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SUMMARY 

This assessment of artificial intelligence (AI) has been prepared for the U.S. Army's 

Depot System Command (DESCOM) by Pacific Northwest Laboratory.!•! The report describes 

several of the more promising AI technologies, focusing primarily on knowledge-based sys­

tems because they have been more successful in commercial applications than any other AI 

technique. The report also identifies potential Depot applications in the areas of procedural 

support, scheduling and planning, automated inspection, training, diagnostics, and robotic 

systems. 

One of the principal objectives of the report is to help decisionmakers within DESCOM to 

evaluate AI as a possible tool for solving individual depot problems. The report identifies a 

number of factors that should be considered in such evaluations. 

(a) Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial 
Institute under Contract DE-AC06-76RLO 1830. 
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1.0 INTBOQUCJION 

This report, prepared at the request of the U.S. Army Depot System Command 

(DESCOM), provides a general technical assessment of artificial intelligence (AI) for an 

audience with limited knowledge of this specialized field. The assessment is intended lo 

assist managers in deciding whether artificial Intelligence is an appropriate tool for solving 

individual depot problems. It Identifies optional approaches and methods viable for 

developing real-worid applications. This report has tinea main objectives: 

1. to acgyajnt lbe rea<ler wj1b AI- The characteristics ol AI versus traditional computing will 
be discussed, as well as common methods or techniques of artificial intelligence. 

2. to define common apgllcatlons for AI - General application categories will be discussed 
to afford the reader a broad understanding of the role of AI in the real world. Potential 
Depot applications will subsequently be discussed, including references to examples 
from industry. Finally, a brief checklist for evaluation of candidate problems for expert 
system development will be provided. 

3. to groyjde the user wjth a representatjye list of available hardware and software AI 
prodycts - The list is not comprehensive; new products are released daily, and existing 
products are frequently enhanced. The list provided is intended as a starting point for 
exploration of available commercial products. 

Because most successful commercial applications are knowledge-based systems (also 

known as expert systems), they are given a more thorough discussion than the other, less 

frequently applied AI techniques. This report describes what knowledge-based systems are 

and how they are used and also provides a brief outline of the characteristics of other 

successful applications (Section 7). More in-depth information concerning evaluation of 

candidate problems is provided in a report entitled A Methodology of Eyalyatjng Potential 

Knowledge-Based Svstems Agglicatlons (Melton et. al. 1989), which considers goals, 

appropriateness, resources, and other considerations involved in the analysis of a potential 

knowledge-based system application. 

1.1 BACKGROUND 

Digital computers have been used to perform mathematical calculations for decades. It 

is the goal of AI to allow computers to go beyond a strictly mathematical framework, extending 
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the uses of the computer as a human tool. AI is the discipline involved with enabling 

machines to learn new lnfonnation, to reason, and to solve problems using knowledge. In 

other words, AI is a man-made means of representing and processing knowledge. 

Knowledge is more than a collection of numerical values. It is a combination of 

infonnatlon and experience. lnfonnation includes data (i.e., raw input), while experience 

includes associations, beliefs, and values about this Information. Conventional programming 

techniques rely on extensive manipulation of numerical quantities. AI programming, on the 

other hand. relies on the manipulation of knowledge. Often, though not exclusively. this 

knowledge is in the fonn of symbols, such as words. 

A problem that is understood well enough that relationships between facts can be 

completely and rigidly specified is a candidate for traditional computational techniques. In this 

case, an algorithm is developed which invariably produces the appropriate response. When a 

problem is not understood completely, experience is a useful tool. For example, dim lights 

and a weak radio lead us through experience to believe that a car's battery may be low. 

However, many other alternatives are possible, such as a film of dirt covering the headlights 

and a broken antenna. 

In certain problem domains, such as the diagnosis of a complex system, the proper 

application of experiential knowledge can provide significant problem-solving power. The 

types of problems that an AI approach fits best are precisely those which are poorly 

understood, inexact, and highly complex. Engine diagnosis, investment decisions, even recog­

nition of a face are among the hundreds of common human tasks that fall into this category. 

Because of its reliance on knowledge gained through experience, much of the 

computation in AI is symbolic in nature. The concepts captured in knowledge may have no 

precise numerical interpretation, but the symbols which represent them can be combined in 

specified ways through chains of reasoning. If the lights are dim and the radio is weak, then 

there is a 92% chance that the battery needs charging. This is an example of experiential 

knowledge. When a number of these rules interact together, a more exact diagnosis may be 

made (e.g., faulty wiring from the battery). 

For complex systems, the total number of possible difficulties is very great due to a 

condition known as combinatorial explosion (see Section 2.5). Experiential knowledge is 
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knowledge about the most likely difficulties, which spares the user the necessity of checking 

all possible combinations (often clearly an Impossible task). 

Humans excel at solving certain types of complex problems. An AI approach attempts to 

simulate the human mechanism of Intelligence by codifying the prototypical human responses 

to such problems (I.e .. problems characterized by complexities of immense input or solution 

sets, uncertainty In the information, or incomplete data). 

Using AI methods, people are beginning to address problems that could not be 

examined in the past because the solutions required manipulation of too much data; for 

example, development of a vision system for a semi-autonomous robot There is no possibility 

of specifying a complete catalogue of all visual scenes for a robot. Not enough memory exists. 

Changes in the position of the object being viewed, orientation of the robot, lighting variations, 

and several other factors would alter the scene and therefore require another image to be 

stored in memory. The number of possible images Is essentially infinite, so that using the 

catalogue approach to visual scene analysis is only possible in the simplest and least useful 

of cases. AI has been used to reduce complexity by selecting key features that do not change 

and then drawing Inferences about the features. Understanding of natural language and 

speech analysis are two more examples of problems which are untractably complex due to the 

sheer quantity of information to be analyzed. It is clear that to contend with such complexity, 

the simpiHications and knowledge which AI utilizes are necessary. 

However, extensive data sets are just one type of complexity suited to treatment with AI 

methods. Another type involves informational uncertainty. Data values may have a degree of 

uncertainty due to insufficient infonnation, lack of understanding, randomness, or unreliability. 

In an environment where data may be incomplete or uncertain, natural intelligence performs 

admirably. Every day, human beings make successful business decisions in an environment 

that Is constantly changing and difficult to predict. Relatively simple decisions, such as how 

many units of a certain commodity a retail store should purchase, require a combination of 

uncertain forecasts and unreliable data. Still, humans decision-makers are able to make such 

choices, often very well. AI methods attempt to mimic human capabilities in these areas by 

providing a means to process uncertain or partial information. 
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Another important characteristic of the type of complexity which marks the ideal problem 

for AI is that part of the information about the problem is heuristic-useful but imprecise. 

Heuristic knowledge is also known as "rule of thumb" knowledge. Heuristic knowledge is 

experiential knowledge - knowledge that Is correct most of lhe time, but not all of the time. 

In summary, AI approaches are concerned with lhe same types of problems at which 

human intelligence excels, i.e .. problems characterized by large and frequently complex input 

and solution spaces, by uncertainty and/or Incomplete information, and by a heuristic nature of 

some or much of the knowledge. These are the types of problems least suited to solution by 

traditional computational techniques. AI, therefore, may be regarded as complementary to 

computing as a tool for solving problems. 

1.2 ADVANTAGES OF ARTIFICIAL INTELLIGENCE 

AI techniques are most commonly used to partially replicate human abilities and lhe 

most successful AI applications have tended to augment human performance rather than 

replace it They may be implemented to release workers from dangerous or tedious 

occupations, to mitigate the effects of shortages of expertise forecasted for a variety of 

occupations, or to increase the quality of available expertise by Improving the speed and 

reliability of expert decisions. The application of AI may also provide cost-effective alternatives 

for many industrial chores, thereby becoming a competitive necessity. Knowledge-based 

systems, and to a lesser extent, other AI technologies have been successfully employed in a 

variety of settings, performing a variety of tasks, both inside and outside government. 

The following sections describe several of the more promising AI technologies. general 

applications for AI, and specific potential Depot applications. Many of the documents listed in 

the references (Section 8) provided further information on specific technologies and 

applications. 
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2.0 METHODS IN ARTIFICIAL INTELLIGENCE 

The basic problem-solving methods used In AI are reviewed in this chapter. Over the 

last thirty years, a number of different approaches have been developed to address a wide 

range of problems. Each method can be broadly described as a way of organizing, 

representing, and applying knowledge. The most economically promising of these methods 

are discussed in the following subsections: rule-based expert systems, model-based 

reasoning systems, blackboard systems, neural networks, and adaptive search algorithms (in 

particular, genetic algorithms). 

In terms of application, these methods need not be exclusive of one another and, 

indeed, mixing them may provide the best solutions to a given problem. For example, 

computer vision systems may include neural networks for low-level feature extraction in 

tandem with a rule-based system to reason about higher-level structural cues. 

2.1 RULE-BASED EXPERT SYSTEMS 

A human expert acquires knowledge and skills that enable competent, effective, and 

innovative problem-solving. There are three features that characterize an expert: 

specialization, accuracy, and efficiency. An expert can be defined as a person who has 

amassed a large quantity of specialized knowledge gained from experience in solving 

problems of a certain type. The expert is also relatively accurate in terms of solutions; he or 

she will be right often enough to be useful and reliable. (Each domain has generally accepted 

rates of error. A meteorologist, for instance, may be allowed more of an error margin than an 

operator of a nuclear power plant.) Given unlimited time, novices may perform as well as 

experts on some tasks, but an expert is able to arrive at conclusions with relative efficiency. 

These characteristics--specialization, accuracy, and efficiency--are the same qualities 

simulated in AI expert systems. 

In this context, we are concerned primarily with functional expertise, such as that 

exhibited by an automobile mechanic or a medical doctor, rather than expertise in broad and 

poorly defined areas where knowledge and performance are not easily measured, such as 

international relations or history. 
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Expert systems, sometimes known as knowledge-based systems, are computer 

programs that attempt to simulate the performance of an expert on some well-defined, 

narrowly scoped task. These programs, which represent the first commercial success of the AI 

industry, are designed to have many of the capabilities of a human expert, such as 

specialization, accuracy, and efficiency. Though expert systems may not exceed the 

performance of the best of the experts, they often do perform better than the average expert 

and therefore serve to increase the overall skill level to a significant degree. Expert systems 

also interact with users in ways a human expert might, seeking additional information by 

asking questions and explaining conclusions in language appropriate to the user. 

Expert systems differ from traditional computing in several important ways. First, the 

data used by expert systems is in symbolic form, as well as numeric. Symbols are 

non-numeric values used to represent concepts: tor humans, these are chiefly words. 

Second, experts systems have a different control structure. Traditional programs combine 

control with knowledge in the form of algorithms; expert systems, on the other hand, have a 

separate control structure that knows how to use a body of problem specific knowledge 

expressed in an appropriate form such as if-then rules. Finally and most importantly, expert 

systems, unlike traditional computing systems, are constructed to behave like experts. linking 

together groups of information, forming a chain of reasoning, and describing this knowledge to 

the user of the system. 

2.1.1 Composjtjon of Expert Systems 

Expert systems have three primary components: the knowledge base, the inference 

engine, and the human-computer interface. The knowledge base is the store of information; 

the inference engine defines ways the information in the knowledge base can be combined; 

and the human interface is a way to communicate between the computer and the user. 
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Knowledge Base Inference Engine 

Human-Computer ~ 
Interface 

Figure 1 . Expert System Components 

2.1.2 The Knowledge Base 

The knowledge base may be represanted in many fonns, including frames, logical 

expressions, semantic nets, and rules. Each of these terms refers to a distinct way of storing 

pieces of information in symbolic form so that they can be efficiently combined with other 

pieces of information. Knowledge representation by rules has traditionally predominates and 

is the focus of this section. Rule·based knowledge systems are composed of both facts and 

rules. 

Facts are objective statements describing a known reality. Rules (heuristics) describe 

the relations between facts. For instance, a vision system might capture the forms of three 

objects on a conveyor belt. A knowledge-based expert system might be used to extract 

features from the images (e.g., size, shape, centroid) and then combine this information 

through rules (heuristics) to conclude that one object was a box. one a wrench, and one a 

bomb casing. The rules established in an expert system are used to integrate and relate lacts 

and, ultimately, to draw conclusions. 

The facts and rules of the knowledge base embody the expertise. Much of this 

knowledge Is gained from an expert's experience specific to a single domain. This experience 

determines the rules (heuristics) relevant to the knowledge base. To develop this knowledge 

base, facts and heuristics are gathered from experts who serve as the _system model. How is 

this done? For small programs and simple problems, the expert may simply purchase a 

skeleton of an expert system, an expert system minus any domain specific knowledge • and 

transfer his knowledge to the shell. But for larger problems, a knowledge engineer may be 

necessary. A knowledge engineer, trained in the process of extracting relevant knowledge 
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through Interview techniques, logically structures this knowledge into a knowledge base. 

Whichever the case, construction of the knowledge base is often the most difficult and 

time-consuming chore in creating an expert system. 

2.1.3 The Inference Engjne 

The second major component of an expert system architecture is the inference engine, 

which controls the reasoning process that infers new knowledge from the existing knowledge 

base. There is more than one way to create new infonnatlon by Inference, including forward 

chaining and backward chaining, two methods commonly used in rule-based expert systems. 

In forward chaining, the discovery proceeds from known facts to new facts. The 

illustration of object recognition described aibove is an example of forward chaining: the facts 

are used to form a conclusion. Backward chaining Involves hypothesizing a particular 

conclusion and then "reasoning backwards" to ascertain whether facts could support this 

hypothesis. Forward chaining and backward chaining may be combined in a rule-based 

system. For example, forward chaining could be used rt the nature of the conclusions to be 

reached are indefinite (thereby making fonnulation of an hypothesis difficult); backward 

chaining could be used when the conceivable number of possible inferences made from basic 

facts is very large, and evaluation of each choice would therefore be time consuming. A 

control strategy inherent in the expert system must not only control the direction of the 

reasoning process, but must also provide the inception point and resolve conflicts that may 

occur if two distinct reasoning paths could possibly be used at the same time. 

2.1.4 Tbe Human.Computer lntertace 

The last component of a rule-based expert system to be discussed is the 

human-computer interlace, which provides three primary functions. First, it serves as a port for 

knowledge acquisition--from an expert (for domain knowledge) or from a user (for 

environmentaJ knowledge). Second, it provides explanations to the user for particular choices 

the expert system has made. Third, it provides utilities for input, output, and online help. This 

component is usually sophisticated, because a module that acquires and explains knowledge 

and reasoning to a user is critical to the success of a knowledge-based system. 
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2.1.5 Applications of Expert Systems 

Although expert systems have been applied successfully on many occasions and 

represent a technology that has matured in recent years, there are still several considerations 

to be made before an expert system is constructed. The problem to be solved should be well 

defined, as discussed before. Historians will probably not be replaced by expert systems in 

the near future. On the other hand, problems that are completely described by mathematical 

analysis are not appropriate for the domain of expert systems. In addition, some problems are 

either too simple or too complex to justify the production of an expert system. Even if the 

problem matches well with current capabilities, it must be determined whether solving the 

problem with an expert system is economically justifiable. 

Expert systems do have many proven advantages. They are consistent. accurate, fast, 

reliable, and accessible relative to their human counterparts. These qualities may translate 

directly into cost savings when appropriately applied. 

