

MEASURED RESIDUAL STRESSES
IN
TYPE 304 STAINLESS STEEL PIPING BUTT WELDMENTS

MASTER

by

W. J. Shack and W. A. Ellingson

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for
Seminar on
Countermeasures for BWR Pipe Cracking
Palo Alto, California
January 22-24, 1980

U of C-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

**Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	The University of Kansas	The Ohio State University
Carnegie-Mellon University	Kansas State University	Ohio University
Case Western Reserve University	Loyola University of Chicago	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	The University of Michigan	Saint Louis University
Illinois Institute of Technology	Michigan State University	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
The University of Iowa	Northwestern University	Wayne State University
Iowa State University	University of Notre Dame	The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the United States Government.

-5 BULLETS HERE

EVERY LINE SHOULD
END WITHIN THIS AREA

-10 NORMAL PAGE BEGINS HERE

-15 MEASURED RESIDUAL STRESSES IN TYPE 304
-20 STAINLESS STEEL PIPING BUTT WELDMENTS*

-25 Seminar on Countermeasures for BWR Pipe Cracking, Palo Alto, California,
-30 January 22-24, 1980.

-35 BULLETED MATERIAL
-40 SHOULD NOT
-45 EXCEED THIS LINE

-50 Keywords: Residual Stress, Intergranular Stress Corrosion Cracking

-55 Proceedings

-60 W. J. Shack and W. A. Ellingson

-65 Argonne National Laboratory
-70 9700 South Cass Avenue
-75 Argonne, Illinois 60439

-80 Materials Science Division

-85 LEGAL NOTICE

-90 *Work supported by the Electric Power Research Institute and the U.S. Department
-95 of Energy.

-98 NORMAL LAST LINE

-100 LAST LINE SHOULD FALL
-105 WITHIN THIS AREA

-110 CENTER PAGE NUMBER

PUBLISHED STATEMENT
BEGINS HERE

ABSTRACT

Residual-stress measurements on Type 304 stainless steel Schedule 80 4-, 10-, and 26-in. pipe weldments are presented. Both strain-gauge and x-ray diffraction techniques have been used. The bulk of the measurements have been made on the inner surface, since these stress levels presumably control the initiation of intergranular stress-corrosion cracking. Complete stress profiles have also been obtained through the thickness of the pipe wall, since the throughwall distribution controls the growth of a crack once it has initiated.

Both azimuthal and axial variations in the residual-stress distributions have been considered, but the strongest emphasis has been given to the measurement of the peak tensile axial stresses in the region 2-3 mm from the weld fusion line on the inner surface where peak sensitization levels generally occur.

Of the weldments examined, the 26-in. weldment had the lowest peak stress on the inner surface. However, the 10-in. weldment had the highest peak stress, and thus no clear trend in the variation of the peak residual-stress level on the inner surface with pipe size is evident. On the other hand, there appear to be significant differences in the distributions of throughwall residual stress in the 4- and 10-in. weldments as compared with the 26-in. weldment. At least at certain azimuthal positions, not only are there large tensile stresses on the inner surface of the 4- and 10-in. weldments, but also the throughwall residual stresses remain tensile through a large part (~50-75%) of the wall thickness. This is not true for the 26-in. weldment. Although there may be significant residual tensile stresses on the inner surface, the residual stresses become strongly compressive at a depth >15% of the wall thickness.

NORMAL LAST LINE

BULLETS HERE

EVERY LINE SHOULD
END WITHIN THIS AREA

REVIEW PAGE OR GRAB BAG

ADDITIONAL MATERIAL
CAN BE ADDED

CONTENTS

Section

Section	Page
1 INTRODUCTION	BULLETED MATERIAL SHOULD NOT EXCEED THIS LINE
2 RESULTS ON 4-, 10-, AND 26-IN.-DIAMETER PIPING	
3 REFERENCES	

Section	Page
1 INTRODUCTION	BULLETED MATERIAL SHOULD NOT EXCEED THIS LINE
2 RESULTS ON 4-, 10-, AND 26-IN.-DIAMETER PIPING	
3 REFERENCES	

NORMAL LAST LINE

LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER

DECODED TYPEING OF NOMINAL TEXT DRAFT ONLY

BULLETTED MATERIAL

BULLETTED MATERIAL

SECOND PAGE

SECT Section 1

INTRODUCTION

Failure analyses of Boiling Water Reactor (BWR) piping cracks at Argonne National Laboratory (ANL) (1,2) and elsewhere (3) have shown that the cracks developed through intergranular stress-corrosion cracking (ISCC). Austenitic stainless steels become susceptible to ISCC in a BWR environment in the presence of micro-structural changes, commonly called sensitization, and high stresses. It is well known that sensitization frequently occurs in the heat-affected zone of austenitic stainless steel pipe weldments. Since BWR piping systems have been designed in conformance with all applicable codes, the source of the high stresses usually associated with ISCC is thought to be the residual stresses associated with welding.

Most measurements of residual stress near weldments have been made on butt-welded flat plates, and residual stress distributions are reasonably well characterized in this case (4). The stress parallel to the weld direction is tensile in a region that may extend to several times the plate thickness on either side of the weld centerline. Close to the weld, stresses approaching yield may be expected. The stresses transverse to the weld are generally small compared to those parallel to the weld, unless the outside edges of the plate are constrained during welding.

Some preliminary measurements of the residual stress distributions near butt welds in cylinders are available (5-7), but only weldments between thin-walled cylinders ($t/R < 0.6$, where t is the wall thickness and R is the radius of the cylinder) were considered. Analytical models which attempt to predict residual stresses near butt weldments have been developed (5-10). However, in order to reduce the computational effort to reasonable levels these models have assumed that the residual stress distribution is axisymmetric. The experimental results in Refs. 5 and 6 indicate that this is a reasonable assumption for thin-walled cylinders; however, its validity for heavy-walled, multipass pipe weldments has not been demonstrated.

NORMAL LAST LINE

LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER

8 BEGIN TYPING OF NORMAL TEXT PAGE ON LINE 8

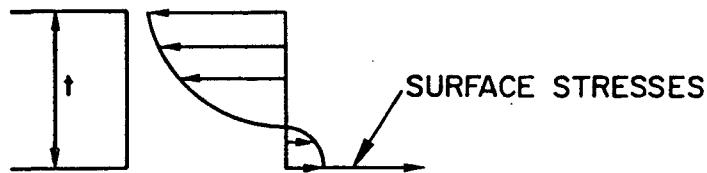
10 The residual stresses in the weldment are due primarily to the thermomechanical
 15 deformations occurring during the welding process and the pre- and postweld sur-
 20 face treatments. The stresses due to the surface treatments are significant only
 25 in a shallow surface layer, typically 0.25 mm thick. Their contribution to the
 30 net force and bending moment acting on a section through the pipe wall is very
 35 small. Strain-gauge techniques measure changes in strain due to the relief of the
 40 net force and moment when the section parts out. The stress redistribution due to
 45 the removal of the force and moment is indicated schematically in Fig. 1-1. The
 50 initial residual-stress distribution is shown in Fig. 1-1(a). There is a smoothly
 55 varying distribution through the wall of the pipe and a sharp spike, which re-
 60 presents the surface stresses produced by surface treatment. The unloading that
 65 occurs during the parting-out process is illustrated in Fig. 1-1(b). Although the
 70 initial stress redistribution may be highly nonlinear, the elastic unloading pro-
 75 duces a linear redistribution, since the specimen is basically a beam. The change
 80 in stress $\Delta\sigma_1$ is detected by strain-gauge measurements

$$\Delta\sigma_1 = \sigma_R - \sigma_L ,$$

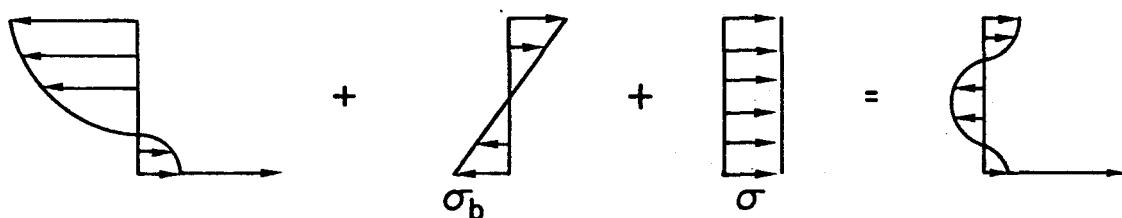
where σ_R denotes the actual residual stress and σ_L denotes the contribution from
 the linear distribution relieved during the parting-out process. Because of the
 nonlinearity of the initial stress distribution, $\Delta\sigma_1$ is not equal to the actual
 stress at the inner surface. The stress changes corresponding to $\Delta\sigma_1$, i.e., data
 obtained from full-thickness specimens, are identified in later discussion and
 figures as "bar data."

