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ABSTRACT

Depletion models for liquid-dominated geothermal reservoirs are derived
and presented. The depletion models are divided into two categories: confined
and unconfined. For both cases depletion models with no recharge (or influx),
and depletion models including recharge, are used to match field data from the

Svartsengi high temperature geothermal field in Iceland.

The influx models included with the mass and energy balances are adopted
from the petroleum engineering literature. The match to production data from
Svartsengi is improved Qhen influx was included. The Schilthuis steady-state
influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and
the unsteady state method of Hurst gave reasonable answers, but not as good.
The best match is obtained wusing Hurst simplified solution when
A =1.3x10"* m~! . From the match the cross-sectional area of the aquifer was

calculated as 3.6 km?.

The drawdown was predicted using the Hurst simplified method, and com-
pared with predicted drawdown from a boiling model and an empirical log-log
model. A large difference between the models was obtained. The predicted draw-
down using the Hurst simplified method falls between the other two.

Injection has been considered by defining the net rate as being the produc-
tion rate minus the injection rate. No thermal or transient eflects were taken
into account. Prediction using three diflerent net rates shows that the pressure
can be maintained using the Hurst simplified method if there is significant fluid

reinjection.
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1. INTRODUCTION

Depletion models make it possible to predict the future variations of reser-
voir variables such as pressure, temperature, and chemical composition. In
petroleum reservoir engineering, depletion models are used to predict the draw-
down in reservoirs under a variety of production schedules. Methods developed
for petroleum reservoirs involving a material balance on the reservoir have been

adopted in geothermal reservoir engineering, and are the subject of this report.

In the case of geothermal fluids the heat is being mined, so it becomes im-
portant to predict the enthalpy changes with time (or production). Thereforé.
thermodynamics and heat transfer from the rock becomes important. Most of
the heat is stored in the rock, thus a heat balance is often included in the equa-
tions. The initial state of the reservoir together with the production schedule
dictates how the pressure and temperature will change upon exploitation. It
therefore becomes important to determine the initial conditions of the reservoir

in order to adequately describe the future behavior of the reservoir.

Depletion models can be made detailed and complex by dividing the reser-
voir into fine blocks and attempting to describe ﬁhe variations of all reservoir
parameters for each block. Parameters of interest are permeability, fluid pro-
pefties. porosity, tempefature, and saturation. If should be obﬁous that the
computational methods become complicated, and that the results are limited to

the input data, which are not always well known.

A simpler approach is known as lumped-parameter or zero-dimensional
simulation. In this case average properties are assigned to the reservoir, and the
changes of these properties are monitored and predicted. It becomes an impor-
tant question then how these properties are obtained, and what the effects of
material leaving and entering the system are. 1t is clear that these models have

limitations, since the fluid as well as the rock properties are changing



throughout the reservoir. However, it has been shown that reasonable resul_té
may be obtained from these types of models. Furthermore, important proper-
ties such as the volume of fluid in place, and whether or not there is significant
recharge, may be obtained. In tbis study we have investigated these models to
determine what models appear to be most appropriate.

Several depletion models have been reported in the literature !.2.34.5.6.7.8.9.10

some of which will be considered in this study. We have attempted to make the
models and complutational procedures simple, and yet flexible, to be able to in-
clude a variety of liquid-dominated fields in terms of both geometry, fluid, and
reservoir properties.

The influx or recharge calculations have been adopted from the petroleum
literature 1112131415 = an4 are therefore developed for porous media where
Darcy’s law is valid. Ifc has been shown that in many cases good results may be
obtained using these equations also for fractured systems. Finally the possibility
of including an injection term is considered, in order to predict the pressure

performance under injection.

The report consists of presentation and discussion of several depletion
models and influx models. The models were evaluated using production-data
from the Svartsengi field of Iceland as an example. The Svartsengi reservoir is a
liquid dominated reservoir which has shown rapid drawdown, and reinjection has
been considered. Derivations of the equations, presented in Appendix A, and the

nomenclature are presented at the end of this report.




2. THERMODYNAMICS

The thermodynamics of geothermal reservoirs have been discussed by Whit-
ing and Ramey ! and Martin . The initial temperature and pressure determine
the state of the system. Fig.1 is a pressure-temperature diagram for water. The
solid line represents the saturation line. Gibbs' phase rule states that the
number of degrees of freedom, is equal to the number of components minus the
number of phases. By this, only one intensive property completely determines
the thermodynamic state of the system at any point on the saturation line. For
any other point on Fig.1, two intensive properties completely determine the

thermodynamic state of the system.

The region of interest for this study, is in the liquid region (compressed
liquid). Systems which fall in this region are liquid-dominated. This represents
states such as C and B on Fig.1, and C and D on Fig.2, which in a pressure-
temperature diagram for a geothermal reservoir with 25% porosity. Fig.3 shows
a pressure-enthalpy diagram for pure water. In the following, a more detailed
discussion of the responses to production of reservoirs initially at states of

compressed liquid, or saturated liquid-steam in equilibrium, is presented.

2.1. Liquid Only

The case of liquid only in the reservoir is represented by point C on Fig.1,
and points C and D on Fig.2. When production takes place, the pressure will de-
crease rapidly since the compressibility of the system is low. The path of the
system is éssentially isothermal and isoenthalpic (Fig.1 and Fig.3). The system
will eventually reach the saturation line, and then follow a path similar to B on

Fig. 1.




2.2. Two-Phase

A two-phase reservoir corresponds to a system on the saturation-curve. The
pressure-enthalpy diagram in Fig.3 shows this state as the heavy arrow at 1000
psia. The pressure varies little when the system is boiling. This is illustrated for
reservoirs with porosity of 25% in Fig.4. The pressure-cumulative fluid produc-
tion diagram, shows that in reservoirs initially at compressed liquid state (C and
D), the pressure drops very rapidly until the saturation-line is reached. When the
" reservoir follows the saturation-line, the pressure drops very slowly until the
sysf.ern has boiled dry, and then the pressure again drops more rapidly. The
compressibility is indicated by the inverse of the slope of the lines on Fig.4. Fig.5
shows the temperature vs. cumulative fluid production for geothermal reser-
voirs containing pure water and porosity of 25%. It shows that the temperature
drops when there are two-phases in the system. Since the fluid temperature
wants to decrease, heat may in this case be transferred from the surrounding

rock where most of the heat is stored?®.

2.3. Saturation

Lumped-parameter models can be developed for the two above cases (1iquid‘
only and two-phase reservoir) if the variation of saturation with pressure is
known. Martin!® developed such relations. The results for a 256% porosity system
are given in Fig.8 that shows the variation of saturation with pressure. The equa-
tions presented include Darcy’s law for each phase, steam and liquid water, and
" thus also relative permeability data. The relative permeability curves used by
Martin'® are given in Fig.7. Darcy’s law was then coupled with the mass and heat

continuity equations. Eq.1 shows the final expression for saturation.

0
* o E-aGEo

(1)




° where:

=(pwk) + (pshsk)(krs) vk,
ey Hs

_(eub)in) |, (pik) (k)
Hw HMs

An 14

A,

my = ¢(pwsw + psSs)
1-
H = ¢[pyhySw + pshs Ss + (—;ﬁ)l’acﬂa]

¥(p) = temperature on boiling curve.

¢'= MEL
dp

Eq.1 was numerically integrated to get the pressure vs. steam saturation curves

given in Fig.8 for reservoirs initially at compressed liquid state.

Macias-Chapa!” developed a lumped-parameter model where the system is
described by Fig.8. Production may be steam only, or liquid/steam, or only
liquid. A computer program was written to calcuiate the adiabatic or the ap-
parent compressibilities including- eflects of heat transfer from the rock. In all
cases the compressibility for a two-phase water system is much greater than
that of only steam or liquid water.

The model includes impurities in form of non-condensable gasses and dis-
solved solids. The system is on the saturation-line, and after the pressure has
been decreased by a specified amount, the saturation may be determined. An
output of saturation vs. pressure for‘a iO% porosity and initial temperature of
240 °C, is given in Fig.9. The solid line represents a cubic fit trough the output
values bfrom the program. This relationship may be used in modeling the satura-

tion variation with pressure.



3. MODELS OF LIQUID-DOMINATED GEOTHERMAL RESERVOIRS
3.1. Liquid Only

For reservoirs with liquid only, the production path, as described earlier, is
for all practical purposes isothermal and isoenthalpic. The heat balance is thus
omitted. The discussion may be divided into two cases: conﬁhed and unconfined
systems. In a confined system, the prodl;ctiorx is due to expansion of the
compressed fluid. The unconfined system is referred to as open. When this sys-
tem is produced, the water level decreases in the same manner as emptying a

tank. The reservoir in both cases is treated as one lump with average properties.

3.1.1. Unconfined System

In the simplest form the equation for the drawdown is given by:

__V!L_ (2)

Agpy

(See Appendix A for derivations of the equations).

If Eq.2 is valid, the drawdown plotted vs. cumulative mass produced should
give a straight line. However, if the points fall on a straight line; this does not
guarantee that there is no recharge, or that the system is not confined. If the
reservoir is produced at constant rate, the line could be straight even with
strong recharge. The slope of the line would be different, but if there is a steady
state influx, and constant discharge rate, the drawdown would be similar to that
of no influx. Furthermore, if the comressibility is constant, the graph would be
similar. On the other hand, even if the graph is not a straight line, there could.
be an unconfined system without recharge since Aygp,, may change with produc-

tion.

If there is recharge to the system, the rate of mass removed from the sys-

tem becomes important. This question will be discussed in detail later, but one



“particularly simple equation for the recharge will be presented here. In this
equation which is known as the Schilthuis!® steady state equation, the influx rate

is proportional to the drawdown.

A9 P _ g _p)-
In this model there are no transients in the reservoir, and the pressure distribu-

tion in the reservoir is hydrostatic.

It is possible that ¢ or A are functions of depth, in which Eq.2 and Eq.3 are
no longer valid, and the equations must be modified. By looking at resistivity
measurements, it sometimes looks like the reservoir is pyramid, or cone
shaped. In that case the area is a linear function of the height, and the solution

would be:
hZ-h? = —E— (4)

In this case there should see a straight line if cumulative production is plotted
vs. (R?-h?) . Notice that h2—h? # (AR)?, so it becomes important in this case to
identify h; . Eq.4 could also be coupled with influx models. The procedure is

analogous to what will be presented later in this study.

3.1.2. Confined Systems

This system is a in compressed liquid state, and the production is due to ex-
pansion of the liquid when the pressure drops. The equations for this system
have been presented by Whiting and Ramey ! and applied to the Wairakei geoth-

ermal field:

dp |pdt  dt
Comparing Eq.3 and Eq.5 shows that if (dp,, / dp)r is constant, the two equa-

V¢[dp“‘ dp _ e - (5)

tions are of the same form. The constants in front of dp/dt are different in the

two equations. The size of this constant helps identify which model is most rea-




sonable for a given reservoir. Eq.5 may be rewritten by introducing the compres-

sibility of water:

d dw,
Vopuc, e e, ®

" A variety of influx equations with various geometries and boundary condi-

tions are possible. The influx models are discussed in a separate chapter.

When integrating Eq.6 to get the drawdown, it is assumed that ¢, and p,,
are constant. This is a good approximation for a relatively small pressure
change, and will be a good approximafion in the early development when the
drawdown is not too severe. However, over a long prediction this may not be a
good assumption. This is especially true when boiling starts occurring in the
reservoir. It may therefore be necessary to update p,, and c,, as time goes on by

discretizing Eq.6, and calculate increments of production and drawdown.

3.2. Liquid and Two-Phase Zone

When the pressure in the reservoir falls below the boiling point, a two-phase
zone will develop. The depth of geothermal reservoirs is sometimes several ki-
lometers, so the pressure will vary_with depth. This makes it difficult to assign
average properties to the entire reservoir when there is boiling in some parts of
the reservoir. In some reservoirs the temperature profile follows the boiling
point with depth curve. In that case boiling will start throughout the reservoir,
and the models presented here will apply. But many reservoirs are essentially
isothermal with depth due to convection. It is clear that in this case, the fluids
closest to the surface will start to boil first. Low in the reservoir {except for local
low-pressure regions around the wells), boiling will normally not occur due to

the higher pressure.

Martin!® discussed how rapid gravity segregation of liberated steam causes

a zone of two-phases to develop at the top of the reservoir with higher liquid sa-



s turation deeper in the reservoir. The question of being able to define an average
liquid saturation for the whole reservoir and the total compressibility of the sys-
temm becomes very important. For a detailed analysis of the system, it may be

necessary to divide the reservoir into several lumps.

3.2.1. Boiling Throughout the Reservoir

When saturation pressure and temperature are reached, the system follows
the saturation curve (Fig.1). Since energy is transferred in the process of eva-
porization, and heat is transferred between the rock and the fluid, a heat bal-
ance must be included. The heat and energy balance was written by Whiting and

Ramey! as:

Wolhp= E; )+ W (hy— E, )+Q =

W([Ei -E; + (1—;2') (v +(1 =2 Vi 1o Coo (Ti— Te)| + (M

(he = E.) =% Wp(tp)pn
we
This equation was developed for predicting the response of the Wairakei reser-
voir. When trying to match the data, it was concluded that the system was ini-
tially in a compressed liquid state, for which Eq.7 reduces to:
(Wp+ W, vy = Wivy —vus ) + BZ Wp(tp)ap (8)
Eq.8 is a volumetric balance where the last term is the influx term, and is essen-
tially the basis for Eq;5. If we define the total density of the system and assume
that the mass loss can be neglected, the mass balance becomes:
Veps = Voppu + We — Wy _ (9)
In this equation the total density is a function of the density of each phase and
the saturation. If we are able to get a relationship between the saturation and
the pressure, Eq.9 could be used to calculate the drawdown. The procedure is

discussed in the chapter on history matching.