2.2 MOQEL·BASED REASONING SYSTEMS 

AI methods that reason about the physical system itself and do not simply capture the 

rules identified by human experts have a wider range of operation. The most detailed form of 

model based reasoning is an algorithmic (analytic) model of the rea system. In AI 

applications, the model is typically accurate in representing the qualitative behavior of the 

system and only addresses quantitative behavior of the system to a limited extent. The 

objective is to create a model explicit enough to provide predictions about the important 

behaviors of the actual system, but simple enough not to bog developers down in the 

complexity of complete numerical models. 

Model·based reasoning necessitates the construction of a model that behaves, at some 

level of abstraction, the same as the real system. While modeling can include the modelling 

of natural systems, the scope of this overview is limited to models of man-made systems, such 

as engines, pumps, or assembly lines. In this context. models are built to identify complex 

sequences of behavior and to ensure that the system functions according to its purpose. The 

components and the interactions among components are identified so a sensed error in the 

system can be traced to its initial malfunction. Model-based reasoning, therefore, involves 
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drawing conclusions about the condition or likely future condition of a physical system. The 

specific goal of the reasoning process, In our context, Is to develop the knowledge necessary 

to enable the system to function aoccrdlng to its Intended purpose. 

The process of reasoning about physical systems has several components. The first 

component is a thorough understanding and description of the system. To model a car 

engine, knowledge and understanding of the engine components and the interrelationships 

among the components is required. For example, all engine parts, their functions, and their 

expected interactions must be identified and described. This understanding has several 

possible levels, from a specified set of deterministic and stochastic equations to 

common-sense or functional understanding. 

The second component in the reasoning process is a determination of the current status 

of the system. Sensors provide information about key components that describe the system 

state (i.e., "Is ij working or not working"). From a functional standpoint, sensors would 

determine, for example, "the wiper blades are not working. • 

The third component Is the ability to apply an undertying knowledge of the operation of 

the physical system, given current conditions, to determine some functional classification (i.e., 

normal, critical, etc.) or probable future state. In the above example, sensors determined that 

the wiper blades are not functioning. Given hot and dry weather conditions, the model would 

classify the malfunction as noncritical; if weather conditions changed to rainy, however. the 

model would reclassify the function of wiper blades as critical. 

The final component is the ability to determine actions to be taken to rectify abnormal 

operation or to maintain normal operating conditions. In the case with the wiper blades, 

alternative solutions might be offered, such as the following: 

"Check wiper blades. Replace if cracked." 
"Check wiper blades. Are they in normal position?" 
"Check wiring to wiper blades. ~wiring is OK, check battery." 

Through this iterative reasoning process, the initial malfunction can be found and repaired. 

This final component may or may not be included in a model that reasons about physical 

systems, but it is implied if the intention is to troubleshoot for system errors. 
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These four components (understanding the system, determining the system state, 

classifying the system status, and determining any necessary actions) interact to produce a 

model-based reasoning system. The characteristics common to an alternative reasoning 

approach about physical systems, known as qualitative physics, are discussed below. This 

approach was selected for discussion because of Its Increasing popularity and apparent utility. 

2.2.1 QuaiHatiye Physics 

Qualitative physics Is aliso known naive physics or common-sense physics. Qualitative 

physics tries to define a system's mechanical operations without relying on a complex 

mathematical description. It is a simplification that seeks to retain in the model only those 

abstract components essential to the functioning mechanism. In a sense, qualitative physics is 

an attempt to capture the human approach to reasoning about the physical world. Humans do 

not consciously diagnose their environment in terms of thousands of nonlinear differential 

equations. Nonetheless, humans operate very well In the real world. Qualitative physics has 

sought to identify the basic characteristics of the knowledge that humans use when reasoning 

about their environment and apply those characteristics to computers. As a result, AI can gain 

a relative advantage in the rapid, accurate, and robust anticipation of physical behavior. 

Several characteristics are common to AI systems that are based on qualitative 

reasoning. The integration of these features describes the basic methods used in qualitative 

reasoning. 

The first idea common to qualitative reasoning approaches is the system. A system is a 

set of interacting components. Each distinct component must be defined in terms of its 

characteristics and its behavior--a car engine, for example. The system must then be 

described in terms of the interactions between the components, essentially answering the 

question of how a distributor rotor affects a spark plug. These relationships must be defined 

for every component. The overall behavior of the system then arises from the overall 

interaction of component behaviors. The description of behaviors and interactions are 

mathematical simplifications. 

These mathematical simplifications give rise to the second common feature, causality. 

Causality Is modeled by the interactions among components described above. The causal 

relationships are important for defining overall system behavior. For instance, a spark plug 
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failure may be causally related to failure of a battery. The d"oscovery of a failed battery 

encourages the verification that the spark plug is really working. Therefore, causality implies 

that system behavior is predictable with a deeper understanding than simply the modeling of 

component behavior. 

Another common feature is functjonality. Again, this concept separates qualitative 

reasoning from other forms of modeling. From a purely mathematical perspective, 

components to do not possess a purpose, only a structure and other stochastic and 

deterministic features of operation. In qualitative physics, the mechanism is viewed from the 

human perspective. A functional requirement or purpose is imparted to the components and 

to the system. The reasoning process can then be augmented by the requirement that each 

part performs a task, and this supports reasoning about the overall system behavior. 

Finally, qualitative reasoning systems rely on the guantizjatjon of jnformatjon, (chunking 

continuous data into discrete pieces) to simplify the description. A state is defined as the 

condition of a system at a particular time and is measured by the value of specific parameters. 

Behavior is described as a sequence of physical states. States of a system are represented 

by discrete values, not continuous ones. For example, if the rate of current flow into a circuit 

element is designated by the symbol dVdt (a time dertvative), this symbol may be limited to 

either+ or-. thereby compressing the infinite range of real numbers to two values. These 

values may be physically significant because of some behavioral change that takes place at 

this point, while the actual numerical value is unimportant to system behavior. 

The features descrtbed above provide an introduction to the characteristics of qualitative 

reasoning systems. These systems, like others that reason about physical mechanisms, can 

be applied to a range of activity, from simulation and vertfication to diagnosis and analysis. 

They seem to offer a solution to the rule-based systems that operate without "deep level" 

knowledge and, therefore, are more easily confounded. It should be pointed out that the 

techniques employed by qualitative physics could be applied to many types of systems. 

2.3 BLACKBOARD SYSTEMS 

A classical approach to problem solving is the process of breaking down a large 

problem into a group of less complex problems that are more easily identified and defined and 
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that fit together to form a solution. For example, the operation of a technical conference can be 

broken down into smaller tasks such as registration, technical abstract review and selection, 

hotel accommodations, meals and reservations, technical session planning, poster sessions, 

guest activities, finances, media relations, and other tasks necessary to make the conference 

run smoothly. The blackboard approach to solving problems draws from this paradigm. A 

large problem is separated into subtasks using a variety of reasoning strategies and 

knowledge sources capable of acting separately to achieve a single goal. These tasks are 

usually at different levels of abstraction and information flows up or down between the levels 

to assist the problem solving. 

Blackboard systems effectively use division of labor and organizational plans to create a 

powerful and flexible problem-solving strategy. In blackboard systems, division of labor is 

embodied as a collection of functionally independent knowledge pools. That is, each 

knowledge pocl represents a subtask of information. The organizational plan gathers 

appropriate knowledge pools together to reason towards a solution. These two components 

can be envisioned as a group of experts (each represented by a knowledge pool) who know 

how and when to contribute (as specified by the organizational plan) to a large problem 

requiring the full range of their expertise. 

2.3.1 Comoosjtjon 

The broad scope of activity that characterizes blackboard systems arises from the 

interaction of three basic components: 1) the group of knowledge sources, 2) the blackboard, 

and 3) the control structure. Each component contributes synergistically to a solution. These 

components are described further below. 
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Figure 2. Blackboard System Structure 

Knowledge sources, the first component of a blackboard system, can be compared to 

human experts. Knowledge sources, or pools, contain adequate knowledge about a specific 

domain, but unlike human experts, do not have even rudimentary understanding of any other 

domain. This modularity is a key feature of blackboard systems. Knowledge sources are 

allowed to be ignorant of other domains because each pool of knowledge determines when to 

apply its expertise to alter the contents of the solution. Knowledge sources are represented as 

groups of rules or logical assertions which specify a problem state to locate and an action to 

initiate. 

A second component of a blackboard system is the blackboard itself. The blackboard is 

the global structure that provides the only (Indirect) interaction between knowledge sources. It 

functions as a central repository of solution infonnatlon. The nature of the solution process 

has been charactertzed as incremental, iterative, and opportunistic (Nii 1986). Solutions are 

incremental in that knowledge sources one at a time alter the contents of the solution 

represented on the blackboard. This is equivalent to solving each subproblem on the way to 

the overall solution. Through iterative and incremental transformations, which change the 

initial state, a solution can be achieved. The solution process is also opportunistic because 

knowledge sources "grab" control of the blackboard when given opportunities allowed within 

the organizational framework. 

The blackboard represents infonmation as objects. If a solution is thought of as a path 

composed of a discrete number of steps, then each object is associated with a single point in 
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that path. This can be an initial point, an incomplete or intermediate solution, or a final goal 

state. Additionally, this Information is hierarchical, so that the solution of one subproblem 

serves as an initial state, or Input to a higher level of problem design. This implies that there 

may be multiple boards in the blackboard model, corresponding to the multiple subproblems 

that are to be solved along the way. Objects may have relationships with other objects, either 

in the same or different levels of the hierarchy, and these are identified by a set of link labels. 

The third and final component Is the control structure, which often takes the form of 

control modules. The details of the control strategy are dependent upon both the task and the 

implementation, but its constant purpose Is specification of the problem-solving behavior of the 

system as a whole. The effectors of the control strategy select the behavior of the system by 

their choice of either the blackboard object on which to operate, the particular knowledge 

source that is to perform the operation, or both. 

2.3.2 Problem-Solving Activitv 

Problem solving in blackboard systems is an iterative process. Initially, a knowledge 

source makes some change in the data structure of the blackboard. For illustrative purposes, 

the knowledge sources can be thought of as detectors in a visual system. Some of these 

detectors respond to simple shapes, such as line segments, curves, or comers. More 

complicated detectors respond to combinations of primitives, such as boxes, circles, or cones. 

Even more complex detectors are designed to detect combinations of these boxes, circles, 

and cones. Therefore. there are three layers in the hierarchy. In analysis of a scene, the most 

primitive shape detectors will likely take command of the blackboard first, contributing their 

knowledge about primitive shapes to the global data structure. At each step, the different 

knowledge sources contribute their opinions about the strength of their potential contributions, 

and at each step the control structure assists in specifying some combination of shapes and 

knowledge source to be the object/operator pair. This procedure continues until some 

predetermined condition is met, presumably the successful identification of the visual scene. 

In this way, the pieces of the puzzle are put together, beginning at the bottom and working 

upward to higher levels of analysis. 
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2.3.3 Adyantages 

Blackboald systems are best suited to problems that are complex or ill defined (Nii 

1986). Complex problems are broken down into detailed processes and simple subsystems. 

When the subsystems have been divided to a tractable level of complexity. the smaller pieces 

are analyzed and fit together to form the larger solution. Ill-defined problems are those tor 

which the sequence of transformatlons leading from initial state to goal state are difficult to 

identify. There are many characteristics that characterize a problem as eHher ill-defined or 

complex. Problems fitting these characterizations may lend themselves to solution by 

blackboard systems. 

2.4 NEURAL NETWORKS 

Humans are astonishingly efficient at many tasks that traditional digital computers 

perform very poorly. Image and speech analysis are two examples. In recognition of this. 

researchers have studied the structure of the human brain tor clues to its operation. The field 

of artificial neural systems (ANS) was inspired by biological discoveries within the human 

nervous system. Due to theoretical. algorithmic. and hardware developments. neural 

networ1<s are currently being applied to several types of problems. 

Basically. ANS, also known as connectionist models. parallel distributed models, or 

neural networ1<s, are collections of simple but highly interconnected processing units. 

Figure 3. Neural Network 
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The operation Is therefore both parallel, in that all units are capable of receiving and outputting 

information at the same time, and distributed, In that each unH is connected to many other 

units. 

What neural networl<s do is easier to describe than how they do it. Neural networl<s 

receive many signals from an environment in parallel. Using rules that differ from algorithm to 

algorithm, they modify their connection weights to produce a desired output. This is learning 

in a neural network. These networl<s are capable of storing many associations in the same 

collection of units. The associations may be Images of laces with names, sounds with words, 

or positional signals onboard an autonomous vehicle with the proper control signal. The key 

is that connectionist systems are capable of making any mapping between input and output 

pairs and that multiple associations can be learned and simultaneously stored in the same 

network. 

Each of the simple units receives input, processes the input, and then transmits output. 

Generally, each unit has weighted connections to other units. The input to a selected unit is 

the weighted sum of the outputs of the other units connected to it. This sum is typically passed 

through a nonlinearity (one of several types), and the result is a unit output. In this way, units 

pass messages in the form of activation values. The system operates by accepting input, then 

passing activations until it ·settles" to a solution. The nature of this solution depends upon the 

ANS implemented. 

A variety of models exist, each with its own algorithmic intent and physical structure. 

Rather than a comprehensive discussion, we will provide a brief list of features that 

characterize their diversity: 1) the physical structure of the network, 2) data types, 3) the 

activation rules for determining how the Input received is converted to an output signal, 4) the 

learning rules for adaptation, and 5) the computational rules. 

2.4.1 Physical Structure of the Network 

The physical structure of the network refers to topological characteristics and may 

include design considerations, such as the number of processing units and the number and 

order of connections. For example, some networks are arranged in strict layers. Connections 

are allowed only between units in impinging layers. Other networl<s have each unit connected 

with every other unit in the network. Some of these characteristics can be network parameters 
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as well. The number of nodes, for instance, may depend on the problem size and will change 

from problem to problem. Topological characteristics, interdependently with other system 

features, detennine many important functional properties of the system. These physical 

characteristics are one feature of neural network diversity in AI systems. 

2.4.2 pata Iy,pes 

Network models are also distinguished by the dala ranges and data types that are 

allowed. Some models limit activation values, weight values, or both to small positive ranges. 

Some incorporate negative (inhibitory) values, as well. ANS can also be separated into 

groups that accept analog values and discrete values. 

2.4.3 Activation Bates 

The activation rules, or processing unit (node), characteristics provide other 

distinguishing features. Most units are sum and fire accumulators (that is to say that they 

simply add all the input signal strengths together and send off a an output signal if that sum is 

greater than a specified value). Neurons however frequentiy differ in the choice of output 

function. The output is some function of the input and is usually nonlinear. These 

nonlinearities have a variety of fonns (i.e., a threshold). Output nonlinearity is important 

because it imparts the capability to create essentially any nonlinear mapping between input 

and output. This frees the network model to make any association required. 

2.4.4 Learnjog Rules 

One of the most intriguing characteristics of neural networks is the ability to learn. The 

network's learning process creates correspondences between input and output patterns. If the 

network learns to complete a pattern from incomplete input, it is tanned autoassociative. It can 

recognize and reproduce a pattern even if the patterns do not exactiy match. If, on the other 

hand, the network creates a correspondence between two distinct patterns, it is 

heterassociative, or simply associative. Other networks map input in pattern classes. 