Because the stresses are not completely relieved by parting out the specimen,
 the full-wall-thickness specimen must be cut again using a 1.5-mm-dia wire electrode
 to produce a final 1.5-mm-thick specimen. The stress redistribution that occurs
 is shown in Fig. 1-1(c). This section is sufficiently thin that all the stresses
 except those in a surface layer are relieved, and the actual stress at the inner
 surface is approximately

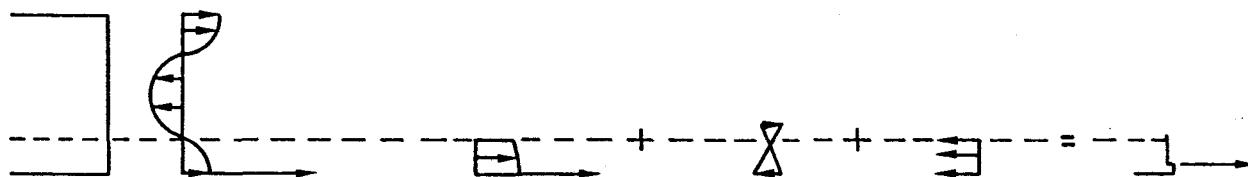
$$\sigma = \Delta\sigma_1 + \Delta\sigma_2 .$$


The stress changes $\sigma = \Delta\sigma_1 + \Delta\sigma_2$ (i.e., data obtained from the 1.5-mm-thick spec-
 imens) are identified in later discussion and figures as "strip data."

NORMAL LAST LINE


LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER


BEGIN TYPING OF NORMAL TEXT PAGE ON LINE 8

(a)

(b)

(c)

Fig. 1-1. Schematic of Residual-stress Redistribution During Stress-relief Operations. (a) Residual stress distribution through the wall for a thick-walled Pipe weldment. (b) Stress redistribution as a specimen is parted out from the weldment. (c) Stress Redistribution as a thin "strip" is cut from the full-wall-thickness specimen. ANL Neg. No. 306-78-693.

Detailed measurements of the residual-stress distributions (11) indicate that, except for the rapidly varying surface stresses, the distribution of residual stress through the thickness of the 4-in. weldments is reasonably linear in most cases. For a linear distribution, the "bulk" residual stress as measured by strain gauges on the inner and outer surfaces of full-wall-thickness specimens gives a good

NORMAL STRESS LINE

8 BEGIN TYPING OF NORMAL TEXT PAGE ON LINE 8

10 measure of the stress available to drive the crack. The "bulk" stress on the
15 inner surface obtained from the strip specimens is a better measure of the
actual stress at the inner surface, although there may still be significant
20 unrelieved surface stresses. The difference between the "bulk" residual-stress
25 values obtained from the bar and strip specimens is due to the nonlinearity of
the residual-stress distribution and the relief of the surface stresses. Rough
estimates indicate that a significant portion of any observed stress differences
between the bar and strip specimens from 4-in. weldments may be attributed to
the stresses induced by surface treatments (11). A significant nonlinear residual-
stress distribution remains in the thick 26-in. weldment after the specimen is
parted out, and hence the meaningfulness of "bulk" residual stresses obtained
from full-thickness specimens is difficult to evaluate.

30 To predict crack propagation through the wall, the complete throughwall distri-
35 bution of stress must be known. To obtain this information for the 4- and 10-in.
40 weldments, a full-thickness specimen was cut from a weldment and successive thin
45 (0.4 mm) layers were removed from the inner surface. To ensure the removal of
a uniform thickness of material, a special electric-discharge machining (EDM)
50 apparatus was built. After each layer was removed, strain gauges mounted on
the outer surface were read, and the strain relief due to the removal of each
55 layer was recorded. Since the removal of each layer produces a redistribution
60 of stress in the rest of the specimen, the measured strain relief cannot be used
65 to directly calculate the residual-stress distribution in the undisturbed weld-
70 ment. However, an analysis that accounts for the redistribution of stress was
75 developed (11).

80 It is impractical to remove layers thicker than 0.6 mm by this EDM technique.
85 Thus, use of this technique to analyze the throughwall residual stresses in the
90 26-in. weldment, which is ~33 mm thick, becomes prohibitively expensive, and
95 an alternative technique was used. Strain gauges were laid on the inner and
outer surfaces of the specimen. The specimen was then cut into two equal-thick-
100 ness parts by EDM with a 0.7-mm-dia wire electrode. The axial stress changes on
the inner and outer surfaces (denoted σ_x^i and σ_x^o , respectively) can be measured
105 directly. A piece-wise linear distribution of stress is assumed over each half;
110 the slopes and intercepts of these distributions can be determined from the

NORMAL LAST LINE

RECOMMENDED FOR NORMAL TEXT PAGE ONLY

measured stresses σ_x^1 and σ_x^0 and the condition that the net force and moment on the specimen must vanish (11). By repeating the process for the two halves of the specimen a better approximation can be obtained and the process can obviously be continued if necessary.

SECTION NO. (line 13)

SECTION TITLE (line 15)

BULLETED MATERIAL
SHOULD NOT
EXCEED THIS LINE

NORMAL LAST LINE

LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926<br

Table 2-1

RESIDUAL-STRESS TEST MATRIX FOR 4- AND 10-IN. TYPE 304 STAINLESS STEEL PIPE WELDMENTS

Weld Preparation	Pipe Diameter, in.	Fabricator	Weld Position	Strain-gauge Positions	Weld Identification
Light Grinding (63 rms Finish)/Heavy Grinding (125 rms Finish)	4	GE	2G	ID: 2 axial, 4 azimuthal	W27B
Light Machining (63 rms Finish)/Heavy Machining (125 rms Finish)	4	GE	2G	ID: 2 axial, 4 azimuthal OD: 1 axial, 4 azimuthal	W27C
Standard Machining (125 rms Finish)/Standard Grinding (125 rms Finish)	4	GE	2G	Six axial positions across weld at 45° intervals around weld	W27A
Standard Grinding, Both Sides	4	Field Weld from Dresden-2	2G	Same as W27A but one side of weld only (three axial positions)	Either PD21/1DIA or PD23/PD10A
Standard Machining, Both Sides	4	Field Weld from Monticello	2G	Same as W27A but one side of weld only (three axial positions)	-
Standard Machining, Both Sides	10	Field Weld from Dresden-2	2G--to be verified	Three axial positions normal to weld at 45° intervals around weld	-

BULLETS HERE

→ BULLETED MATERIAL
BEGINS HERE

SECTION NO. (line 12)

SECTION TITLE (line 13)