In order to use either Eq.7 or Eq.9, the initial state of the system must be
known. In the chapter on history matching, methods to determine optimum ini-
tial parameters are described. Notice that the heat balance is not included in
. Eq.9. The heat balance is included in the relationship to determine the satura-
tion, and is therefore present in the determination of the total density. The tem-
perature and enthalpy are fixed, once the pressure has been determined, since

we have saturated conditions.

A different equation was presented by McNabb%%%, The drainage from the
two-phase zone was assumed not to be instantaneous, and the variation of sa-
_turation above the declining boiling level had to be described. If the relative per-
meability to liquid water is assumed linear with saturation, and that rapid drain-
ing fractures are surrounding less permeable porous blocks, the equation for

the pressure is:

22 _ 4(p, - dw ‘
= a(p;—p)+bw+c 7 (10)

Eq.10 was also applied to the Wairakei field, giving reasonable answers 4. The

coeflicients in Eq.lOb can be expressed in terms of Ag, k, and S, %

g -1
KAqa To
(10a)

Kf;ﬁ (1-Sy0 )73
g

Ag o
b= £ (10b)

Kz‘?;-+ (1=Sy,) 73

g
c = AQL . (100)
g_ - =1
A;& + (1 Swo) To

In the above equations K is the Schilthuis influx constant used in Eq.3, and 1, is

a characteristic time of the fractured permeable medium.

10



*3.2.2. More Than One Lump

Castanier et al.!® divided the reservoir into three lumps as shown in Fig.10.
The central zone from which the production occurs, is represented by a lumped
parameter model to predict the production of mass and energy. This zone is
treated as a homogeneous tank, and the production of mass and enthalpy was
calculated using the following mass and enefgy balance:
We B+ V(1=9)poCuo(Te = Te )= Wi B +Q = Wohy = Wohy— Wiy (11)
Eq.11 is the same as Eq.7 as presented by Whiting and Ramey!. However, there is
an intermediate zone in which neither production nor injection occcurs.
Nevertheless, there is heat and mass transfer in this zone during depletion. Mass
transfer occurs from the outside to the inner production zone. The temperature
breakthrough time of the fluid leaving this zone (entering the inner zone), is

computed using the fluid breakthrough time multiplied by!°.

PPw Cw +(1°¢)poca A
12
?Pw G (12)

Finally the outer zone has fluid flow only. There is no heat flow in this zone, only

natural recharge or fluid injection.

For each depletion step, the production of mass and energy is calculated. In
order to calculate the time taken by this step of depletion, constraints on pro-
duc{tién such as constant enthalpy, flow rate, or available energy is taken into
account. The pressure distribution in the central zone is then calculated using a
superposition of pressure distributions of off-centered wells. Finally the water
and heat influx from the intermediate zone are calculated. The entire process is

repeated until abandonfnent conditions are reached.

This model was compared to a reservoir simulation study by Morris and
Cambell !® of the East Mesa reservoir in the Imperial Valley, and good agree-

ments were obtained. It was concluded that although being able to handle fluid

11




flow and heat transfer more realistically compared to a one lump model, this
method is simpler and less expensive than a three-dimensional finite difference
simulation model. It should also be noted that in the 1imi£ of the intermediate
zone having zero width, this model reduces to a lumped parameter model simi-

lar to the Whiting and Rarneky1 model.

12




4. INFLUX MODELS

If the drawdown history of a geothermal reservoir can not be explained by
simple mass removal, there may be water influx or recharge into the reservoir.
Recharge will maintain pressure in the reservoir, by replacing the produced
fluids by usually colder fluids. A term of influx mass has to be added to the mass

balance equations. Assuming no mass loss, the mass balance becomes Fq.A-2:

We =W, — W, + W, (A-2)

4.1. The Schilthuis Method

In the Schilthuis!® steady-state model, the influx rate is equal to a constant,
times the pressure change. If the outer boundary pressure of the aquifer is as-
sumed to always be at initial pressure, and that there is steady state flow , the

influx rate may be given by Darcy's law as:

= pau = ¥AR_ Bp
w, = pAu Ry (13)

in the linear case. For different geometries, Eq.14 has a different constant, but
in all cases:

w, = KAp (14)
where Ap =p;—p . K is known as the influx constant. To get the cumulative

influx, the rate is given by:

dW,
at e (19)
Integrating Eq.15 (using Eq.14) gives:
¢ ¢
We = fwedt = Kf (p; — p)dt (16)
(] ()

If pressure is known as a function of time, Eq.17 can be integrated. If not, nu-

merical integration yields:

Wen = K3, (p: — p; )At; (17)
i
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This is the simplest form of an influx equation and expresses the cumulative
mass recharge in a steady state system. It has been presented in the geother-
mal literature with models applied to the Wairakei reservoir.#5® and the Bangore

reservoir. 3%

4.2. The Hurst Modified Method

Sometimes the transient effects are important in aquifer behavior and the
aquifer may act as infinite in extent. For this case a well known solution to the
diffusivity equation is the line soufce solution. For large values of tp, the log ap-

proximation can be used for the line source solution { £5>10):

pp = %—[zn(tp)w.eogoi] (18)
By the definition of tp, it becomes apparent that Eq.18 is valid for large times
and small radii. By introducing the definition of pp for radial geometry, Eq.18

becomes:

%—[ln(tp)w.sogoﬂ = %AL (19)

Multiplying by g, and rewriting gives:

2rkh Ap (20)
=y [In(tp) + 0.80907]

e =

< Wy . .
Since g, = -;’-—. if constant u is assumed, te mass rate can be expressed as:

- _abp
We log (bt) (21)
and the influx is given by:
W, —fw,dt-fl S (67 ¢ (22)
where a and b are constants. Eq.22 is usually numerically integrated:
& alp;At;
W = 3 ——=L- (23)




where t; = (¢; + t;_,)/ 2, the average time for the j'th step of depletion.

4.3. General Solutions for Linear and Radial Cases

The type of influx given in Eq.23, is generally known as the Hurst modified
sofution. Van Everdingen and Hurst?? presented solutions to the influx equations
similar to Eq.18 for different boundary conditions in the radial case. Miller!!
presented solutions for the linear case. The work by Miller!! was later extended
by Nabor and Barham!? to include solutions for a constant pressure outer boun-
dary. By changing the definition of £ , they came up with three working equa-

tions for all boundary conditions.

The solutions to these problems are summarized in Table 1. Tables of nu-
merical values for these solutions have been presented in the literature.!329 The
solutions can also be presented in graphical form: Fig.11 is the linear case, and

Fig.12a and Fig.12b the radial cases.

Van Everdingen and Hurst?® presented how the cumulative water influx is
calculated in terms of @p. The equations assume that the inside pressure is con-
stant. For a constant pressure drop, the cumulative water influx is given as a
function of time by:

We = B@p(tp)ap : (23)
For varying pressure, the method of superposition, is used as discussed in a

later section.

4.4. Hurst Simplified Solution

The equations presented in Table 1 were solved.using the Laplace transfor-
mation.?? By coupling the influx equations with the material balance equation on
the reservoir, a particularly interesting solution arises. Hurst!3 presented this

solution for a petfoleurn reservoir. A geothermal reservoir with only liquid, is
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analogous to a petroleum reservoir above the bubble point pressure. In this case
the compressibilities in the reservoir and the aquifer may be treated as con-
stants, and the equations may be solved using the Laplace transformation. Two
solutions are presented here: the infinite linear and infinite radial cases. Howev-
er, the method can be used with any geometry if @5 is known in Laplace space.
Sometimes an analytical transformation is not possible. In that case, numerical

methods can be used.

4.4.1. Infinite Linear Aquifer

c
By defining A = _J._q_qu__' Hurst!? was able to present two limiting solutions.
{CresPres

1. A very large

In this case the aquifer becomes the important factor in the response: the
reservoir is ignored. The compressibility of the reservoir is negligible, so this
corresponds to an unconfined system with infinite linear influx. Note tha£ this
case will also occur when {-+0. The solution then reduces to the aquifer solution

only, and the drawdown is given by:

n
ap = L3 rw Ry (tp~tp)) (24)
kA iz 7 2

Eq.24 is the superposition sum for varying rate, and F,,, is the solution for an

infinite linear system given by Nabor and Barham.!?

2. A very small -

In this case the reservoir becomes the dominant factor, and if the compres-
sibility of the reservoir is large but constant, this situation may be occurring.
The aquifer is now completely ignored, and the equation for the drawdown sim-
ply reduces to the tank decompression in Eq.6 without recharge. The system is

now confined:

1

VoCresPreas © (25)

Ap =
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3. A intermediate

The effects of both the reservoir and the aquifer become important, and the
total expression must be used. This situation lies between the limiting cases of
confined and unconfined. For the infinite linear case, an analytical solution ex-
ists. In cases where such inversions are not possible, there are numerical
methods that transform a solution from Laplace space to real space. One such

method is the Stehfest?! algorithm. The equation for the drawdown becomes:

c n
Ap = —'—“—‘-‘l—ES——Z)Aw,-M[x"‘(tD-tD,)] (28)
kVprcscns j=0
where
L 2)\t2L
2

M(\tp) = Rlz— e Porfo(ME) ~ 1+ 1D (26a)

z

w

4.4.2. Inﬁni;e Radial Aquifer

The solution is analogous to the linear case. In this case define

1. A, very large
Again the system acts as if the reservoir is not there. The drawdown is given

by the solution for a infinite radial system

f: Aw, pp(tp—tp;) - (27)

- —_&——
8 = 3rkhp F

For ¢p= 10 we can use Eq.18. Complete solutions are given by Van Everdingen
and Hurst® and Chatas!®.
2. Ap VEery smdil

Again the aquifer is ignored, and tank decompression is the solution. There-

fore the equations reduce to Eq.25 in this case also.
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3. A, intermediate
Now the entire expression must be used. In this case there is no analytical
solution available. Solutions were presented in graphical form by Hurst!3. The

drawdown is given by

“ n
Ap = z—m'-f’z;—jgo Mw,iloN(o.tp—tp;)] (28)
where
O'N(U.tp) = L“-l - KO(\/E) ] (283)
s-z_[dK,(‘/E) + ‘/EKQ(\/E)]J

4.5. Superposition

Since the equations presented in the petroleum literature are limited to the
boundary conditions of either constan£ rate, or constant pressure at the inner
boundary, it becomes important to be able to modify the equations take into ac-
count varying pressure or rate. This is done by dividing the changes into
discrete steps, and adding the effects of each constant pressure step. The
method for doing this is known as the principle of superposition, and can be ap-

plied in both space and time (see Fig.13).

The idea is that the effects on a point in space is the algebraic sum of the
effects from each contributing change. For example, to determine the effects of
several wells in a reservoir on the pressure at a certain location in the reservoir,
simply calculate the effect from each well assuming there are no other wells in
the reservoir, and then add the pressure changes from each well to get the total
effect. Similarly the effects of several changes at different points in time on a
point later in time, are additive. The principle of superposition is discussed in
more detail in petroleum engineering textbooks and was discussed by Van Ever-

dingen and Hurst!?
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Using the Van Everdingen and Hurst equation (Eq.23), the influx is given by

the superposition theorem as:

W= B % Qlto—ts;) by (29)
’:

In this equation fp represents current time. The initial pressure drop is effective
from the beginning until present time,' and the additional pressure drops are in
effect for successively shorter times. This is iliustrated on Fig.13. 1t should also
be noted that in the limit of infinite steps, Eq.29 may be written in integral form.
This is known as the convolution integral, and can be used directly if the varia-
tion of pressure as a function of time is known. Since the limit of the integration
is from initial to present, and that the initial conditions are generally known for
reservoirs, this integral is suited for solutions by the Laplace transformation.
The integral is given by:

tp
' d o\ 4,0
Wo= B [ S0 gn(tp~t5)ats (30)
[} D

4.8. Fetkovitch

It becomes complicated to always have to use the superposition theorem,
especially if computers are not available, and if the reservoir is closed since
there are no simple analytical solutions to the problem. A different method was
developed by Fetkovitch,?? whi‘ch is especially useful with closed reservoirs. In
this method the average pressure of the reservoir is assumed to be the inside
pressure of the aquifer. The average pressures of the reservoir and the aquifer
are calculated using material balance. For each time-step (the size of the time-
steps need not be equal), the average pressure in the reservoir is held constant,

while the average pressure in the aquifer is allowed to decrease.

The method is based on defining a resistance function between the aquifer

and the reservoir. Since a finite reservoir which is closed is assumed, pseudo-
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steady state is assumed to be reached immediately. This is not true, but the
time to reach pseudo-steady state is usually much smaller than the time for the

prediction. The equations for pseudo-steady state flow for radial geometry are:

2rkh (Pay —Pwr )
w, = " av full - (31)
T, n Te 3 . Tw | 1|7
K (7'52;'7'112;)2 Tw 4 Te 4 |7

T
which if —— > 10 reduces to
TW

= 2rkh (Pau ~DPuy )

w, 0 r 3 : (31a)
K nrw 4
for linear geometry:
kbh -
w, = (Paz Pw) (32)
)

The method is based on a constant productivity index. For a closed system, the

rate may be expressed as (see Appendix B of Fetkovitch?®?)

w .
e = Julpu=puy ozp| - 221 | ()
et
Eq.33 is the most important equation in this method. The procedure for doing
the actual calculations are as follows:

1. Calculate wg; mqee (the maximum influx rate using one of the equations for

pseudo-steady state flow with pyy = 0).