There can be two learning types, supervised and unsupervised. Supervised learning 

requires a teacher to supply the correct response during the training process. Unsupervised 
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learning requires no teacher. During supervised learning, the network weights its answers 

until it independently and correctly responds. During unsupervised learning, the network 

makes associations based on the underlying algorithm. 

To learn, the network Is trained by a training set. A representative sample of input 

patterns Is repeatedly entered to the first layer of processing units. Over time, the network 

learns to respond to these input patterns in a prescribed manner. The error-back propagation 

model forces the output unils to answer correctly (the desired output pattern). It iteratively 

alters connection weights to units that have a large discrepancy between the actual and the 

desired outputs. This is a form of supervised learning. 

Networks can also learn without supervision. Learning rules, which form the basis for 

adaptive learning In a neural system. differ substantially among algorithms. Many are based 

on the Hebblan rule that strengthen a link weight in proportion to the correlated activities 

between the sending and receiving nodes. The memory capacity and the speed with which 

the system learns is closely related to the learning rules used. An increase in the complexity 

of the learning rules will slow the learning speed. 

2.4.5 Compytatjonal Byles 

The final feature of model diversity is the rule set that defines computation. These rules 

describe the reasoning process to achieve an outcome. Connectionist systems often have t'No 

distinct operational phases: learning and computation. Learning is described above as the 

adaptive process of forming new associations while retaining the old ones. Computation 

follows learning. ij is the phase of network activity whereby a network produces a proper 

response to a given input In other words, computation is the dynamic course of activated 

message passing as arranged to form a solution. The precise nature of this process is 

different from model to model. 

ANS are used in several application areas. Neural systems are frequently used in 

pattern classification, especially when large data sets are required. Optimization problems are 

another well-suited application. Optimizations are often composed of many simultaneous 

mutual constraints. These constraints map very well to the neural network architecture. 

Robotic movement is yet another application area where the complexity of the task matches 

well with connectionist capabilities. The multidimensional transfer function between a robot's 
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sensory inputs and motor outputs can be mapped in a neural network. Sensor fusion and 

adaptive signal processing are related functions that have also been performed by neural 

networks. 

Connectionist models (neural networks) have several advantages over other 

computational models. The foremost advantage is parallelism. The speed of a parallel 

network is essential for many large processing chores. Parallel processing is independent of 

problem size. A second advantage is a high fault tolerance possessed by connectionist 

models. Distributed computations imply that the failure of a small number of processing units 

may not severely affect performance. Finally, neural networks are adaptable. This ability 

offers improvement of performance over time. For systems responding to new situations (i.e., 

control applications), the capability to learn online is valuable. Because of these advantages, 

ANS will be used more and more frequently. 

2.4.6 Future Agpljcatjons 

Neural network technology is beginning to make the transition from research to 

application. Several companies have begun to apply it to areas ranging from the classification 

of seismic signatures to speech recognition to the guidance of autonomous land vehicles. A 

major impetus to the variety of new applications will be the development and implementation 

of new hardware. Currently, neural networks are run as simulation on single-processor digital 

computers, or on parallel computers, or on special purpose digital array processor. None of 

these hardware implementations captures the potential throughput of neural networks. Chips 

are currently being designed and tested to implement neural networks directly. When chip 

technology is able to construct thousands or millions of Interconnections on a single chip, the 

full computing power of neural networks will become available. The usefulness of this 

technology should increase correspondingly. 

2.5 ADAPTIVE SEARCH ALGORITHMS 

Many problems in AI do not have a clearty defined solution strategy. Perhaps a 

deterministic solution strategy does not exist. In these cases, knowledge of a problem may 

consist only of certain initial conditions and constraints that describe the nature of the problem 
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parameters and variables and a final goal state to be reached. As a result a search for the 

proper combinations of variables and parameters may be the best way to arrive at an optimal 

solution. 

Search problems are fairly common. A manager trying to decide where. when, and how 

to spend limited funds is searching for the optimal combination of projects and budgets to 

maximize profits. Indeed, many optimization problems are found in resource allocation or in 

optimal control. These search problems Involve an Initial state, a goal state, and operators 

that transform intermediate states to new states. The operalors change a given state into a 

new state according to the nature of the search scheme. Then the new state is compared to 

the goal state. The goal state may be the unique and "correct" combination of variable and 

parameter values, or It may be the optimal combination of these values as measured by some 

established criterion. 

The primary difficulty with searching through combinations of values is that many 

domains are susceptible to combinatorial explosion. This implies that the number of possible 

solutions is too large to search in a reasonable period of time. Therefore, heuristics are 

developed to streamline the search and to direct it to variable combinations more likely to 

include the goal state. There are a number of heuristic searches commonly used by AI 

practitioners to narrow the number of feasible states to be searched. Among these algorithms 

are the A" algorithms, hill-climbing algorithms, and genetic algorithms. 

2.6 GENETIC ALGORITHMS 

Genetic algorithms, which perform an optimization, are based roughly on the principles 

of genetics as applied to evolution. Essentially, the forces of evolution affect survival among 

populations of plants and animals. Evolutionary success, measured by survival, depends on 

the adaptability of individuals within a species to their environment. Genetics, then, is a study 

of the adaption mechanism in living organisms. More specifically, geneticists study the 

selection of particular genetic units, called genes. 

Genetic algorithms cast optimization problems in the framework of a survival struggle: a 

population of solutions is modified from generation to generation using principles derived from 

genetics. The best solutions of one generation contribute heavily to the next generation's 
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solutions. Applications of genetic algorithms are very promising for a number of problems 

particularly difficult for other search algorithms. Genetic algorithms are ideally suited to 

problems with a very large number of potential solutions with very little a priori knowledge 

available. Though genetic algorithms vary widely in fonm and application, there are three 

basic steps common to all: 

1. construction of an initial population 

2. development of a performance measure for each member of the population 

3. creation of new populations using genetics principles. 

Each step requires some explanation. 

The first step, construction of an initial population, translates a given problem into an 

evolutionary paradigm. A tentative solution state is formed as a vector of state variables that 

characterize it. These are the parameters of the problem whose optimal combination is the 

goal of the search. Generally, research indicates ~ is advantageous, due to the nature of the 

genetic recombination, to represent these state variables as bit strings for manipulation. For 

example, H a given variable can assume eight possible values, then it should be represented 

as three bits in the state variable vector. The length of a state vector for a given problem will 

then depend on two things: the number of parameters to be considered and the number 

values each parameter can assume. In the absence of solution structure information. a 

population of random bit vectors can be generated to represent the initial population. The 

generation of the initial population is the first part of the genetic paradigm. 

After an initial population is created, a performance measure must be devised to 

evaluate the soundness of each state. This Is key to the operation of the algorithm. For 

population genetics, the measure reflects the capacity of the individual to survive and find a 

suitable mate. The nature of this metric clearly depends on the nature of the problem. For 

example, if combinations of workers with difterent skill levels can accomplish a particular task, 

the metric may reflect the total production time for each combination of employees. When 

determining the evaluation criteria, the score for an individual will reflect the fitness of that 

individual. Thus, the percentage of contribution to the next generation is determined. Not only 
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do the fittest survive, they also have a greater influence in the structure of the offspring. Those 

less m are removed from the population. The creation and weights of perfo""ance measures 

are the second structure to the genetic paradigm. 

The final step of genetic algorithms is dete""ining the composition of new generations. 

Genetic operators are the agents of evolution. They act on each member of the current 

population to produce the next. These operators apply two basic principles of population 

genetics, crossover and mutation. 

Crossover is a phenomena of sexual reproduction. Two parents mix traits to pass to 

offspring in varying combinations and amounts. Two state vectors analogously share their 

traits with a variable number of next generation state vactors. The mixture has a degree of 

randomness to assure variability. Crossover is the primary means of moving towards optimal 

solutions in genetic algorithms, preserving the surviving small building blocks and testing new 

combinations. 

Mutation Is the second principle of population genetics. In the te""s of optimization, 

mutation is the feature used to escape spurious local minima. In the practice of genetic 

algorithms, mutation is the flipping of one bit for each predefined Interval of total bits. For 

instance, an average of t in 1000 bits might be reversed. Crossover and mutation are 

demonstrated In the following diagram. Using genetic operators, such as crossover and 

mutation:·the search builds new populations of solutions as it progresses toward an optimal 

solution. 

Genetic algorithms can be classified as an AI method because of its adaptive ability. 

Like all forms of AI, genetic algorithms use experience to direct a solution. Similar to neural 

networks, and unlike most other methods, it adapts due to its own experience instead of 

utilizing the experience of a human in the form of heuristic rules. Also like neural networks, it 

perfo""s adaption In parallel, thereby efficientiy recording environmental information by 

simultaneously evaluating the worthiness of each offspring. 

Genetic algorithms perform across a wide range of applications. They have been used 

to specify parameters in multicomponent systems, to restore images in medical imaging, to 
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Figure 4. Operation of a Genetic Algorithm 

create lisp code for predefined algorithms, and to control the parameters of other genetic 

algorithms. They are generally better at using available information than other heuristic 

search mechanisms and require no knowledge of the problem domain other than the 

knowledge of the parameters and a method for evaluating their combinations. They also have 

the advantage of parallelism; each candidate can be evaluated in parallel to determine fitness. 

Research into genetic algorithms and their applications has recently increased. as in 

many areas of AI. The expectation is that with more interest will come more uses for this 

promising class of search algorithms. 
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3.0 APPLICATIONS IN ARTIFICIAL INTELLIGENCE 

This chapter describes the types of problems that may be solved with AI. Selecting a 

method, such as using a rule-based system, is made with a specific problem in mind. In the 

following subsections, several general categories of applications are described, which 

represent the types of problems AI systems are designed to solve: control, design, diagnosis, 

training, monitoring, planning, prediction, repair, and perception and analysis. 

3.t CONTROL 

Control is essential to the proper operation of many mechanisms. The human body has 

an immensely sophisticated control system, which is demonstrated each time a human hand 

reaches for a cup of coffee or a computer keyboard. The challenge posed for control is 

guidance; the behavior of a system is urged toward the proper value. A missile traveling 

through space can be used as an example of a control application. The missile includes 

sensors that, at regular intervals, send its location to a control module. The control module 

measures the actual trajectory against the desired trajectory and adjusts the steering 

mechanism to reduce the difference between the r.vo. The cycle of sensing, comparing, and 

correcting continues until the target is reached. 

Feedbotk Signol 

L~~==~~~---~r-:~~_j -l'-_'_"_"_''_"_"•_,_./J -l Missile J 
Control Slgnol 

Figure 5. Control Loop 

Guiding the missile may be specified for all environmental conditions. Modification of the 

pitch, roll, yaw, and thrust all affect the missile heading. In this case, the system (missile) and 

factors affecting the system (pitch, etc.) are clear and well defined. 

However with some problems, the relationship between a system's behavior and the 

factors affecting the system are not so well understood or are so complicated that a solution is 
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effectively beyond the time constraints of the application. Such problems are well suited for AI, 

because they imply a complexity beyond a mathematlcai tractability. In other words, heuristics 

may be introduced. 

Heuristics are useful for reasoning through unlikely or difficult control situations--to 

handle unexpected or drastic fluctuations in the environment, to simplify immense 

computations that would otherwise be necessary, or to accommodate a goal (target) 

modification. 

A trajectory can be associated with the behavior of a system through time. It is most 

simply a sequence of variable values. The first state of the trajectory is the system's initial 

condition. Using a central heating system as an example, the initial condition is the starting 

temperature of the room. If the thermostat is turned up, the goal state is the temperature to 

which the thermostat was set. This would be the endpoint of the trajectory. The temperature 

values of the system between these two points comprise its trajectory or temporal behavior. 

The object of the controller is to regularly adjust the system to achieve or maintain a desired 

path. The controller or thermostat continually monitors the room temperature and turns the 

heater on or off, depending on fluctuations In the environment. 
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Figure 6. lnitiai Values to Goal Values 

Complexity in a control problem is introduced when t) many factors are necessary to 

control system behavior, 2) uncertainty is characteristic of the availalble knowledge, or 

3) unanticipated variations in the environment or goal occur. In very complex systems, control 

may require the application of rules that seem to fit the current conditions. In some systems, a 
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functional description that incorporates the relationships among all the variables in the system 

may not exist However, certain relationships generally hold for certain variable values. 

Heuristics of this sort could be added to the control system to handle these situations. A 

controller may also be able to adapt to, or learn of, new situations and relationships. 

Artificially intelligent control systems may be effectively employed where important 

variables, the so-called "system state variables," can be monitored and their quantities 

changed in response to a system measurement of fitness. Applications seem most readily 

apparent in developing flexible robotic systems capable of perfonning a wide range of tasks 

that may differ significantly in required behavior. 

3.2 DESIGN 

The purpose of a good design Is optimization. For example, one of the purposes of 

commercial packaging design is to maximize consumer attention. A good design for a sports 

car body minimizes the cats drag coefficient. Optimization problems are characterized by 

goals, the factors that are to be maximized or minimized, and constraints, which are the 

resource limitations. AI is well suited to optimizing designs with consideration for resource 

constraints. 

In essence, designing a system involves a trial-and-error discovery of what works well. 

First. materials are arranged in multiple configuratioriS. Then the configurations are analyzed 

and, based on estimated perfonnance, the best design is selected. AI systems efficiently 

analyze designs iteratively (i.e., testing and retesting until an optimal design is found). 

One example of AI application is in helping design circuit boards. Circuit boards need to 

perfonn certain functions very quickly and efficiently. The design of a circuit board must also 

consider space limitations and production constraints. For instance, at Hewlett-Packard, a 

system evolved whereby a circuit board design would be submitted to a team of experts, who 

would examine the design for workability. (Does it perform the expected functions? Does it fit 

well on the circuit board? Can it easily be manufactured?) This design and review process 

would take 4 to 6 months. With the implementation of an AI design system, this design 
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optimization process was reduced to two weeks. Not only did the AI system speed up the 

process, It also pushed designers to create a more effective circuit board with few changes on 

the production floor. 

In AI. design and planning applications are similar. In each, the input and knowledge 

entered into the system, as well as the goals, constraints, and solutions, produce an optimal 

structure. But a designefs creation is basically independent of time restrictions and 

unconcerned with environmental behavior, while planning requires that each possible 

outcome at each step in time be considered. A design application is also much more likely to 

be concrete (i.e., manipulating tangible components and connections instead of behaviors or 

actions, as with planning). Design can therefore be classified as a distinct application 

category. 

Design optimization allows a design problem to be clearly identified as a fitness 

measure to judge the product. Constraints act to limit the possible number of products. 

Consider the design of a repair shop. The product is efficiency; the measuring stick is the 

tum-around time from request to repair. Designing the layout of the shop involves acquiring 

the most useful combination of necessary equipment and spatially arranging the equipment 

stations so that workers in one area least affect workers in the other areas of the shop. The 

designer, of course, faces several constraints (e.g., limitations of space, time, money, and 

product availability) that prevent him or her from trying every possible combination of tools, 

workstations, and spacial arrangements. The designer, guided by experience and common 

sense, has undoubtedly acquired heuristic knowledge about the quality of ceriain products 

and the efficiency of certain arrangements. Therefore, many conceivable combinations may 

be eliminated immediately. A workstation for power tools, tor example, would not likely be 

placed next to sensitive electronic equipment. 

