert system before it is begun.

It should be noted that 100% accuracy should not be a requirement of the system. Tasks
for which absolute perfection are essential should be addressed using an algorithmic
approach, which provides solutions that are completely defined.

The final feature to be discussed as an evaiuation point concemns the likely evolution
(i.e., longevity) of the task for which the expert system is to be built. First, the task should be
one that is likely to be around for the foreseeable future. If the task is too short lived, then the

7.4



payoff may not be adequate to justify the expenditure of resources. It is reasonable to believe
that bigger initial investments require longer periods of repayment. Secondly, if the task is
likely to evolve and thereby alter the initial requirements of the system, then the task should
ideally be modular in nature. Modularity allows for incremental growth, which may include the
addition of subtasks or systemn alterations. Accommodating incremental growth means that the
whole system will not have to be overhauled {usually at the cost of considerable time and
expense) when changes are made. Another advantage of modularity accrues in the
construction of the system: tasks that can be compartmentalized are more easily tested and
evaluated, reducing costs and completion time.

7.5






8.0 REFERENCES

Andress, K., and A. Kak. 1988. "Evidence Accumulation & Fiow of Control." Al Magazine,
9(2):75-94.

Barr, A., P. R. Cohen, and E. A. Feigenbaum. 1989. The Handbook of Artificial Intelligence,
Yolume V. Addison-Wesley Publishers, Inc., Reading, Massachusetts.

Bobrow, D. G. 1985. "Qualitative Reasoning About Physical Systems: An Introduction,”
Qualitative Reasoning About Physical Systems, D. G. Bobrow, ed. MIT Press, Cambndge

Massachusetts.

Butler, C. W., E. D. Hodil, and G. L. Richardson. 1988. "Build Knowledge-Based Systems with
Procedural Languages,” JEEE Expert, IEEE Expert 3(2):51-58.

Charniak, E., and D. McDermott. 1985. Introduction to Adificial Intefligence, Addison-Wesley
Publishers, Inc., Reading, Massachusetts.

Cohen, P., and A. Howe. 1988. "How Evaluation Guides Al Research.”

Al Magazine, 9(4):35-43.

de Kleer, J., and J. S. Brown. 1985. "A Qualitative Physics Based on Confluences,” in

Qualitative Reasoning About Physical Systems, Daniel G. Bobrow, ed. MIT Press, Cambridge,
Massachusetts.

Feigenbaum, E., P. McCorduck, and H. P. Nii. 1988. The Rise of the Expert Company. Times
Books, New York, New York,

Franklin, J., and K. Karna. 1989. "Shaping Knowledge Within Artifacts: Expert Systems in
Government." |EEE Exper, 4(1):3-5

Grefenstette, J. J. 1986. "Optimization of Control Parameters for Genetic Algorithms." |[EEE
Transacijons of Systems, Man, and Cvbernetics SMC-16(1):122-128.

Harmon, P., and D. King. 1985. Expert Systems: Arificial Intelligence in Business. John
Wiley & Sons, Inc., New York.

Holland, J. H., K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. 1986. Induction: Processes of
ji&Len_c_e_._Le_amm_q_an_d_QLs_c_Qm MIT Press, Cambridge, Massachusetts.

Lippmann, R. P. 1987. "An [ntroduction to Computing with Neural Nets.” |EEE ASSP
Magazine 4(2):4-22.

8.1



Melton, R. B., D. M. Devaney, M. A. Whiting, and S. C. Laufmann. 1989. A Methodology for

Emlualmg_Eo_tenhaUSBﬁ_Apnljgatmns PNL-6919, Pacific Northwest Laboratory, Richland,
Washington.

McClelland, J. L., D. E. Rummelhard, and PDP Research Group. 1986. Parallel Distributed

Processing Explorations in the Microstructure of Cognition. MIT Press, Cambridge,
Massachusetts.

Nii, P. H. 1986. "Blackboard Systems: The Blackboard Model of Problem Solving and the
Evolution of Blackboard Architecture.” The Al Magazine 7(2):38-53.

Pascoe, G. A. 1986. "Elements of Object-Oriented Programming.” B_Eﬁlagazj_e
11(8):139-144.

Srihari, S. N., C. H. Wang, P. W. Palumbo, and J. J. Hull. 1887. "Recognizing Address Blocks
on Mail PIeCES Specialized Tools and Problem Solving Architecture.” Al Magazine
8(4):25-40.

Slagle, J., and M. Wick. 1988. "A Method for Evaluating Candidate Expert System
Applications.” Al Magazine 9(4):44-53.

Spang, S., Ed. 1986. “Al Hardware: Part 1l." The Spang Robinson Beport 2(2)
Spang, S., Ed. 1986. "Al and Paraliel Processing: Part I." The Spang Robinson Report 2(7)

Winston, P. H. 1984. Agificial Intelligence. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts.

8.2



PNL-7721

UucC-o00

RISTRIBUTION
No. of No of.
Copies Copies
QFFSITE Commander

Red River Army Depot
2 DOE/Office of Scientific and Technical ATTN: SDSRR-F
Information Texarkana, TX 75507-5000

25 T.Emwin Commander

U.S. Army Depot System Command
ATTN: AMSDS-VV, Bldg. 523
Chambersburg, PA 17201-4170

Commander

Anniston Army Depot

ATTN: SDSAN-DEL-R2K
{Mike Trowse)

Anniston, AL 36201-5001

Commander

Corpus Christi Army Depot
ATTN: SDSCC-GM (Jack Brooks)
Corpus Christi, TX 784139-6000

Commander

Letterkenny Army Depot

ATTN: SDSLE-CES (Lynn Witthoeft)
Chambersburg, PA 17201-4150

Commander

Lexington Blue Grass Army Depot
ATTN: SDSLB-RMI (Joe Dennis)
Lexington, KY 40511-5001

Commander

New Cumberland Army Depot
ATTN: SDSNC-R (Bob Graham)
New Cumberiand, PA 17070-5000

Distr.1

Sacramento Army Depot
ATTN: SDGGA-FM-M (Paul Reynard)
Sacramento, CA 95813-5010

Commander

Seneca Army Depot

ATTN: SDSSE-FM {John Frank)
Romulus, NY 14541-5001

Commander

Sierra Army Depot

ATTN: SDSSI-FMO (Rod Colvin)
Herlong, CA 96113-5000

Commander

Tobyhanna Army Depot

ATTN: SDSTO-FM (Joe Kuligowski)
Tobyhanna, PA 18466-5000

Commander

Tooele Army Depot

ATTN: SDSTE-FMM (Chris Tillman)
Tooele, UT B4974-5000

Commander

Mainz Army Depot

ATTN: SDSMZ-FM (Karl Thuorkauf)
APO New York, NY 09185



No. of

Copies

Commander

DSAFE

ATTN: SDSFE-TOM (Dr. Gil Mezz)
Camp Market

APQ San Francisco, CA 96483-0443

ONSITE

31

Pacific Northwi r

R. E. Rhoads {25)
Publishing Coordination
Technical Report Files (5)

Distr.2

PNL-7721
UC-coo