2. Calculate 4, for the time step.

Wei . Wei.maz
g ——|1 - exp| - ————A¢ 34
An Pi P[ We'i. r ( )
where
Wei = VagP9CruwPs (34a)

3. Calculate the average pressure in the reservoir after the end of the time

step. This is pyy(n) in the aquifer. For a constant compressibility decompres-

20



" sion

P ) .
—WPu+W°n-1+A" Pay(n-1)~ W.fén 2 +Pi(V¢prascr¢s)

P, = 35
w (n) ya (35)
V@presCres + '2_'

If the reservoir is unconfined, the material balance in the reservoir is given by

Eq.3, and then Eq.35 will have Vyp.esCrs replaced by %2—

4. Calculate the incremental influx for this time step.

pwf(n"l) - pr(n) A“ (36)

Awon = |Pav(n-1) — 2 2

5. Calculate the average pressure in the aquifer at the end of the time step

p.
Pau(n) = P = 35— (W +4W, ) (37)
a
8. Finally we can calculate the cumulative influx at the end of the time step
We, = Wo, _+AW, (38)
If the pressure can be represented by the hydrostatic column of water in the

observation well, the drawdown over the time step is given by

Ak, = Dk, + pwi(n;l)-gpwfgn) (39)
res

The procedure is then repeated from step 2. This method is especially suited for

solving on a programmable calculator, or a computer. It is possible to update
the compressibility and the density as time goes on. Using data on drawdown
and rate, one can determine the constants that will give the best results. Note

also that for this method, the initial pressure in the system must be identified.
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5. HISTORY MATCHING

After a geothermal reservoir has been produced for a period of time, a de-
pletion model can bé matched to the production data. The production history is
used to obtain optimum parameters of a particular model. As more data be-
comes available, more and more becomes known about the reservoir. With time
there are data available which may be used to improve the understanding of the
reservoir. This becomes important in future modeling of other similar reser-
voirs. In all cases data must be collected as the reservoir is produced. The
moael is limited to the data used, so all the pressure responses must be includ-

ed.

In matching production data it is possible to get as many parameters as
there are data points. If there are three data points it is possible to fit three
constants. A more usual situation is that there are more data points than con-
stants to fit. In that case, the method of least squares fitting may be used. It is
also possible to use graphical techniques. These concepts are best illustrated by

examples.

5.1. Number of Data Points Equal to the Number of Constants to Fit

A drawdown of 10 meters is shown after producing 4x10° kg of water. The
reservoir is filled with liquid of density 870 kg/m?®, and from resistivity measure-
ments the volume was estimated to be 3.5x10°m3. The porosity from core sam-

ples is thought to be 25%. No recharge is thought to be significant.

There is only one data point available, so only one constant can be deter-
mined. For liquid only the possibilities of a confined or an unconfined system can
be tried. The compressibilitly of liquid water at these conditions is about
1.2x107%Pa~!. If the system is. confined, Eq.8 is used in an integrated form

without recharge:
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Vepuwcy(p—pi) = ~ W,

which becomes:

Vppdicwg bh =
Solving for the volume gives:
L/
9p5Cug bR
Substituting the values gives:
9
V= 4x107%kg = 1.8x10' m8

(0. 25)(870)2 (1 2x107%) Pa=1(9.81) —(10)m
which is much higher than the believed 3.5x10%mS3. If the system is unconfined,

Eq.2 is used and solving for A gives:

-
¢pw bR
Using the values given:
9
A= 4x10 Icg = 1.8x10%m?

(0. 25)(870) 7 (10)m
If the volume is 3.5x19°m3, this would give a vertical height of:

V _ 3.5x10° m?®
= e— — 0
h =3 1.8x10% m? 1900 m
This number is more reasonable, indicating that an unconfined reservoir is more
likely.

If an unconfined model appears reasonable, what will the' drawdown be after

30 years of production if the rate is constant at 100 kg/s ?
The total mass produced after 30 years is:

Wp = wt = (100) (30)years(31.536x10%) se:

= 9.46x10'%g

Added to the produced fluid when the drawdown was 10 meters, the total mass

produced in 30 years will be:
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Wor = 9.46x10' kg + 4x10% kg = 9.86%x10'® kg

The drawdown is obtained from Eq.2:

o e _ 9.86x10!° kg
APPu  (1.8x10%)m?(0.25)(870) KL
m

=262 m

Now assume that when 10x10'® kg was produced, the drawdown was measured as
150 m. Therefore, the model is predicting too large a drawdown. This may show

that there is some pressure maintenance in the system.

Assume that a more careful study showed that there is influx from a perme-
ablevzone along a fault; Two constants can now be obtained since there are two
data points. Notice that the temperature and enthalpy are assumed constant so
the heat balance can be ignored. If a Schilthuis!? t).'pe equation is assumed, Eq.3

can be used. The integrated form of Eq.3 becomes:

A
-jL(P—pz-) = K(p:-p)t - wt
Since the rate has been assumed constant, W, = wt. Writing this equation for
the two data points and since . p=pgh:
~Appubhy = KAht, — Pl
—Agpubhz = KAhgty — Wye

Solving the first equation for A;ap;, gives:

KAh t,~ WB
_Ava = 2 :

bh,y

Substituting in the second equation gives:

KAht,- W,
— 1 Pl An, = KAhotp —

Ah, p2

Solving for the influx constant gives:

Wyy — W, i
K= pl pvah-g
Ah gty ~ Aht,

where £; = 4x107 s, and ¢, = 9.46x10% s. Substituting the values given, an expres- .
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" sion for K is obtained:

' 10
4x10%kg — (9.86x10'0)kg ~——
e ( Yeg — ( )9150 - o2s KT
(10)m (4x107)s — (10)m (9.46x108)s m-s

using this and substituting in the first equation:

(4x10%)kg — (0.28) ;kg-s—(lo)m@xlo’) s
A?Pw = 10 m

= 3.9x108 K&
m
‘With ¢ = 0.25 and p,, = 870 kg/ m?, the area becomes:

3.9x108 %L
= 1.8x10% m?

A= -
(0.25)(870) '—n%—

This is the same as found in the first example. Now the drawdown after 50
years can be predicted. After 30 years, the rate is increased to 150 kg/s. After

30 years Ah = 150m. The next 20 years, the rate is 150 kg/s, so for this period:

- kg 6y_S 1
AW, = (20)years (150) < (31.536x10 )years 9.46x10'%g
and the drawdown for the period is:
AW, 10
P _ 9.46x10%° kg = 167 m

2 = =
Agpuw + Ktz (395108 %L 4 (0.28) KL (20)(31.536x108) s
m m-s
Therefore the total drawdown after 50 years will be:

A =150m + 167Tm =317m

5.2. More Data Points Than Constants to Fit
Assume that thé following data are available from the reservoir described in
the previous exampie:
Time(days) Rate(kg/s) Drawdown(m)
100 | 40 0.85

200 30 1.5
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400 80 4.0
" 700 120 11.5

1000 100 17.5

5.2.1. Integrated Form

Assume that the same model applies as before. By rewriting Eq.3 in an in-

tegrated form, the result becomes:
n
Appy by, = Wpn — K}, DRjAL;
i=1

n
dividing by }; Ah;At; and rearranging gives:
i1

w, A
= A¢pu e S
2, Ar; Aty 2, Ahs A
j=1 =
Now defining:
- B
Ty = 5
Z AhjA
and
W,
Yn =
jzlAthtj

Substituting, the relationship becomes:

Yn = AppuTn + K
This equation may be used to identify the constants Agp, and K. There are
several ways to do that. One is using a least squares fitting technique. The pur-
pose is to minimize the distance between the data points and the points calcu-
lated using an equation of the form given above. The data points can also be
graphed on cartesian graph paper. In this case the line should be straight. This

is always recommended if the equations can be reduced to an equation of a
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straight line on some- form of graph paper. If the points fall on a straight line,
the model used is likely to apply. The scatter of data points may be due to the
sensitivity of the method. It does make a difference how the equations are writ-
ten. If dividing by Ak rather than the sum, Wpn/ &Ry is close to being constant.
W;iting the eqﬁation of a straight line like that would therefore not be a good

choice.

Returning to the example, the values of z, and y, were calculated. The
results of the calculations are given in Table 2. A graph of the data points is
given in Fig.14. As can be seen from this graph, the points fall on a straight line.
The solid line represents the least squares fit through the data. The two con-
stants from the ﬁt are the slope and the intercept with the ordinate. The values

are:
App, =4.03x10% kg/m

K=0.3kg/ms

K becomes inaccurate if the points are scattered, because the value of K is

small. If the uncertainty in measurements is high, it may be necessary to

smooth the data using statistical methods.?

If there are more than two coefficients to determine, it is not possible to
write the equations in the simple straight line form, and a numerical method is

necessary. The general form of writing equations with constant coeflicients is:

yj = Qg + alzl'j + azzaj + ... + ﬂ.,.nzm_j

In matrix form this becomes:

1 Ty T2y -0 Zpg a, Y1

1z, Zan " ZTmn Am n
If m=n, there are the same number of data points as constants to fit, and the

matrix equation can be solved. If m>n, there is not a unique solution. If m<n,

27




there are more data points than constants, and the least squares method must

be used.

5.2.2. Finite Difference Form
a Previously Eq.3 was written in an integrated form, assuming Agp,, and K
constant. Eq.3 could also be written in a finite difference form. There are several

ways of doing this, many of which are used in numerical simulation. One way

would be:
hp = hp_
Agpy T——= Kbh, — wn
tn tn-—l
Note that Ah, = h; — h, implies that
hyp = hn_y = (hy = hq_y) = (s — hy) = Ah,_; — Ohy,. Dividing by Ak, gives:
Ahy,_, = AR, _ Wn,
AbPw—pp i - K m,

where At, = t, ~ t,_,. Rearranging gives:

Ah, — Ah,
AR AL,
Ah, - -
and z, = —h-'"z-’;n—-ff'—"—-l—, a similar straight line relation-
n

R K44
Ah-n— PPw

Wy,

Ahy

and by defining y, =

ship results.
Knowing Agpp,,, the drawdown after 2000 days of production, if the rate is

110 kg/s after 1000 days, can be predicted.

The equation is:

n n-1
Appybhy, = Won — K3 BhjAt; = Wy — K'Y BhjAt; — KAR AL,
i=1 i=1 .

Solving for Ah, gives:

n—1
Won — sz_:lAthtj

A = — ¥ KBL, (40)
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From Table 2 the sum is known, and the other terms are known:

Won = Won—y + AWpn = 7.344x10° kg + (86.4x10%) s (110) 589—= 16.85x10° kg

K=0.3—qu—
m s

Agp, = 4.03x108 '—:r-‘f-

At, = BB.4x10% s

n-1
Y, AhjAt; = B41.1x108 m s
j=t
Substituting these values gives the drawdown after 2000 days:

16.85x10°% kg — (0.3) -59——(841.1x108) m s
m S
Ah, = A T =38.7m
(4.03x108) —"%-+ (0.3) ;9—;(55.4x106) s

In all the calculations the simplest possible way of numerically integrate
the influx equation have been used. It should be noted that this introduces an er-
ror in the determination of the influx constant. Using the average drawdown
between the current and the present level of depletion in calculating the sum
would approximate the integral better. However, with the number of time steps,
and the frequency of values when the drawdown changes mast rapidly; the for-
mqlation used above gives a good approximation. The additional terms added to
each depletion step are also nearly constant, so even though the influx constant
may not be the true Schilthuis constant, the predicted drawdown should be the

same.

5.3. Determination of Optimum Constants

Up to this point cases have been considered where the constants could be
obtained through a least squares fitting technique. Some constants can not be
obtained in this manner, and other method must be used. Some of the most im-
portant constants to identify, are the initial values of the parameters. This is im-

portant when the variations of saturation, temperature, and pressure need to be
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described with time. Initially, there may be only liquid, but thé drawdown may
not follow this type of model for a very long time. There will eventually be boiling
in the reservoir, and to be able to predict when the pressure falls on the satura-
tipn curve, the initial pressure in the reservoir must be known. As an example,

the simplified mass balance given in Eq.9 with Schilthuis influx can be used:

Ve(os = pin) = Wy — Ifjf_';lAh,At,-
In this case the initial density needs to be identified, which is a function of the
initial thermodynamic properties in the rgservoir. The initial temperature is
usually well known, therefore assume that the only initial parameter to fit is the
initial pressure. If there are more than one parameter to fit, they can be fitted

one at a time, and iterating until-convergence. The procedure is as follows:
1. Assume initial pressure p;.

2. Calculate the corresponding p,;. (There may be steam present, or the fluid
is on the saturation curve, depending on the teinperature and the chemical

composition of the fluid.)
3. Perform the history match as discussed in the previous section.
4. Determine the standard deviation from the fit:

s

s.d = ——]

where

A=Yn —yn

Yn is from the data

¥n is calculated using the fit, and
m = the number of data points.

5. Change the value of p;, and repeat from step 2.
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When the procedure has been finished for several values of p;, the assumed
values of p;, vs. the standard deviation can be graphed. If there is a minimum
s.d., the corresponding initial pressure is assumed to be the correct value. The

same procedure may be used to identify other constants.
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6. EARLIER SVARTSENGI MODELS
6.1. Reservoir Description

The Svartsengi field in Iceland is a liquid dominated reservoir with fluids of
nearly constant temperature at 235 °C. The reservoir is located on Reykjanes
Peninsula in southwest Iceland. From resistivity measurements the reservoir is
believed to cover an area of 5 km® at 200m depth, increasing to 7 km? at 800m
below sea level. The salinity of the geothermal fluid is about two thirds that of
sea water.