The more expertise a shop designer has, the greater his or her store of heuristic 

knowledge. The remaining possible combinations form a modified search space that is much 

smaller than the original. From this narrowed solution space, an optimal design might be 

found. AI systems have been readily applied to similar tasks and appear to fit the nature of 

such a problem well. 
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AI systems that perform a design function may be applied to time-independent problems 

that have Identifiable goals and constraints. The design of an Integrated circuit is a good 

example. Design systems often provide collaborative information to human designers. 

working with them to form a better product. 

3.3 DIAGNOSIS 

A clogged fuel filter or an unproductive assembly line are two examples of systems 

operating at less than peak efficiency due to a failure of one or many parts. The symptoms 

may be a sputtering engine in a car or slower production time on an assembly line. When a 

physical, biological, or even social system brealks down, His necessary to locate the 

malfunction so a treatment can be prescribed. Diagnosis is the application of knowledge and 

reasoning to identify such malfunctions. A diagnostician, human or computer, acts as a 

detective that gathers information through observation and inquiry, analyzes the clues 

(symptoms), considers likely possibilities, and identifies a suspect. 

Diagnostics is one of the earliest and most successful AI applications. Using the 

diagnosis of a mechanical failure as an example, the primary features and difficulties inherent 

in a diagnostic task, as well as successes of AI diagnostic systems, will be illustrated. 

Diagnostic knowledge-based systems have frequently outperformed the average expert in a 

variety of problem domains in terms of both accuracy and speed. Both humans and 

knowledge-based systems must reason about a mechanical failure using rules of judgment, 

evidence of symptoms, mechanical facts, knowledge of cause-and-effect patterns, and 

experience. A diagnostic system generally uses four steps: t) knowledge acquisition, 

2) reasoning, 3) prescription, and 4) explanation. 

Knowledge acquisition consists of augmenting the knowledge already residing in the 

database. Through dialogue and inquiry, relevant details are gathered which supplement 

existing information. For a mechanic, this information may include describing mechanical 

symptoms, dates of malfunctions, data provided in the manual for a particular vehicle, and 

other pertinent information. New and existing knowledge is combined to more completely 

characterize the problem. 
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Reasoning, the second step In diagnosis, consisls of trying to fit the facts together to form 

a tentative hypothesis. As the hypothesis is formed, supporting facts are identified or sought 

through dialogue and through observation (e.g., of a vehicle and ils operation). If the initial 

hypothesis is refuted by testing or observation, then a new hypothesis is formed. The 

reasoning continues until halted bY diagnosis (e.g .. the car has a clogged fuel filter) or by the 

recognition that a diagnosis will not be forthcoming (e.g., more time and information are 

needed). This iterative reasoning process drives the development of a diagnosis. 

The third stage of the diagnostic process is prescription. Once the problem has been 

identified, what can be done? Depending on the diagnosis, alternative prescriptions may be 

offered (e.g., cleaning an old part. installing a new part, buying a new car, or some optimal 

combination of these). In this prescription step, remedies appropriate for the diagnosis are 

offered. 

The final step in this methodology is explanation. In the case of an automotive 

mechanical problem, the reasoning and conclusions would be explained to the vehicle's 

owner. For many diagnostic systems, the explanatory effort is essential to ils usefulness; 

otherwise, the utility of a sound diagnosis may be ignored. Therefore, justifying the diagnosis 

and the remedy is essential to the success of the diagnostician, whether expert system or 

mechanic. 

Diagnostic systems can be effectively applied to numerous systems so complex as to 

defy a strictly analytical or mathematical description. Diagnostic systems are also useful when 

constraints (e.g., time and money) to identifying all possible functional difficulties are 

prohibitive. The wide range of AI applications extends from machine repair to medical 

diagnosis and from analysis of government policy to organizational effectiveness. 

3.4 TRAINING 

Knowledge is a commodity. There is constant need to transfer knowledge from those 

who have it to those who need it. Instructional expert systems are developed primarily to pass 

knowledge efficiently from a knowledge base to a human user. Efficiency is a fundamental 

concern with respect to use of valuable resources (human expertise) in conveying pertinent 

facts. There are several alternatives to knowledge-based instructional systems (e.g., human 
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instructors: instructional software that does not use AI technology; and media such as video 

tapes, audio tapes, and books). An instructional knowledge-based system has definite 

advantages, including interactive ability that allows queries and provides reasoned 

responses, reproducibility that allows one instructional system to be distributed to a number of 

locations, and cost effectiveness. 

instructional AI systems are important alternatives to human experts for several reasons. 

Human experts charge for their time, a charge likely to increase with the quality and breadth of 

their expertise. Experts in a particular domain may be a scarce resource and may be difficult 

to attract, even if funds are available. The quality of human expertise also varies drastically, as 

does the teaching ability of the expart. On the other hand, a knowledge-based AI system 

basically requires a one-time fee and is always available when needed. Furthermore, the 

quality of instruction is constant and predictable. For these reasons, AI is a viable alternative 

in instructional applications. 

instruction requires three things: 1) knowledge to be taught; 2) an inference mechanism 

to generate new ideas or facts from existing ones; and 3) an interlace unit that accepts and 

supplies questions, requests, and instruction. Each component must be specially attuned to 

the task of teaching. For instance, the knowledge base must include facts attuned to the 

information consumer. It is often appropriate, for example, that novices be taught differently 

than students who are already familiar with the subject matter. 

The human interface of an AI knowledge-based system should have a well-designed 

query system capable of providing clear and complete explanations. Human users may ask 

questions, the answers to which are not contained in the store of knowledge. A static form of 

knowledge representation, such as a book, is of little use if it does not contain the required 

information. With a knowledge-based system, however, reasoning chains can augment the 

knowledge base and create information to answer the user's questions. Because almost 

every domain contains virtually limitless potential questions, reasoning is an immensely useful 

tool. The number of instructional uses for AI is as great as the number of expert domains, 

limited only by imagination and resources. 
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3.5 MONITORING 

To monitor a process Is to measure and compare. At each step in the process, the 

monitor is told how a system should run; specific system behaviors are identified as abnormal 

if they deviate from the proscribed pattern. The monitoring system is not responsible for 

controlling the process but rather observes and reports system errors. 

In the simplest terms, monitoring is a pattern recognition task. The number of possible 

system errors is matched against the recognized (defined) system patterns. However, as with 

other AI applications, problems often increase In complexity beyond the simplest case, thereby 

introducing the need for alternatives to traditional computing. 

Monitoring can be thought of as a passive form of control, in which signals are received 

and then judged either appropriate or inappropriate; however, there is no active involvement 

in the form of control signals. Small fluctuations are typically unimportant to a monitoring 

system but are addressed by a control system. In a monitoring system, the knowledge held is 

predictive, designed to identity trends in the sensing data and to predict the long-term 

behavior of the system. Control systems, on the other hand, are designed to maintain a 

particular trajectory and are not concerned with long-term system behavior except as a series 

of short-term steps. 

Two functions are essential in the task of monitoring: 1) recognition of an abnormal state 

and 2) notification of its existence. A monitoring system acts as an observer, identifying and 

reporting deviations from specified norms. Such a system may or may not be based upon 

understanding of the actual process and what is normal, but the greater the knowledge base, 

the deeper the inferences that can be made about abnormal modes. 

Of course, for every increase in complexity, there is an explosion of possible error 

combinations that makes it less reasonable to specify every possible error. Unforeseen errors 

may be left off the list of anticipated error states. Unless the monitor can infer knowledge of 

abnormal behavior from a causal analysis, the system will be unable to properly recognize 

and report these unexpected errors. An approach that appears increasingly useful permits 

recognition of abnormal states through "deep" knowledge about !he causal behavior of the 

system. This application is ideal for an AI system designed for a monitoring function. 
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An AI monHoring system can be used to check performance in a wide variety of 

applications, and what the system Is constructed to monitor is, of course, a design 

consideration. It may be used to gage the performance of complex and cosUy machinery or as 

an ea~y warning system. A monitoring system in a coal-burning power plant for example, 

may collect and analyze gage readings from fuel consumption and heat sensors. System 

monitoring can be applied to almost any temporal behavior of sufficient complexity. All that is 

required is knowledge of what is not allowed and/or the ability to infer what is not allowed 

based on reasoning. 

3.6 PLANNING 

A plan Is course or sequence of actions which occur between the input of information 

and the attainment of a goal. A plan is formulated with a specific goal in mind. Each step of 

the plan is intended to contribute to goal achievement. As goals become more complex, it is 

necessary to establish a hierarchy of goals and subgoals to be accomplished. In short, a plan 

is sequential, purposeful, and hierarchical, often composed of many parts differing in their 

levels of abstraction. 

AI systems can be used as planners in diverse areas. In robotics, planning is important, 

because a machine that can plan can, in essence, program itself and therefore become much 

more autonomous. Many management decisions can be cast in a planning template, 

including common decisions required concerning labor and investment. 

Efficient planning requires logical and complete structuring of the problem at a functional 

level of detail. To be complete, all the pieces must be present A plan for moving crates from 

one location to another must include subgoals of checking to see that the crates exist in the 

proper location, that they are movable (not too unwieldy or heavy), that the new location is 

available, and that there is enough room for all the crates to be stored at the new location. 
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The level of functional detail required differs from task to task. The task of moving crates, 

for example, would require more complicated specifications if the new location were farther 

away, giving rise to many more potential pitfalls. In addition to being complete, the plan must 

capture the structural logic of the task, including capturing lhe temporal relationships among 

events (e.g .. crates must be picked up before they are set down). 

The difficulty is that in real life, an almost limitless supply of surprises may be 

encountered. In the above example, the robot may pick up an empty box, encounter objects 

along lhe way, drop a container, find a closed door, and so on. The planner must be able to 

replan based on new information. AI is applied to reduce the number of viable alternatives 

and generate an effective plan of action. 

A "good" plan, whether lhe product of a human mind or a knowledge-based system, 

must satisfy certain requirements. The first and primary criterion is success: Does the plan 

accomplish its goal? If so, then other criteria, such as flexibility and efficiency, may be 

assessed. A flexible plan not only responds to foreseeable events but effectively contends 

with unforeseen events, either solving the problem despite unanticipated circumstances or 

minimizing their harmfulness. Efficiency is important because carrying out a plan requires 

actions to be taken that require expenditures of resources. All else being equal, a plan which 

optimizes the use of resources is superior to one that does not. 

Planning systems require several forms of knowledge: e.g., knowledge of the problem 

domain (I.e., problem. cause, and effect), how to translate the problem domain into actions that 
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can achieve a goal, and how to anticipate which actions may enhance an understanding of 

the environment and its potential hazards. In addition, such systems require effective 

reasoning, a capability offered by AI. 

As complexity of a problem structure Increases, the potential for effective use of AI 

increases. Planning tasks appropriate for application of AI are frequently associated with 

industrial robots. For each chore assigned to a robot, a set of movements must be planned to 

enable successful perfonmance. Even for uncomplicated tasks, the planning of the robofs 

movements can require several layers of subgoals. Other examples of planning tasks suitable 

for AI applications can be identified by searching for similar problems characterized by a 

series of stages which must be accomplished sequentially. AI is becoming more and more 

applicable as planning problems increase In complexity. 

3.7 PREDICTION 

Predictions are informed guesses based on facts about the current situation and 

experience with similar situations in the past. A talent for prediction can be extremely useful 

for solving problems that rely on estimates of future environments. Prediction involves 

reasoning about temporal tendencies from knowledge of 1) causal relations or 2) historical 

data or experience. Prediction entails having at least partial knowledge about how a system 

operates and forecasting when and why failures may occur. For example, if the domain of 

interest is future prices of a piece of equipment, then relevant factors would likely include 

recent changes in prices of major components, prices of similar equipment, and interest rates 

that affect production costs. 
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In real-world problems, many variables, some very obscure, may be important for 

accurately predicting future behavior. In such cases, the application of AI methods may be 

appropriate because of the complexity that arises from the poorly understood interaction of 

many environmental variables. In addition, AI may be useful in such tasks because of its 

ability to use experiential or heurlstic knowledge. 

Prediction problems essentially consist of converting the knowledge of a process into an 

estimate of the future status of the system, given a history of events and knowledge of causal 

relationships and the environmental state. One way to view a predictive problem is as an 

inductive learning task. From the data available, a global system structure Is surmised. This 

amounts to discovering the rules by which the system operates. Once these rules are 

understood, future behavior can theoretically be anticipated. 

Another way to view prediction is as an autoassociative recall task. An autoassociative 

memory is capable of retrieving a complete pattern from its store given only a partial stimulus. 

In other words, given partial values of certain parameters, other parameter values can be 

predicted. In this paradigm, only patterns are identified, not rules. As an example, consider a 

study analyzing the use of manpower. Two features of interest may be the number of sick 

days taken and the number of vacation days given. Perhaps a relationship is discovered such 

that when the number of allotted vacation days is increased, the number of sick days taken is 

reduced by twice that amount. However, it should probably not be inferred as a causal rule 

that changing one parameter automatically changes the other. Many other factors would 

undoubtedly need to be considered, leading to the need for higher-order statistics. For many 

types of complex problems, a statistical relationship is all that can be claimed. 

The two approaches, inductive learning and autoassociatlve recall, are generally 

applied to different types of problems. For systems that are well understood and not too 

complex, such as mechanical systems, inferring causal relationships and discovering rules of 

operation may be a valid approach. For more complex systems. such as economic or sociai 

systems, prediction through recognition of recurrent patterns is probably the sounder 

approach. Heuristics, a trademark capability of AI systems. may be added to increase 

efficiency or to fill knowledge gaps. 

3.12 



Obviously, the ability to predict parts failures, labor shortages, or other events can be an 

invaluable asset, well worth the Investment required for AI technology. 

3.8 REPAIR 

The repair function involves specification and implementation of steps that return a 

system to working order. Such tasks can be especlaily challenging when performed by 

machine and, therefore, require close cooperation between the engineer and the AI expert. 

Interfaces between hardware and software must be smoothly designed. 

In implementing repairs to a mechanism, AI systems must use not only knowledge of the 

mechanism itseH but also of the system of which the mechanism is a part (e.g., capabilities and 

limitations). Using AI technology together wijh careful integration between the machine to be 

repaired and the machine that will perform the repair, an AI system can be designed to both 

prescribe a remedy and then physically implement the remedy. 

Prescription may be defined as formulation of a plan to correct an identified malfunction. 

This requires a relatively shallow knowledge of the malfunctioning mechanism compared to 

the knowledge necessary for diagnosis. A repair system may be simpler and may require far 

fewer inferences concerning the structure and operation of the faulty mechanism. For 

example in debugging a computer program or an electronic circuit board, designing a remedy 

(e.g., removal of an unwanted character or replacement of a part) may be relatively simple 

once the error has been identified. The difficulty in prescription is to specify a repair operation 

that is complete enough to allow the implementa-tion component of the system to implement 

the plan. Prescription, then, is a sophisticated interface between the operational knowledge, 

which provides a diagnosis, and the physical hardware, which performs a repair. 