BULLETED MATERIAL
SHOULD NOT
EXCEED THIS LINE

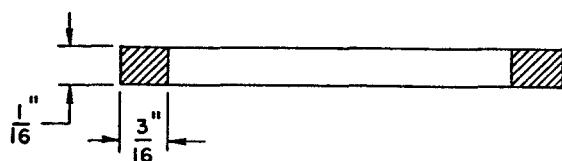
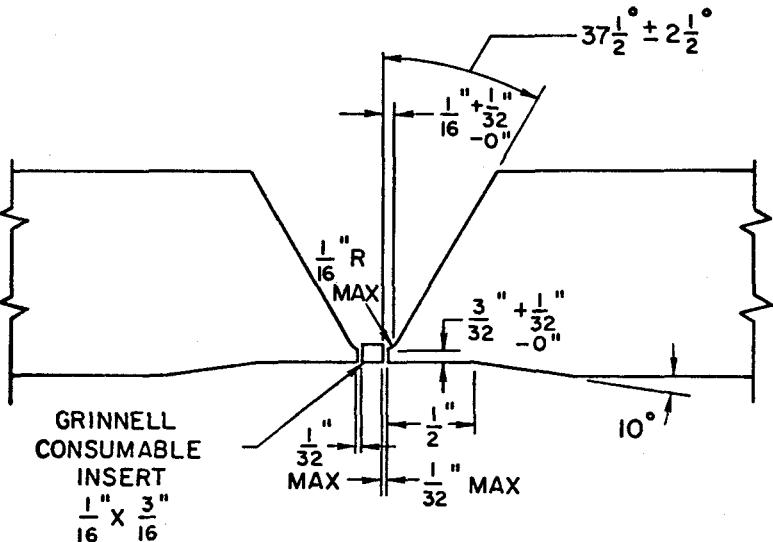



Fig. 2-1. Weld-prep Geometry. To convert dimensions to mm, multiply by 25.4. Neg. No. MSD-63927.

NORMAL LAST LINE

LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER

8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

→ BULLETS HERE
← BULLETS HERE

→ BULLETS HERE
← BULLETS HERE

SECTION A-A (See Fig. 13)

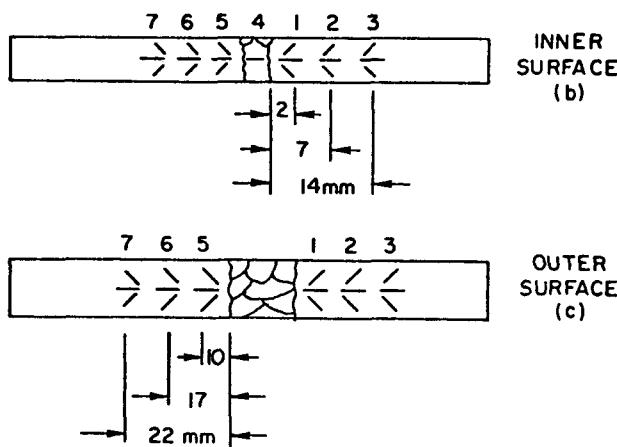
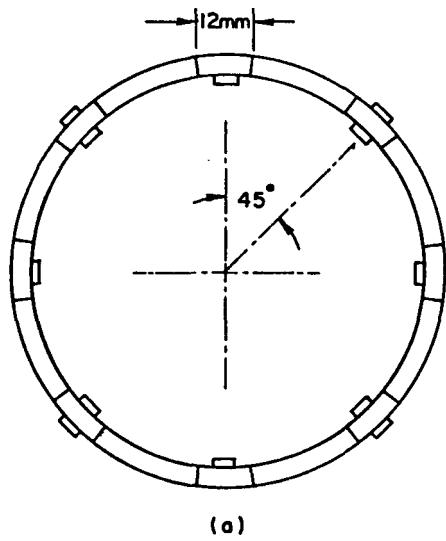



Fig. 2-2. Schematic Diagram of Azimuthal and Axial Placement of Strain Gauges.
Neg. No. MSD-63928.

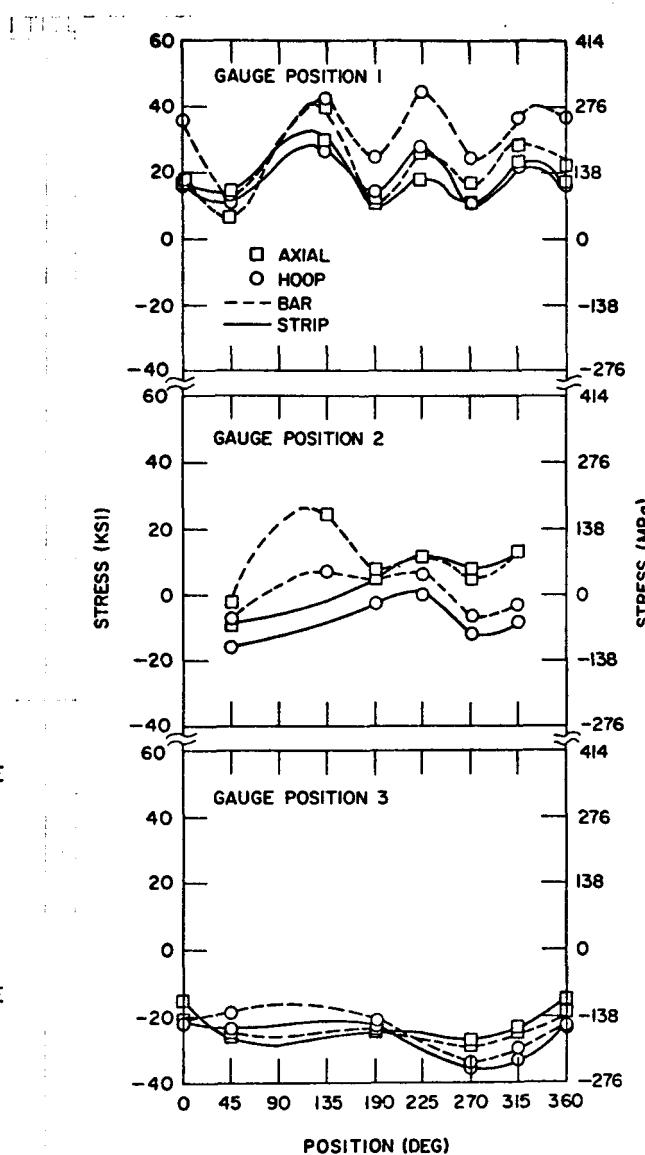


Fig. 2-3. Azimuthal Distribution of Axial and Hoop Stresses at Gauge Positions 1 to 3 for Weldment W27A.
Neg. No. MSD-64055.

SELECTED LINE

—> BUILT-IN MATERIAL
—> EXCLUDED

SECTION E-1, (top 10)

SECTION E-2, (bottom 10)

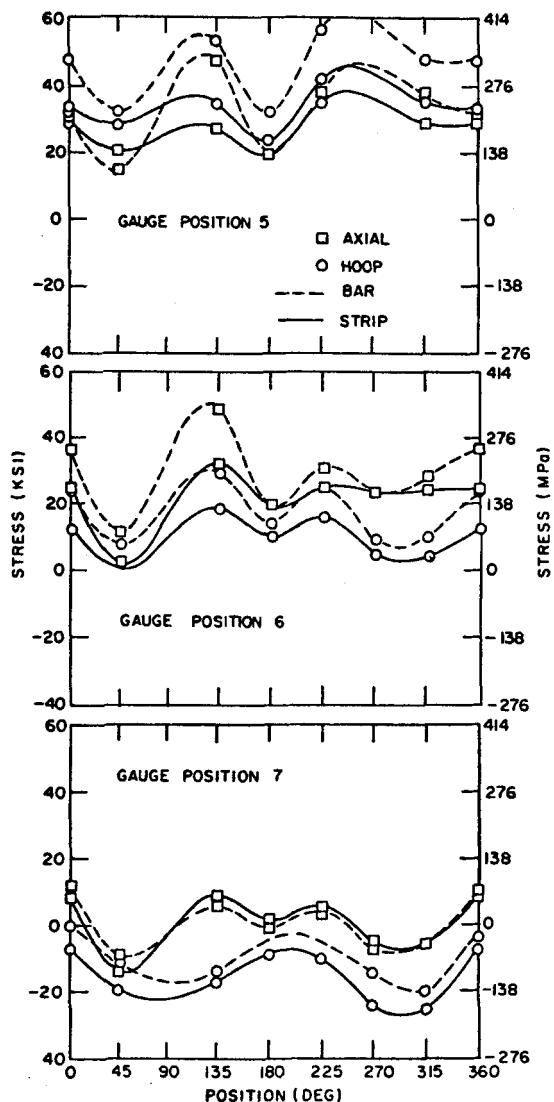


Fig. 2-4. Azimuthal Distribution of Axial and Hoop Stresses at Gauge Positions 5 to 7 for Weldment W27A. Neg. No. MSD-63925.