The following reservoir and fluid properties were discussed by Regalado.??
Fluid production from the reservoir started in 1976. The production data have
been provided by Thorhallsson.?® The total mass rate output from the field is
shown in Fig.15a. The water level was measured in wells 5 and 6 until 1000 days
of production. After 1200 days of production, the drawdown was measured in
well 4. The measured drawdown vs. time is given in Fig.15b. A pressure-
temperature diagram for the wells is shown in Fig.16. It shows the feed zone
pressures of the wells and the water saturation temperature corresponding to
the pressure profile measured in well 4. Note that only well 3 is initially at sa-
turated conditions, and that the temperature from 350m to 1650m depth is
nearly constant. Most of the wells are completed in the deeper liquid zone. The
pressure with depth is linearly increasing, but there was initially a 16 bar pres-
sure difference between the inside and the outside of the reservoir at 1000m
depth. The density was measured as nearly constant at 854 kg/m3. The result of
enthalpy measurements in wells 7,8,9,10, and 11, show average enthalpy of 1074
kJ/kg. From well testing the porosity and permeability have been reported as
0.1 and 1 darcy, respectively. This permeability appears rather high compared

to other liquid dominated geothermal reservoirs.
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* 6.2. Convection Model

The deuterium and chloride concentrations of the reservoir fluid give
conflicting information about the relative amounts of fresh and seawater at
S\(artsengi. The deuterium indicates 50% meteoric water and 50% seawater while
the chloride indicates 1/3 meteoric and 2/3 sea water. This problem was ad-
dressed in the convection model developed by Eliasson?* and reported by Regala-
do?® and Kjaran®® where boiling was assumed to explain the high salinity. Also
since the temperature in the reservoir is almost constant below 350m depth,
convection was assumed to occur. It can be shown that a vertical permeability
of only about 1 millidarcy is a suflicient condition for convection.?® A convection
model was therefore proposed for the Svartsengi reservoir.?® This natural state
model is illustrated in Fig.17. The conservation equations for points A and B can

be written as follows:

Point A:

Mass: w, = w, + wyg + w,

Energy: w,h, = wgh; + 'r;udhd + weh,
Concentration: w,f = wgy + w,7y
Point B:

Mass: wy = w, + wp

Energy: Wyh, = w.he + wyhy
Concentration: wyf = wey + wpa

Rearranging these equations we get the expressions for the mass flowrates:

7T a

oy =B

wb wu,r_a
wy = w, & 21=E.
Y 71—«
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w, = w, 2=E.

u

Y
he = = 172
hy =h.u+L%5-

where L is the latent heat of vaporization, and a,8,7, are the cfxloride concentra-
tions at the points given in Fig.17. There are now six equations with twelve unk-
nowns. To solve them it becomes necessary to make some assumptions. Assum-
ing that the chloride concentrations are known, the unknowns are limited to
seven. The problem can be solved, for example, if the mass flowrate up can be
estimated. This was done by using the following expression:?®

wy, = KA(1-e)(p(T; . 7)- p(Ty.B)) (41)
where K is the coefficient of permeability, m/s, A is the area of the up flow zone,

and £ is the fraction of the energy disipation which occurs in the down flow
(must be smaller than 0.5). -

The natural heat loss was calculated as the difference between the upward
and the downward heat flow. The value arrived at by Kjaran et al.?* was 300

MW permai- This model describes the reservoir in its natural state.

6.3. Hydrological Model

The early production model developed by Kjaran et al."’A‘1 for the Svartsengi
field was a hydrological model. It was based on a rectangular geometry of the
field where the wells were assumed to be close to one end of the rectangle. The
opposite boundary was assumed to be far enough away so the effects of it could
be ignored. Writing the boundary value equation for fluid flow in a porous medi-
um lead to the solution:

o = [
Ah(z y.t) = ;41—5-2 x Cnm%m(z.y)@nm(s-n)jo'q(T)e'“")’K“"‘d'r (42)

n=0m =0

where:
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A = area of the rectangle m?

S = storage coefficient

T = transmissivity m?/s

(x.y) = coordinates of observation well, m

(¢,m) = coordinates of the producing well, m
Ah(z,y,t) = the drawdown in the observation well, m

The matrices are given by:

n#0,m#0
Cam = 2 (n #0Am =0) V(n 0Am #0)
n=0Am =0
Kom = S
m n
"*T[‘;e—“ r]

_ mnz nmny
é,n = cos L cos

This solution corresponds to the solution for a well located in a rectangle. The
effects of superimposed wells are added in an infinite array to create the boun-
daries.

For step changes in the rate, this equation may be written as a superposi-
tion sum. The resulting equation was used to calculate the drawdown in the ob-
servation well. The result of the calculated drawdown compared to the measured
drawdown is given in Fig.18. We see that there is a good agreement during the

first 1600 days of exploitation.

6.4. Unit Response Function Model

The unit response function was defined by Barelli et al.?” as the solution to

the diffusivity equation:
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nVep(7.t) - Qﬂa—rgﬂ= 0 (43)
with the boundary conditions along a boundary S: |
p(7.t) = p(F.t) on§,
p(#.0) = po(7) inV

Ag-E-Ap(i’,t)-ﬁ. =q(t) + q'(t) onS,
K o gy g
Z—Ap(‘r.t)-n = v (F,t) on Sg

In these equations, 7 is the diffusivity (m®s™!), v is the Darcy velocity, and g'(¢)
is the flow rate variation on S;. S, is the part of the boundary on which pressure
is known, S; represents the well where the rate variation takes place, and the
rate is known on S3. The solutions to Eq.43 are presented for some boundary
conditions in Table 1. However, a more general solution may be obtained without
putting further restrictions on the boundaries than what is stated above. If al-

lowing the flowrate to change stepwise, the solution becomes:??

t
Pa(f.t) = g(O3)p, () + [, 7. r) LT s (24)

where p, (Pa m~3s) is the special unit response function, which is the solution
to the boundary condition of step changes in rate, and pg (Pa) is the pressure

field difference between disturbed and undisturbed solution.??

Eq.44 can be rewritten for the step changes in rate using the superposition

sum.:

MR = g(O+)F(t) + 3 A Fltn — ;) (45)
F=1

Now the problem becomes to determine the unit response function F(t). The
unit response function has been used to model the Svartsengi field.?® The func-
tion F(t) was determined using a least squares fitting routine with the drawdown

history in the reservoir. The calculated drawdown is shown in Fig.19. The unit
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response funcﬁon is determined using the measured drawdown and the rate
variations in the field. The solution is general, and any function which fits the
data may be used. When F(t) has been determined, conventional well testing
techniques may be used to determine permeability, storage, and skin, by log-log

type curve matching.

6.5. Linear Model

A linear model developed by Swedish authors was used for the Svartsengi
reservoir by Regalado.?® The model was developed for a long flow channel called
an esker that forms under glaciers. Regalado?? adopted this model because
geothermal fields are geologically active with many parallel faults. The

diffusivity equation was written:

dh
= >3 (46)

and solved with the boundary conditions:

h(z.0) = h(=.t) = hyg (47a)
dh _
oo (08) =~ 5%;' (47b)

In these equations T is the transmissivity (m?/s), and S is the storativity
coefficient. The initial condition, and the first boundary condition say that the
initial pressure is the same as the pressure at the infinite distance from the
well. The second boundary condition is Darcy's law written at the producing well
positioned at x=0. This well is considered a plane source, and the observation
well is located a distaﬁce x from this source. The model assumes infinite linear
~aquifer, but the reservoir is assumed f.o be closed at one end. To create this
boundary, an additional production well, producing at a rate q, was placed at a
distance 21-x from the observation well. This well was referred to as the image

well. The model is illustrated on Fig.20. The solution to this problem becomes:

an= e 22 pay v I 2B2) by, (48)
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where:

_ z%5
Y= T ,(49)
- (R1-z)®S
We= 4T (50)
" Vi
D{w) = E\/‘L_U—_ VT o+ Z{e'ﬂdz (51)

The first term in Eq.48 is the drawdown due to‘the production well, and the
second term is due to the image well. This model is the same as a semi-infinite
aquifer with the superimposed eﬁect of the image well to create the no flow
boundary. The model was used to calculate the drawdown for the first 1600 days
of production using relevant reservoir dimensions, properties, and flowrate data.
The results are given in Fig.21. The model agrees well with the observed draw-

down in the field.

6.6. Boiling Model

The pressure-temperature diagram in Fig.18 shows that drawdown in the
field will result in boiling in the upper parts of the reservoir. As the liquid level
drops, there will be a boiling zone above the liquid level where the pressure and
the temperature follow the boiling point with depth curve. This has been ob-
served at Svartsengi, where steam is now rising from the ground in the region of

1_28

the shallow wells. A model was developed by Kjaran et a using the storativity

given by:

Sy = ¢(1-5y) (52)
where the subscript 1 referres to the zone where there is boiling. This quantity is
assumed constant, The total production rate is given by the sum of the rate

from the lower liquid zone, and the rate from the two phase zone:

2
Wz = W) + padaSe—; (53)
dh,
w, = plAlsl—dt (54)
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where h is the drawdown in meters, and the subscript 2 referres to the liquid
zone deeper in the reservoir. These equations are similar to the unconfined sys-
tem with the influx term replaced by w;; the rate from the two phase zone.
Furthermore, it was assumed that the rate from the two phase zone was propor-
tional to the difference in pressure between the two zones:

w, = c(hy — hy) (55)
There are now three equations with three unknowns, w,, h;, and h,. The draw-
down in the deep zone, h,, is of interest since this is what is monitored in the ob-

servation well. The solution to these equations is:

t
ho(t) = C\Wy(t) = Cof Wolt ~7)e ™ Kdr (56)
(]
where:
€= —— (57a)
P24252
Ce = cC} (57b)
AS A2S3)
K= 1 (01415,)(p242S5>) (57¢)
¢ p1A15) + p2AlS: ‘
1t is also possible to calculate the drawdown in the two phase zone:
hy(t) = Csf Wp(t—-T)e "/ Xdr (58)
o .
where:
c ° (59)

37 (p14151)(p242S2)

The constants in Eq.56 were reported as being:?8.
C,=1.488x10"8 m/kg

C.=8.716x10"'! m/kg day
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K=150 days.
To use this model, the equations must be numerically integrated. The drawdown

was calculated here using the constants given above and the following equation:

- 1S ~t,/150
Ah, = 1.488x10 BWF,, — B.716x10 “. Wp(tn—t,-)e 1

i=1

Aty (60)

This equation is the same as Eq.56 for h, but is now written in numerically in-
tegrated form. The results of the calculations are given in Fig.22. The fit is not
very good, although the shape of the curve is similar to the data. K was changed
and history matching was performed to get a better match. K was determined
by trial and error, but C, and C; were determined using a least squares method
similar to the example presented in the chapter on history matching. The best

match is given in Fig.23. The constants used were:
C, = 1.129x107 % m /kg
C, = 4.932x107!! m/kg day
K = 250 days

This model is similar to the Schilthuis model, exept in this case the pres-
sure support is from the two-phase zone rather than from a supporting aquifer.
From the formulation of the problem, there is no way to distinguish between
these two cases. The drawdown in the two-phase region could just as well be
representing drawdown in an aquifer. In the Schilthuis method there is no draw-

down in the aquifer, the external pressure is always initial pressure.
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7. DEPLETION ANALYSIS FOR SVARTSENGI

A spectrum of depletion models have now been developed or modified. The
data from Svartsengi were analyzed using these depletion models. In the

analysis the simplest models are considered first,
7.1. Liquid Models
7.1.1. Without Recharge

The production data for the Svartsengi field are given in Appendix B. After
producing 3x10'° kg of fluids from the reservoir, the drawdown was measured
about 100 m. Eq.2 and Eq.8 for for unconfined and confined, respectively, can be
used to identify the kind of reservoir. At reservoir conditions, the compressibili-
ty of the liquid water is about 1.2x107° Pa~!. Using the reported values for poros-
ity (0.1) and density (850 kg/m3), the volume of the reservoir can be determined
from Eq.6 if the product_ion is due to decompression ; a confined system. In-
tegrating Eq.6 with W, =0 gives:

Veplgcwbh = Wy

Solving for V gives:

— P

T ¢pEgci,bh

where ¢4, =€, +C;, . Assume that «c¢,=1.15x10"°Pa"!.  Then

Ctw = 2.35%107°Pa~!. Substituting the volume becomes:

V= 3x10'%g :
(0.1)(850)*(kg 7 m%)?(9.81)m / sec?(2.35x107%) Pa ~}(100)m

If assuming that the area, as determined from the resistivity measure-

= 180x10%m3

ments, is about 7 kmz.‘ the height of the reservoir should be:

vV  180x109m?
. S — —————=285k
T T m

This height is impossibly large. It can therefore be concluded that unless the

area is much larger than assumed, the model is unlikely to apply. However, it is
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possible that the production was supported by a large aquifer outside the reser-

voir. In that case the reservoir and aquifer must be considered as one unit.
Next, assufne that the reservoir is like a completely open tank; an
unconfined system. Eqg.2 can then be used. Solving for the surface or lateral

area:

W 10
P 3x10 = 3.5x10%m?2

A= orulh - (0.1)(850Vkg / m(100)m

This value of 3.5 km? is more realistic since it is about half the measured surface
area. The value of the porosity is uncertain. With a porosity of 5% the area would
be calculated as 7 km? by Eq.2, which is-the value expected from resistivity
measurements. Therefore, the unconﬁnea model appears to be applicable. Note
that if there is recharge to the reservoir then Ak will be smaller. So the area cal-

culated by Eq.2 will be less. The drawdown without recharge would be larger.

Graphing W, vs. Ah should give a stfaight line if there is no water recharge
or recharge. Fig.24 shows that the drawdown vs. production is not a straight line
indicating recharge. Also notice the close relationship between the rate and the

drawdown in Fig.15a and Fig.15b.

The pressure measured in the observation well is not necessarily represen-
tative of the average pressure in the reservoir. There may be interference from
the producing wells around the observation well, causing the pressure to appear
lower. To get the true average pressure, the reservoir should be shut in and al-
lowing the pressure to stabilize. This is impossible since the reservoir is continu-
ally producing. To include the effects from each well, a superposition of the
effects from all the wells would be necessary. However, in all the models present-
ed in this report, the measured pressure is assumed to be representative for the

reservoir.
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*7.1.2. With Recharge
7.1.2.1. Schilthuis Method

This model was presented in the section on history matching. When graph-

ing:
- b
Zn = n
jz_:lAthtj
Vs.
i/
Yn = 50
jz_:lAthtj

the points on Fig.25 were obtained. The first few points are distinctly larger in
magnitude than the rest of the points. The solid line in Fig.25 represents the
least squares fit using all the points. The constants from the fit are:

ag = 3.04377 kg/m s

and

a; = 5.33611x107 kg/m

The gr.oup of terms in front of dh/dt in Eq.2 and Eq.6 is a constant. Define this

constant to be Sy, the mass storativity coeflicient. Thus, for the unconfined

case:

Sy = Agpu

and for the confined case:

Sy = Vepigcew

The equations for the confined and unconfined models now have the same form.