Implementation, the second of the two repair stages, is commonly associated with the 

hardware used to perform the physical steps. The implementation component is composed of 

the interpreter, which translates prescribed steps into required actions, and the hardware 

designed to carry out the instructions. The mechanical characteristics of the hardware depend 

entirely on the task to be performed and may include anything from a stationary spot welder to 

a flexible robotic arm requiring complex movement specifications. 
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Repair systems have the common goal of replacing human labor in tedious and 

repetitive work. Robots and robotic systems are closely associated with repair applications. In 

fact, the development of repair systems are often constrained by the available hardware to 

perform the physical function. As the hardware becomes more sophisticated, so will the 

applications designed for AI repair systems. 

3.9 PERCEPTION AND ANALYSIS 

As machines perform more of the rudimentary tasks formerly assigned to humans, they 

will require an expanded ability to perceive and analyze the environment around them. 

Perception is the receipt and transformation of environmental signals into usable information. 

This involves reducing a host of complex environmental inputs into symbol classes. Analysis 

is the combination of the new information (symbols) with existing knowledge in a useful 

manner. 

Through perception and analysis, the environment is separated into relevant and 

irrelevant pieces. The primary objects become distinct from bacl<ground objects, and the 

pieces are assembled into a logical whole. For example, spoken words are distinguished 

from among the auditory signals (e.g., bird songs, music, automobile noises, barking dogs) 

that strike a receive~s ears; individually recognized symbols are then assembled to create an 

understanding of the utterance. 

Humans beings constantly use their five senses·-sight, sound, smell, taste, and touch--to 

extract detailed information from the world. Similarly, a wide range of task-dependent sensors 

have been developed lor use by machines. For example, an infrared sensor has been 

designed to detect the radiation from a thermal source and is useful for night vision, and other 

sensors respond to events such as sound waves or vibrations in the earth's crust. Signals 

received by sensors such as these are transmitted for processing to other components of the 

system. In this way, sensors work together to form an expanded characterization in order to 

recognize an object. 
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Recognition is the comparison of received impressions with templates stored in memory. 

A close match implies recognition. The following diagram Illustrates the recognition process: 
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Figure 9. Perception System 

After the entity is classified, analysis may ta1<e place to determine what it actually 

'means' for this entity to be present. W the task Is natural language understanding, for 

example, then an identified letter is combined with other identified letters so a whole word can 

be formed. Thls is most often a hierarchical analysis. Pieces of low-level information are 

combined to give a piece of high-level information. This combination process continues as 

long as necessary for successful recognition. Such operations are knowledge-and 

memory-intensive and require massive searching and matching time to resolve the patterns to 

be recognized. 

Successful application of machine perception and analysis is often dependent upon a 

well-chosen combination of AI technologies. The sensors must be chosen to fit the nature of 

the task. Various AI methods may then be combined to process, or analyze, the incoming 

information. For instance, neural networks may be chosen to perform low-level processing of 

signal data, to extract features, and perhaps classify the information. These classes may then 

be combined with facts and rules of reasoning which reside in a knowledge-based system. 

The products of these other, similar analyses may be combined using a blackboard system. 

There are several applications for machine perception and analysis. In industry, robots 

may require a vision system to perform general chores. Natural language understanding is 

important to a variety of goals, including the simplification of human-computer interaction. 

Such perceptual and analytical systems provide an interesting mixture of AI methods. 
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4.0 TOOLS 

Building machines capable of solving problems using human-like intelligence was one 

goal of those who developed the first computers. Ea~y efforts had little success. The 

equipment was primitive and little was then understood about human intelligence. However 

recently, since development of sophisticated hardware and advancements in the 

understanding of human intelligence, this goal has been reestablished. AI has become a 

commercially viable source of solutions for problems previously unrecognized or ignored. 

Increased interest has spawned hardware and software improvements that have 

resulted in advances in technology. Currently, the market is filled with a variety of vendors and 

an array of products that extend across a wide range of potential applications. 

4.1 SOFTWARE TOOLS 

Although the purpose of this report is to introduce the general field of AI applications, the 

tools discussed are primarily used in knowledge-based systems. There are two reasons for 

this. First, knowledge-based systems (expert systems) are the most mature and the most 

commercially viable. Therefore, many more products exist for knowledge-based systems than 

for other AI systems. Products developed for other AI areas are largely untested due to their 

newness. Second, expert systems shells and knowledge engineering tasks are quite different 

from other programming tasks. They are, therefore, served well by tools. Other AI methods, 

such as genetic algorithms, are typically developed from existing products that are not 

specifically applicable to a particular problem. In other words, C or FORTRAN can be used to 

develop a genetic algorithm to perform an optimization task on a commonly available 

workstation or personal computer (PC). A whole new development environment is not 

required. 

Software tools facilitate construction of knowledge-based systems. The number and 

types of knowledge-based system tools has proliferated in recent years. Today, there exists a 

wide variety of such tools. Some are as basic as new versions of computer languages, with 

characteristics that provide advantages for the development of knowledge-based systems. 

Others are complete and flexible development environments designed for large-scale 

applications on expensive and specific hardware. It would be impractical to try to describe all 
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of these systems. Rather, it is useful to divide them Into the following three categories: 

1) programming languages, 2) small tools knowledge-engineering languages, and 3) large 

tools knowledge-engineering languages. 

Programming languages may be divided Into general-purpose languages and AI 

languages, the main difference being that general-purpose languages are numerically 

oriented and AI languages are symbol oriented. These languages are not identified by 

particular proprietary implementation but by characteristics relying on symbolic processing for 

the development of knowledge-based systems. 

In reference to small tools knowledge-engineering languages, "small" refers to both the 

representational capacity of the system and the capabilities of the hardware platform. In 

discussion of this category, specific commercial examples will be identified. 

The third category, large tools knowledge-engineering languages, represents large and 

powerful knowledge-based systems tools offering multiple methods for representing 

knowledge and for specifying program control. 

The range of features and capabilities available in knowledge-based systems form a 

continuum in terms of both price and power. 

A variety of tools are necessary to accomplish a variety of tasks. The first decision faced 

by the builder of a knowledge-based system is whether to build the system from scratch or to 

purchase a shell. This decision relies on several considerations. If a knowledge-based 

system requires new methods of knowledge representation or program control or new 

combinations of established methods, the system will probably have to be built from scratch. 

On the other hand, the development of a more stereotyped system can proceed by using a 

less flexible knowledge-engineering tool, such as a PC-based knowledge-engineering 

language. 

Broad guidelines are available for choosing the proper tool to efficiently represent the 

type of knowledge in question. The type of inferencing or control paradigm needed is also a 

consideration. A knowledge-based system developer must also recognize that developing a 

system from scratch will probably be much more difficult than using an established 
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knowledge-engineering language. The tool selected for a knowledge-engineering task 

should be the most specific tool that meets all of the task requirements. 

4.2 GENERAL-PURPOSE LANGUAGES 

General-purpose languages are imperative languages reflecting the operation of the 

typical sequential computer. They are, In effect, higher-level versions of the architecture 

because they manipulate computational resources similar to machine language. 

General-purpose languages (e.g., C, Pascal, Modula-2, and ADA). which are familiar to almost 

anyone who writes computer programs, have several advantages in the production of 

knowledge-based systems. First, because they are designed for general-purpose hardware, 

they usually run faster on such hardware than languages designed for AI. Second, because 

of the widespread distribution of both general-purpose hardware and programming 

languages, these products are broadly available and enjoy a strong support network. Third, 

many programmers are available who are experienced in using general-purpose languages. 

Finally. knowledge-based systems using general-purpose languages can easily be integrated 

with existing software. 

These advantages of efficiency and popularity are offset by several disadvantages. First 

and most important, general-purpose languages do not support symbolic processing, which is 

the essence of knowledge-based systems. Second, these languages do not have automatic 

memory management, which is important to the memory-intensive development of 

knowledge-based systems. Third, these languages. by design, concentrate on data 

manipulation rather than on the essentiaJ algorithm. This may make development of the 

system more difficult. Languages that more closely follow mathematical models, such as AI 

languages of LISP and PROLOG, can facilitate algorithm design. The shortcomings of general 

purpose-languages translate into longer and more difficult knowledge-based system 

development. When a general-purpose language is used to implement a knowledge-based 

system application, the application is first developed, then translated into an imperative 

language. 
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4.3 ARTIFICIAL INTELLIGENCE pROGRAMMING LANGUAGES 

Because of the disadvantages of general-purpose languages, AI programmers and 

knowledge engineers have used other languages, generally known as AI languages, 

although they need not be limited to only AI applications. AI languages can be divided into 

three categories: 1) functional languages, 2) logical languages, and 3) object-oriented 

languages. 

4.3.1 functional Languages 

Functional languages are true functions in the mathematical sense. LISP, the first and 

most popular AI programming language, is an example of a functional language. There are a 

variety of dialects of the LISP language available on all common platforms, from dedicated 

LISP machines, to personal computers. 

Functional languages provide easy and flexible symbolic manipulation. The primary 

data structure, the list, treats all data types as equal, putting alphanumeric symbols on equal 

footing with numerical variables. Built-in capabilities, such as property lists, facilitate the use 

of symbols and increase the symbolic computational power. LISP has a concise syntax, which 

decreases the amount of code required to accomplish a given task. There is evidence that 

functional languages like LISP are relatively easy to "debug,' as well. Extensive editing and 

debugging aids ease the chore of writing programs. The uniform treatment of data and control 

structures makes self-modification easier. Another very imporiant feature of LISP is automatic 

memory management. This feature (called "garbage collection") allows for more efficient use 

of computer memory. 

4.3.2 Logical Languages 

Logical languages are powerful tools for constructing AI programs. The most popular 

member of this group is PROLOG, the name of which was derived from words "programming" 

and "logic." Though not as old as LISP, PROLOG has a large following among programmers; 

in fact, PROLOG was chosen as the sole language for development of the filth-generation 

computer in Japan. 

4.4 



Like LISP, PROLOG was designed with symbolic processing in mind and is capable of 

very efficient list processing. It has sophisticated pattem-matching capabilities, as well. 

PROLOG has a simple syntax when compared with procedural languages, and computation is 

controlled chiefly by a process of logical deduction. 

Programming in PROLOG is conceptually simple. First, a knowledge store must be 

developed by entering facts and entities Into the knowledge base. Then rules must be 

specified describing how the entities relate. To use the program, queries are written. As a 

simple example, assume that the following fact is entered: "Carolyn loves everybody." Then 

assume that the system is asked, "Does Carolyn love Tom?" The program will respond 

affinnatively. Large collections of facts and rules about the facts can describe complex logical 

systems. 

4.3.3 Object-Qrjented Languages 

Object-oriented programming is a relatively late arrival in the field of mainstream 

programming and may therefore be less well known than other language lypes. The concept 

of an object-oriented programming language is somewhat nebulous, at least partly because of 

the variety in the languages claiming to be object-oriented. Although definitions and features 

are by no means final and definite, certain general characteristics can be identified: 

specifically, dynamic binding, data abstraction, and inheritance. 

The basic Idea of object-oriented programming involves the encapsulation of data and 

data operations. Procedural languages establish coded operations in the fonn of procedures 

(i.e., programs that alter data structures that are passed to the procedure). Object-oriented 

languages hold the data, as well as the data operations, in a single entily called an object. 

Each data class belongs to an object. These data classes are known as instances. For 

example, integers and operations perlonned on integers may occupy an instance of an object 

class. Each object has two parts, a shared part and a private part. The shared part contains 

characteristics shared by other instances in the object class. Private parts make an object 

distinct from all other objects. 

A simpiHied view of programming with an object-oriented programming language is as 

follows. Computation is perlonned by sending messages to a particular object. (A message is 

a request to engage a particular operation.) When an object receives a message, it first 
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determines whether or not it is able to service it. If it can, it establishes the course of action to 

be taken and then perfonns the required steps. After completion, the object relllms the result 

to the sender. 

4.3.4 Knowledge Engjneerjng Tools 

A knowledge-engineering language is essentially a package of software tools and a 

software system that facilitates the construction, operation, and maintenance of a 

knowledge-based system. Using one of the AI programming languages lessens the imposing 

task of developing a knowledge-based system from scratch, allowing more time for designing 

the problem solution. 

The fealllres of knowledge-based system tools differ according to the product, but the 

basic components are similar: 1) a knowledge base that holds the store of factual information, 

2) an inference engine that specifies the inference and control mechanisms, 3) an explanation 

facility that provides the rationale for decisions, and 4) a user interface that carries information 

to and from the system user. Each of these components provides support in building one of 

the knowledge-based system modules. 

To build the knowledge base. commercial tools support particular type(s) of knowledge 

representation, such as rules, frames, or semantic nets. Larger, more powerful tools allow 

multiple representations. For creating the inference engine. tools support one or more 

inferencing strategies to specify the construction method of new facts from existing facts. 

Again, larger and more powerful systems allow more than one reasoning strategy. A facility 

for explanation is also typically contained in the commercial tool. This explanation facility will 

explain the process of machine reasoning to a user by displaying the sequence of firing rules, 

for example. The pieces of a user interface are also included in most tool packages. Often 

sophisticated debugging and editing capabilities are part of the complete package. These 

components speed the time-consuming job of building and testing the knowledge base and 

the system as a whole. 
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Several measures of knowledge-based system tools can be used to classify the 

products available, including the following: 

• the number of rules allowed 

• the number of representation and inferencing methods allowed 

• the generality or specificity of the Intended use. 

Such measures are not complete. Therefore, the types of knowledge-based systems 

tools are divided into two broad categories: 1) small systems tools and 2) large systems tools. 

As personal computers become more and more powerful and operate with more and more 

memory, this division becomes blurred. However in general, larger hardware systems are 

used for the more powerful and flexible knowledge-based systems tools. 

A few general comments should be made about the purchase and use of off-the-shelf 

tools. First, although some classifications are useful in examining knowledge-based system 

tools, the characteristics and capabilities of such tools exist in a continuum; sharp distinctions 

may be deceptive. The features and merits of each tool should be considered before 

purchase. Second, the most specific product that fits the task should be purchased. More 

specificity usually means that less time and effort is required to accommodate the users 

specific application. 

4.3.5 Small Systems 

Small knowledge-based system tools are designed to run on personal computers. (The 

two main classes of personal computers are the IBM and IBM compatibles and the APPLE 

Macintosh family.) Using these tools, relatively inexperienced users, often experts in their own 

fields, have built successful applications without the assistance of knowledge engineers. Less 

sophisticated developers, or those whose projects do not require the complete package of 

options offered by large system tools, may find it advantageous to use the smaller tools. They 

are easier to learn and cost substantially less than large systems. This can be important not 

only for developers but also for the end users who will purchase the tool. 

Small knowledge-based system tools also differ from larger tools in that they support 

fewer rules than large systems, although the number of rules allowed increases with 
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expansion of the power on a personal computer. Because of processing power and memory 

constraints, small systems are less flexible than larger ones. Therefore, they support fewer 

inferencing schemes. 

4.3.6 Lame Systems 

Large knowledge-based system tools are usually capable of storing vast amounts of 

knowledge in the form of rules, frames, objects, or whatever forms the knowledge base 

supports. Large system tools also possess an array of representational schemes and control 

structures that allow the tool's capabilities to be tailored to a specific problem. In addition, they 

contain sophisticated features to asslst in the development process. 