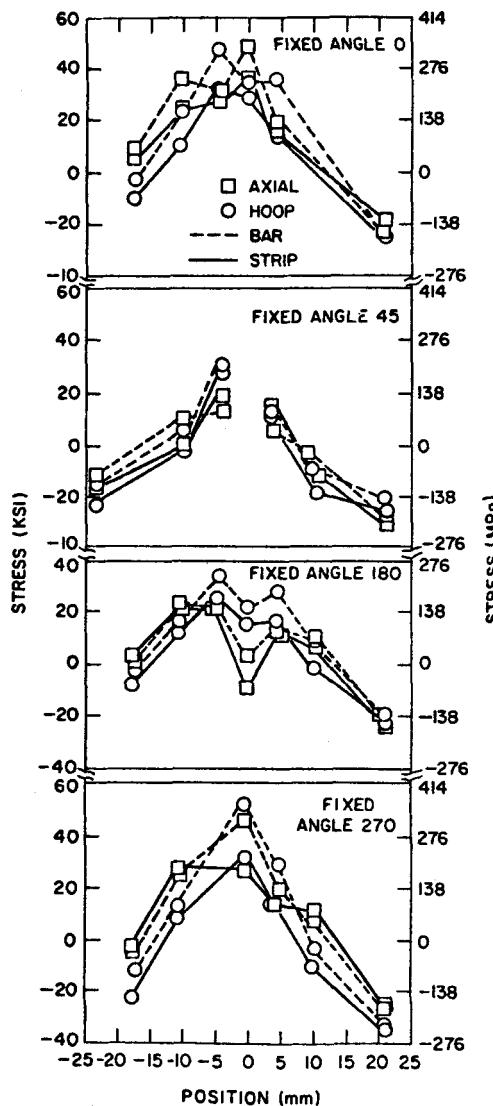


Fig. 2-5. Axial Variation of Hoop and Axial Stresses Across the Weld for Weldment W27A. Neg. No. MSD-64071.

LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER

BEGIN TYPING OF NORMAL TEXT PAGE ON LINE 9

the full-thickness (8.6-mm) bar specimens. Figure 2-4 presents the same information at gauge positions 5 to 7.

4-BULKED MATERIAL

5-CHARTS

6-APPENDIXES

The stresses at most gauge positions show a periodic oscillation, and to accurately map the residual welding stresses, gauges must be placed at no greater than 45° intervals. However, the peak-to-peak variations at each gauge position are modest compared with the magnitude of the peak stress at each position. Since the yield strength at the service temperature of 280°C (540°F) is 160 MPa (22 ksi), Figs. 2-3 and 2-4 show that at gauge positions 1 and 5, 2.4 mm from the weld fusion line, significant portions of the inner surface are stressed beyond the nominal initial yield strength of the material.

Axial stress distributions normal to the weld at 45, 90, 180, and 270° are presented in Fig. 2-5. They conform to the expected bell-shaped distribution (3-5). The results of the bulk residual-stress measurements are summarized in Table 2-2, which shows the average stresses, peak stresses, and peak-to-peak variations at each gauge position. These results are in reasonably good agreement with analytical calculations presented in Ref. 10. The bulk residual stresses in the other mock-up weldments examined in the ANL study are presented in Tables 2-3 and 2-4. Detailed discussions of these results are available in Ref. 11.

The 10-in. pipe weldment examined at ANL is a field-welded piece from the Dresden-2 BWR. It was taken from the Loop A emergency core-spray line just ahead of a check valve on the pump side.

Figure 2-6 presents the azimuthal distribution of bulk residual stress on the inner surface at gauge positions 1 and 2 (2 and 14 mm from the edge of the weld fusion line, respectively). The solid lines indicate data obtained from thin (1.5-mm) strip specimens, and the dashed lines indicate data obtained from the full-thickness (8.6-mm) bar specimens. Figure 2-7 presents the same information for gauge positions 4 and 5 (same positions as 1 and 2 but on the opposite side of the weld).

NORMAL LAST LINE

LAST LINE SHOULD FALL
WITHIN THIS AREA

CENTER PAGE NUMBER

BEGIN TYPING OF NORMAL TEXT PAGE ON LINE 9

JELTS HERE

*** BULLETIN MATERIAL

BELOW THIS

Table 2-2
SECTION 2, PAGE 15

SUMMARY OF BULK RESIDUAL STRESSES FOR WELDMENT W27A

	ROSETTE POSITION						
	3	2	1	4	5	6	7
Average Axial Stress	-164 -23	93 13	136 19	236 33	193 27	157 22	0 MPa 0 ksi
Average Hoop Stress	-164 -23	21 3	143 20	242 34	250 35	71 10	-79 MPa -11 ksi
Peak Axial Stress	-107 -15	96 13	170 24	273 38	249 35	234 33	64 MPa 9 ksi
Peak Hoop Stress	-151 -21	0 0	202 28	219 31	296 41	137 19	-51 MPa -7 ksi
Axial Peak-to-Peak Variation	87 12	159 22	89 13	347 48	112 16	218 31	164 MPa 23 ksi
Hoop Peak-to-Peak Variation	105 15	118 16	122 17	122 17	130 18	132 18	127 MPa 18 ksi

Weld

NORMAL LAST LINE

ROSETTES HERE

-- BULLETED MATERIAL
BEGINS HERESHEET 2 OF 10
Table 2-3

SUMMARY OF BULK RESIDUAL STRESSES FOR WELDMENT W27B

	ROSETTE POSITION			
	2	1	3	4
Average Axial Stress	142	8312	8412	141 MPa 20 ksi
Average Hoop Stress	-55-8	10415	11416	219 MPa 30 ksi
Peak Axial Stress	15922	35249	34749	367 MPa 51 ksi
Peak Hoop Stress	598	36451	30142	413 MPa 58 ksi
Axial Peak-to-Peak Variation	40957	31744	38755	464 MPa 65 ksi
Hoop Peak-to-Peak Variation	27238	45163	30142	377 MPa 53 ksi

Weld

Light
GrindingHeavy
Grinding

BEGINNING OF NORMAL TEXT PAGE ON LINE 8

BULLETTED MATERIAL

BEGINS HERE

Sect Table 2-4

SUMMARY OF BULK RESIDUAL STRESSES FOR WELDMENT W27C

	ROSETTE POSITION			
	2	1	3	4
Average Axial Stress	140 20	229 32	220 31	234 MPa 33 ksi
Average Hoop Stress	21 3	186 26	250 35	236 MPa 33 ksi
Peak Axial Stress	199 28	315 44	256 36	326 MPa 46 ksi
Peak Hoop Stress	52 17	270 38	401 56	346 MPa 48 ksi
Axial Peak-to-Peak Variation	113 16	158 22	97 14	304 MPa 25 ksi
Hoop Peak-to-Peak Variation	70 10	147 21	235 33	211 MPa 29 ksi