For The Schilthuis model Sy = a, and K=a;. Assuming an unconfined system:

e, = Agpy

and
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a, _ 5.33611x10%g/m

= = 0.83x10%m?
¢Pw  (0.1)(850)kg/ m3 m

A=
For a confined system, however, the volume is given by:

a, 5.33611x107 kg / m

V= = = 3.2x10'%m 3
- ep2gce  (0.1)(840)%(kg / m®)%(9.81)m / sec?(2.35x10-°) Pa ! xTm

Assuming that the area is 7 km?, the height of the reservoir is:

3.2x10%m 8

TX10°m? 4.8 km

b= L=
The drawdown was calculated using Eq.40. The result is given in Fig.26. The solid
line represents the calculated values, the circles are the measured values. This
plot is the same for the confined and the unconfined system. The difference

between the two is in the formulation of Sy.

The real system seems to behave somewhere in between these cases. Notice
also that the fit is good for the early data, but the influx is too strong for the
later part of the data. If the three first points are excluded from the fit, we get a
slightly different fit. The fit is given in Fig.27, and the drawdown in Fig.28. We see
that the influx is not as strong in this case. From the least squares fit,
K=2.75447. The value for Sy is 6.80567x10”. The influx is however still too strong,

although this fit is better.

Consider what information can be obtained from the Schilthuis influx con-

stant K. From Eq.14 for the linear case p = py,gh:

K= kAplg
MHAL

In the radial case Darcy’s law gives:

K= 2rkhplg 6
- 1nTe 360
wln e

where @is the angle open to flow. In the linear case the length of the aquifer can

be obtained from the first equation using k~1 darcy:
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- kAp3g - (1x107'3)m*(2500)m (1500)m (850)*(kg / m3)%(9.81)m / s? _ 80 km.
uk (110x107%) Pa s (3)kg/ m s
In this equation A4 is the cross-sectional area of the aquifer. This was taken as

AL

2500 m x 1500 m , since 25002 m?=6.25 km?, and 1500 m is a reasonable height.
The distance from the reservoir to the ocean, which may perhaps act as a con-
stant pressure outer boundary, is about 20 km. The cross-sectional area of the
aquifer may be less than what was used and the permeability of the aquifer is
likely to be much less. The calculated length is therefore of reasonable magni-
tude. Assuming radial geometry, 8 can be determined from the second equa-

tion. Assuming 7/ ry,=10:

Ts
360° Kuln P

w
2rkhplyg
- (360°)(3)kg/ m s{110x10"%) Pa-s in10 = 40
2m{(1x10713)m2(1500)m (850)2(kg / m3)?(8.81)m / s?

This small angle shows that a linear geometry is more valid than a radial system.

7.1.2.2. Hurst Modified Method
In this method the influx rate is a function of time. The influx rate is given

by Eq.21. Combining it with Eq.3, the following results:

dp dp _ 2P —p)

g dt  log(nty ”

This is for the unconfined system. Integrating, and substituting the mass stora-

tivity coefficient:

Notice that a has different meanings in the two equations. Numerically integrat-

ing the water influx:
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Assuming that for each step of depletion, the following holds:

a - tj + tj—l
K= —— b = —
7 log (bE;) ’ 2

it follows that:

n
j=1
Solving for K, gives:
n -1
Won — Sybhn — Y KjAhjAt;
i=1

bh, AL,

If Sy is known, K;, can be calculated using the above equation. The problem is to

K, =

determine the constants a and b. Rewriting the equation for X :

1 1 - 1
—logh + —logt, = —
a J o &= F
Now define:
z, = logi,
_ 1
=%

A plot of z, vs. y, should give a straight line, and the constants b and a may be

determined from the slope and the intercept.
To illustrate this model, Sy = 5x107kg/ m, equal to the value for Sy found
in the Schilthuis method was assumed. The fit for -;-'-log b and i—is given in

Fig.29. The solid line is the fit, and the circles are the calculated values. Notice
that there is a lot of scatter. The computational procedure must be wrong, or
this model does not apply.

The above influx equation was based on the log approximation of the line
source solution for infinite radial aquifers. If infinite linear aquifer is assumed,

the material balance equation becomes:

n
-~ SyAh = Bpngllz(tDn - tDj)Ah.'j - Wp'n (61)
j=2
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* Substituting the definitions of B and F';:

172
t
— SyAh = gcbhlLp gz 2[(—D"—ﬂ)— Ahj = Won (62)
By the definition of Tp (L=1):
— SyAh = pcbhp?y 2[ vy Ez(t - t;)12AR'; = Wpn (83)

In the above equations, Ah'; is the pressure difference between each depletion
step:

Substituting Eq.64 in Eq.83 and dividing by Ah,:

(Ahy — Bhy )t = £4)"7%

s,
n3s

Ahy,
1
PRI [ ] 1/2 (85)
[ﬂ— bhp?g 2 [ Y;—] bhp3g 2
um
Eq.85 can be written in the form:
Yn = Q1Zp + 0, (66)

A plot of this match is given in Fig.30. The points seam to give a positive value of

a, which corresponds to a negative value of Sy! It is therefore concluded that
Sy is zero, and that the reservoir behaves as infinite linear. With Sy =0, the
slope is:

a, = 1.05x10°7 s1?m / kg
With Sy = 0, Eq.63 becomes:

= — :Z:);(tn—t;-l)“"(Ah; - Ah'j—l) + (Ahn - Mﬂ-l)(tn - tn—l)ue (67)

Solving for Ah,:

n-1
an - 2 (Ah'j - Ah'j—l)(tn - j—1)1/2

- j=2
Bin = Bn-y + (tn = tn-1)*? (68)
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and to get started:

a;Wp2

Vi,

The reason for starting the superposition sum at 2 is that in the input file the

Ah-1=0 y Ah.2=

first entry is 0, having subscript 1. When dividing by Ah,, the solution blows up

for AR, = 0.

The calculated drawdown is shown in Fig.31. The match is good, but the
aquifer response is too high. The cross-sectional area of the aquifer can be

determined from the constant a;:

1
a, = A 72
£22 | bhp3g2
728
1
bh = ok 172
pee 2
um a;p*ge
which becomes:
1

(0.1){(1x1071?)m?(2.35x107%) Pa !
(110x107%) Pa s ()

] (1.osxlo-7)-";—Tm(sso)%kg/mS)Z(gm)m/SZ(z)(l)m

A = B.1x10® m? = 810 km?

This value is impossibly large;

7.1.2.3. Hurst Simplified Method

The case of infinite linear aquifer will be considered here. The matching pro-
cedure becomes simple in this case. From Eq.26, a straight line through the ori-

gin should be obtained by plotting:

n
In = 2 A‘wJ'M[)\z(tD-tDj)]
j=0

VS.

Yn = Ahy,
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with slope:

- Haq Cag
kVPresCrosPresd

a

By the definition of A, a becomes:

Hag
a = ———A
kApagPresg

where A is now the cross-sectional area of the aquifer A = h-b.

The problem then becomes to determine A. Again the method of minimizing.

the standard deviation will be used. The procedure is as follows:
1. Choose a value for A.
2. Calculate z,, and y,,.
3. Find a using least squares fit on:
Yn = 2Ty
4. Calculate s.d.
5. Change the value of A, and repeat from step 2.

6. Graph the standard deviation as a function of A. The minimum standard de-
viation éorresponds to the value of A which gives the best fit.
When the best fit for a and A is obtained, the drawdown is calculated using Eq.26.
The result from the fitting for A is given in Fig.32. The s.d. is decreasing to a
minimurn at A =1.3x10~* m~!. Notice that for small values, the s.d. is large, but
for large values, the s.d. is low »almost- constant. When A is large the reservoir is

not important in the response. This occurs when the compressibility of the
reservoir is low, and points in the direction of an unconfined system.
Assuming that the length of the reservoir is 2500 m:
Al = (1.3x1074)m ~1(2500)m = 0.33
: CagPag
since A =

L CrgsPres
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Because the reservoir is hotter than the aquifer, the reservoir will have higher
compressibility. Any two-phase region at the top of the reservoir may be respon-

sible for a higher compressibility. The constant from the fit was:

a = 4.755x10-10 TS

Solving for the cross-sectional area of the aquifer gives (assuming Pag = 1000
kg/m3):

Mag A
kpagPresga
(110x107%) Pa -5 (1.3x104)m !
(1 0x1071%)m?(850)(1000)(kg / m3)3(9.81)m / s%(4.755% 10~ ®)m s / kg

If A = 1500 m, the width becomes:

_ A _ 3.8x10°m? _
b—h— 1500 =2400m
This width agrees well with what would be expected. The calculated drawdown is

given in Fig.33.

7.1.2.4. Fetkovitch Method

To history match using this me.thod, trial and error has to be used by
changing the parameters in the reservoir and the aquifer. Two cases were inves-
tigated: linear and radial geometries. The calculated drawdown is shown in
Fig.34 for the linear case, and Fig.35 for the radial case. In the linear case, the

best fit was obtained with:

Sy = V¢PresCres = 6.6 ;,%

Using the same values for ¢, ¢,y , and p,, as before:

66—3—

66 _ Pa = 6.6x107 m?®

¥PresCres (g, 05)(850) L (2.35x10°%)Pa-1

Assuming h; = 1500 m:
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6.6x107 m?

- Y _ = 4.2
A= A 1600 m =4.4x10*m
- 3kbh .
This is much smaller than expected. The value of ul in Eq.32 was found to be
3
2.846x1078 = Using b = 2500 m and k = 1x107!2 m?2, the length of the finite

aquifer can be calculated:

- 3kbh _ (8)(0.5x107**)m?(2500)m (1500)m.__
L= = T =18 km
- m -8 -6 R
2.846x107% Z——pu  (2.846x107%) ’”_s (110x107%)Pa-s

This is approximately the distance to the ocean from Svartsengi along the fault
zone. The model predicts too large a drawdown for late times. This may be due
to changes in compressibility as a two phase region forms at the top of the

reservoir.

The radial fit was not very satisfactory. so the constants from the fit on

Fig.35 were not determined.

7.2. Two Zone Model

Rewriting Eq.10 in a numerically integrated form yields:

n b c
—Ah, =a) ARjAL; + =W, + —w
,g, 7T pg Pt pg

which can be written as:

Yn = 0T p + QT2 + A3T3,
2, ,0ap and ay are then determined using a least squares fit. From the fit these
values were:
a,=a = 0.32681x1077
ap = 2= —0.1192x10~7
P9

a3 = —= -0.3537x10"!
P9

Using these constants, the drawdown was calculated using Eq.10 in a slightly

different form:

51




n-1
-0k, = a, }: AhjAt; + agWp, + agwn, + a AR, AL,
J=1
Solving for Ah, gives:

n-1 )
a; 2 Ah.JAtJ + G'Zan + azwy,
- i=1
Ah.n -1 - alAtﬂ

The result is given in Fig.36. The curve has the right trend, but the line is not
smooth because of noise in the data. A discussion of these problems is given by
Fradkin et al.5. A difference form of this equation does not work since the
difference w; — w;_; does not adequately describe dw. Note also that it may be
difficult to identify a; since when the production stabilizes, the rate is close to
being constant. The high fluctuation of w (see Fig.15) may be responsible for the
noise in the data. Therefore, using the average rate from the beginning to the
time when the drawdown is calculated was tried. The difference is minor, and the
result is given in Fig.37. In this case, the fit gave:
a, = a = 0.2582x1077
a; = ;";: —-0.9583x1078
ag = ch= -0.1396

Eq.10 can be used to solve for A¢ , K, and 7, assuming a value for S,,. From
Eq.10c it can be seen that the only way ¢ can be negative, is if 7, is negative.
This makes no physical sense. Thus, even if it is possible to solve for Ay and K

using Eq.10, the match gives erroneous answers.
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" 8. DISCUSSION

In this study several lumped-parameter depletion models have been used to
model the production history of the Svartsengi field. In most cases it was possi-
ble to match the drawdown history adequately. The question becomes: What in-

formation about the reservoir can be obtained from the results.

8.1. Liquid Models

In Fig.24, there must have been recharge in the reservoir if Sy is constant.
This recharge may be from the edges within the reservoir, or there may actually
be a channel where water flows into the reservoir. The models are not able to
determine where the recharge comes from, but a better match was obtained
when influx was included. First, assuming no transients in the reservoir or the
aquifer, two models were considered. For a constant pressure outer boundary,
there is an instantaneous steady state, and the Schilthuis method is used. For a
closed outer boundary, there is an instantaneous pseudo steady state, and the
Fetkovitch method is used. The steady state influx was too strong (Fig.28) caus-
ing the calculated drawdown to overreact to rate changes. When only the first
half of the data is used, a weeker influx is obtained, but the predicted drawdown
is too large for late times (see Fig.38). Assuming a finite aquifer with instantane-
ous pseudo stéady state (this corresponds to when the value of @p becomes con-
stant in Fig.11 and Fig.12), the trend of the drawdown plotted vs. cumulative
mass produced will be straight if Sy is constant. But how good is the assump-
tion that Sy is constant? For a confined system, the variable controlling Sy is
the total compressibility of the system. By the tremendous increase in the total
compressibility when boiling occurs, even local boiling can be very important in
controlling the co'rnpre'ssibility. (See Appendix A- for the equations for total
compressibility.) This may explain why the calculated drawdown is high for later

times. In the case of an unconfined system, this effect may simply be due to an
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increase of the areal extent of the reservoir with depth. The resistivity meas-
urements suggest that the reservoir is only "the tip of the iceberg"”, connected

to a large underlying system.

One way to determine if the Schilthuis model applies, is to try the Hurst
modified method for an infinite radial aquifer. If the influx constant is constant
with time, the Schilthuis method applies. In this study the Hurst modified
method did not irnprove. the match. When an infinite linear aquifer model was
used in the Hurst m_odiﬁed method, the match showed Sy=0. This means that
the feservoir and the aquifer are the same. The superposition sum of an infinite
aquifer gave a good match with the data, but the variations with rate were too
high, leading to the conclusion that there are some effects from the reservoir as
well. In order to include these effects, the Hurst simplified method was used.