Large systems, because they have more features to both represent knowledge and to 

combine it in a process of reasoning, are especially useful in construction of large 

knowledge-based systems with potentially thousands of rules. Large systems are, for the most 

part, designed to run on larger, more powerful computing equipment. such as mainframes, 

workstations, and special-purpose LISP machines. Consequently, they require a more 

significant investment, not only in the purchase of the tool itself but also in the purchase of the 

supporting equipment and training of personnel. 

The choice of which tool to purchase depends on the case and may involve many 

considerations. The investment in both money and time is much greater for large system tools, 

so the payoff for the system or systems to be developed should be expected to be high. The 

strategy of the implementing organization may be a factor. If the organization is committed to 

development of knowledge-based systems and seeks to build a large and visible system 

flagship, then a more flexible and costly system may be wanranted. On the other hand, if the 

approach is to put together a series of moderately sized applications, then small systems tools 

would probably be more appropriate. 

4.4 HARDWARE TOOLS 

The extension of AI applications has benefited from special-purpose hardware designed 

to accommodate their unique processing needs. Development of knowledge-based systems, 

in particular, required an architecture designed to support the AI programming languages 

(indirectly the symbolic processing), which were used to build these systems. Other AI 
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applications have their own processing requirements. Neural networks require massive 

parallelism and employ simple processors with large capacities for interconnection wijh other 

processors. Special-purpose array processing boards and even more promising neural 

network chips have been designed to meet these needs. Genetic algorithms can benefit 

extensively from parallelism, as well. Model-based reasoning, the success of which depends 

on the complexity of the model, can be computationally intensive, also requiring a powerful 

machine. 

The development of special machines for symbolic processing has been of special 

interest to developers of expert systems. Design features of these machines include a large 

memory and a large virtual address space. A high-speed machine for cycle-intensive 

operations is also important. Several stand-alone machines have been designed by different 

vendors to meet these special requirements. 

The drawback of specialization is the loss of general programming capabilities. While 

enhanced symbolic processing machines have demonstrated advantages in symbolic 

applications, tradijional workstations have enjoyed a share in the AI market because of their 

general-purpose capabilities. There is a trend toward combining knowledge-based systems 

applications with traditional software systems. This approach has several advantages, 

including lower cost, broader access, and ease of use. 

The three categories of hardware platforms--the personal computer (PC), the 

workstation, and the specialized symbolic platforms-represent a logical division of processing 

capabilities. They are discussed in the following subsections. Other classes, such as 

mainframe computers, appear to be less important to the development of AI applications and 

so are excluded from this discussion. (Parallel machines, which are becoming more 

important, are discussed in Chapter 5.) 

The distinctions among ciasses of computers are also becoming blurred. New chip 

technology has greatly increased the processing power of small systems; and additional 

software capabilities, such as windowing, have provided them with expanded functionality. 

Also, new machines, such as the SPARC Stations introduced by SUN, fit somewhere between 

the boundaries delineated. It is clear that the market for computers has matured tremendously 

and has filled many of the gaps that formerly existed. 
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4.4.1 eersonaJ Cpmguters 

The dramatic increase in computing power in PCs has made it reasonable to consider 

them for AI applications. Experimentation with PC parallel computing is ongoing. The 

introduction of Maclvory, a new LISP chip, mar1<s a major upgrade of minicomputers adapted 

to larger tasks. Because of the increasing viability of the PC as a hardware tool, the power 

and flexibility of knowledge-based systems products have increased, as well. This is apparent 

by the introduction of scaled-down versions of the large products and by the entry of new 

products into the commercial mari<elpiace. The trend in computing has been toward 

distributed resources and small stand-alone systems that can be networked to allow 

communication and software sharing. (The list of small systems tools in Appendix A attests to 

this trend.) 

Minicomputers afford several advantages over other types of platforms. The first is cost. 

A range of prices exists, depending on the model and quantity of additional equipment to be 

included; however, $3,000 to $5,000 is generally sufficient to purchase substantial computing 

power. Within this price range, a team of users can each be equipped with computers and 

software. The distribution of resources may serve to avoid user conflicts that frequently occur 

when computers must be shared. Another advantage of PCs is reliability. It is very unlikely 

that many PCs will be inoperative at the same time in a group setting, whereas the down time 

on a shared computer affects ail users simultaneously. Still another advantage is that new 

users can easily be accommodated. Experimental hardware can be added with little 

disruption to wori<. A final advantage is that products developed for small systems 

immediately have a wide fieid of potential users. If a knowledge-based system is developed in 

one location, it may easily be exported to other locations without extensive conversion costs. 

4.4.2 Wod<statjons 

Workstations have traditionally been considered a tool tor general-purpose software 

development. They should also be seriously considered as a platform for AI applications. 

Besides their capabilities, such as extensive windowing systems, bit-mapped screens tor 

graphics, multifunction mouses, and well-developed operating systems, workstations offer the 

key potential for integrating knowledge-based systems applications with mainstream 

applications. For some applications, such as computer vision, this integration is a requisite for 
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increasing speed end usefulness. For other applications, integration will allow a beneficial 

mixture of techniques from mainstream programming to database technology, thus providing a 

wider array of problem-solving tools. 

Workstations that have traditionally relied on c. Pascal, FORTRAN or other procedural 

languages may now include versions of LISP, PROLOG, Smalltalk, and other AI languages. 

Some are specially altered to Increase efficiency. This adds another level of usefulness to 

these machines, enabling them to compete with dedicated AI machines. 

A brief list of workstations and dedicated symbolic processing machines is included in 

Appendix B. PCs are not discussed in the appendix, because information about them is 

widely available through magazines that focus on the PC market. 

4.4.3 Dedicated Artifjcjal Intelligence Machjnes 

Several manufactures have dedicated stand-alone machines to symbolic processing. 

These manufacturers produce hardware platfonms for committed users end developers of 

knowledge-based systems with large applications. These systems are designed to ease the 

difficulties of developing complex pieces of software and increasing processing speed. 

Most computers dedicated to AI and LISP processing share a number of common 

characteristics. They have high resolution, bit-mapped displays, large physical memories for 

memory-intensive knowledge processing, end high-speed processors designed for rapid 

implementation of LISP instructions. These machines also support powerful 

knowledge-based system development tools that facilitate editing end debugging of long, 

complex chains of code. 

An example of a dedicated symbolic processing machine is the Texas Instruments 

Explorer II Plus. Texas Instruments utilized state-of-the-art, 1.0-micron LISP chip technology, 

which condenses almost 600,000 transistors into a square centimeter of area, in developing a 

unique architecture to create en extremely powerful symbolic processing computer. This 

architecture is designed to decrease the time required to perform instructions in the LISP 

language end to facilitate the frequent use of memory and particular LISP data structures. The 

Explorer II Plus features a 40-MHz clock. It also has a pipelined architecture that performs 

microinstructions and many LISP macroinstructions in a single-clock cycle. 

Hardware-supported functions for manipulating complex data structures end memory 
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management are provided; this hardware support is necessary for rapid symbolic processing 

with the LISP language. The uniquely designed LISP chip has a 32-bit VLSI processor with a 

1 1 4K of RAM memory to speed the execution of instructions. Because symbolic processing is 

generally memory Intensive, the Explorer II Plus provides up to 128 megabytes of memory for 

large applications. There are several other characteristics, such as a high-resolution monitor 

(1 024 by 808 pixels), which are designed with the user in mind. 

The description of the Explorer II Plus illustrates many of the features that are essential 

for truly efficient symbolic processing using LISP. While other companies have designed their 

own dedicated machines with their own mix of technological features, the basic impetus 

behind these distinct implementations is the same. 
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5.0 EMERGING ISSUES IN ARTIFICIAL INTELLIGENCE 

5.1 PARALLEL PROCESSING 

AI and parallel processing are two relatively new technologies. Because both are in 

early stages of development, commercial products uniting the two technologies are not readily 

available. Also, prices for computationally useful parallel processors are still very high. But 

the trend towards more affordable parallel computers, and even PC·based parallel computing 

tools, promises that soon such products will be both available and affordable. 

The capabilities of parallel processing match closely with the needs of AI applications. 

Parallel computers provide a number of processors and expanded memory, enabling very 

large problems to be solved much more efficiently. Evidence shows that natural intelligence 

relies on massive parallel processing for vast amounts of data. Therefore, machine parallel 

processing is also a powerful means of achieving the increased processing capabilities 

required for many tasks requiring AI. 

Parallel processoring can be used with very large and complex applications and works 

well with numerically intensive operations (i.e., mathematical modeling of complex systems). 

Many AI applications (e.g .. computer vision systems, speech processing, and large expert 

systems) would be well served by parallel processing technology. These include inherently 

parallel computational methods of AI, such as neural networks and genetic algorithms. 

AI and parallel processing can form a symbiotic relationship, with each expanding the 

potential application areas for the other. Most vendors of parallel machines have expressed 

interest, through Invested resources, in supporting the development of products that will make 

their parallel machines available to members of the AI community. As parallel processing 

hardware decreases in price and increases in availability, and as more people use parallel 

programming, it is likely that AI will experience a surge in interest. 

5.2 PARALLEL HARDWARE 

Four basic classes of computers exist. One class is the sequential computer; the other 

three are parallel computing models. Any computational device, sequential or parallel, 

receives and operates on input according to a set of instructions. A sequential computer is a 
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single-instruction stream, or single data stream model (SIS D). At any given moment, a single 

instruction is manipulating a single piece of information. Parallel machines, on the other hand, 

have multiple processors and are capable of extended computation. They are capable of 

operating wHh multiple Instruction streams on a single data stream (MIS D), a single-instruction 

stream on multiple data streams (SIMD), or multiple instruction streams on multiple data 

streams. 

A particularly useful model of parallel computers is the SIMD class. These machines 

perform the same manipulations on multiple Inputs. They are capable of performing many 

data-intensive tasks with a high degree of parallelism. In SIMD machines, data is passed 

between processors in one of two ways: through shared memory models or interconnected 

machines. Shared memory models have a large block of memory available to all processors; 

data passed among the processors is written to and read tram this shared memory. 

Interconnect models are distinguished by a network of connections between the processors. 

Ideally, every processor is connected to facilitate sharing of data. However because of 

manufacturing constraints, this kind of interconnection is not economical, so interconnect 

models are divided into particular topologies, such as linear arrays, mesh arrays, hypercubes, 

and perfect shuffle exchanges. 

It is necessary to have so many types of parallel machines because, to take full 

advantage of the multiple processors, different problems are best suited to different 

architectures. For example, the Connection Machine, with up to 64,000 simple processors. is 

effective tor low·level operations on large data sets and is appropriate for vision and speech 

applications; the butterfly machine, which contains no more than 256 processors, may be used 

for less specialized AI applications. such as expert system development. 

5.3 SOFTWARE DEVELOPMENT 

Software development historically lags behind hardware development. Many machines 

are still burdened by primitive compiler designs, awkward operating systems, and lack of 

higher-level parallel language support. Several parallel implementations of common 
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programming languages have been developed (e.g., Concurrent Common Lisp for Intel's 

iPSC parallel processor, developed by Gold Hill). As these languages gain in support and 

popularity, and as Improvements and new languages are introduced, the task of programming 

parallel machines should become less formidable. 
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6.0 DEPOT APPLICATIONS 

Knowledge may be described as the usable encapsulation of the structure or 

organization of the surrounding environment. Applications in AI are ettons to use the 

intangible quantity called knowledge to increase the efficiency of a process. As the industrial 

revolution was founded on mechanization and the resources necessary for it, so the current 

revolution of the world economy may be built on information and concomitant technologies. AI 

is a technology that applies knowledge, a specialized form of information, to complex tasks 

facing industry and government. 

How and when to bring AI to bear upon the specific types of problems found within the 

Army depot system, both currently and in the future, is the subject of this section of the report. 

Experience acquired in AI applications in industry will be discussed in relation to depot system 

requirements. 

In the next decade, AI technologies will primarily be used to fulfill two functions. First, 

they will augment the physical capabilities of humans. Flexible, multipurpose robots partly 

driven by AI technology will irlspect assembly line products, test malfunctioning circuit boards, 

and operate production machinery. Intelligent machines processing sensor signals will be 

able to perform many tedious, hazardous, or labor-intensive tasks at a savings. The more 

intelligent the robot, the greater the number of tasks it will be able to perform and the greater 

the autonomy of its performance. Increased utility in this area will depend on technical 

advances in both hardware and software. 

Second, AI applications will be increasingly used for decision support. This function 

may include intelligently filtertng huge quantities of data from complex domains, constructing 

expert assistants to help with professional and skilled decisions, and intelligently controlling 

various processes by automatically adjusting parameters to optimize efficiency. 

The role of AI will continue to expand in the development of expert assistance, a 

technology that is, to a lair extent, already commercially successful. For a variety of reasons 

(e.g., the need to reduce costs, contend with skill shortages, ensure quality, and speed 

performance time) decision- support expert and model-based reasoning systems will likely be 

implemented in greater numbers. 
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The process has already begun in the world's competitive market place. The Japanese, 

in their Fifth Generation Computer Project, have invested funds and effort nationwide in 

knowledge-based systems research and development designed, in part, to support 

decision-support expert systems technology. Many American companies have successfully 

implemented such systems, and such technology is expected to become more widespread 

during the 1990s. 

Many challenges exist to the depofs ability to perform its required function over the next 

few years, and AI may be able to play a substantial role in addressing these problems. As the 

complexity of the machines used In everyday life increases, so does the knowledge required 

to use and maintain them. However, forecasters predict a slow rate of growth in the number of 

skilled, technical personnel. Shortages of experts are expected, just when more expertise is 

needed to manage the increased complexity brought by technical advancements. As a result, 

organizations in need of technically competent people, especially organizations less able to 

compete for them, must find adequate substitutes. AI will be used to reduce this shortage by 

effectively increasing the skill level of personnel and decreasing decision time, making 

available experts and skilled staff more productive. 

Another anticipated constraint within the public sector of the economy is budget cuts. 

The size of the federal debt demands that savings be found wherever possible, thus requiring 

that all areas of government become more cost conscious and efficient. The military, because 

of the generally perceived decrease in international tensions, may be a politically attractive 

target for budget savings. The mechanization of knowledge through AI technology may serve 

to ameliorate budget shortages. The percent of manufacturing costs attributed to knowledge 

areas such as design, engineering, resource management, and related activities today 

represents most of a producfs costs, and this percentage is constantly increasing. The 

implication is that the best way to streamline an operation may be to streamline 

knowledge-dependent activities. When people can be made more efficient by relatively 

low-cost support tools, important gains in productivity are possible. 

Still another observation that supports an expanded role for AI in the coming decade is 

the current waste of "knowledge resources.· It makes sense to conserve the talents and skills 

of experienced personnel, especially considering the number of years and dollars that an 

organization invests in such people. With the retirement or other separation of a skilled 
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professional, the skills and expertise of the Individual are often lost. Knowledge-based 

systems, and to a lesser extent other AI technologies, provide means of capturing expertise 

developed within the organization, which can then benefit the organization even when the 

expert leaves the company. 

During the past decade, Industry has grown Increasingly aware of the changes that have 

collectively been termed the "knowledge revolution." Consequently, efforts have increasingly 

been made to develop industrial applications of AI techniques. These efforts, particularly in 

the area of expert system development, have generally proven successful, yielding large 

gains In productivity and sizable returns on investment. Much remains to be learned, but 

experience to date encourages a close look at the potentially profitable applications of AI. 