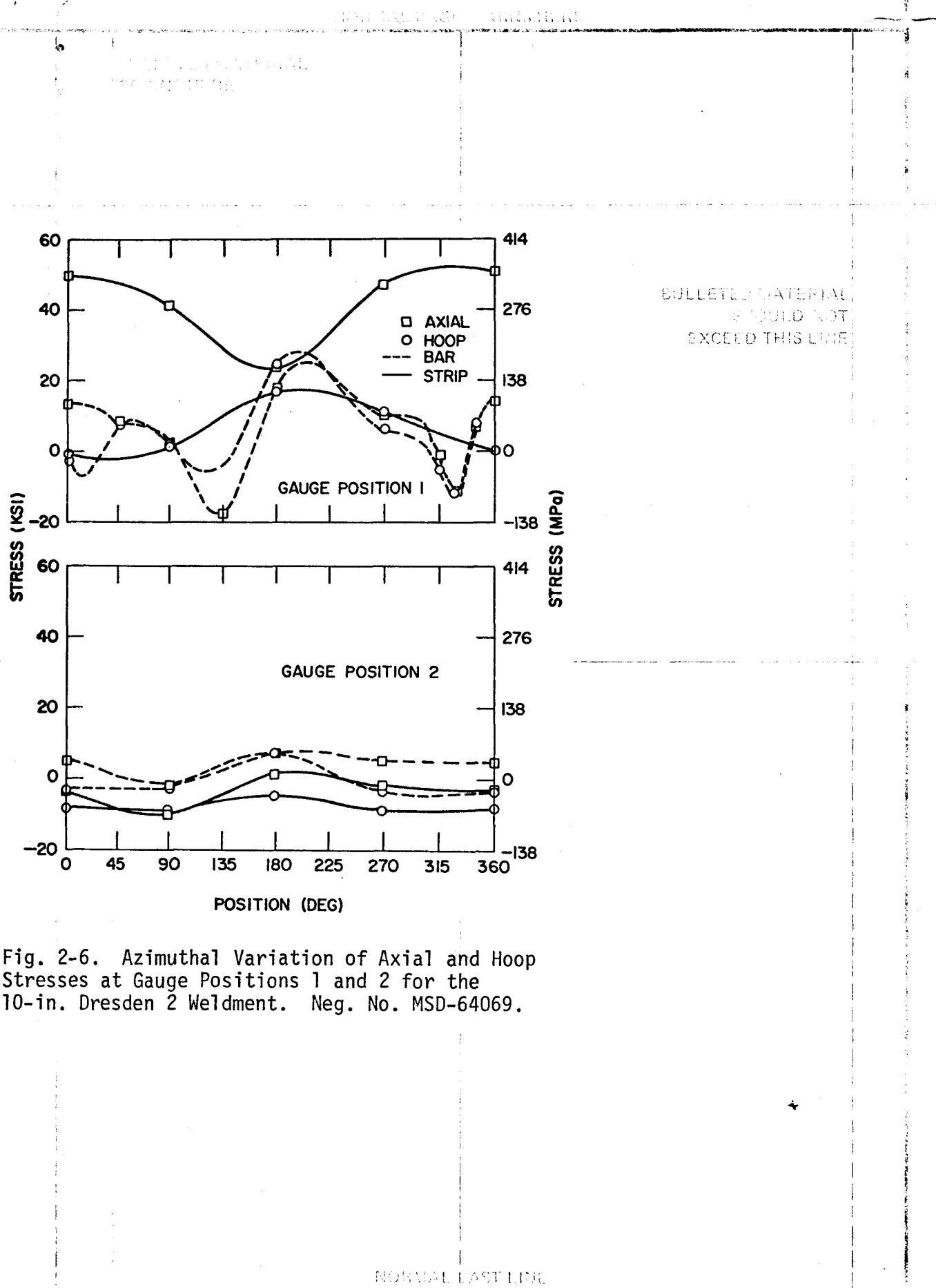
2

1

3

4

Weld


Heavy Machining

Light Machining

NORMAL LAST LINE

- BULLETS HERE

EVERY LINE SHOULD
END WITHIN THIS AREA

LAST LINE SHOULD FALL

INTERVIEW WITH S. J. COOK

BULLETS HERE

EVERY LINE SHOULD
END WITHIN THIS AREA

ALL LINES SHOULD END HERE

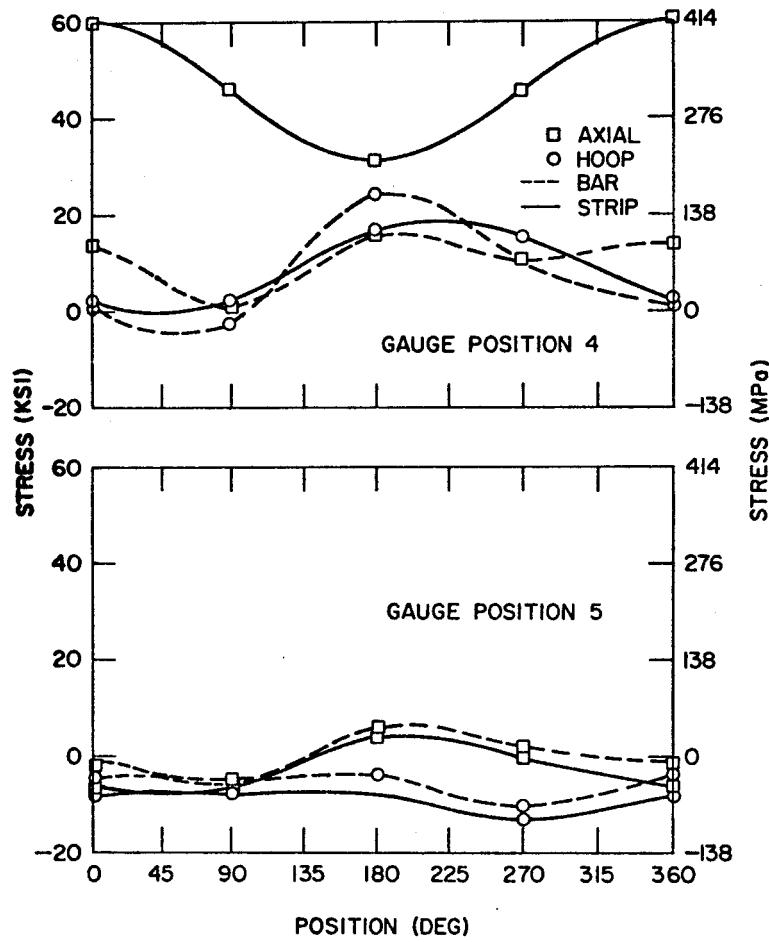


Fig. 2-7. Azimuthal Variation of Axial and Hoop Stresses at Gauge Positions 4 and 5 for the 10-in. Dresden 2 Weldment. Neg. No. MSD-64065.

BULLETED MATERIAL
SHOULD NOT
EXCEED THIS LINE

NORMAL LAST LINE

LAST LINE SHOULD FALL

Unlike the 4-in. weldments, large differences exist between the stress values obtained from the bar specimens and those from the strip specimens, at least for gauge positions close to the weld. For example, the axial stress at position 1 obtained from the strip specimens has a peak value of 360 MPa (50 ksi); the peak axial stress at position 1 obtained from the bar specimen is only 215 MPa (30 ksi).

Two striking qualitative differences exist between the stress distributions shown in Figs. 2-6 through 2-8 for a 10-in. weld and those typical of the 4-in. pipe weldments. First, although the hoop and axial stresses were virtually equal for all the 4-in. weldments examined, large differences in magnitude exist between the axial and hoop stresses for the 10-in. weldment, with the axial stress generally much larger than the hoop stress. A difference is also observable in the axial distribution of stress at fixed azimuthal angles shown in Fig. 2-8. The hoop stresses follow the expected bell-shaped distribution (e.g., see Refs. 4 and 5), with the peak stresses occurring on the weld; however, the axial stresses follow a bimodal "rabbit-ear" distribution with the peak stresses occurring on either side of the weld. Similar results have been observed in other investigations (12-13), and several explanations of the phenomenon have been proposed. Computer simulation of the welding process using an elastic-plastic finite-element model also predicts a bimodal distribution (3).