This method gave the best match.

Plotting the log of drawdown vs. the log of cumulative mass produced gives
a straight line. This plot is shown in Fig.39 with a least squares fit represented by

the straight line. From the least squares fit, the drawdown becomes:

Ah = 2.23x1078 9732

In the above equation W, is the cumulative mass in kg, and Ak is the drawdown
in meters. Using this ernpiric.al relationship, the calculated drawdown vs. cumu-
lative mass produced is shown in Fig.40. Considering the straigﬁt line in Fig.39,
using only the first few points will give almost exactly the same straight line.
This model is therefore able to predict the drawdown. The question arises: Why
bother going through the complicated depletion models if there is a simple rela-
tionship like this one? There are no physical reasons why there should be a log-
log relationsl';ip between the drawdown and the production. The empirical equa-
tion is not a function of rate, and will not be able to predict any build up in the

reservoir.
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For comparison of three of the models, the drawdown was predicted using
the Hurst simplified method, the boiling model using the best fit discussed ear-
lier, and the émpirical log-log equation. The result for a rate of 300 kg/s is
shown in Fig.41. All three models fit the measured data adequately, but the
p;edicted drawdown is very different for the three models. The models should
not only match the data, but be physically realistic. The log-log method does not
take into account a change in the relative amounts of produced fluid and fluid
recharge. When the pressure is decreasing, this ratio will change. The empirical
model is expected to underestimate the recharge, and it estimates larger draw-
down than the two other models. There is also a significant difference between
the Hurst simplified and the boiling model. The Hurst simplified method assumes
an infinite linear aquifer maintaining the pressure in the reservoir. The boiling
model assumes drainage from a two-phase zone without recharge. From the
large difference in the predictions it can be concluded that the chose of model

makes a difference in predictions.

8.2. Effect of Injection

In order to maintain pressure in a reservoir, reinjection may be considered.
The injected fluid will be colder and will cool down the reservoir. When the
volume injected is known, an estimate of the heat depletion in the reservoir can
be made. Injection at Svartsengi was discussed by Gudmundsson.?® However,
some of the injected fluid will break through to wells vie fractures causing pro-
duction of some of the injected fluid. In depletion modeling the injected fluid
must be included in the mass balance:

We=Wy—=Wp =W + W + Win

Assuming that the injection of cold fluid will not change the compressibility

or total density of the system very much, the injection and production terms

can be lumped in a net production term:
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Wp.n;at =Wp = Win
which in differential form becomes:

Wp net = Wp — Win
Using this, the drawdown for a variety of production schedules can be predicted.
As an example, the drawdown using the Hurst simbliﬁed method was prediced.
The prediction for a constant rate output of 300 kg/s is shown in Fig.42, as draw-
down vs. cumulative mass produced, and as drawdown vs. time in Fig.43. When
reinjection is considered, the net rate will be less. Fig.44 shows the drawdown vs.
time for three different rates. The figure shows that if two thirds of the fluid are
reinjected, the pressure will be maintained above the current level for a long
time.

It should be noted that no transient effects in the reservoir and changes in
temperature, density and compressibility as a result of injecting cold water have
been considered.

The natural mass loss due to natural discharge or evaporation has been as-
sumed negligible in all the calculations. This may not be a good approximation.
If the rate of mass loss is constant, this error is most pronounced for early time,

since that is when the rate was low.
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9. CONCLUSIONS

. Lumped parameter models although computationally simple, adequately

match drawdown-production data.
— Better results were obtained when influx was included.

— The transient models gave better match than the steady- and pseudo-

steady state models.

— The best fit was obtained using an infinite linear aquifer model with

the Hurst simplified method.

* Determination of constants from the models help to identify the most rea-

sonable model.

. Detection of changes in the mass storativity coeflicient may give informa-

tion about changes in reservoir properties with production.

* Important information about how the reservoir properties change can be

obtained when different parts of the data are matched.

* Determination of recharge is possible.
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10. RECOMMENDATIONS

The effects of local boiling have been discussed in this report. By including
the total compfessibility as a vafiable in the equations, it is possible to estimate
the drawdown using the Schilthuis or the Fetkovitch method where the compres-
sibility changes with depletion. The volume of the two-phase zone can be es-
timated as being the surface area times the drawdown in the reservoir. If there
is boiling in this volume, a total compressibility can be calculated using Eq.A-69.
Effects of local boiling on mass storativity coefficient could be investigated using

this equation.

The total density method discussed in this report allows effects of satura-
tion changes to be included. However, to predict the drawdown using this
method, iterative methods must be used. When this method is developed, it will
be possible to include effects of a saturation change in the mass balance equa-
tion.

For injection studies, including the heat balance will improve the calcula-
tions. If the breakthrough time for the fluid is known, the breakthrbugh of the
temperature can be calculated as discussed by Castanier et al.!° The effects of

injecting cold fluid into the Svartsengi reservoir need to be considered.
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NOMENCLATURE

A Area of the reservoir or cross-sectional area of the aquifer{(m)
a.b,c Coeflicients

b | Width of aquifer (m)

B Van Everdingen and Hurst influx constant (kg/Pa)
c Heat capacity (kJ/kg° K)

c Compressibility (Pa™!)

E Internal energy (kJ/kg)

erfc Complimentary error function

F Nabor and Barham dimensionless function

g Acceleration constant {m/s?)

h Enthalpy (kJ/kg)

h Height of reservoir (m)

h; Initial height of reservoir (m)

An Drawdown (m)

1 Modified Bessel function of the first kind of order 0
I, Modified Bessel function of the. first kind of order 1
J Productivity index (kg/s-Pa)

k Permeability (m?)

K Schilthuis influx constant (kg/m s)

K, Modiﬁed Bessel function of the third k’mdAof-order 0
K, Modified Bessel function of the third kind of order 1
l Length of reservoir {m)
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Length of aquifer (m)

Inverse Laplace transformation
Pressu‘re (Pa)

Dimensionless pressure

Drawdown function in Laplace space
Dimensionless pressure function in Laplace space
Volumetric rate (m3/s)

Cumulative llvolurne (m3)
Dimensionless cumulative iﬁﬁux
Cumulative dimensionless influx function in Laplace space
Radius (m)

External radius

Inside radius

Dimensionless radius (ry/ 7y)
Variable in Laplace space

Standard deviation

Water saturation (volumetric fraction)
Irreducable water saturation

Mass storativity coeflicient (kg/m)
Time (s)

Dimensionless time

Variable of integration

Temperature (K)

Darcy velocity {m/s)
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aq

av

calc

res

Volume (m?%)

Mass rate (kg/s)

Mass (k.g)

Steam quality {mass fraction of steam)
Viscosity {Pa s)

Specific volume (m3/kg)

Porosity

Density (kg/m%)

Variable of integration

Angle open to flow in a radial geometry

SUBSCRIPTS

Aquifer

Average

Current

Calculated

Influx

Initia)l

Loss

Level of depletion

Produced

Relative (in relative permeamility)

Reservoir
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2ph

Steam

'I'o_tal

Constant volume
Liquid water
Well flowing
Rock matrix

Two-phase
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DEFINITIONS

Dimensionless pressure:

Radial geometry: Linear geometry:
- 2nkhAp _ kbhAp
Po = Tqu Po = "quL

Dimensionless time:

Radial geometry: Linear geometry:

kt kt .
tp = tp = v (L =1 ife
T 2" pucr? ( )

Dimensionless cumulative production:

Radial geometry: Linear geometry:

&p = Q

% bhlygcAp

= 2rhgcriip

Van Everdingen & Hurst Influx Consant (pressure in Pa):

Radial geometry: Linear geometry:
B =2nyper? 3807 " [Pa B = gcbhlLp Po (L =1 if =)

Schilthuis Influx Constant (pressure in meters of water):

Radial geometry: Linear geometry:
K= enkhply 6 kg K= kbhpdg | kg
Te 360° m's mL m-s
uiln—
Tw
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Some limiting solutions in real space

Outside
boundary Solution in Laplace space (for complete solutions, see ref.13 and ref.29).
[5]
E - %’-‘a_g. @ = Fip [tl_]"'
=l I - For tp<03, Fp=F,=F,z=2
‘::,: §. Closed T = ;811(- Vs) —exp(Vs) ®=F, or ip o 1 e .
Tezp( -5 Vs
el% s Lo (Vo) + e (V)] For 0.3<ty<2,
2 c 3 = 2L Vs)+ep(Vs) = F 8 . 2.2,
g |Const.pressure FY o = F, - 3 nntty
Y 3 P 8Elezp( —V5) ~ sap(Vs)] Fo=1- F»%ﬂ[ﬁ]exp[- — ]
g - 3 Po=F
. = 2 - -
31 e Pr=s 18 Fi=(tp + 1_) _ %_2 12 exp (- n@n?ty)
g p(~ Vs Vs 3 LU R
~ Closed pp= 22 (- Vs) +ezp(Vs)
% pp = Fy
2 8 *leap(~V5) - 62p(V5)] For tp=3, F, = 1
a
5 : -V5) - ezp(Va
¢ | Const.pressure Pp= ;zp( s)-esp(¥s) Pp=F Fy=tp+ 1
S| 82 ezp(-V5) + 0zp(V5)] ° 3
° - T, - Ky(Vs) W= 1.12838V1p + 1.19328¢p + 0.268872¢p/Tp +0.00855204t8 ¢ 01, <200
5 A Ny o 1+ 0.818580/7, + 0.0413008¢, e
n
St 2 K0 W = —4.20881 + 2.02568(, £2200 1
s & IrapV5)KYVE) - KirupVs )i(VE) R iy . tp2200 |
° Closed | @ =3 =0~ 0.257,p (r,p>10) do steady stat
e 2 s (rp VI, (VE) + LropVs YK, (V3)] @p = 2 , tp20.267r,p (7yp> pseudo steady state.
o
-d
g 1(rep Vs JK\(V5) = K (rop V5 ) 14(V5)
&S |Const.pressure =
- 8'[’(,(\,3-)1,,(1‘,0\,;) -1, (\,;)’(o('tﬂ\,;)] 1 1
;3 . pp = 2<[_ EBi(- It—p—) , Top=20.(line sourse solution)
& gy = (%) .
o LY For =
2 S £p>10, pp = 5{Intp +0.90807 )
o
-~
2t
L{Y3)KilrpVs) + K (V5 )I1(rapVs) = =0 -3
Closed = =2 = +In7 . For tp>0.25r, (rep>10),
* S eV 3 + eV T | T e ? b e
- .
c (pseudo steady state)
% gy - Bl VKE) = KelrapVE)a(Y5) dy
£ IConst. D= T3 _
§ [onshpressure s 2[K\(V5 M, (rep Vs ) ~ 1{(V5) K, (rep Vs )] Pp =Inryp . (true steady state) , For tp=0.257

TABLE-1. Solutions to the diffusivity equation for linear and radial geometries

and different boundary conditions.



TABLE-2. Example of history matching using the Schilthis method.

t n
n n Aty Wy Ahy, Wen Y AnyAt; Tn  Un
: j=
(step of depletion) (s) (s) (kg/s) | (m) k
| (k&) | (m.s) (s) (kg/m-s)
8.64x10°%| 8.64x10° 40 0.85 0.346x10° 7.34x10° | 11.6x107® 47.14
17.28x108| 8.64x108 30 1.5 0.605x10° 20.3x10°8 7.39x1078 29.80
34.56x10°|17.28x10° 60 4.0 1.642x10° 89.4x10%° | 4.47x10°® 18.37
60.48x10% 125.92x108 120 1.5 4.752x10° 387.5x10% |2.97x1078 12.26
86.41x10%'25.92x10° 100 17.5 7.344x10° 841.1x10% | 2.08x10®  B.73
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FIGURE-17. The convection model for Svartsengi. (Kjaran et al. 1980)
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FIGURE-33. Measured and calculated drawdown for the Hurst simplified method.
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FIGURE-34. Measured and calculated drawdown for a finite linear aquifer using
the Fetkovitch method.
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FIGURE-35. Measured and calculated drawdown for a finite radial aquifer using
the Fetkovitch method.
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FIGURE-36. Measured and calculated drawdown if the drainage from the two-
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(m)

Drawdown

100

a
O

The Schilthuis method using early data

0 le+10 - ce+10 3e+10

Cumulative production (kg)

FIGURE-38. Measured and calculated drawdown for the Schllthms method based
on early time data.



Drawdown vs. cume.prod. on 10g~—10g

1000

(m),
o
o
(-]
R
-3

-

=z ]

o

O

2

O

C

010
1 i 1 PYONE W S O . 1 [ISMEES W TR S W | s i [ |
Ool 1 10 100

Cumoprod[E+9kgi

FIGURE-39. Log-log plot of measured drawdown Vs. cumulative mass production.



(m)

Drawdown

le+10 2e+10

Cumutative mass produced (kg)

FIGURE-40. Measured and calculated drawdown for the log-log method.

3e+10



(m)

Drawdown

Predicting the drawdown using three mode s

200
100 o /
L ( 4
= 0' P
0 i i M ' ' 1 i 1 1 i ' . 1 1 I I | I.J
0 1000 2000 3000 4000

Time (days)

FIGURE-41. Comparison of predicted drawdown for three models. The circles

represent the log-log model, the dots represent the Hurst simplified
method, and the solid line represents the boiling model for Svart-
sengi.



(m)

Drawdown

150

Predicting the drawdown at Svartsengi

|

/

-

100

50

A A 'l

s

2e+10

Cumulative mass produced

4e+10

6e+10
(kg)

rate of 300 kg/s using the Hurst simplified method.

8e+10

FIGURE-42. Prediction of the drawdown vs. cumulative production for a constant




(m)

Drawdown

Predicting the drawdown at Svartsengi

/

150

d

100

50

2000

Time

(days)

using the Hurst simplified method.