Advances in AI are occurring rapidly. One reason is that expenditures for research 

made during the past two decades are now producing commercial applications. As the field 

matures, the number of industrial, real-world applications should increase. In addition, 

advances in AI technology are closely tied to advances made in computing machinery. 

Because AI is essentially the study of how to contend with complexity, more computational 

speed translates to wider applications. Advances made in processing power, parallel 

processing, optical storage and optical computing, and computer networking will doubtless 

contribute substantially to new applications. 

The role of AI problem-solving techniques should also grow because of Al's recently 

expanding ties with more traditional software and computer hardware. Embedding AI 

techniques within other applications legitimizes the technology and familiarizes 

applications-minded people with their capabilities. Distribution of AI products and languages 

to more mainstream computing environments allows AI techniques to be considered as 

options for a wider range of problems. 

In the following subsections, a representative cross section of depot activities are 

discussed for the purpose of identifying those that appear appropriate for AI technology. It is 

hoped that the features identified in these applications will become apparent in other 

applications still to be identified at individual depot sites. 
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6.1 PROCEDURAL SUPPORT 

In most large organizations, a comprehensive system exists for purchasing, tracking 

supplies and equipment, and accomplishing numerous other tasks, large and small, which 

must be accounted for under legal and/or financial regulations. Often, the larger the 

organization, the greater the number of rules and procedures which must be followed. 

Certainly, the United States Government is no exception to this rule. 

In most cases, a repository of rules exists in the knowledge of financial or administrative 

experts or secretaries scattered. throughout the organization. Several institutions have found it 

advantageous to collect such procedural information in a single knowledge-based system, the 

idea being that the user has only one place to go to get the answers to most procedural 

questions. 

There are several significant advantages to having a procedural support expert system. 

First, having a single location to which users can go (or connect to from their PCs) for 

information about a variety of regulated procedures may be both cost effective and stress 

reducing. The user saves time and effort, as do the financial experts, managers, or 

administrators whose task it is to provide the answers. An expert system is available, 

theoretically, 24 hours a day. An expert system may also reduce costs by reducing the 

dissemination of inaccurate information and minimizing error. Finally, there is some evidence 

that in certain situations, people are more likely to ask an expert system for assistance than to 

disturb another person. Expert systems designed to support procedural applications offer 

considerable potential for improvements in efficiency. 

AI is clearly the best technology for expert systems tor a number of reasons. The task is 

knowledge intensive, requiring procedural knowledge and efficiency information from a 

number of sources, from secretaries and other staff members to voluminous documents and 

regulations. Expert systems allow for easy additions or alterations to reflect changes in the 

procedures captured by the system. The sophisticated user interface employed by expert 

systems allows information to pass both ways in a relatively natural form of exchange (see 

Figure 1 0). 
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Figure 10. Expert System Interlace 

The user both asks questions of the expert system and responds to questions posed by the 

system. This ability to engage in dialogue makes expert system technology easy and 

comfortable for many people to use. 

In most cases, the investment required to develop a procedural support system would 

not be great. Developing and installing such a system can easily be divided into increments; 

modules representing different sets of procedures may be built and tested separately and then 

added to the operational system. A system of this type could be built on a PC system. 

eliminating the large expenses involved in obtaining development hardware and software and 

making the system more widely accessible. Commercial expert system tools for PCs should 

be adequate for building the knowledge base and developing the complete expert system. 

Several examples of similar applications, such as the IBM Capital Asset Expert System 

(CASES), exist in industry (Feigenbaum, McCorduck, and Nil,1988). IBM constructed CASES 

to simplify the process of disposing of or transferring machinery by providing engineers and 

managers with information about which forms are to be completed and how, which signatures 

are required, warnings and tips, departments and/or people to be notified, and other pertinent 

information. IBM users are reportedly pleased with the application because of the savings and 

convenience it provides and intend to construct more such systems. 

6.2 SCHEDULING AND PLANNING 

A variety of applications fall under the heading of resource scheduling and planning. 

These include applications designed to ensure efficient use of resources, including supplies, 

machinery, vehicles, and even human resources. Scheduling tasks may involve creating 

schedules to allow efficient use of frequently occupied machines, scheduling for maintenance 

and repair, and task scheduling for human resources. Expert systems can be designed to 

optimize the use of scheduled resources. 
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Planning systems are basically decision-support systems, assisting experts in predicting 

events and in coping with predicted outcomes. Expert systems may be useful in a number of 

depot-related planning activities, including decision support for capital purchases, supply 

requisitions, performance assessments, manpower assessments, hiring, plant expansion, or 

reorganization. The goal of an AI application in this domain is optimization. Decision making 

in the area of scheduling and planning is difficu~ because of the number of items that must be 

evaluated simu~eously. For example, when planning for purchase of large capital items, 

the decision maker must consider numerous factors, including the value of the producrs use 

(Its dispensability), the state of the equipment to be replaced, projected economic or strategic 

advantages of the new equipment, the projected rate of use of the new equipment, and the 

cost and quality of the equipment to be purchased. Including facts that are less directly 

relevant, such as trends in market pricing, can potentially improve the decision. The decision 

maker must also consider numerous constraints that may be imposed upon the decision, such 

as the current budget, the cost of storage (for items not immediately used), and availability of 

the product With so many fragments of information to contend with, considerable expertise is 

required to make a decision in a complex organizational environment. And when 

considerable expertise is required, AI may help to improve both the quality and the 

consistency of the decisions. 

Two primary AI technologies are commonly applied to problems of scheduling and 

planning: expert systems and model-based reasoning. Expert systems represent an 

appropriate technology because the task is exceedingly knowledge intensive, often in terms of 

heuristic knowledge, which humans use so profitably. it may be particularly important to 

capture the expertise of older, more experienced experts who are near retirement. This 

knowledge can be used both in the decision-making process itself and in tutoring less 

experienced personnel. Even when a task requires extensive knowledge in a complex 

domain, the innately modular nature of the expert system eases the burden of construction. 

Model-based reasoning approaches are especially effective in addressing planning 

problems. These systems apply knowledge to produce simulation of a system, and valid 

simulations allow valid predictions. When plans are contingent upon future events, such 

predictive systems may be essential for choosing optimal courses of action. 
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Model-based applications are prevalent in industry. One such application is that of 

advising management on purchasing of new equipment. Commercial systems are currently 

on the market which are designed to support the decision process by evaluating proposals 

and generating alternatives. It is designed for a broad business environment and contains a 

general base of knowledge to which specific details must be added for each organization. A 

conceptually related expert system called COCOM01, sold by Level Five Research, assists 

managers in estimating labor requirements, time schedules, and costs associated with 

proposed projects. The system estimates project productivity, providing a quantitative 

measure of the project's potential worth. 

Another industrial example of an expert system--this one related to scheduling of 

resources--is The Boeing Company's SIMLAB, which generates schedules for the company's 

flight simulators, ensuring a high level of usefulness. A system constructed by the National 

Defense Research Establishment in Sweden has been designed to dynamically schedule 

actions in a plan-guided aircraft. In Finland, a knowledge-based system is being used to 

paginate newspapers. The number of planning and scheduling activities within any 

organization is virtually limitless, as is the number of potential AI applications to such tasks. 

Without doubt, there are many depot activities that represent appropriate applications for 

expert systems. 

6.3 AUTOMATED INSPECTION TASKS 

Automated inspection systems are designed to assist and replace humans in sensory 

and recognition tasks. These tasks are typically tedious, requiring only minimal skill to 

perform. Essentially, the function of a system designed for inspection is to receive input from 

sensors aimed at the target and to process the information. 

object sensor object recognition system 

Figure 11 . Perception and Recognition System 
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The output from the system is a categorization of the target: "good" or "bad" in the simplest 

case. Automated Inspection systems could be particularly useful to the depot system tor 

performing tasks such as inspection and automatic testing of electronic components, 

automated evaluation of nondestructive testing results, quality assurance of incoming parts, 

quality control of outgoing products, and X-ray screening of debris tor selected objects (e.g., 

live ammunition). 

TradHional pattern recognition techniques, in which each scene or set of sensory stimuli 

is matched with others in memory, are quite expenslve in terms of computer time and memory. 

Historically, they have also been notoriously Ineffective in classifying objects when even minor 

variations exist in parameters such as orientation or lighting. AI methods are now being 

applied to increase the accuracy of automated classification systems, at the same time 

increasing their operational speed. 

Several AI techniques may conceivably be used, either alone or in combination, lo 

perform an automated inspection function. Neural networks are especially well suited to 

simplified recognition tasks and have many advantages over traditional pattern recognizers, 

which rely on single-processor digital computers. Neural networks are fast, robust, and 

potentially tolerant to small variations in conditions, and they may be implemented with special· 

purpose array processors. Speed increases by a factor of 1000 have been reported. Even 

taster are networks implemented on a single chip. Chips with a relatively small number of 

interconnections tor smaller problems have already been developed, and research is 

continuing on chips capable of holding much larger networks. Development of large-scale 

applications for neural networks, however, is being impeded by hardware difficulties, including 

the small number of interconnections available per chip and insufficient storage. 

Lockheed has developed a probabilistic neural network (PNN) and used it for a number 

of tasks, including classification of seismic signatures. Such a network provides quantitative 

statistical analysis of a problem, as well as the probability of the correctness of a given 

solution. It notifies the user when there is insufficient information to provide a solution rather 

than providing inappropriate responses. The Pacific Northwest Laboratory (PNL) has applied 

neural networks to the classification of signatures tor nondestructive testing. Oak Ridge 

National Laboratory has used them to perform inspection of printed material. Neural networks 
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are used In one of the New York airpor1s for inspection of passenger luggage. A great deal of 

research has been performed on vision systems, much of ij for the Department of Defense 

(DOD). 

Model-based reasoning and expert systems represent two options for application to 

more complicated inspection tasks. Including those for which there is little regularity in 

parameters (e.g., sensing angle and environmental conditions) and those for which criteria for 

acceptance vary widely. (In inspection of welds, for example, two distinct welds may be very 

different but equally adequate.) 

Model-based reasoning systems essentially create models of the environmental factors 

affecting target viewing and compute what a given targefs signature should be. The chief 

advantage of such a system is that given measurable environmental parameters, the system is 

very flexible. In effect, what can be modeled can be recognized. However, such systems are 

computationally expensive, and development of real-time model-based reasoning systems 

will depend on further technical advances in computation. 

Expert systems operate using heuristics delined in terms of sensor output. The expert 

system weld inspector, for example, would identify certain characteristics of a weld as either 

good or bad. These characteristics would be recognized within image-by-image processing 

techniques. By collectively evaluating these pieces of information and applying rules, the 

expert system would evaluate the state of the weld. Uke model-based systems, expert 

systems may also face time constraints, because each image must be processed and 

characteristics extracted from the observed image before input to the expert system takes 

place. Many factors, such as signature clutter, may affect the success rate of an expert system 

designed to perform automated inspection. Best results may be derived from combining 

available technologies. 

Model-based reasoning and expert system technologies have been applied to complex 

tasks undertaken for the DOD by companies such as Martin Marietta in Minnesota. 

6.4 PERSONNEL TRAINING !INSTRUCTION) 

Shortages of critical expertise are forecast for the United States, both in the government 

and in private industry. Shortages imply competition to attract talent. To compete successfully 
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for expertise, the depot system may have to Increase salaries and benefits, provide quicker 

advancements, and/or find other ways to induce promising talent to join and discourage 

capable employees from leaving. Because the government is often less flexible than the 

private sector In its ability to offer inducements, and because the federal deficit may decrease 

the amount of money available for such inducements, the government sector might well 

experience the brunt of a skills shortage. 

AI may help to diminish the effects of personnel shortages by serving in the role of 

teacher. For example, AI methods can be used to provide comprehensive in-house training to 

unskilled or moderately skilled workers, with the goal of obtaining more expert performance; 

they can be used to train long-time employees in related job skills or new employees with little 

or no experience in a pariicular assignment. Technicians, diagnosticians, and mechanics 

would be likely consumers for such training products. For example, mechanics could be given 

online support and instruction for operating a new class of machinery; inexperienced 

employees could be taught by an expert system to perform and interpret diagnostics on 

particular types of equipment In addition, AI systems can be used as skill repositories, storing 

knowledge of specific skills that are infrequently required (e.g., those required in dealing with 

a rarely encountered chemical compound or weapon system). 

The task of instruction is particularly complex. A system designed to teach must have 

the ability to solve a wide variety of potential problems, because student questions may range 

from the simple to the obscure. Such a system must not only be able to perform problem 

analysis over the whole domain but must also be adept at explanation. Good solutions plus 

poor explanations equaJs a poor system. Knowledge-based systems are relatively proficient 

at describing their own process of reasoning, and the sophistication of their user interface 

makes the studenVteacher exchange quite natural. Within a narrow domain of expertise, 

therefore, knowledge-based systems can be constructed to have the same strengths as a 

capable human instructor, if not the flexibility. 

In addition, knowledge-based instructors have important advantages over human 

teachers. Knowledge-based systems can be on duty around the clock to field inquiries. They 

are consistent in their responses, whereas human instructors are likely to differ significantly in 

their approach to selected problems and therefore produce students who also exhibit this 

divergence. a has also been shown that students are actually more likely to approach the 
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expert system than a human Instructor for help; trainees ask questions more frequently and 

are much more willing to ask a question again when the answer has been forgotten or 

misunderstood. The application of expert systems appears to offer potential advantages to all 

parties: the organization, the resident experts, and the trainees. 

A major dsadvantage to expert system technology Is the inflexibility of the expertise 

residing In the system. Knowledge can be divided into the categories of domain knowledge 

and global (or general) knowledge. Expert systems are filled with domain knowledge, while 

human problem-solvers hold both domain knowledge and global knowledge (which may be 

imported from another domain to aid in solving a particular problem). The knowledge base of 

an expert system contains facts and rules about the problem domain, but if a question is posed 

that requires infonnatlon beyond the scope of that domain, the system fails. Knowledge-based 

systems have been characterized as "Idiot savants," providing excellent perfonnance only for 

problems that do not require knowledge resources beyond a limited domain. 

When the limitations of expert systems present serious difficulties, techniques other than 

knowledge-based systems can be used. Model-based systems include knowledge of how the 

domain behaves and why. Such systems can reason out difficult questions by observing the 

operation of their own internal models. These systems are said to have a "deep" knowledge 

and are designed to be resilient when confronted by questions requiring knowledge not 

immediately available. 

Another AI technology that can contribute to instruction of employees is natural 

language processing, the analysis and comprehension of human speech by a machine. 

Though the technology is far from a complete understanding of human language, applications 

to specific domains with restricted vocabularies have been moderately successful. Natural 

language processing can Improve the quality of understanding between the machine 

instructor and the trainee, allowing a natural and successful channel of communication to be 

developed between them. This technology can also free the trainee from the requirement of 

learning the system's language, thereby decreasing the overall instruction time. 

Here, too, private industry has set the precedent in construction and implementation of 

artificially intelligent tutorial systems. One such system was built to train employees who 

operate the recovery boilers at paper plants. Another is used as a knowledge store for 
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information on how to handle and ship dangerous chemicals. Still another, at one of the 

nation's leading authomotive companies, serves to train mechanics how to diagnose 

problems with a certain class of robots on the production floor. These and other successful 

examples Illustrate the potential for development of AI applications tor depot use. 