The results of the bulk residual-stress measurements are summarized in Table 2-5, which shows the average stresses, peak stresses, and peak-to-peak variation at each gauge position.

To assess the importance of preweld surface treatment on the final postweld distribution of residual stress, x-ray diffraction techniques were used in the ANL study (11) to measure surface residual stresses on specimens from the mock-up weldments W27A, W27B, and W27C. As shown in Table 2-3, the two halves of each weldment received different preweld surface treatments. During the parting-out process, the thermomechanically induced welding stresses are almost completely relieved. Thus the surface stresses on the specimens are due solely to the surface treatment.

NORMAL LAST LINE

REGULAR PAGE BEGINS HERE

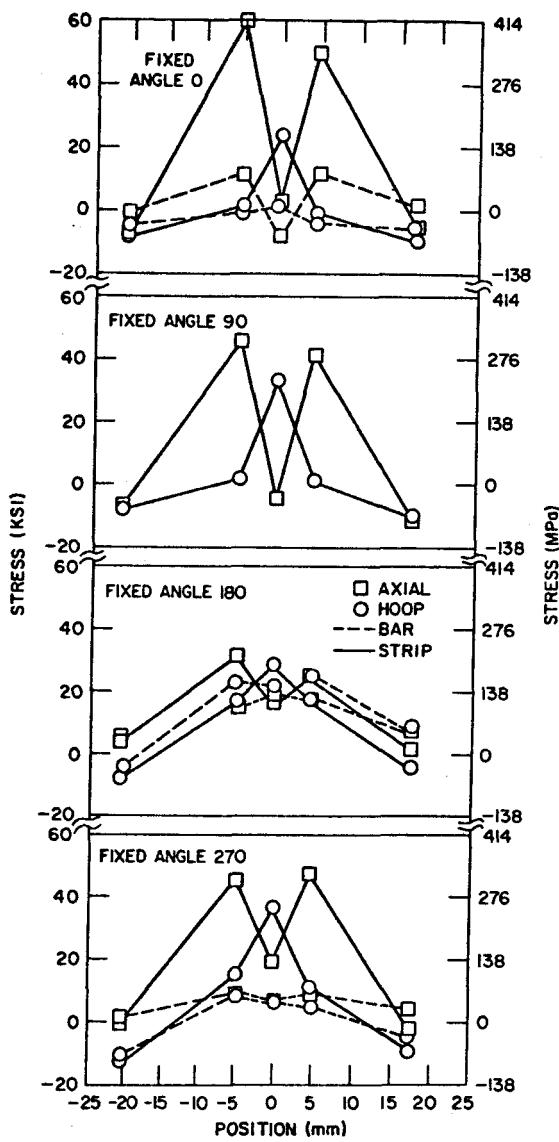


Fig. 2-8. Axial Variation of Hoop and Axial Stresses Across the Weld for the 10-in. Dresden 2 Weldment. Neg. No. MSD-64064.

RECORDED MATERIAL
SOLVED FOR
EXCEPT THIS LINE

NORMAL LAST LINE

PHLLETS HERE

EACH LINE SHOULD
END WITHIN THIS AREA

Table 2-5

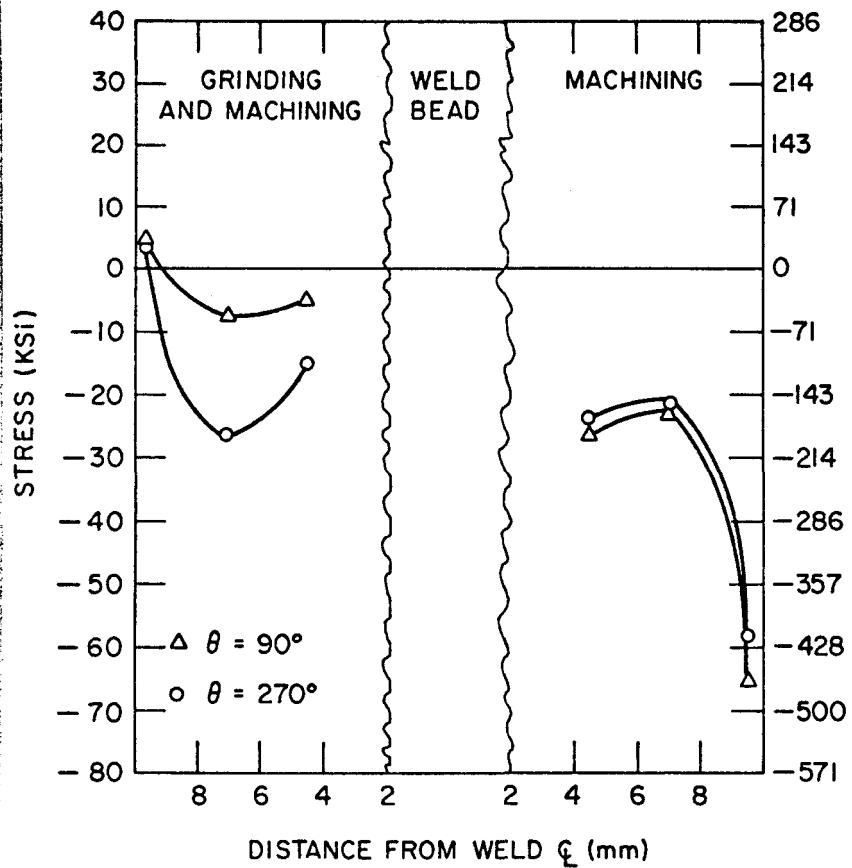
SUMMARY OF INNER-SURFACE BULK RESIDUAL STRESSES FOR THE
10-IN. DRESDEN 2 WELDMENT

	ROSETTE POSITION				
	2	1	3	4	5
Average Axial Stress	-29 -4	293 41	62 9	325 45	-16 MPa -2 ksi
Average Hoop Stress	-57 -8	54 8	220 31	62 9	-66 MPa -9 ksi
Peak Axial Stress	7 1	361 51	138 19	430 60	28 MPa 4 ksi
Peak Hoop Stress	36 -5	121 17	261 37	117 16	-55 MPa -8 ksi
Axial Peak-to-Peak Variation	82 11	190 26	167 23	209 29	77 MPa 11 ksi
Hoop Peak-to-Peak Variation	30 4	121 17	86 12	102 14	38 MPa 5 ksi