3000

4000

FIGURE-43. Prediction of the drawdown vs. time for a constant rate of 300 kg/s




(m)

Draowdown

150

100

S0

Predicting the drawdown at Svartsengi

s w=300V

. L w =200 ky/s -

| _—
s N |

w =100 kg/s

' A L A i L. i '

2000 3000 4000
Time (days)

FIGURE-44. Prediction of the drawdown vs. time for three different rates using
the Hurst simplified method.




APPENDIX A: Derivations of Equations.
A 1. Liquid Modgls
The mass balance in the system is given by:
We =W, —Wp - W + W, (A-1)
Assuming isothermal conditions, the heat balance is neglected. If we assume
that W, can be neglected, (A-1) reduces to:

We =Wy =Wy + W, (A-2)
If the density is given by p, the mass is given by:
W = Vigp: (A—Ba)
We = Veppe (A-3b)
A.1.1. Unconfined System
In this case we assume that p, = p;, and therefore the volume must be
changing:
= Aihy (A-4a)

Ve = Ak (A-4b)
Now if we assume that A is constant with depth, using Eq.A-4 in Eq.A-3 gives:

W = Ahpip (A-5a)
W, = Ahcpcp (A-5b)

If we also assume-that y is constant with depth, substituting Eq.A-5 in Eq.A-2

gives:
Ah.op = Ahygp — Wy + W, (A-6)
which simplifies to:
Applhe — B) = =Wy + W, (A-7)
which simplifies to: |
dh dw, dw
Agp——= ———- —E_ (A-8)

dt dt dt

Now dW,/ dt = we, the mass influx rate, and d#,/ dt = w,, the mass production




rate. Therefore Eq.A-8 becomes:

dh _
Avp'at—— Wy —~Wp (A—Q)
At this point several influx models are possible, and have been discussed in the
text. Since we assume p constant, the pressure is given by the hydrostatic
column of liquid water. The pressure at level h in the reservoir is given by:

P = pgh (A-10)

differentiating Eq.A-10 with respect to time gives:

dp _ _dh .
at - P9a; (A-11a)
dh 1 dp .
et (A-11b)

Substituting Eq.A-11b in Eq.A-9 gives:

A;’—é}z-=w -w (A-12)

t ¢ »
Al.z2 Confined System
Here we assume that the volume is constant, and that the fluids expand into
the space created by the produced fluid. Substituting Eq.A-3 in Eq.A-2 gives:

Vepe = Vopi — Wp + W, (A-13)

Differentiating Eq.A-13 with respect to time gives:

Vo £i—£~=‘w. -w

=~ p (A-14)

If we assume that the change of density with pressure is constant (this is only a
good approximation for slightly compressible liquids, and for small changes in

pressure), Eq.A-14 may be written:

d ‘_i.e_zw -

A.1.3. Compressibility of Liquid

The isothermal compressibility is defined as:

¢ =~ 31,-[-3;‘1]7 (A-16)

A-2



<

The density is defined as:

w
= -17
p= (A-17)
Solving for V gives:
W
y=1 A-18)
p (

av_ _ W dp | (A-19)

=_ 1 |_F¥ dp .
c 1[ pz dp ] (A-20)
p
which reduces to:
=1 |%. (A-21)
p 0P |
- {8p_
cp = A-21a
P [Bp . ( )

If we assume that the fluid is slightly compressible, and that the compressibility

is constant, Eq.A-15 becomes:

(A-22)

V;apc%zg—= W, — Wy

A 1.4. Hurst Simplified Sclution

Integrating Eq.A-22 between the limits of initial and final conditions gives:

p ¢ t
Vepac fdp = [wedt — [w,dt (A-23)
Py 0 0 7
If we define the volume of water V,, = V¢, and assume constant rate, Eq.A-23 be-

comes:

pravc(p —pi) =W, - wp't (A-24)
Define the pressure drop as Ap = p; — p , then Eq.A-24 becomes:



- VupaChp = W, — Wyt (A-25)

The cumulative water influx is given by the convolution integral:

73
dA oy yp 0.
#o = B —2-Qp(ty - t5)dt; (-26)
c Gip )
where tp is defined as:
kt
tp = A-27
P7 puct? (a-27)

L is a characteristic length, which is the lengthAof the aquifer in the case of a
linear finite system, and unit length in the case of an infinite system. Substitut-

ing Eq.A-26 and Eq.A-27 in Eq.A-25 gives:

tp 2
oy oo Caq Lot pw
- Vupwehp = Bf 2B 0p(tp - tp)ats - P D% ()0
o dip kog
Taking the Laplace transform of Eq.A-28 with respect to ¢, gives:
= PMgyCeeLRw,
— Vupay €8P = BsApQp ~ (A-29)

kgqs?®
Now the correct expressions for §; and B must be used according to the boun-

dary conditions and geometry. The solutions for §, are presented in Table 1. The

solution for the infinite linear case will now be presented.

-8
Qp=s 2 (A-30a)
B = AgCqaqpaq (A-30b)
Substituting Eq.A-30 in Eq.A-29 gives (L is unit length):
= :_ = _ $PHagCagWp
A@CagPags APs + VwPresCres AP = T k_s2 (A-31)
ag

Here the subscripts have been introduced to distinguish between the aquifer and

the reservoir. Rearranging Eq.A-31 gives:

- PllgqCaq W
AF(A¢caqpaqs 172+ Vw Crespras) = '_2%_2— (A.‘32)
a




° Now define ! as the length of the reservoir, then:

Vw = Vp =Ayp (A—33)
where A is the cross-sectional area of the aquifer and ! is the length of the

reservoir. Substituting Eq.A-33 in Eq.A-32 and solving for Ap gives:

_ Pligg Caq Wp
AD = — (A-34)
P kcqsa(AS’caqpaq sT1%+ Al $CresPres )

We see that if the porosity of the aquifer and the reservoir are the same, it can-
cels from Eq.A-34. Rewriting Eq.A-34 gives:

= #ﬂq c“q P (A‘35)

Ap =
koqS 2Alcm,pm,[ T“‘%ﬂ——+ s"z]
res/ res

Now define a parameter A = ——ﬂp—g—— Using this in Eq.A-35 gives:

CresPres

c
pp = Featers 1 (A-36)
kanlchprss g_(A + 1/8)
s s

1. A very large:

We can ignore the term without A, and Eq.A-36 becomes:

— /J'cq caq Wy 1
Ap = A-37a
P = Yeag AlCresPres (A-372)

Nlm

AS

Substituting the definition of A in Eq.A-37a gives:

5= Hea¥e |1 . (A-37b)

The inverse transformation of Eq.A-37b is:

(A-38a)

Ap - MaqgWp [250_1/2

kygApag m

which is the equation for an infinite linear aquifer. In the notation given by Nabor

and Barham!?, this becomes:

Ap = Hog Fi.e (A-38b)



and for variations in rate, by superposition:

Hagq D,
Ap = —— Ag; F tp — tp A-38c
p kcq 4 jz=:0 q; 12 (tp .DJ) ( )

2. A very small:

Now we ignore the term containing A, and Eq.A-36 becomes:

_ MagCaq Wp 1
Ap = ———— A-39
P kaq AlC,gsPres | 52 ( )
The inverse transformation of Eq.A-39 is:
Mag CqaWp Ep
Ap = —XR 12 P2 A-40a
P kaq“ucresprss ( )
Substituting the definition of £p in Eq.A-40a gives:
pp = ——t (A-40b)
B A ¢CresPres
which is the tank decompression of a confined system:
Ap = ——w (A-40c)
Vecp P

3. A intermediate:

In this case the entire expression must be used. The inverse transformation of

Eq.A-36 is given by:

HagCagWp AR 2Atp2
Ap = Perfe(Mtjf?) -1 + ——— -
P kanlp,,scm)\z e Verfo(M4”) LGl (A-41)
By the superposition theorem, for varying rate we get:
HagC =
ap = ¢ V""p“"c L Aw; M[N¥(tp — tp;)] (A-42)
ag "resFres~res j=0
where:
1 2 2At 472
M{(N\etp) = Xl e ‘”erfc(kt,j’z) -1+ —n’% (A-423a)



A.2. Boiling Models
A 2.1. General Mass and Energy Balance
In this case the energy balance must be included. The energy balance is as

follows!:

"Li.Ei - mcEc = Qi' - Qc' + h"(rn'l'. - mc) (A'43)

where m is the total mass of the system (fluid and rock). k' is the average
enthalpy that accounts for the enthalpy change due to net mass change in the

reservoir:

h'(my = m.) = Wohy + Wby — Woh, (A-44)

The total energy change is given by the energy change in the fluid and the rock:

mEi —mE. = WE - W E + V(l_‘P)paCa(Ti - Tc) (A-45)

and the net heat change transferred from the surroundings is:

Q' —-Q' =@ (A-46)
Substituting Eq.A-44, Eq.A-45, and Eq.46 in Eq.A-43 gives:

WiEt' = WcEc + V(l-Q")poCu(Ti - Tc) =

Q@ — Wohy + Wohy + Wiy (A-47)

We now introduce the mass balance:

Wc = W“ + We - Wp - W‘ (A—48)

and the volumetric balance:

Ve = Wilzivs + (1~2;) Vi (A-49)

and the water influx is given by the VanEve‘rdingen and Hurst superposition sum:

. = B, @olto = toy)ep; (4-50)




Substituting Eq.A-48, Eq.A-49, and Eq.A-50 in Eq.A-47 and rearranging gives:

Wp(hp —Ec) + Wl(h'l —Ec) +Q=

4

Ei. - Ec + [_1_;79_][21,,/“ + (1—zi)uwi]pccc(Ti - Tc) (A'SI)

+ (b = £ BE Qolto - o)),
A 2.2. Simplified Approach
| The total volume of the reservoir fluids is:
V=V, + 1 (A-52)

and the total mass of the reservoir fluids is:

We= Wy + Ws (A-53)

The density of each phase is given by:

We

Pw = 3 (A-54a)
W,

Ps = o (A-54b)
8

The volume of each phase is given by:

V, = S,V (A-55a)
V. =(1-S,)¥ (A-55b)

Substituting Eq.A-55 in Eq.A-52 gives:

Ve =Sy ¥ +(1-S,) ¥ (A-58)
The total effective density is:
W;
bt = 7 (A-57)

From Eq.A-53, Eq.A-54, and Eq.A-55:

Wt = puwSu ¥ + P05 (1"'Sw) Vt (A-58)
Substituting Eq.A-56,and Eq.A-58 in Eq.A-57 gives:

_ pwsw Vt + ps(l—sw)vt

Pt = TSV v (1-50), (4-59)




which reduces to:

Pt = pwSy + ps(l"sw) : (A'BO)
Substituting Eq.A-60 in Eq.A-48 and assuming W, can be neglected, we get:

Vepee = Vopyu + We — Wy (A-81)
which rearranges to:

Velose —pu) = We ~ Wy (A-62)
A.3. Total Compressibility

The two phase compressibility is given by

1 Ay _ [(1-¢)peCo + 9Supu G low = ps)

c = - A-63
s o L{@pe7 AT)po b (4-63)

n Eq.A-63 L is the latent heat of vaporization. Eq.A-63 should be used when liquid
and steam are in equilibrium at saturated conditions. If this zone is only a part
of the reservoir, the effect of the compressibility in this zone on the total system

may be calculated using the definition of the compressibility:

1 (9
¢ == |7 A-64
where the total fluid volume is:
‘/‘ = Vw + V2ph (A'BS)
Differentiating Eq.A-65 with respect to p gives:
d
% o W | dVep (A-66)
dp dp dp
By the definition of c,, and cgz:
_ 1 |9V,
cw - Vw [ ap (A'67a)
= - — -67b
caph Vzph ap ] (A )
Substituting Eq.A-67 in Eq.A-66 gives:
dv
_dp = —Cyw Vw = Cozph Vth (A-se)




Substituting Eq.A-85 and Eq.A-88 in Eq.A-64 gives:

1

——— (cy, Viy + Coph Vapn) A-69
Vw + V2ph w'w 2ph ¥ 2ph ( )

Ce =

A- 10



APPENDIX B: Data Files and Computer Programs.

B.1. Data Files

Thorhallsson3® provided the drawdown and mass flow-rate history for the
first 2319 days of production at Svartsengi. The first data file "drawdwn", shows
the number of days after production started in the first column and the meas-
ured drawdown in the second column. The first number is the number of data

points.

The second data file "prodr”, shows the number of days after production
started in the first column and the total mass flow-rate in kg/s from the reser-
voir in the second column. Each entry of rate in the file is effective from the
time of the previous entry until the time corresponding to that entry. For exam-

ple, between 388 and 419 days of production, the rate was 51 kg/s.

The third data file "input”, shows the number of days after production start-
ed in the first column, the rate in kg/s in the second column, and the measured
drawdown in meters in the third column. Note that the drawdown was not always
measured on the days when the rate was changed. For those cases a linear inter-
polation between the values in the file "drawdwn" gave the value for the draw-
down in the file "input”. The file "input” was used as the input file for all the pro-

grams. The cumulative mass produced was calculated using:

60s 60min 24 hr
min hr days

n Pp-g

+ wy, ['IE;L] (tn — ta-,) days-

B.2. The Computer Programs

All the computer programs are written in fortran 77, and were runvon the
Stanford University Petroleum Engineering VAX 11/750 computer facility. The
file "input" is used for input of timé, rate, and measured drawdown. The following

variable names are consistently used in the programs:



x=vector of length 124 =time in days.

y=vector of length 124 =rate in kg/s.

dh:vector‘ot' length 124 =measured drawdown in meters.

dhi=calculated drawdown from the model in meters (a vector in some pro-
grams).

cum=vector of length 124 =cumulative production in kg.

For least squares ﬁ__tting the subroutines "iflsq" and "llsqf' have been used.
Theée subroutines are in the "imsl" library of subroutines. "iflsq" fits a user sup-
plied function to a set of data using the least squares method. The program will
determine the constants giving the best fit in an equation of the form:
Vi=a figtaxfiat - +anfin

where the function f is a function of z; and n, and (z,y); are the data points.