6.5 DIAGNOSTIC SYSTEMS 

Because industry depends so heavily on machines to perform manufacturing processes, 

diagnostics represents one of the most common and most successful applications tor AI. 

Artificially Intelligent diagnostic systems analyze and diagnose problems with machinery and 

equipment, such as motor vehicles, or with processes, such as maintenance lines. Such 

systems are typically designed to contend with problems after they have arisen, but they may 

also be designed tor troubleshooting, which involves processing of functional information as 

warning signals so that problems may be avoided. Diagnostic systems have frequently been 

constructed to identify failed components or subsystems from the supply of diagnostic 

information, but they may also be constructed to identify deep or root causes of component or 

system failures. 

There are many conceivable applications for diagnostic systems in a depot environment. 

Such systems can be constructed tor many types of machines (e.g., tanks, missiles, computer 

hardware), as well as electronic circuit boards and devices. Electronic testing data can be fed 

directly Into an expert system designed to diagnose faults and failures in these devices. 

Diagnostic systems can be constructed to identify more abstract problems within a software 

system or within a service line composed of robot workers. Essentially, a diagnostic system 

can be built for any process or machine with sufficient complexity. 

There are numerous reasons to apply AI to diagnostics. As previously discussed, the 

shortage of skilled workers can be ameliorated by making available skilled professionals more 

productive. It many documented cases, expert diagnostic systems have been able to do this. 

By reducing the list of possible failures to those most likely to occur, such a system allows for 

fewer components and subsystems to be taken apart and tested. In this case, decreasing 

alternatives increases efficiency. Many diagnostic systems also decrease the time required lor 

diagnosis, because a computer can carry out a reasoning process much faster than its human 

counterpart. Furthermore, although expert systems are often oulpertormed by the most expert 
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of experts, AI diagnostic expert assistants are often able to raise the collective perfonnance of 

a group of workers because they are more effective than the average worker. 

Many different AI technologies have been applied to the task of machine diagnosis. 

Expert systems have most often been used, perhaps most importantly because of their ability 

to capture and utilize experiential knowledge. Model-based reasoning systems have also 

proven to be effective, especially for providing a •root cause• analysis which not only identifies 

inoperable components but also the reasons behind their failure. Other AI systems that have 

been Implemented to perfonn diagnosis Include object-oriented systems, blackboard systems, 

and hybrid systems (i.e., combinations of AI technologies). 

Examples of AI diagnostic systems abound. One system assists telephone companies 

in reducing cable failures by analyzing operational and repair data and prescribing 

preventative actions. It was designed to reduce the load on expert cable analysts who were 

often overburdened. Texas Instruments developed an expert system for its own use to perfonn 

a similar task for a certain type of reactor used in semiconductor fabrication. The Honeywell 

Corporation built an expert system to help field engineers diagnose and repair problems in 

air-conditioning systems. Examples of other systems, including an object-oriented fault tree 

models developed by NASA Ames and a hybrid expert system for monitoring and diagnosis of 

nuclear power plants built by the Oak Ridge National Laboratory, are in prevalent. 

6.6 ENHANCEMENT OF ROBOTIC SYSTEM FLEXIBILITY 

Robots are currently in place in many industries and are likely to become even more 

common within the work environment Flexibility is a key issue in robotics, because flexible 

robots can do more tasks, spend less Idle time waiting for assignments, and are therefore 

more efficient than single-purpose robots. For example, while a single-purpose robot may be 

designed to lift a particular type of crate, a more flexible robot may be capable of lifting a 

variety of ~ems, large and small, of various shapes. Flexible robots may be provided with a 

variety of skills, such as welding and painting, and may be designed to perfonn traditionally 

human functions, such as making minor repairs on relatively delicate equipment. 

Industry has begun to recognize the advantages of more flexible robots. The Japanese 

have made progress in developing flexible systems and currentiy have many more 

6.13 



multipurpose robots than the United States. The robotic systems in the United States can be 

augmented with the help of AI technologies designed to provide them with the following three 

compcnents: enhanced planning abilities, enhanced perceptual abilities, and enhanced 

motor control. 

No single AI method can achieve all of these goals. An AI system that provides 

increased flexibility for robots must, In all probability, be a hybrid system, with each component 

respcnsible for a certain function just as different parts of the human nervous system perform 

different functions. 

Ideally, a robotic system should be able to generate simple plans and address minor 

contingencies autonomously; otherwise, the robot must be expressly programmed for every 

small task It may conceivably be asked to perfonm. This requires a great deal of a 

programmefs time and makes the system unable to perfonm when confronted with even the 

smallest change in circumstances. Autonomous robots, conversely, save time by reducing the 

amount of necessary human intervention. An autonomous spill-cleaning robot being 

developed at the University of Tennessee is an example of efforts along these lines. 

Knowledge-based systems and model-based reasoning systems have been developed 

experimentally to accomplish this type of planning. Flexibility in planning must be considered 

as a matter of degree. Not every pcssible occurrence can be anticipated, but reasonably 

capable systems have been developed to contend with limited but functional environments. 

Planning of the type typically perfonmed by these systems involves goal trees. 

The second compcnent of flexibility, enhanced perceptual abilities, is essential to 

provide robots with the capacity to respcnd to a dynamic environment. Sensor technology 

allows a robotic system to capture a rather complete '"picture• of an environment, but analyzing 

this picture fully enough to allow planning for changes requires an AI component. 

Though not all environments can be dealt with by any single system, some models, such 

as blackboard systems for vision, may be ideal for the multi-sensor vision required for many 

robotic functions. Problems such as scene analysis require combining diverse sources of 

knowledge (multiple sensors, internal knowledge, and input from other AI compcnents). For 

example, a robot required to move warehouse items from one location to another may have to 

recognize the size and shape of the items to be moved, recall certain characteristics of them 
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from memory (e.g., fragility, weight), and adjust the amount of force used for grasping the item 

to the welght of the box. This sort of scene analysis is a common, if not completely defined, 

task in AI. Expert systems, model-based reasoning systems, and neural networks have each 

been applied at one level or another to the vision task. 

Providing robotic systems with enhanced motor control requires a computational 

expense and precision that is difficult to attain with conventional means. AI attempts to 

augment the motor control of robotic systems and thereby make such systems capable of more 

human-like performance on certain chores. The two tasks involved in providing intelligent 

control for robotics systems are: 1) to provide contingency control to allow responses to unfore­

seen external or internal disturbances (e.g., the robot runs into a wall), and 2) to increase the 

precision of the robors movements. Expert systems have been built to assist intelligent 

controllers in coping with unanticipated distllrbances. However, they are not designed to 

increase the precision of the movements. On the other hand, neural networks seem to be well 

suited to the task of enhancing a robors range of functions. Their parallel nature provides for 

rapid generation of control signals and, therefore, for more precise movement. The fault 

tolerance of artificial neural systems, which stems from the distribution of processing tasks 

among a large number of simple processing units, is also an important feature for robotic 

systems. Finally, the adaptive or learning ability of neural networks may eventually greatly 

simplify the task of programming the controller characteristics. 

Creating more flexible robots is one of the most difficult applications for AI because it 

requires combining several methods and because the subtasks themselves are challenging. 

Few successful examples as yet exist in Industry. However, the amount of research now being 

conducted in this area attests to a growing commitment to develop more flexible robotic 

systems. The Ford Motor Company, for example, has invested heavily in robotic systems and, 

more recenUy, in AI systems to augment them. It is expected that during the 1990s, 

implementation of more flexible robots will be both possible and profitable. 
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7.0 EVALUATION OF APPLICATIONS 

In previous sections of this document, AI methods and general applications categories 

were highlighted. This section is concerned with more thorough identification and analysis of 

applications specific to the depot system. Applications selected for discussion are those most 

apt to benefit from increased efficiency and reliability and/or reduced costs. 

The following subsections discuss specific depot-related tasks that may be served by 

technologies and the characteristics of a task that make it suitable for AI applications (or. 

conversely, that identify it as unsuitable.) 

7.1 DEPOT-BELATED TASKS SUITABLE FOB AI APPLICATIONS 

Of course, not every option can be explored. Those working within the depot system 

who have basic knowledge of the characteristics and capabilities of AI systems are probably 

the ones best able to identify appropriate applications. It is hoped that this document will help 

to supply interested readers with such functional knowledge. 

Industrial applications are sometimes difficult to identify because of the complex nature 

of the tasks they address. Some industrial chores fall exclusively within the general 

application categories previously descrtled, such as repair or diagnosis. But often, real-life 

applications are combinations of these basic categories and sometimes represent 

combinations of different technologies. For example, robots designed to load and unload 

munitions at a depot may require a vision system, perhaps using a neural network for 

recognition of physical objects and a model-based reasoning system to make sense of the 

scene as a whole. A rule-based system might be used to augment the controller of the 

machine, enabling it to contend with unforeseen and possibly dangerous situations. These 

may be united with the other components within the organizational structure of a blackboard 

system. 

7.2 APPROPRIATENESS OF APPLICATIONS 

Most successful AI applications in both industry and government consist of expert 

systems. Expert systems were the first AI technology to become commercially available. They 
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have been applied to numerous problems and undergone continuous evolution, and today 

they can be buiH upon many available retail expert system shells. But although expert 

systems have provided successful solutions to many problems, they are not appropriate for all 

problems. Also, development of expert systems can be relatively time consuming and 

expensive, thereby making them unsuitable solutions to many problems which they fit in 

theory. The following discussion will highlight the most salient points of general agreement 

among experts today concerning evaluation of expert systems applications. 

Many factors play a role in detennining whether or not an expert system should be 

Implemented, and many of these are difficult to measure effectively. A quantitative analysis is 

usually not simple. Nevertheless, an analysis may be quite useful in encouraging evaluation 

of the features of a task before construction of the system begins, thus weeding out many 

projects that are not likely to succeed before time and money are spent. Furthermore, such an 

evaluation can encourage the consideration of many new applications that share the same 

characteristics as the application being considered. 

The support the project receives before it is undertaken is an essential and often 

neglected consideration. To have good probability of success, the expert system application 

must have considerable support from the following three groups: management, consumers, 

and the expert or experts from whom the knowledge for the system is to be elicited. 

Because of the time and cost Involved in large development projects, an uncommitted 

management with overriding, short-tenn goals can make demands upon the system that the 

system cannot deliver, or at least make the project more difficult than necessary. To be sure 

that the project will be allotted the required time and other resources, management must have 

a realistic view of the projecrs goals and a supportive role in its development. 

It is also advantageous for consumers of the end product to have an accurate and 

realistic appraisal of the system to be developed. They shouid reasonably expect that 

performance of the system will provide a payoff substantial enough to justify their commitment 

of time and effort, yet not expect results well beyond the actual performance of similar systems. 

In some cases, potential users may fear or resent an expert system as a replacement or a 
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competitor. Education, including realistic appraisal of the anticipated performance and role of 

the expert system within the work environment, can be very useful in generating the necessary 

support from this group. 

Uke users, experts may also feel challenged by the Introduction of an automated system 

and therefore should be helped to understand that the tool is not a threat. An expert who is 

interested in the process of developing the system Is likely to be much more useful than one 

who is not. Individual characteristics (e.g .. the ability to communicate effectively or a tendency 

to pontificate) will also affect the process of eliciting knowledge from the expert. Because 

knowledge elicitation is often the most difficult task in building an expert system. considerable 

attention should be devoted to analyzing the expert or experts upon whom the system 

depends. 

Another consideration that arises when the probability of success of an expert system 

project is to be estimated is the nature of the task itself. In analyzing the task, it is important lo 

recognize that not all problems are created equal. There are several relevant features of the 

problem domain that require careful consideration: the expertise or knowledge requirements, 

the problem's level of difficulty, the measurability of generated solutions, and the likely 

evolution of the task. 

Before undertaking development of an expert system, it may be useful to verify that lhe 

required expertise actually exists; i.e., that there is a man or woman who is considered to be 

an expert is ltlis field. If there is such an Individual or group of individuals, one should next 

consider the extent to which this knowledge Is heuristic. Heuristics, as described earlier, are 

useful "rules of thumb," acquired by experts during months or years of experience, which when 

applied to a problem tend to generate solutions. For the problem to be appropriate tor solution 

through AI technologies, creativity must not be relied on. Creative solutions require 

spontaneous generation of new rules and the unanticipated synthesis of existing knowledge. 

Expert systems are not capable of this type of response. 

The level of difficulty of the problem also helps to determine whether expert system 

technology is appropriate to a given task. Tasks to which expert systems are to be applied 

must not be too large; large problems may require massive stores of information, much of il not 

clearly related or defined. When the rules required to connect this information reach the tens 
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of thousands, perfonnance and reliability are likely to suffer significanHy. Well-defined 

problems rather narrow in scope are much better candidates for expert system development. 

Also, the expert system ideally should not rely heavily on other areas of research, such as 

general naJural language Interfaces, which have their own problems and challenges. Adding 

further complexity to expert system implementation is likely to lead to unnecessary delays. 

Just as tasks that are too difficult are inappropriate, so are tasks that are too easy. If a 

moderately skilled technician with some training can perform as well as a more experienced 

•expert, • the task may be too easy to require the development of an expert system. The 

problem could probably be addressed through more conventional means. If an algorithm can 

be developed to solve the problem, then AI techniques, being generally less well understood, 

should not be used. 

The third consideration for task evaluation is that the task should provide for 

measurability of generated solutions. There are two aspects to inventing a meaningful 

performance measure: 1) assessment of the solution itself and 2) assessment of the of the 

effectiveness of the expert systems solution relative to other methods (e.g., use of human 

experts). 

A panel of experts should generally agree about the quality of a solution. In keeping 

with this restriction, problem domains that are too subjective should likely be discarded. The 

day· to-day performance of the expert system should also have a definite measure of success. 

Ideally, this measure should be defined before the system is implemented. Whether this 

measure be cost, efficiency, reliability, or some combination of these or other criteria, it should 

be devised to gage how adequately the system satisfies the ultimate consume~s needs. Initial 

generation of this measure should serve to shape the development of a useful system and 

encourage a focused and realistic evaluation of the expert system before it is begun. 

It should be noted that 100% accuracy should not be a requirement of the system. Tasks 

for which absolute perfection are essential should be addressed using an algorithmic 

approach, which provides solutions that are completely defined. 

The final feature to be discussed as an evaluation point concerns the likely evolution 

(i.e., longevity) of the task for which the expert system is to be built. First, the task should be 

one that is likely to be around for the foreseeable future. If the task is too short lived, then the 
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payoff may not be adequate to justify the expenditure of resources. It is reasonable to believe 

that bigger initial investments require longer periods of repayment. Secondly, if the task is 

likely to evolve and thereby alter the Initial requirements of the system, then the task should 

ideally be modular in nature. Modularity allows for Incremental growth, which may include the 

addition of subtasks or system alterations. Accommodating incremental growth means that the 

whole system will not have to be overhauled (usually at the cost of considerable time and 

expense) when changes are made. Another advantage of modularity accrues in the 

construction of the system: tasks that can be compartmentalized are more easily tested and 

evaluated, reducing costs and completion time. 
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