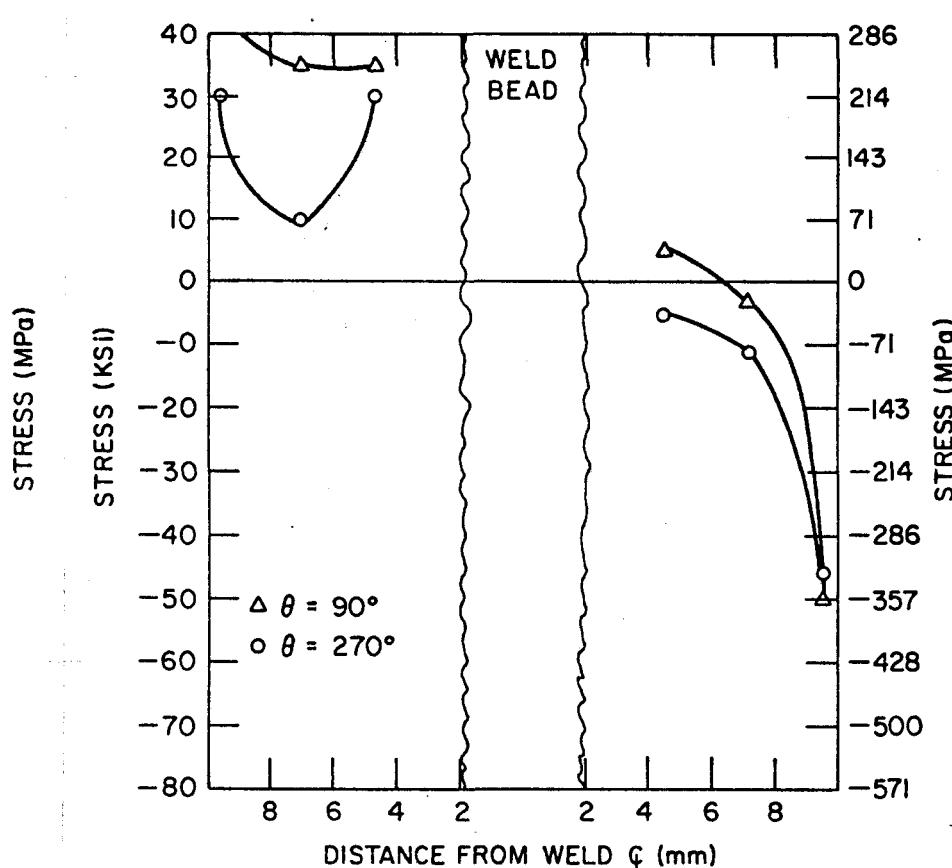
LAST LINE SHOULD

LAST LINE SHOULD FALL

The results shown in Fig. 2-9 from the weldment identified as W27A are typical of the measurements obtained on all the weldments examined. As Fig. 2-9(a) shows, at axial locations far from the weld-fusion lines, the various preweld surface treatments induce very large residual stresses. At most of the measurement locations, these very large stresses are compressive; however, other studies have shown that these stresses can vary widely, with small regions exhibiting tensile stresses in the midst of relatively large regions exhibiting compressive stresses.


ANALYSIS OF DATA
BY ANL
EXCLUDING THE 26-IN.

Near the weld fusion line, the high surface residual stresses induced by the preweld treatments seem to be modestly compressive. However, to obtain the actual surface stresses on a weldment, the stresses relieved during the parting-out process, which are presumably due to the welding process, must be added to the stresses due to the surface treatment. The total stresses on the inner surfaces, shown in Fig. 2-9(b), are highly tensile. These results suggest that, at least for regions <5 mm from the weld-fusion line, the effect of the preweld surface treatment is not particularly important. The treatments do induce high residual surface stresses, but these are largely relieved during welding. Even if the preweld surface treatment produces a compressive residual stress, the shrinkage and thermomechanical history associated with the welding process can produce high tensile residual stresses on the inner surface of the weldments, and attempts to obtain favorable residual-stress states must involve changes in the welding process itself, not just in the preweld surface treatment. In contrast, postweld mechanical treatments, such as grinding, are extremely detrimental and greatly increase susceptibility to ISCC.


Measurement of throughwall residual stresses in 4-, 10-, and 26-in. weldments were also carried out.* The distribution of throughwall residual stress in the 4-in. weldments appears to differ significantly from that in the 26-in. weldment. At some azimuthal positions, not only are there large tensile stresses on the

*The specimen from the 26-in. weldment used in the ANL study was cut from a quadrant of a 26-in. weldment supplied by GE as part of the work supported by EPRI. An $\sim 35^\circ$ azimuthal portion of the circumference of the entire weldment was cut from the weldment and sent to ANL. X-ray and stress-relief measurements by GE indicated that only minor amounts of bulk stress relief occurred when the quadrant was cut from the complete weldment.

ANALYSIS OF DATA
BY ANL

(a)

(b)

Fig. 2-9. (a) Surface Residual-stress Measurements for Mock-up Weldment W27A. (b) Total Surface Residual Stresses for Mock-up Weldment W27A. ANL Neg. Nos. 306-77-203 and 306-77-215.

inner surface of the 4-in. weldments, but also the throughwall residual stresses remain tensile through a large fraction (~50-75%) of the wall thickness. This is not the case for the 26-in. weldment. Figure 2-10 shows the throughwall distribution of the axial residual stress ~3 mm on either side of the weld fusion line. On the inner surface the stresses are tensile, but well below the peak levels observed in 4- and 10-in. weldments. However, the residual stresses become compressive at a depth >10% of the wall thickness.

Although only the throughwall stresses at one azimuthal position in one 26-in. weldment were actually measured, it should be noted that there is excellent agreement with the throughwall distribution predicted by the finite-element program developed at Battelle-Columbus under EPRI support (15).

If a crack does initiate on the inner surface and propagate, the residual stresses will redistribute. The nominal redistribution of stress in a 26-in. weldment caused by a growing crack has been calculated and is shown in Table 2.6. The results show that for crack lengths <10% of the wall thickness, very little redistribution occurs. Thus, a crack that initiates on the inner surface would have its radial growth arrested by the compressive stress field after growing through only a relatively small (<10%) portion of the wall thickness. However, it may then grow circumferentially. Also, in addition to the residual stresses considered here, the stresses caused by service loads must be considered before any final conclusions about the crack-arrest behavior of throughwall cracks in large-diameter piping can be drawn.