"llsqf” solves the set of equations shown in the section on history matching
by minimizing the difference between the points which are given and the fitted

points.




drawdwn

§50
564

576
584
599
690
619
624

.86
1.98
1.49
1.79
2.92
2.14
2.38
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The bo!ling model for Svartsengi
This program determines the constants Cl and C2
using the least squares method.
The subroutine 11sqf must be supplfied by the user.

The drawdown fs then calculated using the fitted constants.
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fmplicit real*d4{a-h,o0-2)

dimension x(124),.y(124),dh{124),cum(124),sum(124)
real mat{123,2),a(2),h{(2),b{123).,.to!

integer fa,m,n,kbasis, ip(2)}, fer

write(6,%)123

do 1 1=1,123

read(5,*)x{(1),yli),dh{1)

cum(id=cum{f-1)+{x{i)-x{i=-1))*y(i)*60.*60.*24.

do 5 j=1,1

wp=g.

k=1

x1l=x{1)}-x{}J)

ifixl.ge.x{(k)) then
wpEwp+{x{k)=x{k=1))*y{k)*6Z,.*62.%24,
k=k+1
go to 10

else
wp=wp+{x1-x{k-1))*y(k)*6Z.*6L.*24.

endif

sum{t)=sum{f)+wprexp{-x{3)/288. ) *(x{J)=-x{J=-1))

continue

write{(6,*)cum{i),dh{{)

mat{({,1l)=cum({)

mat{§,2)=ssum{{)

bli)=dh{{)

continue

{mat,fa,m,n,dh.tol,kbasis,a.h,fp, fer)
all),at2y
123

23
dhl=all)*cum(i{})+al{2)*sum(i)
write{6,*)cum{{),dhl
continue

stop
end
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THIS PROGRAM EVALUIATES THE X AND Y'S IN A SHILTHUIS TYPE
INFLUX MODEL WITH A LUMPED-PARAMETER MODEL.

IMPLICIT REAL*4(A-H,0-2)
DIMENSION X(125),Y(125),DH{125)
WRITE(6,13) 124
13 FORMAT(1X,13)
DO 19 I=1,124
READ(S ., *)X{(1),Y(I),.DH(I)
IF(1.EQ.1) GO TO 1@
DO 11 J=1,1
DUM=DUM+DH{J)*(X(J)-X{J~1))*60.*60.%*24.
11 CONTINUE
D=DH(I}/DUM
CUM=CUM+{X(1)=X{I-1))*Y{I)*60.%60.%24.
Z=CUM/DUM
WRITE(6.12) D.2Z
12 FORMAT(1X,2E11.4)
OUM=2.
19 CONTINUE
STOP
END

c
c This program calculates the drawdown 1n meters for
o a steady-state SCHILTHUIS model, and the reservoir
c model is LUMPED-PARAMETER with CONSTANT SW
[ output for plotting
c

IMPLICIT REAL*4(A-H,0-2)
DIMENSION X(125),cum(125).Y{125),D(125),DH(125)
Al=2.75447
AQ=6.60567e7
write(6,13)124
13 format(ix.i3)
DO 18 1=1,124
READ(S,*)X(1),Y(1),DH(I)
IF{(1.EQ.1) GO TO 29
SUM=SUM+D(I-1)*(X{I-1)=X{(1-2))*60.*60.%*24,
CUMU1)=CUMEi=1)+(X{I)=X{I=-1))*Y{I)*6Q.*60.%24.
dif)={cum{i)~al*sum)/{af+al*{x(§)=-x{t~-1))*6Q.*6QT.%*24.)
29 WRITE(6,*) cum{1),D(I)
19 CONTINUE
write{(6,13)124
do 38 1=1.,124
write{(6.,%) cum(i),dh{{)
39 continue
STOP
END
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THIS PROGRAM MATCHES THE DRAWDOWN WITH PROD. RATE AND TIME
AND CALCULATES Kn for matching Hurst modified infux

(Radial log approximation form)
THE RES. MODEL ASSUMES A LUMPED-PARAMETER CONSTANT STORATIVITY
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IMPLICIT REAL*4(A-H,0-2)
fnteger 1.,k
DIMENSION wk{1£g),X(125),Y(125),DH{125),Y1(125),X1{(125).a(2)

external f

k=123
SM=5.e7 .
write(6,*)k
DO 18 1=1,124
READ(S,*)X(1).Y{I).DH(I)
IF(I1.EQ.1) GO TO 192
CUM=CUM+{X{I)=X{I-1))*Y{I)*6Q.*62,.%24.
sum=sum+yl ({-2)*dh{i=-1)*(x{{-1)=-x{i-2))*60."60.*24,
Yi{Il-1)=1./{{cum-sm*dh({)=-sum)/{dh{{)*{x{i)=x{i=1))*6T.*c3.%24.))
T=(X{1)+X{I-1))/2.
X1(I-1)=ALOG1O(T)
writelf , *)x1{i-1),yl{i-1)
12 CONTINUE
call 1flsqlf,xl.yl.k,a.2.wk,fer)
write{6,*)a({l),a(2)
write{6,*)k
do 3 =1,k

t=al{l)+a(2)*x1{1{)

write(6,*)x1{i),t
3 continue

STOP

END

function used in the fitting routine

real function fik,p)
integer k

real p

f=p**{k-1)

return

end



THIS PROGRAM EVALUIATES DRAWDOWN IN AN INFINITE LINEAR
INFLUX MODEL WITH THE ALUMPED-PARAMETER MODEL (HURST MODIFIED)

IMPLICIT REAL*4(A-H,0-2)
DIMENSION X(125),Y(125),0(125),CUM(125),DH{125)
CON=9.52e6

write(6,13)124

13 format{(1lx,i13)
DO 42 1=1.124
READ(S.*)X(I),Y(I),DH{I)

49 CONTINUE

DO 12 1=1,124
IF{l.eq.1) GO TO 29
IF(I.EQ.2) GO TO 15
DO 11 J=2.1-1 :
dum=dum+{D(J)-D{J-1)1)*{x{{)-x{J-1))**,5

11 CONTINUE
CUMITI)=CUM{I-1)+(X{1)=-X{I-1))*Y(I)*6Q.*60.*24.
difr=d{i=-1)+{cum(l)/con-dum)/(x{f)-x{i-1))** 5
GO TO 20

15 CUMITI)=CUM{I=1)+I{X(1)-X{I=-1))*Y{I)*6Q.%6Q.*24.
D(I)=CUM{T)/{CON*X(])** 5)

27 WRITE(6,*) CUM(I).d( 1)
DUM=9.

19 CONTINUE
write(6,13)124
DO 52 I=1,124
WRITE(6.%) CUM{I)},DHI{I)

50 CONTINUE
STOP
END
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This program calculates drawdown for the
Hurst simplified model with linear water influx
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implicit real*d4{a-h,o0-2)
real k,mu
dimension x{(125),y(125),cum{125),sum{125).dh(125)

fnitfallize

con=4,755e-19
k=,5e-12
fi=.85%
mu=11g.e-6
c=l.e-9 :
tc=6Q.%60.*24.*k/{(fi*mu*c)
d=1.3e-4
1 format(2ell.4)

do 18 §=1,124
read{5.*) x{(1),y{{1).dh{1)
{f{i.eq.1) go to 9
do 11 j§=2,1
xx=te*(x{{)-x{J-1))
sum{{)=sum{ i)+ (y(J)-y{j=-13)*f{d,xx)

11 continue
cum{{)=cum{f1-1)+{x{1)-x{{=-1))*y(§)*6F.*6Q, *24.

9 write(6,1) cumi{i),dh(1{)

12 continue
do 29 1=1,124
dh{f)=con*sum( {)
write(d,l)cum{i),dhii)

20 conttnue
stop
end

this function calculates the Hurst 1linear solution for
fnput of d=lamda, and td=dim.time

this routine uses a routine to calculate erfcix)

the user must supply this routine

function f(d,td) .
f=lexp(d**2.*td)*erfcld*td** . 5)-1.+{2,*d*td**.5)/1.772453851)/d**2.
return

end

B-10




nnNnonoonNnoo0onnon

0

- —— - - - — " Y - = = S = = = - -

FINITE LINEAR AQUIFER
Fetkovitch method
Confined System

User must supply fnput file °fetin®' containing:
1=length of aquifer
b=with of the aquifer
w=length of the reservoir
ho=depth of the reservoir and the aquifer

fmplicit real*4{(a-h,o-2)

real 1.k,mu

dimensfon x{124),y(124),dh{124),cum{124)
open{unit=4 . file="fetin")
read{d4,*)),b,w.ho,k.mu,rho,por,ctw,cres
g=9.81

posrho*g*ho

gqmax={k*b*ho*po*3)/{mu*1)
weiz=l1*ho*b*por*ctw*po

pav=po

pwf=po

write(6,*)124

write(6,*) 2..2.

loop point

do 18 1=1,124
read(5.*)x(1),yl{).dh{1)
if(i.eq.1) go to 18
an={wel/po)*{l.-exp{-qmax*{x{§)=x{{=-1))*6F.*6Q0.%24./wel))
cum{f)=cum{i-1)+y{ i) *(x{i)-x(i~1))"6Q.*6Q."24.
pwfl=(~-cum(1)+wen+rho*(an*(pav-(pwf/2.))+po*w*b*ho*por*rho®*cres))
*/{rho*{w*b*ho*por*rho*cres+an/2.))
dwens{pav-pwf/2.-pwfl/2.)*an*rho
wen=wen+dwen
pav=po-{po/{wei*rho))*wen
dhl={(po-pwfl)/{rho*g)
pwf=pwfl
write(6,12) cum(i).dhl
12 format(2el2.4)
12 continue

end loop

write{6,*)124

do 28 1=1,124

write(6,12) cum{i),dh{1)
29 continue

close{unit=4)

stop

end
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Fetkovitch method
radial geometry

The input file ’'fetin' must contain:
rw=sinside radjus{of the aquifer){(m)
re=outer radius{of the aquifer)(m)
hozheight of the reservoirim)
k=permeability{m**2)
mu=viscosity(Pa s)
rho=flufd density in the reservoir{kg/cm)
por=porosity
ctw=total water compressibility tn the aquifer(l/Pa)
cres=Total compressibility in the reservoir{(l1/Pa)
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implicit reali*4{a-h,o-2z)

real k,mu

dimension x{(124),y{(124).dh{124),cum(124)
openf{unit=4,file="fetin")
read(4.*)rw,re,ho,k,mu,rho.por,ctw,cres
pi=3.1415927

g=9.81

po=rho*g*ho

gmax={2.*pi*k*ho*po)/{mu*re**4./({re**2, -rw**2, )**2 )*(aloglre/rw)

*-,75+({rw/re)**2 -.25%{rw/re)**4.,))
weizspi*{re**2.-rw**2.)*ho*por*ctw*po
pav=po

pwf=po

write(6,%)124

write{(6,*) 2.,0.

loop point

do 1@ 1=1,124

read{5,*)x(1),y{f),dh({)

if{t.eq.1) go to 18
ans{wei/po)*(l.-exp{-qmax*{x{1)=-x{{-1))*6Q0.*60.%24./wei))}
cum{ f)scum{f=-1)+y(§)*{(x{{)=x(1=1))%6Q.%60.%24.
pwfl={-cum{i)+wen+rho*(an*{pav=-{pwf/2.))+po*pi*rw**2 *ho*por
**cres))/{rho*{pi*rw**2 . *ho*por*cres+an/2.))
dwen=(pav-pwf/2.-pwfl/2.)*an*rho .

wen=wen+dwen

pav=po-{po/{wei*rho))*wen

dhl=(po-pwfl)/{rho*g)

pwf=pwfl

write{6,12) cum(i).dhl

format(2el2.4)

continue

end loop

write(6,%)124

do 28 {=1,124
write{6,12) cum{{),dh(1{)
continue

closel{unit=4)

stop

end
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THIS PROGRAM EVALUIATES THE a,b AND c CONTSTANTS IN AN SCHILTHUIS
TYPE INFLUX MODEL IF THE DRANAGE FROM THE TWO-PHASE ZONE IS NOT
INSTANTANIOUS: FROM McNABSB,

AND USES THE OBTAINED VALUES TO CALCULATE THE DRAWDOWN

The subroutine 11sql 1s used for the least squares fit,
ans must be suppiied by the user.

write(f,*)

DO 42 1=1,

READ(S ,*)X{ Y1),
CUM=CUM+IX{T)=-X{I-1
writel{6,*)cum.dh{ )
ifli.eq.l)go to 40
do 41 j=1,4-1
a(1-1.1)=a(1—1.1)+dh(J)'(x(J)-x(J-1))’SE.‘SE.'Zd.ﬂ
a(1-1.Z)=a(i-l,Z)*(x(J)-x(J-l))'y(J)'SE.'EH.'ZA.
continve

ali«1,3)=y(1)

b{i-1)=-dh( i)

CONTINUE

{a=123

m=123

n=4

tol=f.2

kbasfs=3

1)
*Y{I)*60.*60.%24.

call llsqf(a,ia.m.n.b.tol.kbasis.xl.h.ip.ier)
writel6,1)x1{1).x1(2),x1({3)
format{'x={("',3el12.4,')',/7)

dhl(l)=dhi{1)
cumsx{1)*y(1)*EQ.*cQ.*24.

write{6.%*)124

write(6,.,*)cum,dhl(1)

do 42 1=2,124
sumlesuml+gdhl{f=1)*{x{1)=x{§-1))"G.*p0.%24,
cum=cum+Ix{§)=-x{§-1))*yl {)*6QF, *c0. *24,
dhl(1)=(x1(1)*sum1+xl(2)*cum*xl(3)'y(1))/(-1.-x1(1)*(x(')-x(1-1))
*rEO. %60 .%24.)

write(&.*)cum,dhl{{)

continue

STOP

END
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