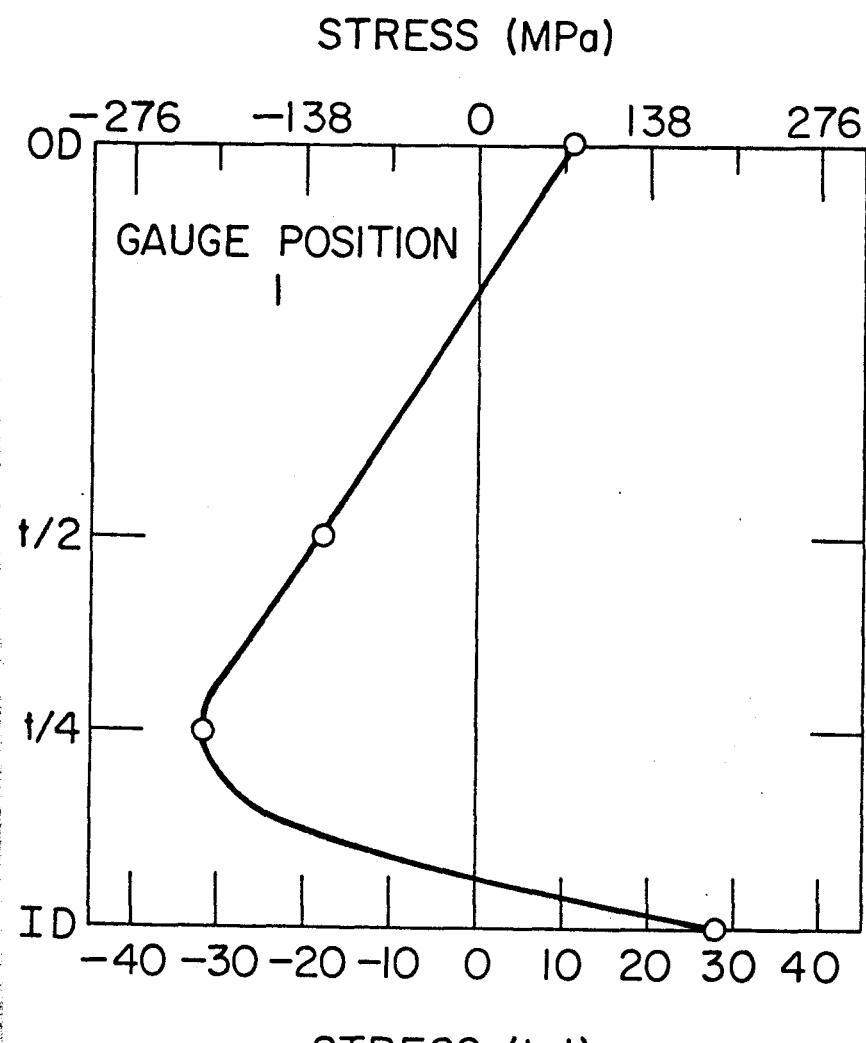
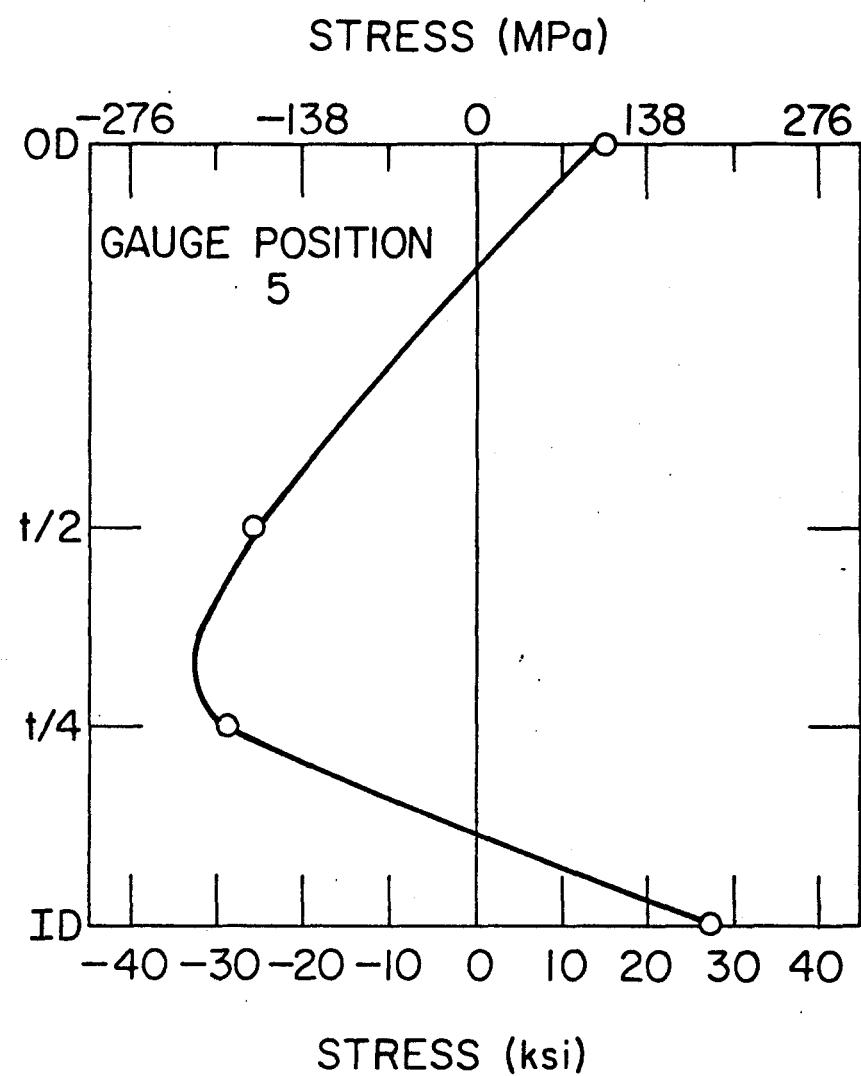

NORMAL LAST LINE

Table 2-6


REDISTRIBUTION OF STRESS AT GAUGE POSITION 1, ~3 MM FROM THE WELD FUSION LINE, CAUSED BY A GROWING CRACK

Crack Depth (mm)	Nominal Stress (MPa) at			
	Crack Tip	t/4	t/2	OD
0 (ID)	193	-221	-124	76
1	112	-218	-122	78
2	32	-216	-119	81
3	-47	-213	-116	83

INTERVIEW WITH A PUPIL

(a)

(b)

Fig. 2-10. Throughwall Distribution of Axial Residual Stress ~6 mm on Either Side of the Weld Center Line. ANL Neg. No. 306-78-740.

1 POINT HERE

Section 3

REFERENCES

1. C. F. Cheng, "Intergranular Stress-assisted Corrosion Cracking of Austenitic Alloys in Water-cooled Nuclear Reactors, J. Nucl. Mater., 56, pp. 11-33, 1975.
2. C. F. Cheng and E. E. Potter, "Intergranular Stress-assisted Corrosion Cracking of Type 304 Stainless Steel Piping in Dresden-I BWR Systems," Nucl. Met., 19, pp. 273-298, 1973.
3. H. H. Klepfer et al., "Investigation of Cause of Cracking in Austenitic Stainless Steel Piping," General Electric Co. Report NEDO-2100-1 75 NED 35, 1975.
4. L. Tall, "Residual Stresses in Welded Plates--A Theoretical Study," Weld. Res. (Miami, Fl.) Suppl., pp. 105-135, January 1964.
5. S. Vaidyanathan, A. F. Todaro, and I. Finnie, "Residual Stresses Due to Circumferential Welds," J. of Eng. Mater. Technol., pp. 233-237, October 1973.
6. S. Vaidyanathan, H. Weis, and I. Finnie, "A Further Study of Residual Stresses in Circumferential Welds," J. Eng. Mater. Technol., pp. 238-242, October 1973.
7. V. I. Makhnenko, V. M. Shekera, and L. A. Izbenko, "Special Features of the Distribution of Stresses and Strains Caused by Making Circumferential Welds in Cylindrical Sheets," Autom. Weld. (USSR), 23, pp. 43-47, 1970.
8. T. Muraki, J. J. Bryan, and K. Masubuchi, "Analysis of Thermal Stresses and Metal Movement During Welding, Parts I and II," J. Eng. Mater. Technol., pp. 81-90, January 1975.
9. H. D. Hibbitt and P. V. Marcal, "Numerical Thermo-mechanical Model for the Welding and Subsequent Loading of a Fabricated Structure," J. Comput. Struct., 3, p. 1145, 1973.
10. E. F. Rybicki, E. C. Rodabaugh, J. J. Groom, et al., Residual Stresses at Girth-butt Welds in Pipes and Pressure Vessels. Final Report to U.S. Nuclear Regulatory Commission. Report NUREG-0376, November 1977.
11. W. J. Shack, W. A. Ellingson, and L. E. Pahis, "The Measurement of Residual Stresses in Type 304 Stainless Steel Piping Butt Weldments," A Report to the Electrical Power Research Institute, in press, 1979.
12. H. Hickel, H. Wohlfahrt, and E. Machelauch, "Modellversuche zur Eigen-spannungsausbildung Beim Schweißen," DVS-Berichte Bd. 26, Strahltechnik VI, DVS Dusseldorf, pp. 49-52, 1973.
13. E. Machelauch and H. Wohlfahrt, "Die Ursachen des Schweißeigenspannung-zustandes," IX Schweißtechn Hochschulkolloquium, Kurfassungen der Vorträge, pp. 45-47, 1975.
14. A. J. Giannuzzi, et al., "Studies on AISI Type 304 Stainless Steel Piping Weldments for Use in BWR Application," EPRI NP-944, Final Report to the Electric Power Research Institute, December 1978.

NORMALLY PAGE BEGINS HERE

15. E. F. Rybicki, et al., "Effect of Weld Parameters on Residual Studies in BWR Piping Systems," First Semiannual Progress Report from Battelle-Columbus Laboratories on EPRI Project 1174 to the Electric Power Research Institute, March 1979.

DO NOT FOLD OR BEND PAPER

DO NOT FOLD OR BEND PAPER

DO NOT FOLD OR BEND PAPER

NORMALLY CASH FLOW